VisualAge for Smalltalk Handbook
Volume 1: Fundamentals

September 1997

International Technical Support Organization
San Jose Center

SG24-4828-00

SG24-4828-00
International Technical Support Organization

VisualAge for Smalltalk Handbook
Volume 1: Fundamentals

September 1997

—— Take Note!

Before using this information and the product it supports, be sure to read the general information
in Appendix A, “Special Notices.”

First Edition (September 1997)

This edition applies to VisualAge for Smalltalk, Versions 2, 3, and 4, for use with 0S/2, AlX, and
Microsoft Windows 95/NT.

Comments may be addressed to:

IBM Corporation, International Technical Support Organization
Dept. QXXE Building 80-E2

650 Harry Road

San Jose, California 95120-6099

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the
information in any way it believes appropriate without incurring any obligation to you.

O Copyright International Business Machines Corporation 1997. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or
disclosure is subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Contents

Preface XV
How This Redbook Is Organized XVi
ITSO on the Internet XVii
VisualAge Support on CompuServe XiX
About the Authors XiX
Acknowledgments XX
Comments Welcome XXi
Chapter 1. What Is VisualAge for Smalltalk? 1
Description of VisualAge for Smalltalk 1
VisualAge for Smalltalk Technology 1
Description of Smalltalk 2
Description of ENVY 2
Stability and Maturityo 2
OpenNNesSS 3
Team or Professional Version 3
Advantages of VisualAgeo 3
Advantages of Smalltalk 4
VisualAge for Smalltalk and VisualAge Generator 5
VisualAge for Smalltalk and C++ 5
Visualizer 6
Team Connection 6
Supported Platforms 6
Smalltalk Strategy 7
Smalltalk and Java 7
Configuration Managemento 7
Packaging Support 8
Database Support 8
Communication Protocol Support 8
Legacy Code L 9
Runtime Distribution Fees 9
Distributing Smalltalk Compiler 9
Source Code Availabilityo 9
Upward Compatibility 10
Common User Access Compliance 10
Multiple Inheritance 10
Porting Smalltalk Applications 10
Sources of Support 11
TalkLink 11
CompusServe . .. e 12
usenet 12

[0 Copyright IBM Corp. 1997 iii

iv

Resource Catalog 12

Learning Courses 13
New Features in Version 3 13
New Features in Version 4 14
Chapter 2. General Information 0L 23
Cleaning Up the Image 23
Creating a New Image 23
Reducing Image Size 24
Preventing Image Growth 25
AbtScrublmage 25
Ghosts 26
Image Growth after Packaging 26
Keeping Multiple Versions on the Same System 26
Replacing the Default lcon 27
Escaping an Infinite Loop 27
File-In and File-Out 28
Separate Threads 28
Capturing Stack Information 0L 28
Renaming a Class 29
Environment Variable o o o 29
Registered Connection 30
Loading Different Image 30
Deferred Update Part 30
Renaming a Visual Part 31
Hover Help for Buttons 32
Customizing Connection Menu 33
Live Updating of Images 33
Passing Parameters Between Windows 34
Generating Archival Code L 34
Deleting Parts with Instances 35
Change Table Format 36
Error Messages 36
Removing Archival Code 37
Apply Push Button 38
Inspector 38
Multimedia 38
Default Memory 39
Storing Settings 39
Extending Classes 40
Running VisualAge from External SCSI Drive 40
Damaged Classes 40
Extending Classes 41
Modifying the System Menu 41

VisualAge for Smalltalk Handbook — Fundamentals

Organizer VIiews e 42

File in Use 43
OS/2 Shutdown 43
BRW Format Generator 43
Loaded Method 44
Missing Character Set 44
Event Triggering L 44
Part not Visible 45
Removed Class 45
Synchronizing Attributeso 45
Keeping the Packaged Image Small 46
Including Classes in a Package 46
Packaging for AIX from OS/2 47
Loading Application in a Run-time Image 47
Packaging an Application for Windows 48
Ilcons and DLLs 48
Packaging a Workspace 48
Image Reduction 48
Ensuring that Needed Classes are Packaged 49
Class Modifications and Packaging 49
Merging Application Files into Run-time Image 49
Missing lcons 50
Required .CAT Files 50
Packaging Pool Dictionaries 51
Application Prerequisites 52
Missing Classes in the Run-time Image 52
Missing Method in Package 53
Run-time Image Packaging Problem 54
Generating Getters and Setters 54
High Performance Trace Logging 54
Closing a DLL from Smalltalk 55
Unloading When Instances Exist 56
Testing When Looping Walkbacks Occur 56
Quickly Disabling Methods 56
Specifying Public or Private with TrailBlazer 57
Browse and Find in the Pop-Up Menu 57
Versioning Applications Not Owned 61
Client Not Supported 61
AbtRecord 62
Indexed Message Editor 62
Corrupted MRI File 63
Class Naming Convention 63
Category Naming 66
Archival Code is Missing 68

Contents V

Vi

Meaning of Application Errors

Error: 'Undefined Object does not understand messageString’
Error on Saving a Part
Inappropriate VisualAge lcon
Double Execution of Script
Error 203 . . .
Removing Elements from a View
Class EmLibraryStatistics
Error: rc=12 . .
Error: SYS317X
Error: Primitive Error Codes 52 through 55
Error: Does Not Understand Format
Menu on Windows NT 4.0
Back-tabbing in Container Details Views
Properties Views and Notebook Settings Views
Code Page Conversion Errors
Determining Required ICs
Required CAT and MPR Files for an IC Run-time Image
Required CAT and MPR Files for a Reduced Run-time Image
Format Change for CTLs
Unloading the Visualization Feature
Manager ACCESS
Opening Multimedia Devices
Using Digital Video Player on OS/2
Video Disk Player
Crystal Wave and MWave Audio Cards
AVA Playback Windows
Lotus Notes

Chapter 3. Graphical User Interface

GUI Architecture

Mapping Widgets Across Systems
Motif Documentation

Interface to Windows 95
Applications with Multiple Windows

Exit Dialog Message Box
Window Location
Positioning Window at Cursor . . .
Maximizing a Window
Opening Window Maximized
Display Resolution
Opening Window Centered
Window Space Planning
Iterating over Widgets

VisualAge for Smalltalk Handbook — Fundamentals

Modal Dialog 94

Capturing the Minimize Request, 94
Window Synchronizationo 95
Closing a Window 95
Resolution-Independent Screen 95
Setting Minimum Window Sizeo 96
Closing a Widget from a Script 96
Removing the Close Menu Option 97
Widget Warning: Circular Reference 97
Always-on-Top Window 98
Changing the Mouse Pointer 98
Busy Cursor 100
Caret Shape Cursor 102
Mouse Pointer Locationo 102
Icon as Cursor 103
Animated Busy Cursor 105
Adding Pull-Down Menu Choices Dynamically 105
Toggle Buttons in Menu 105
Disabling Push Buttons on Pop-Up Menus 106
Pop-up Menus for lcon Gadgets 107
Sharing a Menu Between Containers 108
Dragging Versus Pop-Up 108
Icons on a Menu Bar 108
Creating a Tool Bar 109
Synchronizing a Combo Box 109
Adding Items to Combo Box 110
Drag-and-Drop Support on List Boxes 110
List Box Behavior 112
Identifying Last Selected Item 112
Default Action Requested 113
Combo Box Behaviour 114
Skipping through a Notebook 114
Bitmap on Notebook Tab 115
Hiding and Showing Pages 116
Porting Notebooks across Platforms 117
Navigating between Columns 117
Selecting Valid Items 117
Validating Input Fields 118
Container Column List Box 119
Columns with GUI Elements 119
Adding Records to Container 120
Changing Labels 120
Deselecting Details Tree Items 121
Resizing Container Columns 123

Contents Vii

Changing Scroll Bar Size 124
Container Details Tree Children 124
Hiding the Heading on a Container Details View 124
Disabling a Notebook Tab 125
List with Icon Column 125
Hiding a Column 125
Removing an lcon 125
Adding Icons Dynamically 126
Refreshing a Container Details View 127
Access to Container Object Attribute 128
Removing an lcon 128
Error: "Attribute Does Not Exist" L. 129
Adding an Icon to A List Part 129
Drag-and-Drop 129
Multiline Text 130
Window Titles 131
Querying the Caret Position in Text 131
Color Bitmap Resolution 131
Automatic Tab Moving 132
User Input Error L 133
Closing the Window 134
Transparent Background oL 135
Getting the Anchor Block Handle 135
Turning Off Error Message 135
Locating the Focus 136
Bitmaps on Buttons 136
Progress Indicator Window 137
Hot Spots 138
Links . . . 138
Wallpaper 138
Labels on Message Prompter 139
Visual Part Reuse 140
Supported Image Formats 140
Click-Sensitive Bitmapo 140
Setting Help 141
Modifying Data Entry Parts 141
Reacting to Keyboard Input 141
Using Esc to Close Nonmodal Dialog 142
Multiline Edit Part and Tab Order 143
Using Predefined Function Keys 143
Grabbing Typed Words 144
Dropping an Item on a Push Button 144
Changing a Part's Settings View 145
Hiding Table Columns Dynamically 145

VisualAge for Smalltalk Handbook — Fundamentals

Initializing a View Wrapper 146

Adding Columns to Tables 146
Synchronize Table Scrolling 148
Changing Table Size 149
Table List Part 149
Reusable Table Part 149
Changing a Table Cell 149
Selecting Multiple Rows 150
Changing Push Button Activation 150
Event Handling in Windows, AIX, and OS/2 151
Part Validation 152
Moving Icons 152
Printing a Form with a Visual Part 152
Text Box Problem 153
Reusable Table Part 153
Trap the Enter Key for Tabbing 153
Creating an Operation-in-Progress Window 155
Progress Messages 156
Limiting the Number of Lines in Multiple-Line Editor 156
Disabling a Button 156
Accelerator Keys 157
Hover-Help on Widgets 157
Improving Performance 158
Tabbing Order 158
Ctrl-Click Events 159
Creating Push Buttonso 160
Changing Part Labels 160
Adding BMP Files to Buttons 161
Creating a Prompter 161
Setting Focus to Next Entry Field 162
Missing Carriage Return in Multiple-Line Editor 162
Action on PFkey Pressed 163
Chapter 4. IBM Smalltalk Programming Language 165
Smalltalk Books 165
Smalltalk Standardization 166
##() Construct 167
Taking Actions Automatically at Class Recompilation 168
Weak Pointers 170
Utility of Weak Pointers 170
Object Finalization 171
Standard Methods not in API Category 172
Using the Correct Variable Type 172
Smalltalk printf()-like Formatter 173

Contents iX

X

Testing Instances and Classes 173

Garbage Collection Rate 174
Inherited Messageso 175
File System 176
File Existence 177
Accessing COM Ports 178
Catching Errors 179
File System Errors 180
Catching All Errors 181
Exception-Handling Code 182
Fixed Decimal Class 182
Object Class ldentification 182
Floating Point Numbers 182
Reversing Collections 186
Substrings 186
Implementation of #become:o 187
#to: Method 189
Interval>>reverse Method, 190
Updating Widgets 191
Incremental Compiler 191
Caching Compiler 192
Creation of Blocks at Run-time 192
Pool Dictionaries 193
Text Color Changes 193
Sorting SortedCollections 194
Compiler Severity Levelo 195
Finding the Sender Signature 195
Sender Context 196
Pool Dictionary Tips 197
Text Display on Update 197
Pool Dictionary 198
Swapper Error . .o 198
Hover-Help Behavior 198
Aborting a Process Stacko 199
Exiting an Image 199
Configured Subsystems 199
Image Copyright 200
Command Line Arguments 200
Run-Time Image 200
EsWeakSet and Finalization 201
Continue Background Process 201
Automatic Log-Off 202
Synchronizing a Visual Part 202
Execution Start 203

VisualAge for Smalltalk Handbook - Fundamentals

Inheritance of Visual Parts 204

Multithreading 204
Global Variable 205
Updating Class Attributes in a Run-time Image 205
Class Methods at Run-Time 206
Objects’'s Knowledge of Reference 206
Smalltalk Class or AbtAppBldrPart 208
Cleaning Up Unused File Handles 208
Initializing Class Variables 209
Forking and Cycles 209
Converting Numbers Using printString 210
Garbage Collection of Instances 211
4-Digit Years 212
Fixing Date Years 212
ABTPATH . . . 213
Double-Triggering of Changed Events 213
Inheriting Visuals Associated with a View Class 215
Garbage Collector Problems 216
Integer Representation 216
Method Tracing 216
Storing Object of Unlimited Size 217
Collections and #do: 218
Fixed Object Space 219
Parsing Strings with Date/Time 219
Identity Test on String 221
Replacing Character in String 222
Padding Strings 223
Trimming a String 223
Inhibiting List Selection 223
Resizable Table Rows o 224
Adding wmUser Messageso 224
New Operating System Event, 225
Class Instance Variables 225
Class Naming 226
Reusing the Settings View 227
Exception: #doesNotUnderstand 228
Creating Classes from Smalltalk Script 229
Keyboard Event Handler 230
Changing Object Class 231
Cleaning Up the Image 232
Finding Methods Containing a String 232
Free Disk Space 233
Using LookupTable Instead of Dictionary 234
Concatenation and Streams 237

Contents Xi

Xii

Comparing Floating-Point Values
Immutable Objects and lIdentity Objects

Chapter 5. ENVY
Working with the Team Environment
Shared Library Password Protection
Libraries
Import and Export
Loading Applications L.
Moving Components Between Libraries
Archival Code
Identifying the Released Version
Change Management for Flat Files
Date Stamp for Versioned Classes
Applications and Subapplications
Connecting to a Cloned Library
Reloading an Application
Loading Previous Editions of Application
Deleting an Application
Creating a New Application
Removing an Application
Deleting Old Versions of Classes
Getting Rid of Damaged Classes
Prompting for Ownership
Moving Development Code
Distributing an Application for OS/2 and AIX
Exporting an Application to a Non-LAN PC
Associating .DAT files with Features
Manager Consistency
Exporting a Pool Dictionary
Exporting Configuration Maps
Manager Growth Rate
Class Changes versus Alternatives
Moving Windows Library to AIX
Identical Users
Classes Available in the Library
ENVY/Windows95/Novell

Chapter 6. Microsoft Windows
Sizing the Windows 95 Toolbar
Windows 95 TreeView,
Deactivation of OLE Embedded WordPro Document . . .

Copying from Windows Explorer into an OLE Client Part

Generating OLE Methods

VisualAge for Smalltalk Handbook - Fundamentals

Free Disk Space on Windows Platform 261

Chapter 7. National Language Support 263
Code Page Support 263
Code Page and MPR Problems, . 263
Required CAT Files 264
Decimal Point Representations 264
Using Multiple National Languages 265
Adding French Characters to English 265
Problems with National Language Support in Version 3 266
Code Page Conversion between OS/2 and Windows 266
Double-Byte Character Set 267
Appendix A. Special Noticeso 269
Appendix B. Related Publications 271
International Technical Support Organization Publications 271
Redbooks on CD-ROMs 272
Other Publications 272
How to Get ITSO Redbooks 275
How IBM Employees Can Get ITSO Redbooks 275
How Customers Can Get ITSO Redbooks 276
IBM Redbook Order Form 277
Glossary 279
List of Abbreviations 305
Index . . . L 307
ITSO Redbook Evaluation 309

Contents Xiii

Xiv VisualAge for Smalltalk Handbook - Fundamentals

Preface

This book addresses many common questions in the VisualAge for Smalltalk
development arena. It covers various aspects of VisualAge and IBM

Smalltalk through answers to frequently asked questions, hints and tips from
users and developers, and online bulletin boards inside and outside of IBM.

This redbook will help VisualAge for Smalltalk developers find answers to
their everyday questions. The book provides usage guidelines for areas
such as change management, performance, database access, and
transaction processing, to help developers avoid common programming
pitfalls.

The VisualAge for Smalltalk Handbook has two volumes:
Volume 1: Fundamentals

Volume 1 covers general programming questions on such topics as
image maintenance, graphical user interfaces, naming conventions, and
the IBM Smalltalk language.

Volume 2: Features

Volume 2 focuses on VisualAge for Smalltalk features, such as AS/400
Connection, Communications and Transactions, Distributed, Reports,
and Web Connection.

This book is written for VisualAge for Smalltalk programmers, project
leaders, and developers. Understanding many of the questions and answers
in this book requires substantial knowledge of the VisualAge for Smalltalk
product and the Smalltalk language.

This book does not discuss questions related to methodologies, analysis
and design. For a discussion of object-oriented analysis and design with
VisualAge for Smalltalk, refer to Visual Modeling Technique.

[0 Copyright IBM Corp. 1997 XV

How This Redbook Is Organized

XVi

This redbook contains 362 pages. It is organized as follows:

Volume 1: Fundamentals

This book sets the stage for programming with VisualAge for Smalltalk.
It contains questions and answers dealing with the base product and
everyday programming pitfalls.

Chapter 1, “What Is VisualAge for Smalltalk?”

This chapter provides some non-technical discussion of
programming with VisualAge for Smalltalk.

Chapter 2, “General Information”

This chapter provides general programming tips, from image
maintenance and packaging to troubleshooting.

Chapter 3, “Graphical User Interface”

This chapter provides a discussion of graphical user interface parts,
such as containers, notebooks, buttons, or tables.

Chapter 4, “IBM Smalltalk Programming Language”

This chapter provides questions and answers regarding the IBM
Smalltalk programming language.

Chapter 5, “ENVY”

This chapter provides a discussion of the ENVY team programming
environment.

Chapter 6, “Microsoft Windows”

This chapter provides a discussion of programming issues related to
the Microsoft Windows platform.

Chapter 7, “National Language Support”

This chapter discusses national language support with VisualAge for
Smalltalk.

Volume 2: Features

This book details on the various VisualAge for Smalltalk features, some
of which are packaged with the base product and some others are
separately orderable.

Chapter 1, “AS/400 Connection”

This chapter provides a discussion of the AS/400 Connection feature
and related items such as ClientAccess/400 and DB2/400.

VisualAge for Smalltalk Handbook — Fundamentals

— Chapter 2, “Communications/Transactions”

This chapter provides a discussion of the Communications/
Transactions feature and its protocols, such as TCP/IP, APPC, CICS,
or NetBIOS.

— Chapter 3, “Interface to External Routines”

This chapter discusses the use of external routines, such as C or
COBOL programs.

- Chapter 4, “CICS and IMS Connection”

This chapter provides a discussion of the CICS/IMS Connection
feature.

- Chapter 5, “Database”

This chapter covers questions and answers related to database
access from VisualAge for Smalltalk, such as DB2 or Oracle.

— Chapter 6, “Distributed”

This chapter provides insight into the VisualAge for Smalltalk
Distributed feature, for example, remote objects or object spaces.

- Chapter 7, “Reports”
This chapter covers the VisualAge for Smalltalk Reports feature.
- Chapter 8, “SOM/DSOM”

This chapter provides a discussion of the System Object Model and
the Distributed System Object Model.

- Chapter 9, “Web Connection”

This chapter discusses the Web Connection feature of VisualAge for
Smalltalk.

ITSO on the Internet

Internet users may find additional material about new redbooks on the ITSO
World Wide Web home page. Point your Web browser to the following URL:

http://www.redbooks.ibm.com/redbooks

IBM internal users may also download redbooks or scan through redbook
abstracts. Point your Web browser to the internal IBM Redbooks home

page:

http://w3.itso.ibm.com/redbooks

Preface XVii

XViii

If you do not have World Wide Web access, you can obtain the list of all
current redbooks through the Internet by anonymous FTP to:

ftp.almaden.ibm.com
cd /redbooks
get itsopub.txt

The FTP server, ftp.almaden.ibm.com, also stores the sample software from
the diskettes accompanying some of the redbooks. To retrieve the sample
files, issue the following commands from the /redbooks directory:

cd SG24xxxx ~ Redbook number
binary

get SampleFile.EXE

ascii

get SampleFile. TXT

All users of ITSO publications are encouraged to provide feedback to
improve quality over time. Send questions about and feedback on redbooks
to:

redbook@vnet.ibm.com or
REDBOOK at WTSCPOK or
USIB5FWN at IBMMAIL

If you find an error in the software that is supplied with a redbook, please
send a bug report with a description of the problem to

bugs@vnet.ibm.com

To receive regular updates on new redbooks and general IBM
announcements, you can subscribe to the IBM Announcement Listserver. It
automatically supplies an Internet e-mail user with timely new
announcement information (titles and optionally the letter or abstract) from
selected categories. To get started, send an e-mail to

announce@webster.ibmlink.ibm.com

The keyword SUBSCRIBE must be the only word in the body of the e-mail;
leave the subject line blank. You will receive a category form and listserver
details. To immediately start your subscription to, for example, AS/400
announcements, put the words SELECT HW120 in the body of the note. On
the afternoon of an announcement day, you will receive e-mail with the
announcement, along with a list of newly available redbook titles. To obtain
a full abstract of a particular redbook, use GET SG242535 in the note.

VisualAge for Smalltalk Handbook — Fundamentals

VisualAge Support on CompuServe

VisualAge users are encouraged to use CompuServell to ask questions
about VisualAge and its features. When logged on to your CompuServe
account, type GO VISUALAGE to get into the IBM Workstation Rapid
Application Development (WRAD) conference. You will find sections to
discuss the following and other VisualAge topics:

Installation/Begin
Communication/Languages
Database

AS/400 Connection

Web Connection

About the Authors

This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization, San Jose, CA.

Andi Bitterer works as a consultant for the International Technical Support
Organization at the Almaden Research Center in San Jose, California. He
graduated with a degree in computer science from the Technical University
in Darmstadt, Germany. Andi joined IBM in 1987 and worked as an
application development specialist in large customer projects for IBM
Integration Systems Services and at the German AS/400 Field Support
Center. Since joining the ITSO in 1994, he has taught workshops worldwide
on object-oriented application development and the Internet. Andi is the
author of three other VisualAge for Smalltalk books published by Prentice
Hall. You can reach him by e-mail at bit@acm.org.

Vincent Dijkstra works as an Education Consultant at the IBM International
Education Center, La Hulpe, Belgium. He holds Bachelor of Arts and Master
of Arts degrees in Technology and Policy from the Eindhoven Technical
University. Vincent started working for IBM in 1992 on a learning resource
to assist managers and teams in transforming their organizations. In 1994
he joined the IBM Object Technology University, where he teaches
Smalltalk, VisualAge, and more recently Java and analysis and design
techniques. You can reach Vincent by e-mail at vdijkstra@vnet.ibm.com

Boris Shingarov received his Master of Science degree in Quantum Fields at
Moscow State University, M.V.Lomonosov, in Russia. He is the head of the
Center for VisualAge and IBM Smalltalk, Dialogue/MSU, providing VisualAge
consulting and services all over Russia. Currently, Boris teaches VisualAge
for Smalltalk courses at MSU. He can be reached by email at
boris@visualage.dialogue.msu.su.

Preface XiX

Acknowledgments

XX

This book has been a team effort par excellence, even though most
contributors were not even aware of being a team. However, we want to
acknowledge everyone, inside and outside of IBM, who, knowingly or
unknowingly, added information to the collection of invaluable hints and tips
in this book.

Thanks go to Dave Allison, Rainer Angstmann, Jean-Pierre Augias, Wayne
Beaton, Jan Belik, Paul Berglund, Jonathan Bezuidenho, Debu
Bhattacharya, Franco Biaggi, Peter Boonen, Chris Bosman-Clark, Toufic
Boubez, David Bourke, Dave Bowman, Mamie Branch, Michel Brassard,
Chuck Bridgham, Robert Brown, Jordi Buj, Jerry Callistein, Jon Capezzuto,
Tony Carlier, Janelle Carroll, Ron Cherveny, George Chiu, Chris Clark, Eric
Clayberg, Stephen Cooper, Ellis Covington, Tim Cowan, Mark Cresswell, Jim
Crossgrove, Greg Curfman, James Curtis, Chris Davia, Kirk Davis, Gordon
Davis, John DeBinder, Ricardo Devis, Bill Dickenson, Stef van Dijk, Sue
Dubbeling, John Earle, Ralf Eberhardt, Kevin Egolf, Linda Fargo, Ahmed
Fattah, Gerald Fischer, Hans Forsberg, Mike French, Annick Fron, Sabine
Gaissert, Ken Gelsinger, Chris Gerken, Michel Giroux, Erick Godoy, Tom
Gordon, Chris Grindstaff, Juergen Guenauer, Sven Guyet, Tim Hanis, Brad
Hanks, John Hansen, Nicla Havrup, Chris Hayes, Frank Haynes, Pam Helyar,
Andy Heys, Hal Hildebrand, Tim Hilgenberg, Andrew Hobbs, Steve Hobson,
Bryan Hogan, Andreas Huber, Greg Hutchinson, Mike Jacobs, Charif
Jaouhar, Chuck Jaynes, Christopher Joak, Greg Johnson, Tom Johnson,
Jane Jones, Gary Karasiuk, Gijsbert Karens, Dan Kehn, John Kellington,
Dave Kennedy, Brian Kent, Kelly Keplinger, Alan Knight, George Kober,
Martin Kunz, Bruce Lambert, Micky Lim, Michael Linderman, Daniel Lipp,
Grace Liu, Bill Lockard, Tom Logan, Mark Lorenz, Pablo Lorenzo, Sabina
Luzzatti, Stewart MacLean, Bill Mathews, Cynthia McCrickard, David McGee,
John Mcintosh, Ted McKnight, Gerald Meazell, Eric Meredith, Jim
Mickelson, Gonzalo Mourino, Pat Mueller, Gen Nagatsuka, Martin Nally,
Binh Nguyen, Jimmy Nguyen, Achim Nogli, Ami Noyman, Patrick O'Donnell,
John O'Keefe, Dan Ohlhaut, Omar Padilla, Jim Pendergast, Rosa Peral, Ralf
Pfiszter, Enrico Piccinin, Oliver Picot, Guenter Pindhofer, Rene Plourde,
Greg Plummer, Bob Poulton, Steve Reeves, Brian Remedios, James
Rendell, Scott Rich, Cameron Roy, Jouko Ruuskanen, Jari Saari, Craig
Setera, Dan Shaver, Ed Shirk, Allen Smith, Christine Smith, Craig Smith,
David Smith, Larry Smith, Daniel Stainhauser, Jim Stewart, Jeff Stratford,
Jean Talbott, Steve Tang, John Tobin, Mark Tompkin, Mike Toohey, Rick
Trotter, David Twyerould, Timo Ullrich, Harold Wadler, Jim Wason,
Christopher Webster, Tony Weddle, Ronny Weisz, David Whiteman, Mark
Wilkes, Joe Winchester, Rory Woodward, Cindy Wotus, Glorious Wright,
Alfred Wu, Barry Young, Ric Zapanta, Sherwood Zern, and Slavik Zorin, for
their numerous contributions, questions or answers, hints and tips.

VisualAge for Smalltalk Handbook - Fundamentals

Many thanks go to Alexis Scott, Nancy Lewis, Paul Braun, and Shawn Walsh
at the ITSO Raleigh Center, for their great administrative support, and to Pat
Donleycott, ITSO Raleigh Center Manager, for hosting the residency.

Thanks also to Shirley Hentzell and Maggie Cutler for their outstanding
editing of this book, to Liz Rice for her editorial assistance, and to Geoff
Nicholls, without whose advice this book would not have a decent index.

Comments Welcome
Your comments are important to us!
We want our redbooks to be as helpful as possible. Please send us your
comments about this or other redbooks in one of the following ways:

Fax the evaluation form found in “ITSO Redbook Evaluation” to the fax
number shown on the form.

Use the electronic evaluation form found on the Redbooks Home Pages
at the following URLS:

For Internet users http://www.redbooks.ibm.com
For IBM Intranet users http://w3.itso.ibm.com

Send us a note at the following address:

redbook@vnet.ibm.com

Preface XXi

XXii VisualAge for Smalltalk Handbook - Fundamentals

Chapter 1. What Is VisualAge for Smalltalk?

Description of VisualAge for Smalltalk

m What is VisualAge for Smalltalk?

VisualAge for Smalltalk is a client/server rapid application builder for
constructing state-of-the-art, flexible, scalable business applications. With
extensive libraries of classes, a rich set of preexisting parts from IBM and
other vendors, wrappering of existing COBOL, C, IMS transactions or VBX
controls, and multimedia authoring support, VisualAge enables rapid
assembly of applications with minimal new code. VisualAge for Smalltalk
supports development on Windows, OS/2, or AIX, with full portability of
applications across these target platforms. It combines the power of a pure
object-oriented environment with the ease of visual programming. Users
can connect prefabricated, reusable components or extend these
components with user-created code. VisualAge for Smalltalk eases the
learning and implementation of object-oriented technologies. VisualAge for
Smalltalk supports multiple client/server models, GUI construction, popular
communications and transaction protocols, access to industry-leading
databases, the CORBA standard for object interoperability, and multiple
legacy interfaces. VisualAge for Smalltalk Standard is the entry-level
product for individual programmers. The Professional product, for
individuals or teams, includes version control and configuration
management. The Professional Server product includes a LAN repository for
team development. Add-on components include support for native ORACLE
data access, communications and transactions, reports, AS/400, IMS, and
distributed objects.

VisualAge for Smalltalk Technology

m What type of technology does VisualAge use?

Application developers use a construction-from-components or
construction-from-parts paradigm when using VisualAge. VisualAge is based
on IBM Smalltalk, which embodies the principles of object-oriented (OO)
technology to build applications, providing all of the benefits of reuse and
rapid application development. With VisualAge's GUI-based development
platform, proficiency in OO is not a prerequisite, thus easing a developer's
entry into OO.

[0 Copyright IBM Corp. 1997 1

Description of Smalltalk

Answer

What is Smalltalk?

Smalltalk is a popular OO language. Often referred to as a 5GL, Smalltalk is
a very powerful, high level language that offers exceptional capabilities for
rapid prototyping and delivery of applications. It is an emerging language in
the programming environment.

Smalltalk has been around since 1971. It was developed in Xerox PARC,
and it was the first system in the history of computers featuring a GUI with
windows, mice, and other properties of the modern graphical operating
systems. IBM Smalltalk is a portable, robust, standards compliant,
integrated Smalltalk language and development environment embedded as
a component of VisualAge. IBM Smalltalk adheres to industry standards
such as OSF Motif and POSIX and is based on the proposed common-base
Smalltalk specification submitted to the X3J20 committee for making
Smalltalk recommendations to ANSI.

Description of ENVY

Answer

What is ENVY?

ENVY is an incredibly powerful Smalltalk development environment from
OTI, having features that no other Smalltalk development environment has.
Originally, ENVY was an environment, to be based on top of other basic
Smalltalk implementations. But now, in IBM Smalltalk, you have a full
from-scratch integration between the language and the environment.

Stability and Maturity

2

Answer

How stable and mature is VisualAge for Smalltalk?

VisualAge for Smalltalk was in development for several years before it
became generally available in the first quarter of 1994. According to Eric
Ostrom, a consultant for IS International, "VisualAge [for Smalltalk] is the
most solid release 1 development tool | have ever used. Each release is
faster and offers more features. Version 3.0 with distributed Smalltalk is
outstanding.” Standards-conforming IBM Smalltalk (and therefore VisualAge
for Smalltalk) is based on the proposed common-base Smalltalk
specification submitted to the X3J20 committee for making Smalltalk

VisualAge for Smalltalk Handbook - Fundamentals

recommendations to ANSI. Both the chairman and secretary of the ANSI
Smalltalk committee work for IBM in Smalltalk development. In addition, IBM
Smalltalk adheres to industry standards of OSF Motif, X-Windows, POSIX,
and IBM's CORBA implementation (SOM).

Openness

m In what respect is VisualAge for Smalltalk open?

It is portable among platforms— Windows, OS/2, AIX, Sun, and HP.
VisualAge for Smalltalk supports IBM and non-IBM databases and a variety
of communication protocols, including TCP/IP, for operation in
heterogeneous environments. VisualAge for Smalltalk is built on a
nonproprietary standards base (Smalltalk) that can be extended and
modified by customers and third party vendors.

Team or Professional Version

m Does VisualAge have a team or pro edition?

Yes. VisualAge for Smalltalk actually has two base versions—Standard and
Professional. VisualAge for Smalltalk Standard is for the individual
programmer. VisualAge for Smalltalk Professional is for individuals or
teams and can support a LAN-based library of classes and parts, version
control, configuration management and other functions that support
collaborative team development. Additionally, a Professional Server product
is available for VisualAge for Smalltalk and IBM Smalltalk. The Professional
Server extends the box product by providing multiple user access and a
central LAN-based library of classes and parts that developers can access
concurrently.

Advantages of VisualAge

m What are the key advantages of VisualAge?

VisualAge for Smalltalk is the only tool of its class that offers full integration
of visual programming, object-oriented environment, and best-of-breed team
support. Programmers never need to leave one tool to go to another to
build and test a complete application. Teams of programmers can easily
manage complex object-oriented development projects. VisualAge for
Smalltalk permits programmers to extend their applications and the

Chapter 1. What Is VisualAge for Smalltalk? 3

VisualAge for Smalltalk tool itself. Where other tools require programmers
to work within the limits of the tool, VisualAge allows programmers to build
new extensions to the VisualAge product that become reusable components
and part of the complete Smalltalk environment. VisualAge implements
"class-based” programming, such that new parts become Smalltalk classes,
which can be part of the class hierarchy system and can be located with the
Smalltalk browsers. VisualAge for Smalltalk includes state-of-the art
multimedia authoring support, which allows developers to build exciting
kiosk-style applications. VisualAge for Smalltalk also provides a report
writer, which provides the ability to lay out reports using the facilities of the
VisualAge construction-from-parts paradigm

Advantages of Smalltalk

4

m What are the key advantages of IBM Smalltalk?

IBM Smalltalk is a very robust Smalltalk that is based on industry standards

such as POSIX for filing systems and Motif for GUI. It is also based on the
proposed common Smalltalk standard that was submitted to the X3J20
committee for making Smalltalk recommendations to ANSI in 1993. IBM
Smalltalk contains a wide range of functions spanning more than 1100
classes in IBM Smalltalk and more than 2500 classes in VisualAge for
Smalltalk. IBM Smalltalk enables robust portability. Unlike other portable
implementations that emulate objects on various platforms, IBM Smalltalk
applications automatically take on the look and feel of target platforms by
using the native platform widgets. Unlike simple check-in and check-out
library systems, IBM Smalltalk team support includes an object repository,
true version control, and configuration management capabilities. Do you
have a vendor program similar to Digitalk's and Powersoft's that
encourages third party vendors to build parts that can be utilized with
VisualAge? We have published a Construction from Parts architecture that
teaches vendors and end-users how to create their own parts. IBM’'s Object
Connection program for VisualAge encourages other companies to build
components that enhance the applicability and value of VisualAge. We are
currently working with more than 100 corporate members who are
marketing more than 50 products.

VisualAge for Smalltalk Handbook - Fundamentals

VisualAge for Smalltalk and VisualAge Generator

m How would you compar VisualAge for Smalltalk and VisualAge Generator as

Answer

client-server application development tools?

VisualAge Generator provides a highly productive workstation development
environment for traditional host-based COBOL developers that exploit new
object-oriented technologies while not requiring an investment in additional
skills training. VisualAge Generator uses a 4GL COBOL-like scripting
language along with visual programming for developing line-of-business
client/server solutions. VisualAge Generator provides facilities for building
both client and server components, interactive test at the source level, and
generation of both client and server. VisualAge for Smalltalk is a fully
object-oriented tool providing a visual programming construction-from-parts
paradigm and uses IBM Smalltalk as the scripting language. VisualAge for
Smalltalk focuses on building client/server solutions while providing
extensive database access, communications support, and support for
reusing existing enterprise data and code. The products are
complementary. Each has its own strengths. In some customer situations,
one of the products may provide the right solution, whereas in others the
entire solution may dictate that both products provide the ultimate benefit.
For users wanting to explore the world of object-oriented programming
while maintaining a 4GL development environment, VisualAge for Smalltalk
should be a very attractive addition.

VisualAge for Smalltalk and C++

How would you compare VisualAge for Smalltalk and VisualAge for C++?

C++ is the language of choice for the professional C or C++ programmer

building high-performance, small-footprint, or real-time applications, for
"close to the metal” application development. Smalltalk is the language of
choice for the professional programmer who wants a rapid application
development environment for solving enterprise business problems, for
"business logic” application development. C++ and Smalltalk are
equivalent in capability, for well-trained and skilled developers.

Chapter 1. What Is VisualAge for Smalltalk?

5

Visualizer

m How does Visualizer compare with VisualAge for Smalltalk?

Visualizer is a powerful decision support tool that allows end users to
visually construct database queries and generate reports. It also features
add-on components up to and including a GUI builder. VisualAge is
targeted for professional developers rather than end users.

Team Connection

m Does VisualAge for Smalltalk support Team Connection?

VisualAge provides team support, using an object repository that is tightly
integrated in the product and that provides a high-level of support for
Smalltalk-based development. Our direction is to expand this excellent
object repository with bridges to other technologies such as
TeamConnection.

Supported Platforms

m On which platforms is VisualAge for Smalltalk offered?

bl VisualAge is available on:

OS/2 Warp Version 3 or Version 4
Windows 3.11

Windows 95

Windows NT 3.51 or 4.0

AIX 4.1.4 or 4.2

Sun Solaris 2.5.1

HP-UX 10.10

6 VisualAge for Smalltalk Handbook - Fundamentals

Smalltalk Strategy

m Is Smalltalk strategic?

Smalltalk is a strategic language for IBM and will be developed as a
standards compliant, open, multiplatform language. Smalltalk is an
important and emerging object-oriented language in the industry. Its use in
business and commercial application development is growing rapidly. IBM
is chairing the effort to develop ANSI standards for Smalltalk, and a full
range of third party consultants, tool vendors, and service providers are
available to complement the offerings of Smalltalk vendors. IBM recognizes
the value of Smalltalk and is delivering a full range of tools, education,
consulting, and service offerings to address this important market.

Smalltalk and Java

m Will Java overpower Smalltalk?

While not disregarding the strength of Java, we must note that Smalltalk is
superior to Java in many ways. The main strength of Smalltalk is its
maturity. Smalltalk has been around for 25 years. By contrast, Java is in its
very infancy. Smalltalk’s maturity has some important effects:

Code quality. Smalltalk systems have been refined by several
generations of programmers and have proved to be free of both coding
bugs and, more importantly, ideological bugs.

Legacy code. There is a huge estate of existing Smalltalk applications.

Performance. Smalltalk is quite fast, thanks to the concerted efforts of
many programmers during the last 25 years. Java needs an investment
of similar effort to reach a comparable level of performance.

Configuration Management

m How does VisualAge for Smalltalk support configuration management?

OTI's ENVY configuration management and version control system is
included in the VisualAge for Smalltalk Professional and Professional Server
products, precluding the need to order a separate product and managing
compatability between VisualAge and ENVY. The October 9, 1995 issue of
InfoWorld, states that : "IBM did a superb job weaving Object Technology

Chapter 1. What Is VisualAge for Smalltalk? 7

Inc.'s Envy Developer into VisualAge, resulting in ummatched team
development facilities.”

Packaging Support

m How does VisualAge for Smalltalk support packaging?

One of the enhancements to Envy found in VisualAge for Smalltalk is the
one-button packager, which automatically excludes unnecessary classes
from the application executable. The developer can also customize what is
stripped out of the image to provide an even smaller executable.

Database Support

m Which databases does VisualAge for Smalltalk support?

VisualAge for Smalltalk supports a wide variety of database systems
including the DB2 family, for example, DB2/2 for OS/2, DB2/6000 for AIX, and
on Windows using CAE client support. Through connectivity services of
DDCS, VisualAge for Smalltalk can access the DB2 family (including DB2
and SQL/DS and access to the AS/400). Oracle ODBC (with industry
standard drivers such as Sybase, SQL Server, Informix) IBM intends to
respond to additional customer needs for native support for other
databases. In addition to any database driver supported by ODBC, the
capability always exists within VisualAge to drop into the Smalltalk
development environment to build any type of unique class library and parts
you need.

Communication Protocol Support

m Which communications protocols does VisualAge for Smalltalk support?
Communications protocols are supplied in the VisualAge for Smalltalk

Communications/Transactions feature and include TCP/IP, APPC, CPI-C,
NetBIOS, CICS ECI, EHLLAPI, MQSeries, and RPC.

8 VisualAge for Smalltalk Handbook - Fundamentals

Legacy Code

Answer

How does VisualAge for Smalltalk handle legacy code?

You can wrapper legacy COBOL, C, or C++ applications into parts by
using the COBOL, C, and C++ support included with the base product. The
IMS Connection feature enables you to wrap existing IMS transactions to be
used as parts within the VisualAge for Smalltalk environment. IBM SOM and
DSOM support enables you to reuse existing SOM and DSOM objects as
VisualAge for Smalltalk parts..

Runtime Distribution Fees

cuestion

Are there any run-time distribution fees for VisualAge or IBM Smalltalk?

No. In contrast to many contemporary application development tools, the
VisualAge and IBM Smalltalk license agreements allow you to freely
distribute the run-time environment for the applications you write with
VisualAge.

Distributing Smalltalk Compiler

Answer

Can the Smalltalk compiler be distributed with a run-time application?

No. Redistribution of the Smalltalk compiler is not permitted. The compiler
is a key component of the VisualAge application development environment
itself. You must purchase one license for each compiler distributed.
However, you can distribute the run-time without a fee.

Source Code

Answer

Availability

How much of the Smalltalk source is available with the VisualAge for
Smalltalk product?

99% of the source code is available. Some methods remain proprietary and
are still hidden; however, those methods are typically code that is not
required for application evelopment (for example, method code in the
Smalltalk compiler.)

Chapter 1. What Is VisualAge for Smalltalk? 9

Upward Compatibility

cuestion

Is an application written for one version of VisualAge for Smalltalk
compatible with the environment of a higher version of the product?

One of the features of the IBM VisualAge development environment is the

ability to easily port existing VisualAge applications to other platforms and
to easily upgrade the run-time environment for a new release of VisualAge.
All you have to do is repackage the application with the new run-times and

DLLs.

Common User Access Compliance

Answer

Does VisualAge for Smalltalk force Common User Access (CUA)
compliance?

CUA compliance is up to the programmer. However, with VisualAge it is a
simple task to produce fully CUA-compliant applications.

Multiple Inheritance

Answer

Does Smalltalk support multiple inheritance?

No. Multiple inheritance is a property that has been confused as a
characteristic of the OO paradigm. It is not. It is only mildy useful in certain
situations; invariably it causes objects to carry more attributes than
necessary.

Porting Smalltalk Applications

Answer

How do | port a Smalltalk application to VisualAge?

The recommended approach is to import (through a DAT file) or file in
(through an ST file) the model code. The GUI code should be rebuilt in
VisualAge because the effort to port may exceed the effort to rebuild.

10 VisualAge for Smalltalk Handbook - Fundamentals

Sources of Support

m Once | purchased VisualAge for Smalltalk, what kind of support can |
expect?
A varietyof support is available, including:
Sixty days of free IBM direct telephone support
TalkLink forums
CompuServe forums

Web (for DAP members)

Technical support, consulting, education, training, and more—from third

parties

TalkLink

m Which forums are available on TalkLink?

Talklink’s public forums for VisualAge for Smalltalk are:

IBMPARTS IBM Parts for Visualage for Smalltalk
VADIST Distributed feature

VAIMS CICS/IMS feature

VAINSTAL Install questions

VACOMLNG Communications and Language features
VA400 AS/400 Connection feature

VAOTHER Other topics not covered

VAHOWTO How-to questions

VADB Database questions

VABUGS Bug reports

Chapter 1. What Is VisualAge for Smalltalk?

11

CompuServe

m Which forums are available on CompuServe?

The CompuServe forums for VisualAge for Smalltalk are:
Free-for-all
Install/Begin
Communications/Languages
Database
AS/400 Feature
How-to
Everything Else
Bug Reports
Third Party
IBM Smalltalk

Classifieds

Usenet

m Is there a Usenet group dedicated to Smalltalk?

Yes: COMP.LANG.SMALLTALK.

Resource Catalog

m How can | get the resource catalog about vendors of components for
VisualAge for Smalltalk?

The document number of the Resource Catalog is G325-0813. If you work for
IBM, you can order it through Puborder. The catalog is also accessible from
the VisualAge home page on the World Wide Web:

http://www.software.ibm.com/software/ad/vastub.html

Be sure you are getting the latest catalog if you order a hard copy.

12 VisualAge for Smalltalk Handbook - Fundamentals

Learning Courses

m Where can | find out about a suggested sequence of courses for application
programming with VisualAge and IBM Smalltalk?

The Object Technology University (OTU) offers a curriculum for VisualAge
for Smalltalk. For more information visit their Web site at:

http://www.training.ibm.com/ibmedu/roadmaps/client/ot/

New Features in Version 3

m What are the new features in VisualAge for Smalltalk Version 3?

The functions of Version 2 plus:

Development and run-time support for AIX Version 4.1.3.

Open Database Connectivity (ODBC) support. This feature enables you
to access data from a variety of databases and file systems which
support the ODBC interface.

Performance improvements through tuning and enhancements to the
underlying virtual machine (VM): up to 5 times faster execution; machine
code execution for Intel platforms

Usability improvements through improved startup, consistency in
dialogs, settings, font usage, additional parts, improved help, better and
more complete examples.

Enhanced database parts for greater usability and performance

Upgraded IBM Database support for DB2/2 V2.1 with support for
user-defined functions (UDFs), user-defined types (UDTs) and binary
large objects (BLOBS).

New portable controls (notebook, container, slider, and spin button) for
multiplatform support and portability

Portable drag-and-drop support

VBX support (Windows only). This feature enables you to wrapper
existing VBX controls and use them on the VisualAge for Smalltalk
palette.

Multimedia enhancements, including kiosk authoring enablement (OS/2
and Windows only), which includes support for hot spots and
scene-to-scene navigation.

Chapter 1. What Is VisualAge for Smalltalk? 13

VisualAge for Smalltalk, Distributed, enables you to develop a VisualAge
for Smalltalk application on a single development platform and split the
logic of the application to run on multiple execution platforms. Facilities
are provided for remote debugging, performance profiling for optimal
distribution, and other features that complement the development
environment.

VisualAge for Smalltalk, Database for Oracle for OS/2, for AIX, and for
Windows, V3.0 provides access to Oracle data through native APIs.
(Access to Oracle and other databases through ODBC is also provided
in the base products.)

VisualAge for Smalltalk, Reports for OS/2 and for Windows, V3.0 enables
you to lay out reports, using the facilities of the VisualAge for Smalltalk
construction-from-parts paradigm.

Message Queue Series (MQSeries) support and remote procedure call
(RPC) support as part of VisualAge for Smalltalk,
Communications/Transactions for OS/2, for AlIX, and for Windows V3.0.

System Object Model (SOM) and Distributed SOM (DSOM) 2.1 Client
support (OS/2 and AIX only).

VisualAge for Smalltalk, AS/400 Connection for OS/2 and for Windows,
V3.0 enables you to access additional AS/400 services, objects, and
data, along with additional parts for VisualAge for Smalltalk.

VisualAge for Smalltalk, IMS Connection for OS/2, for AlX, and for
Windows, V3.0 enables you to wrap existing IMS transactions to be used
as parts within the VisualAge for Smalltalk environment.

New Features in Version 4

14

m What are the new features in VisualAge for Smalltalk Version 4?

VisualAge for Smalltalk is IBM's award winning enterprise application
development tool that is the cornerstone of IBM's VisualAge family of
development products. VisualAge for Smalltalk allows software developers
to create highly portable, scalable, multitier business applications that take
advantage of emerging technologies such as the World Wide Web, ActiveX,
OLE, and OLE controls (OCX) as well as seamlessly integrate existing
legacy C, COBOL, CICS, DB2, IMS, and Tivoli systems. Version 4.0 takes the
next step in enabling global enterprises to quickly construct line of business
applications that are portable, highly scalable, and simple to maintain and fit
easily into existing IT infrastructures.

VisualAge for Smalltalk Handbook - Fundamentals

VisualAge for Smalltalk is now available on more UNIX, Windows and OS/2
platforms than ever before. In addition to the existing OS/2 Warp V3.0, AIX
V4.1.4/4.2, Windows 3.11, Windows 95, and Windows NT 3.51, new platforms
supported are HP-UX V10.10, Sun Solaris V2.5, S/390 MVS, 0S/2 Warp V4.0,
and Windows NT 4.0. On Windows 95 and NT, OLE and ActiveX are now
supported as well as new native user interface controls. Version 4.0 is now
registered and certified for the "Designed for Microsoft Windows NT and
Windows 95" logo.

Version 4.0 brings further performance enhancements, usability
improvements, tool enhancements, and enhanced packaging support.
Performance has been improved through the introduction of image
components (ICs), which allow developers to create dynamically loadable
modules that partition a Smalltalk application into smaller components that
can be loaded and unloaded during program execution. ICs enable a more
fine-grained packaging system and allow multiple applications to "share” the
client's run-time image, which improves performance and footprint and
further promotes reuse. Performance of database applications will improve
under Version 4.0, and DB2 applications can now be improved substantially
by using static SQL. Tool enhancements include a more robust debugger,
allowing for static and conditional breakpoints, and profiler enhancements
that provide for easier fine tuning of an application's performance.
VisualAge for Smalltalk has also improved its external callout and callback
support, allowing non-Smalltalk applications to communicate more easily
with Smalltalk applications. Several Version 3.0 optional features have been
moved into the base, including native Oracle support, Connection for Lotus
Notes, Reports, a leading-edge object visualization tool, and Pro Server,
providing the best value in the industry. Management of applications is
improved by including parts that allow your application to interact with the
Tivoli system management products. Also included with each copy of
Version 4.0 is AppletAuthor, which allows you to create eye-popping Java
applets that lead to dynamic, visually appealing Web sites without the need
to know Java programming.

Additional Platforms and Windows Platform Exploitation

Platform choice has been a hallmark of VisualAge for Smalltalk, and Version
4.0 increases that choice fivefold. New UNIX platforms HP-UX (V10.10) and
Sun Solaris (V2.5) have been added, and additional versions of PC operating
systems are now supported: OS/2 Warp V4.0 and Windows NT 4.0. Finally,
Smalltalk applications can be written for the S/390 MVS platform by using
the new VisualAge Smalltalk Server for MVS product in conjunction with
VisualAge for Smalltalk Version 4.0. With Smalltalk on the S/390 MVS
system, mainframe programmers can achieve the same level of productivity
and capability as those using Smalltalk on a PC or workstation. Using

Chapter 1. What Is VisualAge for Smalltalk? 15

16

Server Smalltalk for MVS, you can quickly build business logic in true
object-oriented form on the MVS operating system. Support for IMS, CICS,
DB2, native file system access, and batch programing are just a few of the
features included. State-of-the-art cross-development tools allow you to
develop the bulk of the application on a PC and later deploy it to MVS for
the robust run-time performance we all expect from that platform. You can
now create end-to-end enterprise objects, from client to mid-tier server to
third-tier server, using a single language and development environment. For
more information, please see the white paper titled "Introducing VisualAge
Smalltalk Server for MVS."”

For those of you who use the Windows platform, Version 4.0 adds additional
power and function. A new OLE application framework provides support for
incorporating OLE (OCX) and ActiveX controls in your application and makes
it easy for you to write OLE clients in VisualAge for Smalltalk. Off-the-shelf
OLE and ActiveX controls can be placed on the VisualAge palette, dropped
on the application design surface, and visually connected to other parts,
using the award winning construction-from-parts technology. If you want to
write OLE clients, the framework provides high-level abstractions for the
OLE container concepts, allowing you to focus on your Smalltalk application
and not on the low-level OLE programming interfaces. Using the framework,
you can write OLE container applications that support embedding, linking,
in-place activation, drag-and-drop, and structured storage. You can also
write OLE automation controllers in Smalltalk that can control third party
OLE automation servers, such as Microsoft Word or Lotus 1-2-3 for Windows.

Windows 95 and NT 4.0 support many new or visually redesigned user
interface controls, and so does VisualAge for Smalltalk Version 4.0. You will
find support for the new system slider, progress bar, tab strip, toolbar, tree
view and status bar. These are included in a new palette category in the
VisualAge application builder for easy visual application construction, as
well as in the widget class library.

Image Components

Developers of Smalltalk code are very familiar with the concept of an image.
An image is a file that contains all of the user’'s objects, and it is loaded and
executed by the Smalltalk run-time system. In VisualAge for Smalltalk
Version 3.0, single, stand-alone image files are the norm. Typically these
image files are quite large, and copying and storing them requires a lot of
resources because these images are not shareable, code that is common
between applications must be duplicated in the image files that represent
each application and in memory when each application is running. Although
techniques have been developed to apply fixes to application programs in
an image, the process is time consuming and difficult, especially when only
a few applications, classes, or methods must be replaced in a large system.

VisualAge for Smalltalk Handbook - Fundamentals

In Version 4.0, ICs enable you to overcome these and other difficulties. ICs
promote reuse, reduce memory requirements, make application
maintenance easier, and promote porting. In Version 4.0, you can divide an
image into separate IC files, which can be reused among independent
applications. ICs reduce the memory required when multiple applications
are running because the ICs are shared among applications using the
shared memory facilities of the underlying operating system. Also, ICs use
a compact format which results in smaller images that load and run faster.
An additional benefit of the compact format is shorter time spent in garbage
collection. Because ICs are replaceable, they make it easier to maintain and
enhance applications. replaceable. You can update an IC with bug fixes or
patches and replace the existing IC, not the entire image file. Provided the
Smalltalk code in an IC is platform independent, an IC is portable, because
the same IC file will load and execute on all platforms supported by
VisualAge for Smalltalk Version 4.0.

Smalltalk Language and Tool Enhancements

Support for ICs is just one of several improvements that have been made to
the Smalltalk language and tools in Version 4.0. Breakpoints have been
added to the debugger, enabling you to more easily find, isolate, and
remove bugs from your code. You can set a breakpoint on any line of
Smalltalk code, and you will see a red dot in the margin of the browser
indicating that a breakpoint is set. The executing program stops when the
breakpoint is reached, and you can begin debugging at that point by
stepping through the code, inspecting objects, and so forth. A conditional
expression can be associated with a breakpoint, and the execution will stop
only when the condition is true. Thus you can isolate those hard-to-find bugs
that occur when the state or content of an object becomes incorrect, by
setting a breakpoint that will only trip when that occurs. You can also set the
number of iterations a breakpoint must be reached before the execution will
be stopped, so that you can debug pieces of code that are executed
repeatedly without stepping through each iteration manually. From the
development environment you can display a list of all methods in which
breakpoints are set and browse the method code from the list.

Namespaces have been added to the language, which give you control over
the scope of globals in your application. Namespaces allow you to use a
language construct that logically groups globals and assigns them a name.
You can later selectively gain access to and include the collection of globals
in the scope of your application by referring to its name. Thus namespaces
provide the same type of scoping control for globals as application
prerequisites provide for class references. They also provide an easier to
use and more robust technique than was provided by "toBeLoadedCode”
and "wasRemovedCode" in previous releases. A new query tool has been

Chapter 1. What Is VisualAge for Smalltalk? 17

18

added to the development environment that lets you display all references
to objects, methods, and globals that are outside the scope of your
application, its namespace references, and its prerequisite applications. This
tool helps you find and correct scoping and namespace problems and
correctly prepare your application for packaging, especially when using ICs.

The performance analysis and tuning tools now monitor and collect more
memory allocation information and enable you to easily create, run and
compare the results of performance benchmarks. The memory monitor in
Version 4.0 now shows individual pieces of allocated memory segments.
You can quickly identify the portions of your application that are using a lot
of memory, making it much easier for you to tune and improve that code.
The benchmarking workshop now lets you collect and store performance
benchmark test cases. You can make performance test runs using any and
all of these test cases. Results can be graphically displayed and compared
with previous runs so that you can quickly see the impact of your
performance tuning efforts.

Better callback support from C to Smalltalk has greatly improved the
interoperability between C and Smalltalk. This entry point can be passed to
an external program when calling-out to it from Smalltalk. It gives that
program an entry point to the Smalltalk object and selector it represents. In
C you can map the entry point to a function pointer, making it very easy and
natural to callback from C to Smalltalk. When combined with ICs, you now
have powerful new options for packaging and delivering Smalltalk
dynamically loadable application code that must call to and be called from
programs written in other languages.

Database Performance Improvements and Enhancements

Major performance and database security improvements are in store when
you use DB2 static SQL support, a new addition to VisualAge for Smalltalk
in Version 4.0. Other database improvements include unified fields and
samples, "headless"” server support, and improved performance in
applications using dynamic SQL.

In Version 3.0, dynamic SQL was used for all database access. IBM's DB2
static SQL essentially allows you to compile your SQL statements and store
them in the database. What is stored is called a plan, which contains
optimized database access and manipulation code to execute your SQL
statements. Comparing static SQL and dynamic SQL is very similar to
comparing compiled and interpreted programming languages. Static SQL
gives you compiled, optimized, high performance database access, while
dynamic SQL is in some cases slower to execute but more flexible and
easier to change. The Version 4.0 database support enables you to create,
test, and debug your DB2-based Smalltalk application, using dynamic SQL,

VisualAge for Smalltalk Handbook - Fundamentals

and then flip a switch and convert it to static SQL. Thus, you have the rapid
application development style of an interpreted environment early in the
development cycle, and the speed of a compiled environment when you roll
your database application out into production. Dynamic and static SQL can
be used in combination in the same application, allowing you to stage or
phase in your cutover to static.

The performance gains you will realize when switching to static SQL vary
and are application dependent. Database security for any application that
uses static SQL is vastly improved over dynamic SQL. For users to execute
dynamic SQL, he must have complete authority to the tables and data
affected by the query. This can present an exposure if, for example, one of
the tables contains sensitive data not included in the SQL SELECT
statement. Users can use interactive query tools to view the sensitive data
and bypass the SELECT statement in the application program, because they
must have access to the entire table in order to run the SQL statement
dynamically. This is an even greater exposure for other SQL statements, like
UPDATE and DELETE. Not so with static SQL. User authorization may be
given only to specific plans (compiled SQL statements), thus preventing the
user from viewing or changing any data not included under the scope of the
plan. Static SQL is one of the strongest features of IBM's DB2 family, and
now VisualAge for Smalltalk allows you to exploit that strength.

Unified fields now allow you to create applications that are largely database
neutral. In Version 3.0, the database field classes, which represent data
types in the database, are database vendor specific. The DB2 field classes
differ from the ODBC field classes, both of which differ from those
supporting native Oracle. The field classes have been refactored and
unified, allowing you to easily switch the underlying database system
without changing your Smalltalk application code. The database samples
have been redesigned to exploit this, yielding a unified, database-neutral set
of samples. A migration tool is included that will help you convert your
application from using the old database specific field classes to the new
unified field classes.

A "headless” application is one that typically runs on a server and does not
have a GUI or an operator console. Headless application support has been
added to the Version 4.0 database support so that you can package an
unattended database server application that does not require a GUI or a
console window. Concurrency has also been added to the database support.
You can now develop unattended database server applications that
simultaneously serve multiple clients.

Runtime performance of dynamic SQL applications has been improved up to
70% over the same applications running on Version 3.0. In Version 4.0,

Chapter 1. What Is VisualAge for Smalltalk? 19

20

many database access related computations have been moved to
application development time from run time. This change in Smalltalk has
yielded significant performance improvements in overall database
application run time. Run time performance improvements of 70% in
SELECT, 30% in DELETE, and 25% in UPDATE statements have been
realized by some applications.

Web Connection

With the Web Connection feature you can use VisualAge for Smalltalk to
build applications that are accessible through the World Wide Web. You use
the composition editor to build dynamic Web pages that provide the user
interface for your application. You implement the program logic by making
connections to visual and nonvisual parts and writing Smalltalk scripts, just
as you would with any VisualAge application. Thus you can quickly add a
Web client interface to your existing VisualAge for Smalltalk applications, or
rapidly develop a new Web client from scratch that leverages your existing
relational data and transactions. To the Web client support, Version 4.0 adds
a grid visual part, ActiveX controls, and JPEG images. The server now
supports DLL or shared library based interfaces for improved performance.

The new grid visual part enables you to build HTML tables. The tables can
contain an arbitrary number of rows and columns, and cells of the table can
contain other visual parts such as text, buttons, list boxes, and forms. Using
the grid you can create clean, well-organized, visually appealing Web pages
that provide table-based user interface layouts. You can easily embed
ActiveX controls on a page, using the object tag. JPEG images are also
supported. When these Version 4.0 enhancements are taken in combination
with the existing Web client development capabilities, you can create
dynamic, visually attractive Web clients.

In Version 4.0, server application performance is greatly improved over the
CGI using DLL or shared library interfaces. These interfaces streamline the
startup of the server application because an operating system process does
not have to be created for each request made of the server, as it does with
CGIl. The DLL or shared library interfaces are available in Web server
products supporting IBM's ICAPI, Netscape's NSAPI, and Microsoft's ISAPI
on any platform that is supported by both the Web server product and
VisualAge for Smalltalk. The CGI interface continues to be supported.

Usability

Drag-and-drop or direct manipulation of objects in a GUI is one of the most
intuitive and efficient methods for interacting with a software application.
Version 4.0 adds platform drag-and-drop, which allows you to drag objects
between applications written in Smalltalk and any other drag-and-drop
enabled application or any desktop object, on any platform. You can now let

VisualAge for Smalltalk Handbook - Fundamentals

the users of your VisualAge for Smalltalk applications avail themselves of
the improved usability and efficiency of drag-and-drop. Enabling
drag-and-drop for visual parts is as simple as changing a property (setting)
on the part.

Speaking of property changes, the most obvious and pervasive usability
improvement in Version 4.0 is the new property view for parts. This view
appears whenever you want to display or change the properties or settings
for a part, typically by double-clicking on the part. Gone is the tedium of
flipping notebook pages to find and change various properties and their
values. Instead you use a scrollable two column table, which displays the
property name on the left and its value on the right. Your productivity is
improved greatly when changing several properties for a part as the table is
easy to use.

Optional Features

Several Version 3.0 optional features have been moved into the base,
including native Oracle support, Connection for Lotus Notes, Reports, two of
the tools from the Distributed feature, and Pro Server, providing the best
value in the industry. Management of applications is improved by including
Tivoli Connection parts in the base that enable your application to interact
with the Tivoli system management products.

The two tools from the Distributed feature that are now included in the base
enable you to analyze your application’'s performance. The Object Visualizer
helps you analyze object activity and interaction in your application. You can
see how many instances of a class exist at any time, watch a visual
representation of message traffic between objects, identify which objects are
most and least busy, and determine which clusters of objects should be
local to each other based on the amount of message traffic between them.
The cluster view dynamically displays the objects and clusters as they form
and re-form, so you can see graphically the cohesion between your objects.
The Event Profiler is a browser that shows all of the events (method calls)
sent among selected objects. You can use it to browse each event and trace
the method call stack that led up to it. Using these tools you can better
understand the message traffic and interaction between the objects in your
application and then tune your application for peak performance.

IBM's Tivoli family of system management products helps you deploy,
monitor, update, and manage software applications in your enterprise. Tivoli
Connection, provided in the base, includes two facilities for enabling the
development of VisualAge for Smalltalk applications that are
management-ready for Tivoli. The first is a set of parts that enable you to
easily build an application that generates events and sends them to the
Tivoli/Enterprise Console. The new parts are available on the parts palette

Chapter 1. What Is VisualAge for Smalltalk? 21

22

when you install Tivoli Connection. The parts allow you to instrument your
application with events that communicate information about the status and
health of your application. For example, you can send events that identify
the startup and shutdown of tasks and the occurrence of error conditions.
These events are sent to the Tivoli/Enterprise Console, which provides
centralized monitoring and management of system information and events.

The second facility is a stand-alone program, the Tivoli Developer Kit, that
enables you to define the management characteristics of your application to
the Tivoli Management Environment. The Developer Kit assists you in
defining management information about your application by using Tivoli's
Application Management Specification. You can specify your application's
components, dependencies, distribution and installation details, and
operational tasks that are needed by the Tivoli Management Environment.

For developers of VisualAge applications in a complex, network computing
environment, Tivoli Connection provides the support for building
management-ready applications.

AppletAuthor

AppletAuthor is included with each copy of VisualAge for Smalltalk Version
4.0. AppletAuthor is a Java authoring tool that lets you create applets
without writing a line of Java code. By combining components (Java beans)
from a palette using simple mouse movements, Web site authors can bring
to life their site. Once you create your applets, you can include them in a
Web site created with any number of Web page or site creation tools,
including the Web Connection feature of VisualAge for Smalltalk.

VisualAge for Smalltalk Handbook - Fundamentals

Chapter 2. General Information

It seems that every Smalltalk programmer looks for tips on good Smalltalk
image maintenance. This chapter covers questions and answers about the
image and general housekeeping.

Cleaning Up the Image

m How do | clean up my image?

The never-fail approach to reducing your image size is to rebuild it. Export

all of your stuff from the old image. Then get a virgin image (you may need
to get one from the installation CD) and load all of your applications. It's
good practice to keep a base image around that has all of the IBM and
third-party applications already loaded. When you need to rebuild, simply
load your applications to the base and save under another name. Be sure to
keep your base image updated with any fixes.

Creating a New Image

m How do | create a new image?

Answer

With the Standard Edition of VisualAge for Smalltalk, if you have backup
copies of the files sources.es, changes.log, abtdev.pom and image, then
you can copy these files into your VisualAge for Smalltalk subdirectory
and launch. If you do not have backup copies of these files, then it will
probably be best to reinstall to get a new image. To avoid reinstalling in
the future, make backup copies of these four files and keep them where
you can access them. Be careful to file-out applications you would like
to keep!

If using VisualAge for Smalltalk Team Version 2, change into your
VISUALAG directory on the server. From there, change into either the
OS2 or WIN subdirectory, depending on whether you are using OS/2 or
Windows. Then change into the client subdirectory. Within this
subdirectory, there is an image file that you can copy into your client
VisualAge subdirectory. You can either rename your old copy or delete
it, depending on whether you want it backed up or not.

VisualAge for Smalltalk Professional Version 3.0 no longer supports
two-step centralized installation, so you must ensure that you always

[0 Copyright IBM Corp. 1997 23

have a backup copy of the virgin image (or of the image with only the
features installed).

Reducing Image Size

24

Answer

My image has grown significantly in size, yet | have added little to it. At the
same time, performance seems to degrade. Why is this happening, and can
| fix this?

Close all VisualAge windows except the Transcript. Type

Smalltalk

Dependents

in your Transcript, select, and inspect it. If more than self and Behavior is in
the leftmost window pane, type

Smalltalk

Object abeReinitializeDependents

in your Transcript, select, and execute it. Then save your image. The size
of your image should reduce back to what it was initially.

Object abeReinitializeDependents frees up the resources associated with
any existing dependents. When you use a part that is not subclassed from
AbtObservableObject, and you establish connections to this part (so that
other parts are notified when this part changes), you create dependents.

Here's something else to check. From the Transcript, select Smalltalk Tools
— Open Debugger . Then, from the debugger, select Processes — Debug
Other. Typically, there are two. If there are many more, select and
terminate them.

If you try these things and your image is still quite large, try this from the
Transcript (save parts and close all windows first!):

Smalltalk

EmSystemConfiguration new abtScrublmage

VisualAge for Smalltalk Handbook - Fundamentals

This reinitializes dependents, removes and terminates active processes, and
reinitializes common widgets. It closes all VisualAge windows and returns
the System Transcript window back to its default message.

Preventing Image Growth

Answer

What should | look for if my image size is increasing over time?

Execute System abtScrublmage. Does your image size shrink considerably?
If so, it is time to figure out where you are hanging onto resources. There
are several possibilities here. Check the following:

Open a debugger. You can open a debugger from the Transcript by
selecting Smalltalk Tools — Open Debugger , or from the VisualAge
Organizer, Tools — Debugger. To see the Debugger item in the Tools
pulldown menu, select Options — Full Menus in the Organizer. From
the Debugger's pull-down menu, select Processes — Debug other .
There should be only two processes, the CwAsynclOProcess process
and the Idle process. If there are others, you should attempt to figure
out what objects are suspending them and holding onto them.

With no windows but the Transcript and VisualAge Organizer open,
inspect the AbtEventDependents classVariable of AbtCLDTAdditions.
There should be only two entries. If there are more, then you have
dependencies that are not being released. This most often occurs when
sending closeWidget as opposed to performing the action closeWidget.
The selector corresponding to the closeWidget action is
closeWidgetCommand. Sending closeWidget will prevent dependencies
from being freed.

AbtScrublmage

Answer

I've heard many times about abtScrublmage, that it helps me reduce my
image size. What does it do, actually?

First of all, it clears out the dependents dictionaries. Then, it terminates all
the running processes except the currently activeProcess. It then resets the
Organizer applications view, and restarts it. And, finally it does
CommonWidgets reinitialize.

Chapter 2. General Information 25

Ghosts

cuestion

How do | get rid of unwanted ghosts (multiple instances of my parts hanging
around).

| don't know what you are doing to cause them to hang around (do you save
your view instances in a global or class variable?), but you can scrub
VisualAge with

Smalltalk

System abtScrublmage.

It clears out the dependents’ dictionaries and a few other things that can get
messed up after lots of walkbacks. Look at
EmSystemConfiguration>>#abtPrimScrublmage: for details. If you still
have instances after running the scrub, check who is referencing them with
#allReferences. In addition, make sure that, if you are closing your views
programatically, you are sending closeWidgetCommand and not
closeWidget.

Image Growth after Packaging

m I would bet that your image size has grown as the result of saving your

image after doing the packaging. I've noticed that something created by the
packager gets a global reference and is therefore never garbage collected.
To avoid this, | would advise saving your image immediately before
packaging, then package and exit without saving the image.

Keeping Multiple Versions on the Same System

26

m Can | keep both VisualAge for Smalltalk 2.0 and 3.0 on the same machine?

Yes, they can coexist on the same machine. You did not say whether you

were on OS/2 or Windows. However, since Version 2 and 3 do not share
DLLs of the same names, keeping both is fairly easy. Just put the ".;"
(period and semicolon) in your path (or libpath) as the first thing so that files
are picked up from your current subdirectory. This may mean consolidating
some of the files in the same directory. Also watch the abtpath, it can

VisualAge for Smalltalk Handbook - Fundamentals

reference several subdirectories as well. Libraries can be kept on the same
machine, just make sure you are pointing the clients to the right one.

Replacing the Default Icon

m How do | replace the default VisualAge icon with my own?

izl If you do not want a splash screen everywhere abt.exe is mentioned,

replace it with nodialog.exe. Abt.exe can be found in your VISUALAGE
subdirectory while nodialog.exe can be found in your VISUALAGE\DIALOG
subdirectory. Copy the abt.rc, abtrc.h, and the abt.exe (or nodialog.exe)
files to your run-time application directory from the dialog directory. Do an
edit of your abt.rc and change the following line

POINTER ID_ICONRESOURCE visAge.ico
to
POINTER ID_ICONRESOURCE iconName.ico

If you do not want a splash screen, you can erase the rest of the abt.rc
file. (The rest of it pertains to the splash screen.)

If you do want the VisualAge splash screen, leave the rest as is.

Once you have saved the changes to your abt.rc, compile your resource
script file and merge this into your abt.exe (or nodialog.exe) with the
following command:

rc abt.rc abt.exe
or
rc abt.rc nodialog.exe

You can find a resource compiler in the OS/2 toolkit. Once this is done, you
can run your application against your image.

Escaping an Infinite Loop

m How do | find a way out of an infinite loop? Does VisualAge have something

like CTRL-C?

Chapter 2. General Information 27

VisualAge allows you to hit Alt+SysReq. Hold this until you hear a low
beep. A debugger will appear, signaling that the process has been
terminated or interrupted, with the error string "User Break."

File-In and File-Out

m How do | file-in and file-out code programmatically?

You can write Smalltalk scripts that will file-out code for you. Doing this,
you can make the scripts as sophisticated as you want. Use class
CfsWriteFileStream to create your file. Examine the class
EmFileOutinterface. This class has several methods which you will find
useful, such as fileOutOn:, fileOutSourceOn:from:, and so on. Do not forget
to generate archival code when you save the part.

Separate Threads

m Can | run VisualAge for Smalltalk from separate operating system threads?

True multithreading has been tested in AlX, but no specific release plans
are available. OS/2 and Windows releases do not support true
multithreading. OS/2 and Win95/NT may support multithreading in a future
release, but | have been unable to find out specifics so far. The only ways
to do parallel processing today are:

Launch multiple copies of VisualAge for Smalltalk on the same or
different machines

Use the VisualAge Distributed feature along with launching multiple
copies.

Distributed would be much easier to coordinate and is quite elegant, but
does require a larger image and adds complexities such as TCP/IP setup if
you don't already have it.

Capturing Stack Information

m How can | capture the stack information when | have a walkback?

28 VisualAge for Smalltalk Handbook - Fundamentals

Answer

In the debugger window, use the Write Stack Trace Text To File option from
the Stack pull-down. This writes the information to a file of your choice.

Renaming a Class

Answer

How do | rename a class ?

The VisualAge for Smalltalk User's Guide discusses this a little bit. Filing
out and filing in classes to rename them works fine.
Another way to rename classes is this:

Change to the Script Editor for the class.

Change the class name in the class definition in the bottom window of
the Script Editor to the desired name.

Save the change. A new class with the desired name will be added to
the application browser. It is an empty class for now.

Select all methods showing in your method window, choose Move
Methods — To a new Class from the Methods pull-down menu. Type in
the new class name when prompted.

Be sure to move all class and instance methods—both public and
private—over to the new class.

Test your new class to make sure it behaves as the other one did.

When you are positive that your new class works, you may delete the
old one if it is not needed anymore.

Environment

Answer

Variable

How do | get the value of an environment variable defined in config.sys?

There is a private method called abtScanEnv in EsString that should do what
you desire. To use it, try executing the following code:

Smalltalk

"PATH' abtScanEnv

Chapter 2. General Information 29

Registered Connection

m How do | remove a registered event-to-script connection?

Try sending destroyPart to the connection you dynamically created.

Loading Different Image

m How do | specify a different image from a command line?

LAzl You can use the -i parameter, for example:

abt.exe -id:\va30\image

Deferred Update Part

30

m How do | use the Deferred Update Part?

Opinion One

Deferred update parts exist only to buffer editing of control widget values.
Although there is sufficient demand for things like buffering, the practical
use of the deferred update part is rather limited. The limitations are twofold.

First, the part assumes that your objects are just objects that contain data
attributes. That is, assume you have the object RightAngleTriangle with
attributes a, b, and c, where c is calculated based on a and b. Using a
deferred update part, you will never see attribute c calculated until the user
hits the apply button, whereas without the deferred update part, the attribute
¢ will be updated as either a or b changes.

Second, if you allow your users to open different views on the same object,
they may have made some changes on a view and not applied them. When
they then open a second view on this object, it comes up without the

changes they have just made on the first view, and things look inconsistent.

In my opinion, you have a couple of strategies depending on your
application, but the best is to have the view ask for a copy of the object (this
may even be a specific copy for this view). Have the view be a view of the
real objects and then you get all the behavior right away that the object
should exhibit. If the user cancels, it is the view's responsiblity to set the
object back into its original state.

VisualAge for Smalltalk Handbook - Fundamentals

Opinion Two

To the naked eye, the deferred update parts can be of little use once your
objects consist of a bit more than primitive attributes. But, believe it or not,
we found ways around the problem. You just have to look closely at the
AbtDeferredUpdatedManager and what it does. Your domain object can
implement two different class methods which the Manager sends to the
class during the creation of the deferred update part instance. These
methods respond with a class name which the Manager uses to instantiate
the deferred part, and there you could implement some of the behavior such
as changing attribute b when a attribute changes. The object you will be
dealing with at that time is the update operation whose target is your object
which is undergoing a change. Hence, you can ask your object to
recalculate some other value based on the attribute changed.

My recommendation would be to attempt to use deferred update parts, and
enhance them when needed. The benefit is that there is so much
infrastructure there. The Command or the Momento pattern is nice, but not
as easy to implement from scratch. Also, if one uses VisualAge correctly—
that is, having a form work with a single object that includes nested forms
which in turn edit other complex attributes of your object— deferred update
parts work great.

As for seeing noncommited object changes when a different editor is
opened on the object currently being edited, | say it is up to your personal
preference. One must have a pretty smart application-based transaction
framework to support such behavior. What about different views editing the
same object? Getting the transient state of an object is wonderful, as long
as you are willing to pay the price for the added complexity.

Renaming a Visual Part

m How do | rename a visual part?

The current implementation of VisualAge for Smalltalk provides no
mechanism for renaming a part once it has been created. The copy facility
is flawed, in that certain connections retain a reference to the previous class
name.

In Smalltalk, you can rename a class by filing it out, exchanging the names
in an editor, and filing it back in. A little more work must be done in
VisualAge (even Smalltalk classes with a public interface will not work using
the file-out, file-in technique).

Chapter 2. General Information 31

Solution 1

Open the Composition Editor for your class and select Generate Archival
Code from the file menu. File out your class and in an editor find and
replace occurences of the old class name with the new class name. Save
the file and then file it into your image.

An unfortunate side effect of this technique is that the archival code will stay
connected to your class forever. Whenever you save the part in the
Composition Editor, you will be asked if you want to regenerate archival
code.

Solution 2
Create a new visual part. In the new part dialog, change the superclass to
the name of your existing class.

When the Composition Editor editor opens, make a small change (move
some widget a bit to enable the Save menu item) and save the part. This
generates the magic abtBuildinternals method and all the invisible stuff
needed. Change to the Script Editor. In the class definition, change the
superclass from the name of your old part to AbtAppBldrView and save the
definition.

Just to be safe, whenever you change the superclass of a visual part, close
the editor and reopen it.

Hover Help for Buttons

32

m How do | customize hover help for my push buttons?

Push buttons with a graphical label don't contain textual information. This

textual information is what is displayed by hover help and, in the absence of
textual information, it displays the part name. The part name, unfortunately,
cannot contain special characters, such as accented characters for French
language.

When defining the push button, specify both the label text and the graphics
descriptor. In the settings editor for the push button, first define the label
type as text and enter the text you want to see for hover help. then, define
the label type as graphical and specify the bitmap you want to display.

VisualAge for Smalltalk Handbook - Fundamentals

Customizing Connection Menu

Answer

Can | customize the connection pop-up menu for a visual part?

Yes. You must specify which options should be shown on the context menu
and which can be accessed using more. The preferredConnectionFeatures
class method for the specific part that needs this menu adjusted must be
modified as follows: (using a, b, ¢, d as the list of connections)

Smalltalk

preferredConnectionFeatures

“(a,b,c,d) "this shows a,b,c,d and More on the menu”

Live Updating of Images

Answer

| am creating a settings page that features a form in the center that will be
used to display a GIF file. Right above the form is a file picker that returns
the path and file name of the graphic the user picked. (It is basically a
recreation of the background image selector on the form part in Web
Connection). The system fails to update the graphic properly however. |
have torn off the backgroundDescriptor from the form and tied its module
name attribute to the output of the file picker. When | open the page for the
first time the image is correct, (whatever the user selected last time) but |
am unable to get the image to update live. Any ideas? How can | get the
updateOperation to fire before the user actually clicks the OK button?

| tried to examine the logic, but | am stymied by what look like incomplete
connection diagrams in the settings view parts. The edges are just floating
with no apparent sources or targets. What can be done to get around this?

You cannot see the form in the settings page view because the bottom and
right edge attachment offsets are zero. To fix this, do the following:

Edit the part in question, for example, AbtintegerDatatypeSettingsView.
Normally you would select the form and open its settings page to change
the offsets. However, as you cannot see the form, you cannot select it,
forcing you to change the offsets manually.

First, open an inspector on the partBuilder as follows. Press Alt-Shift-Mouse
button 1 anywhere on the Composition Editor. Then inspect the partBuilder,

Chapter 2. General Information 33

then the subPartBuilders, then the entry named Form1l in the
AbtOrderedDictionary. This should lead to an AbtinternalSubpartBuilder.
Inspect the attribute settings and then the framingSpec entry. Open
inspectors on the bottomEdge and rightEdge. The AbtEdgeConstraint should
have an offset of 0. Change it to something like 100.

After closing all the inspectors save the part. This requires tricking
VisualAge into thinking that you have changed something, so you will need
to do something innocent like move the center of a connection slightly or
move the updateOperation variable a pixel or two. After saving, exiting, and
reentering the part, the form should now be visible allowing you to work
with it.

The problem with the stale image may be related to the fact that the
updateOperation variable is just a deferred part. Deferred parts are not
instances of the class they are deferring and are just a buffer for public
interface attribute values. Thus, any behavior you may have imposed on
your part to respond to a method such as image will never affect your
object. The solution is to add your own variable and code as though the
settings page were a normal Composition Editor.

Passing Parameters Between Windows

m Your VisualAge design should use the dependency mechanism. For
example, you could have an attribute-to-attribute connection from a
nonvisual (model) object attribute, using its public interface, to the list in the
first GUlI window. The second window could have a variable promoted to its
public interface that receives the model object from the first window. It is
this object that is receiving the edits in the second window. When the
changes occur (as when an OK button is clicked), the model object state
changes and its dependents are notified (including those in the first
window). The refresh will then occur after the changes to the model object
state.

Generating Archival Code

m What application should you specify when generating archival code ?

34 VisualAge for Smalltalk Handbook - Fundamentals

Answer

Create a new application, such as MyArchivalApplication, and generate
archival code to it. You don’t want to generate archival code to the
application that you plan to package and distribute to your customers (it will
be larger than it needs to be). You can always delete the generated
methods if necessary.

To create your archival application, do the following:

1. From an application manager, create the archival application. Change
its prerequisites to include AbtBuildViewsApp, plus the application you
are generating code for.

2. Open the part in the Composition Editor or Public Interface Editor.
3. Select Generate archival code from the File pull-down menu.

4. Select your archive application's name as the target for the generated
code.

Note: We recommend a one-to-one correspondence (an archival application
for each one of your applications).

—— Remember

If you want to share code, you will have to file out both applications— the
original and the archival.

Deleting Parts with Instances

cuestion

How do | delete a class or part that still has instances?

To remove instances of a class, execute:

Smalltalk

<MyClass> alllnstances do: [:aninstance | aninstance become: nil].

Although this method of removing instances does work, and all of us have
resorted to it at some time or another, we should warn you that it is
dangerous. You will usually get away with this, but it can also cause
walkbacks and even system crashes or meltdowns. Use it at your own risk.

Chapter 2. General Information 35

Change Table Format

m How can | change the dashes on a table to a line?

You can use the following code:

Smalltalk

setGridLineStyleAndColor
"Set the line style and color appropriate for the grid”

self foreground: self clrGrid.
lineStyle == AbtTWLineStyleGrid
ifTrue: ["self]. "already done”

self gc setLineAttributes: 1 "line width”
lineStyle: (self useDashedLines
ifTrue: [LineOnOffDash]
ifFalse: [LineSolid])
capStyle: CapButt
joinStyle: JoinMiter.
lineStyle := AbtTWLineStyleGrid.

The table defaults to having solid lines. To change the table to have dashed
lines, true needs to be sent to the useDashedLines method. This can be
accomplished by connecting the aboutToOpenWidget event of the table to a
script connection with similar code:

Smalltalk

dashedLines
(self subpartNamed: 'Table’) useDashedLines: true.

Error Messages

m How do | find information on fatal errors?

36 VisualAge for Smalltalk Handbook - Fundamentals

Answer

From the System Transcript, display the following code:

Smalltalk

SystemPrimitiveErrors keyAtValue: errorNumber

Example: SystemPrimitiveErrors keyAtValue: 33

If you highlight this code and choose Display, the following is returned:
"PrimErrimageFileOpenError' .

Removing Archival Code

cuestion

How do | remove archival code from my base application if | generated it
here instead of to an archival application?

Generating archival code to a new application will not move methods to the
new application if they have previously been generated to a different
application. This is important, especially when packaging your application to
an image. You should not package archival code to a run-time image.

You may either delete the methods below from all classes in your
application, or move them to the new archival application. If you delete
them, be sure to generate archival code to your new archival application
after deletion.

To move the archival methods, select the Move methods choice from the
Classes pull-down menu of an Application Browser or Classes Browser.
When prompted where to move the method, type the name of the target
application and class. The following methods are archival:

Public Class Method

— calculatelnterfaceSpec
— calculatePartBuilder

Private Class Methods

- add...PartBuilder:

- codeGenerationParameters:
- connect...

- converter...PartBuilder:

- test

Chapter 2. General Information 37

Apply Push Button

m There are unlisted actions for both an okay and cancel push button on a
part's custom settings view, but how do you handle an apply push button ?

If you are creating a VisualAge part, and want the custom settings view to
have an apply push button, add an event-to-script connection from the push
button clicked event to the following script:

Smalltalk

apply
| op newOp |

op := ((self subpartNamed: 'updateOperation’) value) execute.
newOp := op target customSettingsOperation

stackHolder: op stackHolder;

defaultValuesSource: op defaultValuesSource;

target: op target.
(self subpartNamed: 'updateOperation’) value: newOp.

Inspector

m How can | quickly open an inspector on a part in the Composition Editor?

Do Alt-Shift-Clickl on a part in the Composition Editor.

Multimedia

m Where do | find examples of using multimedia in VisualAge?

There are multimedia applications on the VisualAge CD. Also, when you
load the Multimedia and Multimedia Samples features, you will get an
application named AbtMultimediaSamplesApp in your Organizer window. In
this application, you will find multiple sample parts that you can run. For
example, you can run MtTravelAgencyMainView. There are also parts for
browsing videos (look for .AVI files in the VISUALAG\SAMPLES directory),
and browsing sounds (look for .WAYV files in the same SAMPLES directory).

38 VisualAge for Smalltalk Handbook - Fundamentals

Default Memory

cuestion

Is there a way to change how much memory gets allocated by VisualAge? It
appears that 2 MB is the default.

The following will work for Version 2 (see page 38/39 of the Smalltalk User's
Guide for memory options in Version 3). When you call the packaged image
abt.exe -iMylmage, add the following parameters:

-mi500000 This gives the memory an increment of 0.5 MB at a time,
and is what was defaulting to 2 MB.

-mo05500000 This gives the initial memory allocation to the image. As a
rough guide, take the previous mi figure away from the
initial size of the image, for example, 5.5 MB.

The full call would then be: abt.exe -iMylmage -mo5500000 -mi500000

Storing Settings

Answer

| want to be able to store current settings into a file just prior to closing an
application. The goal is so that next time the same VisualAge application is
opened, it will provide the user with the same settings as the last access by
first reading the file with the settings. How would | do this?

One way to do this is by using the objectDumper and objectLoader. Create
a class called settings which contains all the settings attributes you will
store persistent in the file. To save the settings in the file, use:

Smalltalk

ObjectDumper new
unload: <settingsinstance> intoFile: <aFile>

To load the settings from the file use:

Smalltalk

settings := ObjectLoader new loadFromFile: <aFile>

Connect the save action with aboutToCloseWidget, the load action with
aboutToOpenWidget. The objectDumper unloads the complete instance into

Chapter 2. General Information 39

the file in a noneditable format. For redistributing, you also need the
ABTSWP30.DLL.

Extending Classes

m Why do | get a prompter asking me to create a scratch edition of the base
VisualAge application when | want to extend an existing method?

Extensions can only add behavior to an existing class (for instance, adding
new methods to add functionality). You cannot alter existing methods as an
extension. The only way to alter existing behavior (alter existing methods) is
to subclass and alter the methods you want to do something different in
your subclass.

Running VisualAge from External SCSI Drive

m How can | copy the entire VisualAge installation to an external SCSI drive
and run it from there?

Just copy the whole VISUALAG directory structure to the new drive and use
a command file to setup VisualAge to run from a directory (so you don’t
have to mess with CONFIG.SYS), for example

@echo off

SET BEGINLIBPATH=x:\VISUALAG\DLL
PATH=x:\VISUALAG;%PATH%

SET HELP=x:\VISUALAG\HELP;%HELP%
SET ABTPATH=x:\VISUALAG\ABT

In addition, you'll need to update ABT.CNF and NLS.CNF (I make the path
references relative to the current directory).

Damaged Classes

m How do | get rid of damaged classes?

Version and release your classes, applications, and configuration maps.
Then, get a fresh image and reload your stuff.

40 VisualAge for Smalltalk Handbook - Fundamentals

Extending Classes

Answer

How do | extend classes in the Organizer?

You can extend classes in the Organizer in one of two ways. Both ways
require you to be using full menus. To get full menus, click Full Menus from
the Options pull-down menu.

Option 1:

Select the application you want to extend the class into. From the Parts
menu, click on New - Extension and enter the name of the class you
want to extend.

Option 2:

Select the class (part) you want to extend. From the Parts menu, click on
Extend and enter the name of the application you want to extend the
class into.

Modifying the System Menu

Answer

I would like to modify the System Menu, the menu you get when you click on
the VisualAge icon at the upper left corner of a window, for an application.
The problem | have is how to connect an appropriate action to the new
menu items.

Here's an example that shows how you can change the system menu.

Make sure to add PlatformWidgetsConstants and the CwConstants pool
dictionary to your class definition first. Note that the second parameter of
hook:with: is the method that will run when the menu item is selected, and it
must take one parameter (even though you do nothing with it). The example
also highlights the use of an accelerator key.

Chapter 2. General Information 41

Smalltalk

| menultem key |
menultem := (self subpartNamed: '"Window1') yourself
primaryWidget

osWidget

systemMenu

createMenultem.
menultem label: 'my item’;

owner: self;

accelText: 'Alt+F2";
hook: OSxSelect with: #myAction:;
yourself.
key := VkToKeySym
keyAtValue: XKF2
ifAbsent: [nil].
menultem
alt: true
shift: false
control: false
virtual: true
key: key.

Organizer Views

42

m You can switch to different views in the Organizer. For example, it can look
like this:

Applications Parts

r—1 ApbtExamplesHelpApp v 3.0a

WooDialog

Smalltalk class

1 AbtExamplesHelpArchiveApp v 3.0a

LB

;| BorieSpliterapp 1.11

PoDialogipp

Smalltalk class

Y WoDialoghppAbtPackage abtinitial Smalltalk class

oDislogControl Stnalltalk class

WoDialoghanager

Sralltalk class
oDialogPushButton 11 Smalltalk class
PooDialogStatic 1.3 Srnaltalk class
WoDialogTestview 10 isual part

PooDialog TextEntry 1.6 =malltalk class

Manager. Sandro

VisualAge for Smalltalk Handbook - Fundamentals

File in Use

m What might cause a "File In Use" error when trying to read (only) a file in
VisualAge?

Normally, this is caused by an access rights problem outside the VisualAge
domain. Make sure the server access allows concurrent read-only rights to
clients. Check this out by making sure you can see the files and file
contents from any program on the client system. In VisualAge, make sure
the code uses the ORDONLY access mode. Do not use any of the following:
OWRONLY, ORDWR, OCREAT, OAPPEND, OTRUNC, or OEXCL.

0OS/2 Shutdown

m Why doesn’t OS/2 shut down until all running applications have terminated?

In general, OS/2 won't shut down until all running applications have
terminated to prevent the user from possibly losing data. This is an OS/2
behavior for any application, and is not unique to VisualAge.

BRW Format Generator

m Is there a generator that produces a .BRW format for help?

Use an ASCII editor—or Smalltalk Workspace—to develop a .BRW file. We
gave the source files the extension .BRW for browser to distinguish the files
from other types of files). The BROWSER.BRW file describes the tags used
to specify fonts, lay out a page, display a graphic, and so on. To see how
we used the tags, open an ASCII editor on BROWSER.BRW or
VAXAMPLS.BRW. To see the formatted text (or view your own file), test
AbtHelpBrowserView and load the file. AbtExamplesHelpBrowserSubApp
contains the Smalltalk code that parses the tags. We'll probably change our
code so it reads HTML tags, and you might consider doing something
similar for your own browser.

Chapter 2. General Information 43

Loaded Method

cuestion

Is an application's loaded method invoked when it is run as an executable?
Do you need to do anything special if you want to ensure that it will be run?

The loaded method is a class method called only when the class is loaded
into the image. Its usual purpose it to complete the task of hooking the
class into the environment and setting up class variables and such. It is not
called at execution time.

Missing Character Set

cuestion

What should | do if | get a "missing characterSet translation table, ibm-NNN"
error?

You need to customize the ABTRULES.NLS file to include the 862 code page.
Do this by copying and pasting all 862 code page table definitions from
ABTRULES.ALL file to ABTRULES.NLS. This is a null table that doesn't really
do anything. Eventually, you will need a table with the proper values if you
really want code page translation to work for your system.

Event Triggering

44

Answer

| created a Smalltalk class and defined in it an event in its public interface.
In this class, | have only one method that signals this event under a certain
condition. However, when running the code, this event is being fired and |
am pretty sure | didn't fire it. Tracing the code in the debugger reveals that
VisualAge has a collection of Abt***Spec and it is firing the event from this
collection. Is it the design of VisualAge or am | not defining the event
correctly? | do not want the event to be triggered unless | use the
signalEvent: method.

Since this is a Smalltalk class (that is, a subcass of Object as opposed to
AbtObservableObject or AbtPart), you may want to look at the method
featuresAffectedByAction:. In order to handle classes that normally don't
sighal events in all cases, this method defaults to signal all events for any
action. To change this behavior, override the method to indicate exactly
which attributes should be signaled for a given action.

VisualAge for Smalltalk Handbook - Fundamentals

Part not Visible

Answer

What does it mean for a part to not be visible from an application?

If you get a message about some class not being visible, it means that you
are either trying to extend or subclass it in an application that does not
prerequisite the application containing that class.

Removed Class

Answer

I got the following debug message from a script: “Removed Class:
ClassName does not understand method.” What did | do wrong and how can
| solve this problem?

This problem in VisualAge is caused by deleting a class without removing
all method references to it. You should be able to do "Browse
References...” and find all the references to the class that no longer exists
(if you deleted, then recreated the class, simply recompile the methods
referencing it).

If this does not work for you and if you are in the Team environment, it is
probably best to get a new image and reload your application. We have
seen this before, and that is the fastest and best way to get rid of it.

Synchronizing Attributes

Answer

| have two classes, A and B, and | make an attribute-to-attribute connection
of one attribute in class A to another attribute in class B.

Suppose | have methods in both classes that reference these two attributes.
When the attribute of A or B changes, do these methods get executed
simply because they reference (by using the getSelector) these two
attributes?

With an attribute-to-attribute connection, class A will signal in a method that
its attribute has changed using the changeSymbol defined for the attribute:

Smalltalk

(self signalEvent: #attributeOfAChanged)

Chapter 2. General Information 45

This signaling of the event will cause the AbtAttributeToAttributeConnection
to get the value of class A's attribute (using the getSelector defined for it)
and set the value in the instance of class B (using the setSelector defined
for class B's attribute).

Keeping the Packaged Image Small

m Image size is a fundamental problem when it comes to running on restricted

resources. Keep in mind that VisualAge uses substantial amounts of DLL
code— most probably more than the image size.

Anyway the packager will do its best to get rid of any superfluous classes
and methods, but you can do a few things that might be helpful:

Have a small image to run packaging from, containing only the absolute
minimum classes and methods (no other applications, no samples, no
unnecessary infrastructural support).

Do not use "standard” method names, as the packager seems to
determine class and method exclusion by name, disregarding the class
context for method names. For example, calling a packaged and
needed method doSomething will package every method called
doSomething that is found in your entire development image, which will
include every class.

Get the prerequisites right; having unnecessary or wrong prerequisites
can be fatal, possibly resulting in an 8 MB package instead of the
normal 2 MB.

Including Classes in a Package

46

m We create a complex object outside of our application and dump the object

to disk using the ObjectDumper class. This dumped object contains a
collection of Catalog objects, and each Catalog object contains a collection
of Part objects and collections of Vehicle objects. After dumping this object
to disk, the object remains static, so our application can use it.

| discovered that when we packaged our application, objects such as
Catalog, Part and Vehicle are not included in the package. To get around
this, | am creating an instance of these classes, and finally letting them be
collected as garbage. Not doing this results in an error after using the
ObjectLoader, saying the "Class definition was missing.”

VisualAge for Smalltalk Handbook - Fundamentals

Answer

To me this looks like a dirty solution, is there a better way to force classes
to be included in the package?

Implementing the method packagerincludeClasses (on your applications) to
answer a collection of classes that you want to force the packager to
package will solve this problem. Browse implementors of
packagerincludeClasses for more details.

Packaging for AIX from OS/2

Answer

We are using VisualAge for Smalltalk for OS/2 V3.0. We need to distribute
both OS/2 and AIX clients of the application. Can we package the AIX
version of the client from our OS/2 development environment? Or do we
need to export from OS/2 and then import into VisualAge for AlX, and then
package the AIX version from VisualAge for AlX.

You must package in the target environment. By the way, to access a
single manager on an AIX machine, you can use TCP/IP and the EMSRV
support for all environments. If you do that, no import/export is necessary,
just a load and package.

Loading Application in a Run-time Image

Answer

Is it possible to load .APP files into a runtime image, not a stock image, if
the ApplicationLoader and Swapper are included in it? It seems that the
reduced runtime image (AbtEpStandardRuntimeSpecification) that comes
with VisualAge includes both.

The reduced runtime image does not have the ApplicationLoader and
Swapper applications that you will need to bind .APP files to it. The stock
image does.

Why did it seem that the reduced run-time image had these applications? It
is likely that you reviewed the applications in the Packaged Image Browser
associated with the reduced run-time image specification. If this is true, you
should note that these applications were not base applications, and as such,
may not be completely added to the run-time image.

Chapter 2. General Information 47

Packaging an Application for Windows

cuestion

Is it possible to package an application that should run under Windows with
VisualAge under OS/2?

You cannot run the OS/2-packaged application under Windows regardless of
whether that's native Windows or a Win-OS/2 session. In order to package
your application for execution on a Windows platform, you must have a copy
of VisualAge for Windows from which to create the run-time.

Icons and DLLs

m The VisualAge run-time does not use ABTICONS.DLL for any of its

resources. In fact, the edittime doesn't either. Only the SampleParts and
VisualAge Examples Help use the resources contained in this DLL. The DLL
is provided simply to provide some common images for you to use in your
application. Now, when shipping your packaged application you have to
include the .BMP files and not the ABTICONS.DLL.

Packaging a Workspace

m Is it possible to package an EtWorkspace with an application?

You cannot package an EtWorkspace because it is part of the edit-time

development environment (see the \visualag\install\visualag.api file for a list
of redistributable classes and methods); this is partly because those
workspaces have menu options for evaluating code using the compiler,
which is definitely not packageable. If you are looking to simply reproduce
an editor window, just drop a multiline edit part in a window.

Image Reduction

48

m How do | strip down my development image?

The VisualAge for Smalltalk packager is functionally equivalent to the third

party and OEM strippers that are available for other Smalltalks. They all
analyze your image, and remove unneeded classes and methods. The major
difference is that some of the better third party strippers can dynamically
analyze the running system, where the VisualAge packager does only a

VisualAge for Smalltalk Handbook - Fundamentals

static analysis. Even so, the packager does a pretty good job of getting the
image size down.

Ensuring that Needed Classes are Packaged

Answer

How can | make sure that all classes and methods | need for an application
are packaged, given that the classes are spread over various applications?
Would it be sufficient to include two private methods:
packagerincludeSelectors and packagerincludeClassNames?

The packager excludes all applications that are not part of the prerequisite
list, even if you implement one of the methods (packagerincludeSelectors,
packagerincludeClassNames). By using one of these methods, you are
telling the packager to include the selector, class, and so on from the
application no matter whether the packager thinks it should be included or
not. However, you still need to tell the packager what application to draw
from.

Class Modifications and Packaging

Answer

Suppose you extend a class, such that you need to create a new edition of
the application to which that class belongs, will there be anything special
you need to do when you package your application?

No, if you have your changes loaded in the image when you package, then
the changes will be picked up by the packager. For what it is worth, if you
extend a class you only add methods and do not directly modify the existing
code so you should not have to modify the owning application. You can
create a new extention of that class in your own application by selecting
New - Extension from the Parts menu in the Organizer.

Merging Application Files into Run-time Image

m The VisualAge 3.0 on-line manuals state that it is possible to merge APP

files into run-time images, even if the image is not the stock image, but a
reduced one. How do | enable the reduced image to load the APP files?

Chapter 2. General Information 49

Answer

A stock image is no longer shipped since Version 3. You can either
generate it using the Packaged Images Browser and appropriate packaging
specification (AbtEaRuntimeSpecification) and use the ABTAPP.CNF
approach as with Version 2, or you must add the appropriate logic within
your own application which supports this type of behavior (that is, uses
ApplicationLoader to bind .APP files under certain conditions). If you add
the logic yourself, it is your responsibility to ensure that the reduced
run-time image contains all the necessary methods to support the methods
required by your application modules (.APP files).

Missing Icons

Answer

Why do | have missing icons after packaging the application?

VisualAge caches the window handles of the icons used in the message
prompter. The cache is cleared when the image is saved. If you package
your application before saving your image, the current window handles of
the icons get packaged into the run-time image. When you run the
packaged image, these window handles are no longer valid and, as a result,
you get missing icons or a trap. A quick fix to the problem is to save your
image and then package your application (don't test it after saving the
image). A more appropriate solution is to implement a private class method
in AbtPromptersAppWithUI called packagingRulesFor: which will clear the
cache prior to packaging. Underneath you find the code for this method:

Smalltalk

packagingRulesFor: aPackagedimage

"Define rules for the given packaged image.”

aPackagedimage initializeToNilClassVariable: 'AbtlconPixmaps'
inClass: AbtExtendedMessagePrompter.

Required .CAT Files

50

m How do | find out what .CAT files are required for my run-time image?

There's a little script to scan the messages during packaging and show you

catalogs your code referenced. That's the minimum set of *.cat files you
need to distribute. By the way, most nonerror items are bound to the image
using the CAT entries from the development environment (English). These
files are needed if the locale changes because it is on a non-US machine or
a run-time error occurs. See EsPoolDictionary>>indexedMsg: for details.

VisualAge for Smalltalk Handbook - Fundamentals

Smalltalk

| stream tokens file |

file := (CwFileSelectionPrompter new)
title: "Packaging Messages'; prompt.
(file isNil) ifTrue: [7nil].
stream := CfsReadFileStream
open: file.
[stream atEnd] whileFalse: [
tokens := stream nextLine subStrings.
((tokens size > 0) and: [((tokens at: 1)
indexOfSubCollection: 'NIsCat’ startingAt: 1) > 0]) ifTrue: [
Transcript cr; show: 'References messages in: ',
((Smalltalk at: (tokens at: 1) asGlobalKey)
at: 'CATALOGNAME")]].
stream close.

Packaging Pool Dictionaries

Answer

How can | tell the packager not to change my pool dictionaries when
creating a run-time image?

To prevent the packager from changing your pool dictionaries, add the
following class method to your class application:

Smalltalk

packagingRulesFor: aPackagedimage
"Pack the NLS pool”

aPackagedimage includeGlobal: #MyClassPool.

I'm having difficulty getting the simple packaging process to include all keys
and values of two application specific pool dictionaries that are used in one
of the classes in my application. The packager seems to be excluding all
keys/values in these pools unless | code a rather ugly method which
explicitly refers to all keys/values in these two pools. What do | do?

Chapter 2. General Information 51

Answer

Are you referring to your pool dictionary entries by name (for example, are
you using #at: to look them up)? If you are, you'll need to inform the
packager not to reduce the pool. By default, the packager will remove any
entries that are not directly referenced. To prevent this, add a packaging
rules class method to your application class like the one below. The
packager will not do pool reduction if a rule has been explicitly set.

Smalltalk

aPackagedimage includeGlobal: #MyPoolDictionary.

Application Prerequisites

Of the problems we have encountered with packaging, 90% have been
problems with prerequistes. With the team version of VisualAge, it is
possible to partition your deliverable across multiple applications.

Each application has certain requirements that must be met for an image to
make sense. For example, if an application introduces a new class, the
superclass must be available, either in the same application or in a
prerequisite application. It can be said that one application needs others to
be in memory to work.

It is also worth mentioning that when an application is listed as a
prerequisite for another, no mention of the appropriate version is made.
Before packaging, ensure that the appropriate versions of all applications
have been loaded. The packager uses the prerequisites when building a
runtime image.

Missing Classes in the Run-time Image

52

m The packager starts with the collection of all classes in the application and

all prerequisite applications. From that starting point, it extracts all classes
and methods which are not explicitly referenced in code.

If you use any metaclass tricks, like asking a class for its subclasses, those
subclasses would not be explicitly referenced, and would therefore be
excluded.

The packager can be coerced into including certain classes by adding a new
class method to the class with the same name as your application.

VisualAge for Smalltalk Handbook - Fundamentals

Smalltalk

packagerincludeClassNames: aString

"Answers a collection containing the names of the
classes which must be included when packaging.”

#(MyFirstClass MySecondClass)

The class with the same name as your application can hold behavior that is
specific to your application (in its class methods). This class is a subclass of
the class called Application, which is itself a subclass of SubApplication. In
the class SubApplication, you find similar methods that force specific
methods or classes to be included, or excluded when packaging.

Missing Method in Package

Answer

| try to package a reduced run-time image. After the packaging process has
finished it seems that the package is missing the method
convertToCodePage: of EsString even though it is referenced several times.
Is there a way to force a method to be packaged?

You can force the method to be included by the packager by adding a class
method called includedMethods to the class with the same name as your
application. This method returns an array of methods to be included in the
packaged image. An example of this method is listed below:

Smalltalk

includedMethods
"Return a list of methods to be included in the packaged image”

~Array with: ToDoListView >> #test

Chapter 2. General Information 53

Run-time Image Packaging Problem

m Messages about OS2.INI not being able to be saved have usually been the

result of insufficient disk space (which would also lead to slow execution
since the swapper cannot grow), so check that first. Another cause of slow
execution is not having ABTBYTES.DLL in the LIBPATH (or PATH under
Windows).

As for the run-time image itself, more than 5 MB is way too large (unless
you have a truly huge application). This is typically caused by having the
wrong prerequisites for your application. A common example is when your
application requires AbtBuildViewsApp (part of the application builder
development environment). This usually happens if you generate archival
code into your application rather than having a separate archival application
(which is strongly recommended). If this is the case, you should create the
separate archival application, move all archival code into that application,
and update your prerequisites so that they do not include any of the
development-time applications.

To determine which methods are archival, just regenerate again and note
the messages in the Transcript. An APl document is shipped in softcopy
form with the product, which details what applications are considered part of
the runtime and thus redistributable.

Generating Getters and Setters

m You can use the TrailBlazer browser to generate getters and setters for an

application. Select a class, navigate to instance variables (or class
variables), select a variable, pop up the menu, and select Generate
Accessors .

High Performance Trace Logging

54

m For complex systems, often trace logging must be built in. Unfortunately, you

can incur a high performance penalty if you do not build in trace logging
properly. One way of avoiding this penalty is to send blocks rather than
strings to your logging subsystem. For example:

VisualAge for Smalltalk Handbook - Fundamentals

Smalltalk

self traceShow: "I am entering method #blah for ", self printString,
" with: ", myArg printString.

Using a string can be expensive because you have to build the entire string
even if tracing is not active. Therefore use a block:

Smalltalk

self traceShowBlock: ["I am entering method #blah for ", self
printString,
" with: ", myArg printString.].

Then in the trace block code, do this:

Smalltalk

traceShowBlock: aBlock

self isTracing ifTrue: [
traceLog cr ~ show: aBlock value].

In this way, you can leave your trace code in the system without paying a
steep performance penalty. The string is only built when tracing is active.

Closing a DLL from Smalltalk

m If you are developing a Smalltalk application that calls C or COBOL
functions in a DLL, when you initially call the DLL function, Smalltalk opens
the DLL and leaves it open. If you need to change the DLL code, the DLL
must be closed. To avoid having to shut down Smalltalk, execute the
following:

Smalltalk

(PlatformLibrary logicalName: 'myDIIName’) close”

Chapter 2. General Information 55

Unloading When Instances Exist

To unload an application when instances exist, execute the following:

Smalltalk

MyClass basicAllinstances do: [:each |
each become: Object new].

Using basicAlllnstances is faster than using alllnstances because a garbage
collection is not performed.

Testing When Looping Walkbacks Occur

When testing while a looping walkback occurs (such as in the midst of a
losingFocus callback), use the following:

Smalltalk

GloballsTesting ifTrue: [
GloballsTesting := false.
self halt.].

Then execute this before each test:

Smalltalk

Smalltalk at: #GloballsTesting put: true.

A walkback will occur only the first time the halt is encountered rather than
every time.

Quickly Disabling Methods

To quickly make a method do nothing, add this line:

Smalltalk

true ifTrue: [™nil].

56 VisualAge for Smalltalk Handbook - Fundamentals

To quickly make a method forward its behavior to its superclass use this
line:

Smalltalk

true ifTrue: [“super myMethodName].

In this way you do not have to delete or significantly modify a method when
you want to change its behavior or bypass an unfinished portion.

Specifying Public or Private with TrailBlazer

m To quickly specify the public or private policy for a class, select the class
and in the lower area (the properties area) select the instance interface (or
class interface). You can then easily make public or private assignments.

Browse and Find in the Pop-Up Menu

m Here is a little tool that extends the development environment. The tool
adds two extra items to the pop-up menu: Browse and Find.

Browse is an intelligent browse; you select the code in the pane and then
make your choice. The code you have marked is evaluated, and the
resulting class is determined. If the class is a part, the editPart message is
sent and the VisualAge for Smalltalk editor is opened. If the class is not a
part, the ordinary Smalltalk browser is opened.

Find brings the marked text into the Find window (of VisualAge for
Smalltalk) and opens it. If the Organizer is not minimized, the resulting class

(if you search for a class) is marked.

Here is the code for filing into your image. When the application NhaTool is
loaded, you have the extension.

Chapter 2. General Information 57

58

Smalltalk

Application create: #NhaTools with:
(#(AbtViewApplication EtTools)
collect: [:each | Smalltalk at: each ifAbsent: [
Application errorPrerequisite: #NhaTools missing: each]])!

NhaTools becomeDefault!

AbtViewApplicationAbtPackage subclass: #NhaToolsAbtPackage
instanceVariableNames: "'
classVariableNames: '’
poolDictionaries: ''!

NhaTools becomeDefault!
Application subclass: #NhaTools
instanceVariableNames: "’

classVariableNames: "'
poolDictionaries: ''!
NhaTools becomeDefault!

IEtBrowser publicMethods !

defaultTextMenu
"Answer the modified textMenu"”

“super defaultTextMenu

addLine;

add: #menuBrowse label: 'Browse’;
add: #menuFind label: 'Find’;
yourself! !

EtDebugger description: 'Developer: Niclas Havrup
Date: 96-06-07
APAR:

Description:
Menu items add to the debugger’ in: NhaTools!

VisualAge for Smalltalk Handbook - Fundamentals

Smalltalk (continued)

IEtDebugger privateMethods !

defaultTextMenu
"Answer the modified textMenu”

“super defaultTextMenu

addLine;

add: #menuBrowse label: 'Browse’;
add: #menuFind label: 'Find';
yourself! !

IEtInspector publicMethods !

defaultTextMenu
"Answer the modified textMenu”

~super defaultTextMenu

addLine;

add: #menuBrowse label: 'Browse’;
add: #menuFind label: 'Find’;
yourself! !

IEtWindow publicMethods !

menuBrowse
"Browse the class for the selection”

| selection className |
selection := self targetTextWidget getSelection trimBlanks.

className := (Smalltalk classAt: selection
ifAbsent: [(self evaluateSelectionIn: targetTextWidget
ifFail: [~self])
class.]).

(className inheritsFrom: AbtPart)
ifTrue: [className editPart.]
ifFalse: [((EtTools browser: #class) on: className) open].

Chapter 2. General Information

59

60

Smalltalk (continued)

menuFind
"The Find window”

| selection className |
selection := self targetTextWidget getSelection.
selection isNil

ifFalse: [selection := selection trimBlanks].

(AbtApplicationsOrganizerView current find
secondaryViews at: #find ifAbsent: [nil]) findText: selection.

IEtWorkspace publicMethods !

defaultTextMenu
"Answer the modified textMenu"

“super defaultTextMenu

addLine;

add: #menuBrowse label: 'Browse’;
add: #menuFind label: 'Find’;
yourself! |

INhaTools class privateMethods !
runtimeStartUp
self abtViewApplicationPackage runtimeStartUp! !

NhaToolsAbtPackage initializeAfterLoad!
NhaTools initializeAfterLoad!

NhaTools loaded!

VisualAge for Smalltalk Handbook - Fundamentals

Versioning Applications Not Owned

m If you make changes to a class that is in an application you do not own, it
can be difficult to version and release the application.

Here's the incantation (which assumes that you do not have password
control of user IDs or know the passwords):

1.
2.
3.

Open the Application Manager.
Select the troublesome application.

Select the open editions of the class or classes. The owner of that
change will be highlighted in the user list in the Application Manager.

. Double-click on the highlighted name to change the user to that person.

Click the right mouse button over the class list and select Version -
Name each, One name, or Use defaults . This will version the classes.
Now you need to release them.

. Double-click on the name list to change the user to the manager of the

application (name with the > next to it).

Click the right mouse button over the class list and select
Version/Release All - , select Name each, One name, or Use defaults.
This will version and release all the classes, some of which may already
have been versioned. Another way to do this is to just select the
classes that have not been released yet (marked with a >), click with
the right mouse button to open the menu, and select Release.

. When all classes in the application are versioned and released, change

the user to the the manager and version the application.

Client Not Supported

m If your connectivity is through Microsoft Windows for Workgroups (3.11)
MSDLC protocol and Client Access/400 V3R1 router, be aware that the
CA/400 DOS Extended client is not supported for use with either MSDLC or
VisualAge AS/400 Connection (see AS/400 Connection User's Guide
SC34-4544-0 under Chap.1, "Getting Started...” section on "Prerequisites for
Windows") In this case, you must use the Client Access/400 for Windows
3.1 client.

Chapter 2. General Information 61

AbtRecord

m How do | use AbtRecords?

There are some references to AbtRecord in the online
Communications/Transactions Guide and Reference. One way to create an
AbtRecord instance is by sending the message #newRecord to an
AbtCompoundType. Here is an example | found:

Smalltalk

| ctype rec |

ctype := (AbtCompoundType new
addField: (AbtCOBOLDisplayField new name: 'stringl’; length: 8) ;
addField: (AbtCOBOLDisplayField new name: 'string2’; length: 8);
yourself).

rec := ctype newRecord.

rec at: 'stringl’ put: 'abcde’.

rec at: 'string2 ' put: ‘ddddd’.

Transcript cr ; show: (rec at: 'stringl’) ;
cr; show: (rec at: 'string2’).

Indexed Message Editor

m | find that, whenever | made changes in the Indexed Message Editor, | need
to

1. Save the changes.
2. Execute application abtGenerateExternalizedStringsifNecessary.
3. Execute AbtNLSCoordinator forceRelocalizationOfSeparatedConstants.

After | do this, all my messages are immediately available. | never have to
unload or reload the application.

62 VisualAge for Smalltalk Handbook - Fundamentals

Corrupted MRI File

m The messages in my MRI user message file appear corrupted or have bad
data. What can be wrong?

The MRI file in VisualAge for Smalltalk, Version 1.0 has a limit of 64 KB, so
messages above this limit may appear corrupted. To get past the limit, in
application AbtNLSSubApp, change class AbtMRIGroupHeader, method
offsetSize as follows:

Smalltalk

offsetSize
"Public - answer size of file offset used in header.

~offsetSize isNil
ifTrue: [offsetSize := 4]
ifFalse: [offsetSize]

The only change in this method is to change the number 2 to 4. For
VisualAge for Smalltalk, Version 2.0, the changes have already been made.
In the method above, the offsetSize now defaults to 4 instead of having to
change it to 2. So, corruption should no longer be a problem in Version 2.0

Class Naming Convention

m What naming convention should | use?

Our naming convention complements existing literature! on the subject to
facilitate code reuse and to provide a layered architecture for the
development environment.

A naming convention in your development environment greatly helps
reusing existing classes because it allows searching by class name based
on a filter.

VisualAge for Smalltalk, Programmer's Guide to Building Parts for Fun and Profit, IBM
Smalltalk with Style, David Thomas et al, Prentice Hall

Smalltalk Best Practice Patterns, Kent Beck, Prentice Hall

Chapter 2. General Information 63

64

Class Name Prefix
The prefix is arbitrarily defined with the following three characters:

1. The first letter stands for the company name.

2. The second letter describes the type of components:

A
C
M

Application
Class

Configuration map

3. The third letter is used to categorize the component within a layered
architecture:

A

Defines classes of the top layer, which is the application layer. All
classes are visual, representing the screens of the application. At
the application layer, the primary part of a class is always a window
(for example, an instance of AbtShellView) rather than a form (an
instance of AbtFormView).

This optional layer contains reusable visual classes. The main
difference between this layer and the application layer is the fact
that the primary part of a class is always a form rather than a
window.

The model layer contains the implementation of the object model
reflecting the business domain of the enterprise.

As part of the infrastructure, the GUI layer contains classes that
provide additional features to the base product, such as converters,
security defined at the widget level, controller services common to
any instances of Model-View-Controler (MVC), or a window
manager that keeps track of the view that owns the current unit of
work.

As part of the infrastructure, this layer contains class extensions
made to the base product.

As part of the infrastructure, this layer contains in-house
development tools for developers. These classes are never
packaged with the end-user application.

As part of the infrastructure, this layer contains common services
defined in the Common Object Request Broker Architecture
(CORBA), for example, the persistence object service, concurrency,
and transaction service.

VisualAge for Smalltalk Handbook - Fundamentals

Class Name Suffix
For a class, the category of component is defined with the third letter of its
prefix and the use of a suffix.

Model Class
Model classes (for example, business domain classes) do not need a suffix.

Reusable Visual Classes

Reusable visual classes are derived from model classes. There is a
one-to-many relationship between one model class and its reusable visual
classes, and that is why we always use the name of the model class as the
name of the reusable visual class. Its suffix consists of two parts:

The first part characterizes the information being displayed. Use a name
that characterizes the reusable visual class based on the attributes
displayed from its model class. Consider using terms like the following:

- Summary
- Detail

The second portion is the word View.

Visual Classes
Visual classes are task oriented and should reflect in their name their main
task. Use View for suffix.

Facade Classes

Structuring a system into subsystems helps reduce complexity. A common
design goal is to minimize the communication and dependencies among
subsystems. The Facade class provides a single and simplified interface to
the more general facilities of a subsystem?. Use Facade for suffix.

Controller Classes

Controller classes handle the sequence of events found in a use case. They
deal with user interface logic or business processes. Jacobson defines them
as control objects®. Use Controller as suffix.

Agent Classes

Agent classes are used to encapsulate the physical implementation of a
portion of or whole service by using one or more service objects. One agent
class plays an intermediate role between one or more model classes, which

2

3

Design Patterns, Erich Gamma et al, Addison-Wesley

Object-Oriented Software Engineering, lvar Jacobson, Addison-Wesley

Chapter 2. General Information 65

do not know anything about the outside world of a Smalltalk run-time image,
and the service object, which in turn does not know anything about the
business domain®.

Use the word Agent followed by the kind of service object used. Here are
some examples:

- AgentDB2: Classes implementing service, using DB2/2 service objects

- AgentMQ: Classes implementing service, using MQSeries service
objects

- AgentTCPIP: Classes implementing service, using TCP/IP service
objects

Manager Classes

Manager classes keep track of all instances of a specific class or a subset
of a class. They are also used to select some instances of one specific class
based on some criteria’. Use Manager as suffix.

Category Naming

How should | group methods within a class in order to improve readability?

Category names have to be explicitly created. We propose category names
for instance and class methods.

m Categories for Instance Methods

Get and set selectors

Contains all accessor methods for instance variables
- Extensions

Used when an extension is made to an existing class of the
development tool

- Initializations
Contains initialization methods
+ User interface logic

Used for validation or navigation logic

4

VisualAge and Transaction Processing in a Client/Server Environment, Andreas Bitterer et al, Prentice Hall PTR

5 Enhancing the Object Design Process Using Stereotypes, paper presented by Rebecca Wirfs-Brock at the
Smalltalk User's Conference in New York, 1996

66

VisualAge for Smalltalk Handbook - Fundamentals

ResponsibilityName

A category is created for each responsibility (for example, contract)
taken by the object.

Services
Contains methods having a general purpose such as boolean or copy

methods

We do not recommend defining a method to more than one category even if
the tool allows it.

Categories for Class Methods
Some categories for class methods are the same as those described for
instance methods.

Get and set selectors

Contains all accessor methods for class variables
Creations

Contains methods returning one instance of the class
Constants

Contains constant methods

Example

Contains methods explaining how to use the class. A common usage is
showing how to create an instance of the receiver.

Extensions

Used when an extension is made to an existing class of the
development tool.

Initializations
Contains initialization methods
ResponsibilityName

A category name is created for each responsibility (for example,
contract) taken by the object.

Services

Contains methods having a general purpose such as boolean or copy
methods.

Tests

Contains unit testing methods

Chapter 2. General Information 67

Archival Code is Missing

Answer

| had an application on VisualAge for Smalltalk on OS/2 2.11. Now |
installed VisualAge for Smalltalk on a Warp system and filed in my
application and the archive file. | get all parts, but the view wrapper parts
are empty (the Composition Editor shows only an empty window). Has
anyone an idea what could be wrong?

The problem you are experiencing (for example, no visual parts in any of
the windows) is usually an indication that the archival code is missing.
Open a Composition Editor on one of your visual parts and then switch to
the Script Editor. Check and see if you have any class methods. If you
generated and then filed in your archival code, you should see the following
class public methods:

calculatelnterfaceSpec

calculatePartBuilder

You should also have some class private builder methods. Do you see any
of these methods? Open a browser on the archival application. Do you see
class names for all your visual parts? When you generate archival code for
your visual parts, the class gets extended in the archival application. The
class extensions are the archival code methods.

If you don’t have the archival code methods, | suggest you go back and
regenerate the archival code, file it out, and then file it back in.

Meaning of Application Errors

68

m Where or how can | find an explanation of the fatal application errors?

From the System Transcript, display the following code:

Smalltalk

SystemPrimitiveErrors keyAtValue: errorNumber

If, for example, you highlight and display this statement with argument: 33,
you get the following result: 'PrimErrimageFileOpenError’.

VisualAge for Smalltalk Handbook - Fundamentals

Error: "Undefined Object does not understand messageString

cuestion

I

| get the following error every time | try to save a part: 'Undefined Object
does not understand messageString’ How can | correct this?

Inspect AbtShellView (the class). You can do this by executing

Smalltalk

(AbtShellView inspect).

From the inspector, double click on the entry 'classPool’ This should open a
Dictionary Inspector with two entries: 'AbtinimageRestore’ and
"InLongOperation’. Select the entry called 'InLongOperation’.

If it says true then change it to false and save (using the pop-up menu) the
change.

If false appears in the right pane, then you have a different problem.

Error on Saving a Part

Answer

When | try to save a part, | get an error that states that there is no primary
part, why?
This can happen assuming the following order of actions:

1. Open a new part (the default window is the primary part)

2. Add, for example, a notebook (the default window is still the primary

part).

3. Delete the window (no primary part)
From here, an attempt to save will generate a warning until you specify
which part is to be the primary one.
However, if the order is the following, the result is different:

1. Open a new part (the default window is the primary part).

2. Delete the window (no primary part).

3. Add the notebook (the notebook becomes the primary part).

From here, saves works fine.

Chapter 2. General Information 69

In summary, if the primary part is deleted, VisualAge makes no assumptions
about which part should now become the primary one. If, however, you add
a new part when no primary part is currently defined, the newly added part
becomes the primary part. It must be a visual part when editing a view
class, otherwise the primary part will stay undefined. The rationale for
automatically setting a primary part when one is not currently set is to
simplify the typical scenario where one wants to substitute the window for
an embeddable window (Form).

Inappropriate

Answer

VisualAge Icon

In Windows, | click on the VisualAge icon and nothing happens or my
VisualAge icon has DOS in it instead of the eye, or | receive "cannot run in
DOS mode.” What should | do?

You have probably not installed Win32s support needed for Windows or do
not have the correct version of Win32s. VisualAge for Smalltalk requires
level 1.15.111.0. You can tell what version you have by looking at the
Win32s.ini file in the \windows\system subdirectory. Refer to the readme.txt
file in the \wradcdwl\vaprodnl\readme subdirectory on the VisualAge for
Smalltalk CD and search for Win32s instructions on installing Win32s
support.

Double Execution of Script

70

Answer
Answer

Why does my script get executed twice when a user hits the enter key and |
use the defaultActionRequested event?

This is a known problem. You'll need to change the method
AbtTextView>>#postCreationlnitialization. Locate the following piece of
code in the method and remove it:

Smalltalk

widget addCallback: XmNactivateCallback
receiver: self
selector: #defaultAction:clientData:callData:
clientData: nil.

VisualAge for Smalltalk Handbook - Fundamentals

Error 203

Answer

When trying to start VisualAge for Windows, | get Error 203. Why?

Older versions of VisualAge for Smalltalk did not run on Windows 95 or NT.
You need to upgrade to at least version 3.0a if you want to run VisualAge for
Smalltalk under Windows 95 or Windows NT.

Removing Elements from a View

Answer

How do | remove elements from a tree view?

We opened APAR PN82758 on a problem that sounds very similar to this
problem. Here is a workaround or fix: In

EwHierarchy>#refreshltems:childrenBlock: Change the lines that read:

Smalltalk

oldExpandedltems add: (self items at: index).
oldExpandedNodes add: node!.

To the following:

Smalltalk

(index between: 1 and: self items size)

ifTrue:
oldExpandedltems add: (self items at: index).
oldExpandedNodes add: node!!.

Class EmLibraryStatistics

Answer

Where is the class EmLibraryStatistics that was in IBM Library Tools
configuration map?

It was left out of the Version 3.0a refresh manager. You can import the
configuration map from your Version 3.0 manager into your Version 3.0a
manager. The code hasn’t changed between the two.

Chapter 2. General Information 71

Error:

m What does a rc=12 for abt.exe mean?

Try executing the following code:

Smalltalk

Object primitiveErrorStringFor: 12 - “Not enough memory”

Error:

SYS317x

m Can | avoid SYS317x in ESVM30.DLL, PMMERGE.DLL, or xxx.DLL on OS/2?

OTI believes that many of the SYS317x messages our customers are seeing

are due to stack overflow. When the stack overflows, some reasonably
important data is trashed in ABT.EXE. The effect of trashing this data can
be immediate or delayed (depending on how much is trashed and what the
trash looks like). Also, according to OTI, there is no way for customers to
either protect against a stack overflow or know when one has occurred.
Many of our customers run quite successfully with the original stack size of
32 KB. However, as VisualAge for Smalltalk applications have become
more complex, stack usage has increased. Therefore, before the Version
3.0a refresh, ABT.EXE was rebuilt with a 64 KB stack.

It has been noted that a 64 KB stack is not always enough either. So, | have
developed a version of ABT.EXE that runs Smalltalk on a thread. This
allows customers to set any stack size they need. It also keeps
Smalltalk-called DLLs from writing past the end of the stack (based on the
different mechanism used for managing thread stacks vs. the main thread
stack).

When you get a report of a SYS317x on IBM Smalltalk or VisualAge for
Smalltalk that occurred while running the product (not during install, for
example), here are some steps to diagnose and correct the problem:

1. Does the trap occur when the user is doing lots of user interface
interaction? If so, suggest that users update their video drivers to the
newest level and retry. In the past, we've seen this kind of problem on
Windows, but it is also beginning to show up on OS/2. It seems to be
most prevalent with S3-based video cards, but has been seen with
others. Diamond Stealth drivers seem to be particularly notorious for
causing this problem.

72 VisualAge for Smalltalk Handbook - Fundamentals

2. Is the user still on Version 3.0? If so, suggest that they upgrade to
Version 3.0a. In the meantime, you could send them a replacement for
ABT.EXE to bring it up to the Version 3.0a level.

3. Does the trap occur when bring up a Version 3.0a image with database
features loaded? Have the customers saved their image with a
database connection open? If so, suggest that they reload into a clean
image and not save with open database connections. There is a
problem in database with finalization code that is trying to free operating
system objects that have bogus memory pointers at startup.

If these don't help, and if the SYS317x occurs based on a repeatable
scenario, then we can turn the problem over to OTI support (after verifying
that it can be recreated) if the customer supplies: a) a scenario for
recreating the failure, b) the failing image, and c¢) any associated files, DLLs,
and the like needed to recreate the failure.

Error: Primitive Error Codes 52 through 55

m Primitive error codes 52 through 55 indicate a general protection fault or
trap. They are described in the table at the end of Chapter 11 in the IBM
Smalltalk Programmer's Reference. These error codes were introduced in
Version 3.0a. The specific meanings are:

52 - General Protection Fault

53 - General Protection Fault - read from invalid memory location
54 - General Protection Fault - write to invalid memory location
55 - General Protection Fault - invalid instruction executed

If the primitive error is associated with a callWith: type method, then the
general production fault occurred in the DLL being called (or in a function
that it called). If the primitive error is associated with a xxxAt: or xxxAt:put:
type method, then an invalid address was supplied to the method.

Error: Does Not Understand Format

m After filing in code from Version 2 Standard to Version 3 Team, | get a
debugger with "AbtlbmDate384Field does not understand format:" when
generating runtime code for an access set.

Chapter 2. General Information 73

Answer

Implement a format: instance method for AbtlbmDate383Field that does
nothing.

Menu on Windows NT 4.0

Answer

VisualAge for Smalltalk Version 3.0a for Windows has a small menu problem
when run on Windows NT 4.0. The context menu for text fields appears after
a default windows menu. What do | do?

This behavior can be easily fixed by executing the following code:

Smalltalk

OSWidget eventTableAt: 16r7B "WmContextmenu"
put: #wmContextmenu:with:

Back-tabbing

74

in Container Details Views

On some UNIX platforms (HP-UX and Hummingbird Exceed X server, for
example) shift-Tab is mapped to key symbols other than back tab. The
container details view expects shift-Tab to back tab (or tab to the left).
Therefore, when running VisualAge on these platforms, you may need the
following workaround in order to use Shift-Tab to back tab through container
cells. Edit the key mappings for your X server. If you are using X server
software on a Windows or OS/2 workstation, the X server software may
provide dialogs to edit the keyboard mappings. Use these dialogs to change
the setting for "Shift" +" Tab"” to generate the keysym "Tab.” For X servers
running under UNIX, you can run X command xmodmap to change the
mappings. For example, to correct the mapping on an HP-UX workstation,
run the following command:

xmodmap -e "keysym Tab = Tab Tab”

You can run this command from your .profile or other startup or logon
script, but it must be run after your display is specified. If you are already
running xmodmap, you may have a resource file, possibly called
.xmodmaprc, to which you can add the above keysym expression.

VisualAge for Smalltalk Handbook - Fundamentals

Properties Views and Notebook Settings Views

m To switch from Properties views to Notebook settings views, do the
following:

1. From either the System Transcript or the Organizer, bring up the
Load/Unload dialog.

2. Choose to load VisualAge Notebook Style Settings Views.

3. In the VisualAge Organizer Preferences, make sure Notebook Style is
selected for the Preferred Settings View.

Code Page Conversion Errors

m If you are receiving errors related to code page conversion, select Tools —
NLS — Rebind Image Strings from your Transcript.

Determining Required ICs

m The following script can be run to determine the ICs that are needed at run
time. It will show a list of all IC packaging instructions that are currently
loaded. When you select a packaging instruction, the required run-time ICs
will be listed on the Transcript.

Chapter 2. General Information 75

Smalltalk

| icCollection instructionNames instructionName instructionClass work |

instructionNames := (EpAbstractPackaginglnstructions
withAllSubclasses collect:
[:ea | ea name asString])
asSortedCollection asArray.
instructionName := CwListPrompter new
title: 'Find IC files required by the selected IC’;
items: instructionNames;
prompt.
instructionName size = 0 ifTrue:["self].
instructionClass := Smalltalk classAt: instructionName
ifAbsent: ["self].
icCollection := Set new.
icCollection add: instructionClass dumperOptions imageFileName.
instructionClass prerequisitelCs do: [:eachICInstructionClass|
icCollection add: (eachlCinstructionClass asClass)
dumperOptions imageFileName].
work := Transcript bringToFront.
work cr;
nextPutAll: '******* The required ic files for ',
instructionClass name,’' ****xxx'.
cr;
cr.
icCollection isEmpty
ifTrue: [work tab; nextPutAll: '"No IC files needed.’; cr]
ifFalse: [icCollection asSortedCollection do: [:each| work tab;
nextPutAll: each; cr]].

Required CAT and MPR Files for an IC Run-time Image

m The following script can be run to determine the .cat and .mpr message files
that are needed by an IC image at run time. It will show a list of all IC
packaging instructions that are currently loaded. When you select a
packaging instruction, the required run-time message files will be listed on
the Transcript.

76 VisualAge for Smalltalk Handbook - Fundamentals

Smalltalk

| appCollection catFiles mprFiles instructionNames
instructionName instructionClass work |

instructionNames := (EpAbstractPackaginglnstructions
withAllSubclasses collect:
[:ea | ea name asString])
asSortedCollection asArray.
instructionName := CwListPrompter new
title: 'Find .cat and .mpr files required by the selected IC’;
items: instructionNames;
prompt.
instructionName size = 0 ifTrue:[“self].
instructionClass := Smalltalk classAt: instructionName
ifAbsent: ["self].
appCollection := Set new.
catFiles := Set new.
mprFiles := Set new.
instructionClass actualincludedSubApplicationNames do: [:eachApp|
appCollection add: (eachApp asClass rootApplication)].
instructionClass prerequisitelCs do: [:eachICInstructionClass|
(eachlClInstructionClass asClass)
actuallncludedSubApplicationNames do:
[:eachApp]|
appCollection add: (eachApp asClass rootApplication)]].
appCollection do: [:eachApp | [pooINames mprName |
poolNames := eachApp definedPoolNames.
poolNames do: [:eachPoolName| |pool catName|
(pool := (Smalltalk at: eachPoolName ifAbsent:[]))
eplsPoolDictionary
ifTrue:[(catName := (pool at: '"CATALOGNAME’
ifAbsent: [])) isNil
ifFalse: [catFiles add: (catName,'.cat’)]]].
(mprName := eachApp abtNIsRawFilename) isEmpty
ifFalse: [mprFiles add:
(AbtNLSCoordinator resolveLanguageMappingCharacter:
mprName)]].

Chapter 2. General Information 77

Smalltalk (continued)

work := Transcript bringToFront.
work cr;
nextPutAll: "******* The required message files for ',
instructionClass name,’ ***x*¥x’,
cr;
cr;
nextPutAll: 'Cat files:';
cr.
catFiles isEmpty
ifTrue: [work tab; nextPutAll: '"No .cat files needed’; cr]
ifFalse: [catFiles asSortedCollection do:
[:each| work tab; nextPutAll: each; cr]].
work cr;
nextPutAll: 'Mpr files:’;
cr.
mprFiles isEmpty
ifTrue: [work tab; nextPutAll: '"No .mpr files needed’; cr]
ifFalse: [mprFiles asSortedCollection do:
[:each| work tab; nextPutAll: each; cr]].

Required CAT and MPR Files for a Reduced Run-time Image

m The following script can be run to determine the .cat and .mpr message files
that are needed by a reduced image at run time. It reads the spusage.es file
produced by packaging, so you should run the script right after your
packaging run so that you have the correct spusage.es file available. The
required run-time message files will be listed on the Transcript.

78 VisualAge for Smalltalk Handbook - Fundamentals

Smalltalk

| spusageFile fileStream class classCollection
appCollection catFiles mprFiles work icxFileName |

classCollection := Set new.
appCollection := Set new.
catFiles := Set new.
mprFiles := Set new.
spusageFile := 'spusage.es’ asFileSpec.
fileStream := spusageFile cfsStreamReadOnlylfError:
[:aCfsErr| aCfsErr printString].
(fileStream skipToAll: 'Output statistics for: ')
ifTrue: [icxFileName := (fileStream nextLine)].
(fileStream skipToAll: '# Size # Size # Size') ifTrue: [
fileStream nextLine; nextLine.
[fileStream atEnd] whileFalse: [
(class := fileStream upTo: $)isEmpty
ifTrue: [fileStream setToEnd]
ifFalse: [
classCollection add: (class asClass).
fileStream nextLine]]].
fileStream close.
classCollection do: [:eachClass | |app|
app := eachClass controller.
appCollection add: app rootApplication].
appCollection do: [:eachApp | [pooINames mprName |
poolNames := eachApp definedPoolNames.
poolNames do: [:eachPoolName| |pool catName|
(pool := (Smalltalk at: eachPoolName
ifAbsent:[])) eplsPoolDictionary
ifTrue:[(catName := (pool at: '"CATALOGNAME’
ifAbsent: [])) isNil
ifFalse: [catFiles add: (catName,'.cat’)]]].
(mprName := eachApp abtNIsRawFilename) isEmpty
ifFalse: [mprFiles add: (AbtNLSCoordinator
resolveLanguageMappingCharacter: mprName)]].

Chapter 2. General Information

79

Smalltalk (continued)

work := Transcript bringToFront.
work cr;
nextPutAll: "******* The required message files for ',
icxFileName,' **xxkxxt,
cr;
cr;
nextPutAll: 'Cat files:';
cr.
catFiles isEmpty
ifTrue: [work tab; nextPutAll: 'No .cat files needed’]
ifFalse: [catFiles asSortedCollection do:
[:each| work tab; nextPutAll: each; cr]].
work cr;
nextPutAll: 'Mpr files:’;
cr.
mprFiles isEmpty
ifTrue: [work tab; nextPutAll: '"No .mpr files needed’]
ifFalse: [mprFiles asSortedCollection do:
[:each| work tab; nextPutAll: each; cr]].

Format Change for CTLs

m The format of the .CTL files used during feature load and unload has
changed between Version 3 and Version 4. This change will affect you if you
create .CTL files for your components.

Sample V3 CTL File Format

Smalltalk

SOMsupport "AbtCommonProductinstallerApp products: #('va')
platforms: #('aix’ '0s2' 'win95' 'winnt’) sys: 'es'”

"'SOMsupport’ 'V 3.0a’ abtesm30.dat

"AbtSOMsupport’ 'V 3.0a’ abttsm30.dat

Sample V4 CTL File Format

80 VisualAge for Smalltalk Handbook - Fundamentals

SOMsupport, Base "AbtCommonProductinstallerApp
productld: 'sdcs00000023'
platforms: #('win95' 'winnt’ '0os2' "unix')"
include=abttvv40.ctl
include=abtesm40.ctl
"AbtSOMsupport Run’ 'ts=3032438045' 'abttsm40.dat’
"AbtSOMsupport Run V4.0’
"AbtSOMsupport Edit' 'ts=3032437984' 'abttsm40.dat’
"AbtSOMsupport Edit V4.0’

Smalltalk

Here is what has changed:

Feature identification

Text up to the first double-quote forms the feature name that will
display in the Feature load and unload dialog

The products: and sys: parameters are no longer used.

The new productld: parameter is used to determine whether a
feature is for evaluation or for production. If you use sdcs00000023
for the value of this parameter, your evaluation status will track with
the evaluation status of the base VisualAge product. If you use an
unrecognized string for this parameter, your component will always
be treated as for evaluation.

For the platforms: parameter, aix has been replaced with unix.

Prerequisite loading

Prerequisite features are indicated with the include statement
referencing the .ctl file of the prerequisite. There is one include
statement for each direct prerequisite feature. In this example,
SOMsupport, Base for IBM Smalltalk, and VisualAge Base are the direct
prerequisite features of SOMsupport, Base for VisualAge. These two
lines are equivalent to the second line in the Version 3 example.

Feature loading

The final two lines in the example identify the configuration maps
comprising the feature. Each line is composed of four parts:

Name of the configuration map to be loaded
Time stamp of the configuration map to be loaded

Name of the .DAT file containing the code to be loaded

Chapter 2. General Information 81

- A comment (typically the name and version of the configuration map
to be loaded)

These two lines are equivalent to the third line in the Version 3 example.

To have your component listed in the VisualAge section of the load and
unload dialog, make the fourth letter of your DAT file name a t. To have your
component listed in the IBM Smalltalk section of the load/unload dialog,
make the fourth letter of your DAT file name an e.

Unloading the Visualization Feature

m To unload the Visualization feature, first execute the following code from a
workspace:

Smalltalk

DtEventProfilerApplication eventQueueProcessor.

Then unload the Visualization feature.

Manager Access

m Watch out for the following manager access issues:

Solaris Server
Error 1212 "Transaction terminated prematurely” message

When running EMSRV on Sun Solaris 2.5.1, you may get an Error 1212
"Transaction terminated prematurely” message when loading a large
config map. This is an access denied error due to an incorrect return
value from one of the Solaris lock checking functions. Temporary
patches from Sun are available to fix this problem. You can download
these patches from Sun's FTP site:
ftp://sunsolvel.sun.com//pub/patches/T103640-06.tar.Z.

Starting EMSRV

EMSRYV for Solaris does not determine the device number correctly. In

most cases, images that talk to it fail to connect with the message "File
resides on unsupported device.” This error also prevents the use of the
EMCOPY command.

82 VisualAge for Smalltalk Handbook - Fundamentals

To resolve the problem, start EMSRV with all the options you normally
would use in addition to option -xd0. For instance, if your normal EMSRV
startup options are:

emsrv -v -b50 -1t240
then you should use:
emsrv -v -b50 -[t240 -xdO

Note that when you use -xdO, you lose the protection mechanism that
prevents you from starting EMSRYV on an NFS drive. To avoid corruption,
take extra care to ensure that you run EMSRV from a local hard drive
when you start with this option.

Windows 95 Client

From a Windows 95 client, you must use Novell's Client32 for Windows 95
requesters and associated patches. If you use the wrong requesters, library
corruption is possible.

The Client32 for Windows 95 requester and the required patches can be
obtained from Novell's Web site.

From the Core OS Updates section, select landr9.exe; from the Client Kits &
Updates section, select cltdr2.exe. Because fixes may be updated or files
renamed over time, you may find that these files are no longer available. In
this case, follow the instructions at the top of the page for accessing
Novell's Product Support area.

If these two patches are not used, users may experience severe
performance problems when reading from attached servers and may also
find that locks are not correctly released if more than one image is running
concurrently on the same machine. The two patches should correct both of
these problems.

The Client32 for Windows 95 requester has many parameters that may be
changed in the Advanced Settings dialog. The default settings provided on
installation have been tested; in most cases there is a trade-off between
data integrity and performance (for example, True Commit set to off).
Although other settings have not been tested, changing any of the settings
in the Performance — Cache parameter group to less optimistic values
should not present any problems.

Chapter 2. General Information 83

When using this configuration, set ENVY/Manager's release lock mode
parameter to true.

Windows NT Client

Windows NT clients must only use the Microsoft Client Services for Netware
(CSNW) that is provided with Windows NT 3.51. The Novell Netware Client
for Windows NT should not be used as it has not been tested with VisualAge
for Smalltalk.

When using this configuration, set ENVY/Manager's release lock mode
parameter to true.

0S/2 Warp 3 Client
From an OS/2 Warp 3 client, use Novell's OS/2 2.11 requester for library
access.

0S/2 Warp 4 Client
Direct access to Novell Netware servers from Warp 4 is not currently
supported. OS/2 Warp 4 customers should use EMSRYV for library access.

Opening Multimedia Devices

m Open only one multimedia device (for example, Digital Video Player) at a
time. Make sure you close one device before opening another, otherwise
unexpected results may occur. This is an OS/2 Warp limitation.

Using Digital Video Player on OS/2

m To use the Digital Video Player, move the MMOS2 directory to the beginning
of your LIBPATH and PATH statements in your CONFIG.SYS file on OS/2
before starting VisualAge. This is an OS/2 Warp limitation.

Video Disk Player

m The wrap function does not work for the video disk player.

84 VisualAge for Smalltalk Handbook - Fundamentals

Crystal Wave and MWave Audio Cards

When running video or audio under OS/2 on a Crystal Wave Audio or
MWave audio card, the video or audio might not terminate and thereby lock
up VisualAge. Installing more recent audio drivers might help solve this
problem. Using a different audio card, such as SoundBlaster, will solve the
problem.

AVA Playback Windows

An AVA Playback Window in a scene of a story enables the user to use
Ctrl+Esc to escape that scene in a full screen presentation even if the
Prevent user exit option is on. This is an Ultimedia Builder limitation.

Lotus Notes

On DBCS systems, a Notes database title might be truncated when
displayed in a Notes database icon. You can view the entire title in the
database properties dialog. This problem occurs when the database name is
longer than 32 bytes which can occur with as few as 11 Lotus multibyte
characters (LMBCS). Depending on the type of characters in the database
title, such truncation might lead to an unviewable character at the end of the
title.

Chapter 2. General Information 85

86 VisualAge for Smalltalk Handbook - Fundamentals

Chapter 3. Graphical User Interface

In this chapter we cover issues related to graphical user interface (GUI).

GUI Architecture

m What GUI architecture does IBM Smalltalk use?

IBM Smalltalk has many advantages in its GUI implementation.

ParcPlace VisualWorks Smalltalk emulates all the supported operating
systems GUIs in Smalltalk—that is, it opens a window, and does all the bit
manipulation itself. This makes it very flexible for cross-system
development but there is a performance overhead. Digitalk (now ParcPlace)
Visual Smalltalk uses more of the underlying operating system GUI, for
better performance but at the price of only supporting a common subset of
GUI controls; it's better with Version 3, but complex controllers still require
quite a lot of work.

IBM Smalltalk maps the Motif GUI widgets onto the underlying operating
system widgets. This means you get a very rich kit to build your GUI, but
the widgets operate at near native speed. You have the best of both worlds.

Mapping Widgets Across Systems

m How do | map Motif widgets to Smalltalk widgets?

Each Smalltalk widget that maps to a Motif widget class must implement two
class methods:

platformWidgetClass

platformWidgetGadget
The XPlatformAdministration class>>#initializeWidgetClasses method sets
up global variables in PlatformGlobals used by each of these methods (for
example, XmPushButtonWidgetClass). These map a Motif widget class (an

address) using the CwWidgetClassMappings variable of CwBasicWidget into
a Smalltalk widget class (see CwBasicWidget class>>#widgetFor:).

As a result, you can map only one Motif widget class into a single Smalltalk
class. (Note: Multiple Motif widget classes can be handled by the same

[0 Copyright IBM Corp. 1997 87

Smalltalk class. Several classes do that, see implementors of
platformWidgetClass.)

One possible particular scenario is: You create a subclass of
CwPushButton, and when the class #initialize method is run
(CwBasicWidget), the CwWidgetClassMappings table is rebuilt. This causes
all Motif push button widget class instances (an address) to be mapped into
the new subclass. The new CwPushButton subclass could add
#platformWidgetClass and #platformWidgetGadget methods to make them
unique (not inherit from CwPushButton), although | don’'t know what address
they could specify, since it is truly a Motif push button.

Despite all this verbose explanation, | cannot explain why this particular
walkback occurs, but | argue it is largely academic because even if there
wasn't a walkback, simple subclassing of a CwBasicWidget would not work.
Instead, subclass a CwExtendedWidget where the primary widget is a push
button.

Motif Documentation

cuestion

Is there any formal documentation as to which Xm... entries are available?

VisualAge for Smalltalk does not use any application-specific X resources,
but it does inherit the standard Motif/Xt/X11 resources by virtue of being an
X client and using the native widgets. For a reference on available
resources, check out the standard Motif/Xt/X11 manuals, such as those from
O'Reilly and Prentice Hall.

Interface to Windows 95

88

Answer

Will VisualAge for Smalltalk provide an interface to Windows 95 integration
features?

VisualAge for Smalltalk is meant primarily as a
standard-compliance-oriented tool. For example, even though you have the
Windows 95 control support in Version 4, | strongly suggest that you
abandon Windows 95-specific controls in the interest of portability through
Common User Access (CUA) 91 standard compliance.

VisualAge for Smalltalk Handbook - Fundamentals

Applications with Multiple Windows

Answer

How do | create applications with multiple windows?

View Wrappers can be extremely useful when building complex applications
with many windows because of the ability to conserve screen real estate in
the Composition Editor. The View Wrapper performs better than the
variable approach because the reusable part is not constructed by
VisualAge for Smalltalk until the openWidget connection executes.

The View Wrapper is essentially an icon that represents another view that
you have created. Instead of taking up valuable Composition Editor space,
you can place this icon on the free-form surface and make connections to
and from it. After adding a View Wrapper part to the Composition Editor,
change its type to the class name of a view that you have already created.
Since the View Wrapper is a place holder for a view, you make connections
to it as if it were the actual view class.

Exit Dialog Message Box

Answer

| am attempting to create an exit dialog message box that prompts the user
to respond to the question "Are you sure you want to exit?” when they either
select Close from the system menu or double click on the system menu.

Create an event-to-script connection from closeWidgetRequest (of the
window) to the following new script:

Smalltalk

okayToClose: aDoit

aDoit doit: (true == (System confirm:
"Are you sure you want to exit?')).

Chapter 3. Graphical User Interface 89

Window Location

m How do | specify where my window will appear on the screen when open?

There are two ways to do this if your window is a visual part.

Think of the free-form surface of the Composition Editor as your display;
if your window is at the top left of the free-form surface, it will be at the
top left of your display.

Assuming that you want to place it specifically at test or run time (and
not affect its position in the Composition Editor), you could connect from
aboutToOpenWidget of the window to a script like the following:

Smalltalk

(self subpartNamed: '"Window') yourself primaryWidget
x: 200;
y: 400.

Also, you could use the view's finallnitialize method to do something like the
following:

Smalltalk

finallnitialize

self initWidgetSize: self computeSomeSizeAndPosition.
~super finallnitialize

Positioning Window at Cursor

m How do | initially position the window where the cursor is?

Look at the following code:

90 VisualAge for Smalltalk Handbook - Fundamentals

Smalltalk

finallnitialize
| rootXReturn rootYReturn |

CgDisplay default
queryPointer: CgWindow default
rootReturn: (ReturnParameter null)
childReturn: (ReturnParameter null)
rootXReturn: (rootXReturn := ReturnParameter new)
rootYReturn: (rootYReturn := ReturnParameter new)
winXReturn: (ReturnParameter null)
winYReturn: (ReturnParameter null)
maskReturn: (ReturnParameter null).
self initWidgetSize:
(Rectangle origin: rootXReturn value @ rootYReturn value
extent: 300 @ 200).
“~super finallnitialize

Maximizing a Window

m Is there a way to maximize a window programmatically?

izl There are platform-specific ways to maximize and minimize a window:

In Windows:

Smalltalk

"Code for maximizing a window:"
self primaryWidget osWidget handle
showWindow: SwShowmaximized

"Code for minimizing a window:"
self primaryWidget osWidget handle
showWindow: SwShowminimized

In OS/2:

Chapter 3. Graphical User Interface

91

Smalltalk

"Code for maximizing a window:"
(self primaryWidget osWidget handle winQueryWindow: QwParent)
winSetWindowPos: nil x: 0 y: 0 cx: 0 cy: O fl: SwpMaximize

"Code for minimizing a window:"
(self primaryWidget osWidget handle winQueryWindow: QwParent)
winSetWindowPos: nil x: 0 y: 0 cx: 0 cy: 0 fl: SwpMinimize

Opening Window Maximized

m How can | cause a window to be opened maximized?

Let's apply what we just learned. Create a script like the following:

Smalltalk

maximizeWindow
"Maximize window in OS/2"

(self primaryWidget osWidget handle winQueryWindow: QwParent)
winSetWindowPos: nil x: 0 y: 0 cx: 0 cy: 0 fl: SwpMaximize

Then, create an event-to-script connection from the #openedWidget event of
the window to the script you just wrote, and enjoy.

Display Resolution

m How can | retreive the display resolution?

The following code snippet buys you the height and width of the screen:

Smalltalk

screenHeight := CgScreen default width.
screenWidth := CgScreen default height.

92 VisualAge for Smalltalk Handbook - Fundamentals

Opening Window Centered

cuestion

How do | open a window centered on the screen depending upon its
resolution?

Connect the aboutToOpenWidget event of your window to a setPosition
method which determines window position based on screen size:

Smalltalk

setPosition
| w |
w := self primaryWidget.
w
x: ((CgScreen default width - w width) / 2) aslnteger;
y: ((CgScreen default height - w height) / 2) asinteger.

Window Space Planning

Answer

How do | calculate the space taken up by the window border, title bar, and

SO0 on?

In OS/2, you can query the title bar height, menu bar height, and border
width using OSCall>>#winQuerySysValue:, for example,

Smalltalk

(PlatformGlobals at: '"HwndDeskTop')
winQuerySysValue: (PlatformConstants at: 'SvCytitlebar’)

should return you the title bar height.

Chapter 3. Graphical User Interface

93

Iterating over Widgets

m How do | iterate over all widgets in a window?

Use #recursiveViewsDo: instead of #components do: against the main
window. This will ensure all widgets are touched; it is necessary when
adding callbacks to a window in Windows.

Modal Dialog

m How can | get my modal dialog to return a value?

| suggest adding an instance variable called result to your view, and
implementing a prompt method:

Smalltalk
prompt
result := nil.
self suspendExecutionUntilRemoved.
“result

You would open the view like this:

Smalltalk

(view := MyView new) openApplicationModalWidget
myResult := view prompt.

Capturing the Minimize Request

m Is there a way to capture the minimize request similar to the
CloseWidgetRequest? | do not want a window to minimize to the desktop, |

would like to create a pseudo desktop within my application and minimize to
it.

94 VisualAge for Smalltalk Handbook - Fundamentals

Answer

You get notified, but cannot disallow it.

Window Synchronization

Answer

How do | open a window from one method and wait on a return from the
window in the method?

Try the following code snippet:

Smalltalk

myWindow openWidget

"or use any other message, such as openOwnedWidget”
myWindow suspendExecutionUntilRemoved.

"code to be executed, when the window is closed goes here”

Closing a Window

Answer

What is the difference between closeWidget and destroyPart for a window?

The closeWidget action will destroy the widget. The destroyPart action will
destroy the widget and release all connections. You want to destroy the
part when closing the owning window to be sure that all connections are
freed; otherwise dependencies will be left around and your image size will
grow.

Resolution-Independent Screen

Answer

When | change the screen resolution, say from 800*600 to 1280*1024, the text
does not seem to scale properly. If there is a text label before an input
field, the text ends up overlapping the input field. Is there a platform
independent solution to fix this?

The best way to do this is by using widget attachments. Using the widget
attachments, attach the right edge of the label field with either no
attachment or attach it to its own left edge with 9 to 11 offset points per
character of text in the label. Then, attach the left edge of the text field to
the right edge of the label field with an offset of 2 or 3 pixels. To be safe,
attach the top and bottom of the text field to the top and bottom of the label
field with an offset of zero. If you want to get really fancy, group controls on

Chapter 3. Graphical User Interface 95

a form part or in a group box and offset the controls from each other and
the sides of the form or group and then offset the forms and group boxes.

Setting Minimum Window Size

m How can you set or specify the minimum size for a window?

The following script checks, after each window resize, whether it has
exceeded a predefined minimum size. If so, it sets it to the predefined
minimum size. Do not forget to connect the resized event of the window to
this script.

Smalltalk

checkResize
| tempWidget minimumWidgetSize |
minimumWidgetSize := #(400, 200).
tempWidget := self primaryWidget.
(tempWidget width < minimumWidgetSize first) ifTrue: [
tempWidget width:minimumWidgetSize first].
(tempWidget height < minimumWidgetSize last) ifTrue: [
tempWidget height:minimumWidgetSize last]

Closing a Widget from a Script

m | have created a view in which | show some customer information from an
ordered collection that | dropped on the free form. | also dropped a button
and connected it to the following script:

Smalltalk

return
"Close the widget and return.”

self closeWidget.

When testing the script, the widget closes, but a dependent of ordered
collection remains in the Dependent dictionary. Is this not the proper way of
closing a view? | have noticed that if you close the view by using ALT-F4

96 VisualAge for Smalltalk Handbook - Fundamentals

Answer

from the system menu, the Dependent dictionary does not contain the
ordered collection.

You are leaving dependents lying around because you are using the private
closeWidget method. You should use the closeWidgetCommand method
instead. You could use the Script Editor to paste the proper action
closeWidgetCommand into your method.

Removing the Close Menu Option

cuestion

How do | disable or remove the Close menu option on the system menu for
a window?

You can't, but you can add a closeWidgetRequest callback. That is a
callback that is invoked before a shell is closed. If you set the "doit:" to
false, the window is not closed. Normally this is used to display an "Are you
sure?" message before closing the window. See
AbtApplicationsOrganizer>>#confirmCloseRequest: for an example. It
hooks the closeWidgetRequest event to a script.

Widget Warning: Circular Reference

Answer

| am getting a warning in the Transcript: "CwForm circular reference ..." My
application works fine, but | would like to get rid of the warning. What
should | look for?

This means that you have one widget whose attachments are dependent on
another widget, and the other widget's attachments are dependent
eventually (if not immediately) on the first widget.

Here's an example of circularity. Widget A's bottom edge is attached to

Widget B's bottom edge, while Widget B's left edge is attached to Widget
A's right edge.

Chapter 3. Graphical User Interface 97

Widget A Widget B

[

The nonobvious restriction with attachments is that in order for Widget B to
successfully attach to Widget A, Widget A's edges must be fully resolved.
That is, they can't be directly or indirectly (by additional widgets) based on
any of the edges of Widget B.

Always-on-Top Window

m We have built a tool bar for our application. We would like the tool bar
window to always stay on top. Is there a way in VisualAge for Smalltalk to
set a window to always stay on top? | know there is a windows application
programming interface (API) that will keep a window on top, but | do not
know how to get to if from VisualAge.

An easy way to do this is to use CwOverrideShell rather than
CwTopLevelShell as the shell class for the window. This will cause it to float
on top of all other windows. If you want the tool bar to float on top of a
specific window, then make the tool bar a child of the other window (by
setting its parent to be the other window). Either of the above methods
requires digging into IBM Smalltalk a bit.

Changing the Mouse Pointer

m When the mouse pointer enters into the scope of an editable field, the
pointer changes from the arrow to the I-beam. Is it possible to accomplish a
similar behavior while crossing over some arbitrary other control, like a
form or button?

98 VisualAge for Smalltalk Handbook - Fundamentals

- To change the shape of the pointer when moving over a button, do the
Answer following:

1.
2.
3.

Create a new visual part.
Put a push button in the window.

Go to the Script Editor. In the class definition for your part, add an
instance variable named cursor and save the class definition.

Implement the following instance methods:

Smalltalk

changeCursor
"Change cursor for Push Buttonl.”

| display |

display := (self subpartNamed: 'Window') yourself
primaryWidget display.
self freeCursor.

(self subpartNamed: 'Push Buttonl') yourself
primaryWidget window
defineCursor: self cursor.

self cursor: (display createFontCursor: (CgConstants at: 'XCGumby')).

Smalltalk

cursor
"Answer the currently selected CgCursor, or nil.”

~cursor

Smalltalk

cursor: aCgCursorOrNil
"Set or clear the currently selected CgCursor.”

cursor := aCgCursorOrNil

Smalltalk

freeCursor
"Free the cursor if one is allocated.”

self cursor notNil
ifTrue: [self cursor freeCursor |

Chapter 3. Graphical User Interface

99

Smalltalk

undefineCursor
"Undefine the cursor for the window."”

(self subpartNamed: 'Push Buttonl') yourself primaryWidget
window undefineCursor.

5. Go back to the Composition Editor and make the following connections.

a. Connect openedWidget of the window to the changeCursor script.
b. Connect aboutToCloseWidget of the window to the freeCursor script.

c. Connect aboutToCloseWidget of the window to the undefineCursor
script.

Note that the order of the two last connections is important.

6. Test your part and enjoy!

Busy Cursor

m Can #showBusyCursor in a development application be packaged with the

Answer

— Note this!

user application?

The Programmer's Guide to Building Parts for Fun and Profit suggests that
you create two different applications, Edit and Run You package only the
Run applications when creating your packaged image. The same applies to
VisualAge for Smalltalk applications and parts themselves.

As AbtShellView>>#showBusyCursor is defined in AbtRunViewsApp, it is
packaged into your run time image.

Please don’'t be confused by similarity in the names of showBusyCursor
and showBusyCursorWhile:. The method showBusyCursorWhile: is an
instance method of the class EmSystemConfiguration. Its comment says,
"Show the busy cursor during execution of aBlock. The cursor is not
changed if the graphics system has not been started.”

The following code shows you another way you can change the cursor. The
example can be evaluated in a Transcript window:

100 VisualAge for Smalltalk Handbook — Fundamentals

Smalltalk

| window cursor |

window := Transcript shell window.
cursor := CgDisplay default busyCursor.
window defineCursor: cursor.

(Delay forSeconds: 5) wait.

window undefineCursor.

By the way, do not explicitly free this cursor. As for disabling the mouse

you might want to consider one of the following:

1. The easiest way to disable the mouse pointer is to use the message

grabPointer:. (This method is an instance method in CwComposite.) The

argument is a cursor. So, you can send it the clock cursor and you

won't have to set that up yourself. This method sends all mouse input

to the shell, regardless of where the pointer is on the screen. This is

also the bad part, as the user can’t use the mouse for other things.
When you are done, send the message ungrabPointer.

2. Another way is to add an event handler when you start the processing.

You can do something like this:

Smalltalk

shell addEventHandler: ButtonPressMask
receiver: self
selector: #eventHandler:clientData:event:
clientData: nil.

The advantage of this method is that it applies only when the mouse

pointer is in the window. Call the above when you want the input
blocked. When you are done, call the above again, except change
addEventHandler to removeEventHandler. Make sure to add

CwConstants to the class's pool dictionaries. Now you need to add the

method eventHandler:clientData:event:, which gets called when there is
input. You can either leave this method blank to do nothing, or maybe
use the following option.

. Toimplement a beep, add the PlatformFunction pool dictionary to the
class. The following is valid for OS/2:

Chapter 3. Graphical User Interface 101

Smalltalk

eventHandler: widget clientData: clientDate event: event
"There has been user input. Beep.”
DosBeep callWith: 100 with: 200.

Caret Shape Cursor

Answer

I have some text entry fields where the cursor is positioned at the right
edge. If | tab into these (empty) fields, | nearly cannot detect in which field
the focus is actually set because of the look of the cursor which is a thin
line. How can | define another caret-look for entry fields?

You can't change the caret look for your entry field. The entry field input
cursor, known also as the caret ("I" bar) is defined by the operating system
and cannot be changed by an application. Some operating systems have
configuration options to change the mouse cursor, resize cursor, and the
text input cursor. If you want a VisualAge for Smalltalk solution, you could
connect the gettingFocus and losingFocus event to a label's show and hide
actions. Put the label next to the entry field, as

Address _ *

The asterisk will show when the field has the focus, and hide when it
doesn't.

Mouse Pointer Location

102

Answer

How can | find the position of the mouse cursor on the screen?

You can detect the cursor location in one of two ways: You can call the
OSWidget class method widgetUnderCursor to see where the cursor is, or
you can add a Pointer Motion Mask event handler to find where the cursor
is and see if it's in the desired area (see page 192 of the IBM Smalltalk
Programmer's Reference for an example of the latter). You can change the
font of a cursor by following the example on page 124 of the IBM Smalltalk
Programmer's Reference.

VisualAge for Smalltalk Handbook — Fundamentals

Ilcon as Cursor

Answer

How can | use an icon as cursor?

The follwing code snippet reads an icon out of a DLL and uses it as a
cursor.

Smalltalk

| window data pixmap cursor shell label icon gc image |

shell := CwTopLevelShell
createApplicationShell: 'shell’
argBlock: [:w | w title: 'label example'].
shell width: 200;
height: 200;
x: 1;
y: 1.

label := shell
createlLabel: 'label’
argBlock: nil.

label labelString: 'this is a label.’.
label manageChild.
shell realizeWidget.

window := shell window.

"get an icon from a file"
icon := Cglcon
fromResource: 153
fileName: 'd:v3clientdllabticons.dll'.

Chapter 3. Graphical User Interface

103

Smalltalk (continued)

"create a pixmap from the icon”

pixmap := window
createPixmap: icon width
height: icon height
depth: 1.

"get device independent image"
image := icon shapelmage.
gc := pixmap

createGC: 0

values: nil.

"create a rectangular area of data for the cursor”
pixmap

putDevicelndependentimage: gc

image: image

srcRect: (0@O0 extent: image extent)

destRect: (0@0 extent: image extent).

"Create the cursor.

| hardcoded a hotspot at 20,20.
A better idea might be to use
image width and image height.”

cursor := pixmap
createPixmapCursor: pixmap
x: 20
y: 20.
pixmap freePixmap.

"Display the cursor.”

window defineCursor: cursor.
(Delay forSeconds: 5) wait.
window undefineCursor.
cursor freeCursor.

gc freeGC.

104 VisualAge for Smalltalk Handbook — Fundamentals

Animated Busy Cursor

Answer

How can | display an animated busy cursor similar to the activity indicator
on the print preview? | know | can use the System showBusyCursorWhile:
method that displays the system clock, but sometimes the users may think
the system is locked.

Check out the spinning clock in the VisualAge for Smalltalk Help Examples
for an example of how to make an animated progress indicator.

Adding Pull-Down Menu Choices Dynamically

Listed below is some sample code that you can use to dynamically add
pull-down menu choices. You will need to add a callback method to do
some processing when the user clicks the new pull-down choice.

Smalltalk

addMenuChoice
"Dynamically add a new menu choice to a menu "

| newMenuChoice |

newMenuChoice := ((self subpartNamed: Menul') widget)
createPushButton: New Choice’
argBlock: nil.

newMenuChoice addCallback: XmNactivateCallback
receiver: self
selector: #newChoicePushed:clientData:callData:
clientData: nil.

newMenuChoice manageChild.

Toggle Buttons in Menu

m I want to have a menu with toggle buttons Sort by Date and Sort by Name

(and possibly some other sort criteria). | want to have a check mark in one
of these buttons only. | tried to connect the selectionChanged events to a
script but for some reason this script runs only once. What would be a way
of making this work?

Chapter 3. Graphical User Interface 105

You'll need to write a script for each toggle button and connect it to the
selectionChanged event. Here's what the scripts might look like:

Smalltalk

sortByNameSelectionChanged: selectionBoolean
"Sort by name.”

selectionBoolean == true
ifTrue:
[(self subpartNamed: 'SortByName’') disable.
(self subpartNamed: 'SortByDate’) clear; enable.
<perform sort by name statements> |

Smalltalk

sortByDateSelectionChanged: selectionBoolean
"Sort by date.”

selectionBoolean == true
ifTrue:
[(self subpartNamed: 'SortByDate') disable.
(self subpartNamed: 'SortByName') clear; enable.
<perform sort by date statements>]

The selectionBoolean value needs to be checked because the statements
should only be executed when the menu item is checked, not unchecked.

Disabling Push Buttons on Pop-Up Menus

m How do | disable push buttons on pop-up menus?

You can use a setSensitive: method to disable a push button. The default
setting for the value of the XmNsensitive resource is true. This method will
allow you to set it to false.

If you want the push button to be disabled initially, try using the
createPopupMenu:argBlock: method. When you create a menu through a
Smalltalk script, you first create the menu, and then add individual buttons
to it. Each button can then be enabled or disabled. An example of how to
do this is listed below:

106 VisualAge for Smalltalk Handbook — Fundamentals

Smalltalk

createPopup: parent
| menu |

menu := parent createPopupMenu: 'popup’ argBlock: nil.
(menu createPushButton: 'Add’' argBlock: nil)
addCallback: XmNactivateCallback
receiver: self
selector: #addSomething”clientData”callData:
clientData: nil;
setSensitive: false;
manageChild.
“menu

Pop-up Menus for Icon Gadgets

m How do | dynamically create pop-up menus for dynamically created icon

gadgets?

To dynamically create a pop-up menu for the dynamically created icon

gadget, use the following:

Smalltalk

"Create an icon gadget for each item and set its attributes.”

iconGadget := (AbtlconGadgetView new
label: "Mylcon’;
largelcon: icon;
parentView: container;
openWidget;
yourself).

Instead of making the association with the menu before the openWidget
message, add the following code afterward to associate the pop-up menu
with the icon:

Chapter 3. Graphical User Interface

Smalltalk

iconGadget menu: ((self subpartNamed: 'Menul')
parentView: container;
openWidget).

Sharing a Menu Between Containers

m If you want to share a menu, you will need to create a reusable menu part
and add multiple instances of it for connecting to each container. See page
413 of the VisualAge for Smalitalk User's Guide for details.

Dragging Versus Pop-Up

m What is the difference between obtaining a pop-up menu and dragging?

Drag does not start unless the mouse is moved a threshold amount. If we
are not in drag mode, the pop-up is displayed. (This is a general algorithm;
it varies slightly, depending on the platform you are running on.)

Icons on a Menu Bar

m | tried adding an icon as a menu bar item and a menu pull-down item. To
do that, | created a menu as usual, then selected Open Settings from the
Menu Choice pop-up menu, then clicked on Label Type - Graphic, Graphic
Type - Icon, Module name: abticons, ID: 1 . That gave me a file cabinet icon
on the menu, but the icon was displayed as a bitmap—that is, the
background was white, not transparent. The comment in the
AbtLabelView>>#calcGraphicLabelType says "For OS/2 and Windows, only
bitmaps (not icons) are allowed as menu items, so if the parent will be a
menu, then force the graphic to be a pixmap.” Is there a remedy?

I've not seen a menu bar at the bottom of the frame, but that is not native
widget behavior. The word processor must be implementing this (or
perhaps, to use PM-terminology, overriding WM_FORMATFRAME to move it
to a new location). You may want to investigate using an
AbtRowColumnView for building your tool bar. It can be attached to the
bottom, the top, or wherever on your window. It is a special part that
automatically attaches buttons to each other. To see an example, do the
following:

108 VisualAge for Smalltalk Handbook — Fundamentals

1. From the Options menu select Add Part in the Composition Editor.

2. Type in AbtRowColumnView as the class and select Part in the radio
button set.

3. Drop the part within your window, attaching it at the top and sides to the
window.

4. Drop several push buttons within the row column part. Use some that
are graphic and some that are text, just to see how it works.

5. If you want a scrollable tool bar, you can drop a scrolled window part
(from the Canvas palette) and connect the workView of the scrolled
window to the row column part (moving the row column off to the side).

Creating a Tool Bar

Answer

What would be an easy way to create a tool bar for an application? Can you
simply add a menu bar to the window and have the items displayed as
icons?

Basically, what you need is a part that you can put onto a window and have
the attachments made automatically to the parent. This part would also have
to accept buttons that are dropped onto it in edit mode, and automatically
make the attachments from the button to the tool bar frame.

To do this you could use the AbtFrameView and the AbtRowColumnView.
These parts are not on the palette, but you can still drop them onto the
Composition Editor. Drop the row column into the frame view. You need to
open its settings and make sure that it is connected on all sides to the
frame with preferably a offset of zero. Now, when you drop your push
buttons inside the row column, they automatically space apart, making a
tool bar a little easier to deal with.

Synchronizing a Combo Box

m Suppose you have two combo boxes dropped on a window. The first combo

box contains a set of names, while the second combo box contains valid
descriptions for each of these names. How can you synchronize the two in
such a way that when you type an invalid code in the first combo box, the
second one will be cleared?

Chapter 3. Graphical User Interface 109

One of the ways of doing this is just to connect the selectedIindexChanged
event of the first combo box to a script, where you validate the index, and

modify the second combo box accordingly.

Adding Items to Combo Box

m How do | allow a user to add new items to a combo box?

Try this:

Hook a keyboard event handler to the comboBox
Within the event handler, sort out any Enter keys

Whenever you encounter an Enter key you do something like

Smalltalk

<combobox> items add: (<combobox> object).

In order to invoke the keyboard event handler, you hook a method to the
aboutToOpenWidget event of your main window; in this script you include:

Smalltalk

<combobox> widget addEventHandler: KeyReleaseMask
receiver: self
selector: #keyRelease:clientData:event:
clientData: nil.

Then you can add a keyRelease:clientData:event: method to your class which
will be called for each key entered while the combo box has the input focus.

Drag-and-Drop Support on List Boxes

m Is it possible to have drag and drop support for list boxes? The
documentation only describes the situation for containers. | would like to

give the user the ability to move an item in a list box to a new position in
the same list box using drag and drop.

110 VisualAge for Smalltalk Handbook — Fundamentals

Answer

The drag-and-drop concepts are fairly universal. The nice things containers
will do for you is let you specify what sort of object can be moved, copied,
or linked.

Basically, the drag-and-drop callbacks in IBM Smalltalk are exposed as
events for your list box in VisualAge for Smalltalk.

If you open the settings

for the list box and select drag/drop on the notebook page, the events are
added to the connection pop-up menu. These events are exactly the same
as the callbacks listed in Chapter 9 of the IBM Smalltalk Programmers
Reference.

The following example illustrates how to drag and drop items within a list
box:

1.
2.

Add a list box to any window.

Open its settings and go to page Drag/Drop: select Allow Drag and
Allow Drop and Move as the valid default operation in both cases.

Use any collection as the items of the list, as usual.

. Connect the dropped event of the list to the following script:

Smalltalk

moveltems: aCallback
| items itemsDropped position index |

items := aCallback sourceModel.

itemsDropped := aCallback sourceltems.

itemsDropped isEmpty ifTrue: ["nil].

index := items indexOf: itemsDropped first.

position := aCallback event y // aCallback offsets first y negated.
itemsDropped do: [:item | items remove: item ifAbsent: []].
index < position ifTrue: [position := position - 1].

position > items size ifTrue: [position := items size].

items addAll: itemsDropped afterIndex: position.

aCallback sourceWidget userData items: items.

The example works for a list and for a multiselect list.

Chapter 3. Graphical User Interface

111

List Box Behavior

Answer

When the focus is on the list box part and the user clicks on a character
key, the list box should scroll to the first item begining with this character.
When typing another character, the list box should scroll to the next item
that starts with the character that was typed first, followed by the character
that was typed second. Is it possible to get this behavior from the list box
parts, and if so, how?

On 0S/2 and Windows, pressing a character scrolls to the list box entry that
starts with that character. You might override this behavior by creating a
form around the list box and using CwComposite>>interceptEvents: to trap
the events going to the list box.

But an easier solution (and one you see see many times) is to add a Search
entry field above the list box and scroll the list box with
CwList>>topltemPosition: as the user types in it.

Identifying Last Selected Item

112

Answer

For our application, we would like to know what the last selected item in our
multiple-select list was. We need this, because the user can press a button
that will open a detailed view on that item. | would like to see an attribute
such as last item selected. Any ideas how to achieve this?

There is no public attribute available on the multiple-select list part that will
tell you the last item selected. However, with a tiny bit of code, you can get
this information. Here is what you can do. First, connect the
aboutToOpenWidget event of your window to the following script:

Smalltalk

addCallbackTolList
"Set up a callback for the multiple selection list”

(self subpartNamed: 'Multiple Select Listl') widget
addCallback: XmNmultipleSelectionCallback
receiver: self
selector: #multipleSelect:clientData:callData:
clientData: nil.

VisualAge for Smalltalk Handbook — Fundamentals

Then, add an instance variable to your visual part’'s class definition called
lastitemSelected, with the appropriate get and set methods. Now, write the
following script to maintain your lastitemSelected value:

Smalltalk

multipleSelect: widget clientData: clientData callData: callData

"Save the last item that was selected. The 'includes:’ logic will
exclude any items that were deselected, since itemPosition will
return the last item either selected or deselected. Caching the
itemPosition value for performance.”

| currentPosition |

currentPosition := callData itemPosition.
(callData selectedltemPositions includes: currentPosition)
ifTrue: [
self lastltemSelected: currentPosition].

Default Action Requested

Answer

How do | get an event that could work as the DefaultActionRequested
available in a text part for a combo box?

This question indicates an apparent oversight, and I've opened DCR 6872 for
a future release. In the meantime, you can add an activate callback to the
widget. For example, | hooked the following code to the combo box's
openedWidget event:

Smalltalk

addComboBoxActivateCallback: aComboBoxView
aComboBoxView widget addCallback: XmNactivateCallback
receiver: self

selector: #myComboBoxDefaultAction:clientData:callData:
clientData: nil.

The myComboBoxDefaultAction:clientData:callData: will be invoked when
the user presses Enter. Or, if you prefer, you could create a subclass of
AbtComboBoxView that adds the new event See also AbtAbstractTextView
for an example, especially the methods postCreationinitialization,

Chapter 3. Graphical User Interface 113

defaultActionEvent, and defaultAction:clientData:callData:. | suspect they
could be copied to your subclass with only minor modification (and the
addition of the defaultEventRequested to the public interface, of course). For
an Multiline Edit (MLE) part, the activate callback for CwText applies only
when it is single-line (since the Enter key means "add line” to a multiline
CwText).

Combo Box Behaviour

Answer

| have dropped a combo box on my form. | populated it with a number of
items and set one of them as the initial item. | grab the selected item and
pass it to a variable. When | type a value in the combo box, it seems to
search the list of items for a match (for example, on the first letter typed).
Of course, it does not display anything. When | tab out of the field and
inspect the variable, it has not captured the data entered in the field, but
instead, it has the list item that matched on the first character. Is this the
default behavior of a combo box?

That is indeed the default behavior of a combo box. The entry field is just
for you to be able to type in an existing entry as an alternative to using the
scroll bar to find it in the list. However, you can add the behavior you
describe with a combination of connections and scripts.

Skipping through a Notebook

114

Answer

I am writing an application demonstrating various features of VisualAge for
Smalltalk. One of the things | want to do is to skip through a notebook
without user intervention, as in a slide show. The question | have is, how
can you automatically skip to the next page?

You can turn notebook pages by setting the currentPagelndex or
currentPage. Here is an example using delays, so that the pages turn a bit
slower:

VisualAge for Smalltalk Handbook — Fundamentals

Smalltalk

| delay numberOfPages |

delay := Delay forSeconds: 2.
numberOfPages := (self subpartNamed: 'PMNotebook1')
components size.
2 to: numberOfPages do: [:i |
(self subpartNamed: 'PM Notebook1') currentPagelndex: i.
delay wait.

].

Bitmap on Notebook Tab

m Is it possible to display a bitmap on the tab of a notebook page? And if so,
how do you do this?

If you would like to have a bitmap appear on the tab of a notebook page,
you can use the tabContents attribute for the notebook page. It is looking
for an AbtBitmapDescriptor. Here is a piece of sample code that puts a
bitmap on the tab of a page. Connect the aboutToOpenWidget event of the

window to the following script:

Smalltalk

bitmapTab

| bitmap |
bitmap := ((AbtBitmapDescriptor new
moduleName: AbtBmp20’;
id: 101) baseGraphic).
(self subpartNamed: NotebookPage') tabContents: bitmap.

It is also a good idea to free the bitmap after you are done using it. Use of
the baseGraphic and the gpiDeleteBitmap (see below) methods is highly
platform specific. The way | would go about doing this is to assign an
instance variable to the baseGraphic in the bitmapTab method and connect
the following script to the closeWidget event of the window:

Chapter 3. Graphical User Interface 115

Smalltalk

bitmapFree
instanceVariableName gpiDeleteBitmap

This causes resources used up by this bitmap to be freed when this window

is closed.

Hiding and Showing Pages

m How do | hide and show pages of an OS/2 Windows notebook?

| believe hide is not supported for notebook pages, you must destroy the
page. Here is how | add a page dynamically (basically, | copy from the

abtBuildinternals method and add an openWidget send):

Smalltalk

addNotebookPage: aNotebook named: aName
| page label |

aNotebook subpartNamed: aName
put: (page := AbtPortableNotebookPageView newPart).
page
framingSpec: (AbtViewAttachmentConstraint new
leftEdge: (AbtEdgeConstant new offset: 34);
topEdge: (AbtEdgeConstant new offset: 90)).
page subpartNamed: 'label’ put: (label := AbtLabelView newPart).
label object: Time now printString;
framingSpec: (AbtViewAttachmentConstraint new
leftEdge: (AbtRunEdgeAttachmentConstraint new attachment:
XMATTACHFORM;
offset: 65);
rightEdge: (AbtRunEdgeAttachmentConstraint new attachment:
XmATTACHNONE);
topEdge: (AbtRunEdgeAttachmentConstraint new attachment:
XmMATTACHFORM;
offset: 95);
bottomEdge: (AbtRunEdgeAttachmentConstraint new attachment:
XmMATTACHNONE)).
page openWidget.
label openWidget.

116 VisualAge for Smalltalk Handbook — Fundamentals

To remove the page, | call destroyPart on the page. This is just a simplified
example; in your case, you would substitute /abel for an embeddable view
that represents the entire page.

Porting Notebooks across Platforms

m If you try to port an OS/2-Windows notebook from an OS/2 platform to
Windows NT or 95, the notebook is replaced by a VisualAge icon. Why?

The OS/2-Windows notebook is not available on Windows NT or 95, since it
is built from a 16-bit class library. However, you can migrate the notebook
to the portable notebook (which is supported under all VisualAge platforms)
by selecting Morph from the pop-up menu of the icon that you are seeing.
This will morph the OS/2 notebook to the portable notebook.

Navigating between Columns

m How do | navigate between columns in a container without using the
mouse?

Use CELLSINGLESELECT selection technique.

Selecting Valid Items

m | am using a container details part. There are some rows that cannot be
selected by the user (depending on the data in the object), whereas other
rows may be selected. Is there some kind of callback | can capture that
would allow me to deselect a row when | do not want the object to be valid?

The container details will signal a selectedltemsChanged event every time
the user modifies the selection. You can then examine the selected items,
and change the selection to include only the valid objects (using
selectedltems:). Be careful of getting stuck in a loop (some parts will
resignal selecteditemsChanged even if the new selection is the same as the
previous one). You may have to keep track of this yourself.

Chapter 3. Graphical User Interface 117

Validating Input Fields

m We have a written a notebook application where data needs to be entered
on different pages. After the data has been entered, | need to see wether it
is valid. The following problem occurs when the user skips to the next or
previous page. A prompter might pop up on the new page, displaying a
message that shows the validation error from the previous page. What can
we do to prevent this from happening?

To solve the problem, it sounds like a good idea to use a form checker:
1. Drop a form checker part onto the free-form surface.

2. Following the example on page 149 in the VisualAge for Smalltalk User's
Guide, connect the verificationRoot attribute of the form-checker part to
the self attribute of each notebook page you want to verify.

3. Add an instance variable called /astPageSelected to your visual part
class

4. Connect the switchedToMe event for each page to the following script:

Smalltalk

savelLastPage
"Save the current page as the last page
selected before the page is turned”

self lastPageSelected:
(self subpartNamed: 'OS/2-Windows Notebook') topPagelndex.

5. Connect switchFromMe to the check action of the form-checker part.

6. Create a script called keepPageOnTop as follows:

Smalltalk

keepPageOnTop
"Keep the last page selected on top of the notebook by
switching to it.”

(self subpartNamed: 'OS/2-Windows Notebook')
topPagelndex: self lastPageSelected.

7. In the set method for /astPageSelected, be sure to add a catch for the
special case when the notebook is first opened and the index is 0
instead of 1:

118 VisualAge for Smalltalk Handbook — Fundamentals

Smalltalk

lastPageSelected: aninteger

| realPage |
realPage := (aninteger = 0)
ifTrue: [1]
ifFalse: [aninteger].
lastPageSelected := realPage

8. Connect the checkFailed event of the form-checker part to the
keepPageOnTop script. Also connect that same event to the
showErrorToUser action.

Container Column List Box

m How do | create a container details column that displays a drop-down list
box for each item?

Take a look at AbtContainerTreeChildrenAttributesPage and the methods
initializeHasChildrenAttributeList: and initializeChildrenAttributeList:. Also
take a look at EwEditPolicy. Another good place to look for examples is the
EwExampleLauncher and CwExampleLauncher. You can load these by
selecting the Smalltalk programmning examples from the Load Features
menu option. EwExampleLauncher is the one that you want to examine.
Type EwExampleLauncher new open, select the code and execute it to bring
up the example launcher. 1 think the EwxTableListExample contains exactly
what you are looking for and the Abt stuff listed above will help you
incorporate the code into the AbtLayer. EwxEditPolicy also contains similar
examples.

Columns with GUI Elements

m Can | create columns that contain GUI elements, in particular check boxes,
so that the user can click a button to toggle a boolean?

Yes, but only for the container, as AbtTableView does not support this.
Intercept the aboutToBeginEdit event and set the edit policy. See the
initializeChildrenAttributeList method in
AbtContainerTreeChildrenAttributesPage for an example. You would specify
EwToggleButtonEditPolicy as the edit policy and initialize it appropriately.

Chapter 3. Graphical User Interface 119

Adding Records to Container

m How do | add more records to a container after the user presses the page
down key?

The packetRequested event is not signaled until an at: request comes into
the BufferedCollection and is indexing into a slot that does not have a value.
Do you know if this is occurring? What is happening? How many rows have
you told the container that the virtual collection has?

Changing Labels

m How can | change the color of the label that appears with an icon?
Below is an example of using the AbtContainerlconListView (hover help on
parts palette shows 'Container Icon List'):
1. Add a container icon list to your visual part.

2. Create a script aboutToOpenProcessing to add a callback handler to do
the background drawing. (See the sample code at the end of this
message.)

3. Implement the appropriate callback method drawBackground. This
method will be called twice, once for the icon image and once for the
label.

4. Add a connection from your visual part aboutToOpenWidget event to the
script aboutToOpenProcessing.

You are now ready to test your part; just connect the items attribute of the
container icon list to the data items you want to display.

120 VisualAge for Smalltalk Handbook — Fundamentals

Smalltalk

aboutToOpenProcessing
| iconListwidget |

"Get the container icon list wigdet (at the Ew* layer)"”
iconListwidget : 'Container Icon Listl") widget.
"Set up our own background drawing callback”

iconListwidget applicationDrawnBackground: true.

iconListwidget addCallback: XmNdrawBackgroundCallback receiver:
self selector: #drawBackground: clientData: nil.

drawBackground: aWidget clientData: clientData callData: callData

| oldColor anRC |
"Only draw the label background in this case”

(callData region == XmLABELREGION)
ifTrue: [anRC oldColor anRC setForeground:
(aWidget colorMap palette nearestPixelValue:
(CgRGBColor red: 16rFFFF green: 16rFFFF blue: 0)).
anRC drawable fillRectangle: anRC gc x:
anRC x y: anRC y width: anRC width height: anRC height.
anRC setForeground: oldColor].

Deselecting Details Tree Items

m | have set up a container details tree to display two levels of information. A
second list box displays the selected entries from the first. When a parent
is expanded, and its child is selected, all works fine. However, if | collapse
the parent without deselecting the child, the child is automatically
deselected anyway. This does not seem to be the proper behavior upon
collapsing its parent. Is there a work-around to keep a child selected once
its parent is collapsed?

Chapter 3. Graphical User Interface 121

The philosophy of the tree views is that the children do not exist in the
container unless they are displayed. The reason for this philosophy is that
the container may contain a large number of items that have children that
have children that have children. To optimize the tree views for
performance, we do not hold onto the children and they change from
collapse to expand (that is why we request them each time an item is
expanded). Because they do not exist for the container they are removed
from selection when the item is collapsed.

Smalltalk

addNotebookPage: aNotebook named: aName
| page label |
aNotebook subpartNamed: aName
put: (page := AbtPortableNotebookPageView newPart).
page
framingSpec: (AbtViewAttachmentConstraint new
leftEdge: (AbtEdgeConstant new offset: 34);
topEdge: (AbtEdgeConstant new offset: 90)).
page subpartNamed: 'label’ put: (label := AbtLabelView newPart).
label object: Time now printString;
framingSpec: (AbtViewAttachmentConstraint new
leftEdge:
(AbtRunEdgeAttachmentConstraint new
attachment: XmATTACHFORM;
offset: 65);
rightEdge:
(AbtRunEdgeAttachmentConstraint new
attachment: XmATTACHNONE);
topEdge: (AbtRunEdgeAttachmentConstraint new
attachment: XmATTACHFORM,;
offset: 95);
bottomEdge: (AbtRunEdgeAttachmentConstraint new
attachment: XmATTACHNONE)).
page openWidget.
label openWidget.

122 VisualAge for Smalltalk Handbook — Fundamentals

Resizing Container Columns

m How can | resize container columns on the fly?

| have resizable container columns by using the following snippet in an
initialization method (columnWidth is a value that | calculated):

Smalltalk

newColumns add: (AbtContainerDetailsColumn newPart
heading: columnHeading;
width: columnWidth;
abtWhen: #cellValueRequested
perform: (DirectedMessage new
receiver: self;
selector: #fillCell:;
arguments: (Array with: nil)
);
parentView: (self subpartNamed: 'Row Container’);
openWidget;
yourself).

This is the essence of the fillCell: method.

Smalltalk

fillCell: callData
"Fill in cell data.”

| columnindex item |

columnindex := callData column index.
"columnindex is the column number”

item := callData item.

"item is the object associated with the row”
callData value: (item someMethod: columnindex).

"set the cell value by getting some data from the object”

Chapter 3. Graphical User Interface 123

Changing Scroll Bar Size

Answer

I am working on a touch-screen-only application and the scroll bars on the
container details part are too small for my fat fingers. Is it possible to
change the size so even | can use it?

It appears that the only way to do this is to set
scrollingWithHiddenScrollBars to true on the container details view, create
the large push buttons with arrows (as in the multimedia support), and
connect those buttons to the different scrolling events on the container
details view.

Container Details Tree Children

Answer

Can you use a derived attribute for the children of the parent in a
ContainerDetailsTree?

There is a limitation in container tree view. You need to ensure that the
children of a parent are identical (==) each time they are accessed,
otherwise the tree will refuse to expand.

In other words, you cannot use a derived attribute for the children of the
parent, where there is the possibility that at different times, the children of
the parent will not be identical objects. Instead, the first time you get the
children of the parent you need to store them in an instance variable of the
parent, so the next time the parent is asked for its children, it returns
precisely the same children as it did last time. This of course precludes the
children from ever changing.

The problem comes about because the tree view checks the children it had
last time when it does the expand operation and, if the current children are
not the same as the previous children, it assumes that the previous children
have been deleted and does not expand them.

Hiding the Heading on a Container Details View

124

To disable the heading of a container details view, make a connection from
the column's aboutToOpenWidget event to the column’'s heading action.
This must be done for every column but it works. It should not be hard to
add something to the settings page of the container to encapsulate this
behavior.

VisualAge for Smalltalk Handbook — Fundamentals

Disabling a Notebook Tab

Answer

How do | disable the tab of a notebook?

There are several kinds of notebook types, but one of them offers an '
aboutToChangePage-type event that you can hook up to do the very thing
you want to do.

List with Icon

Answer

Column

How do | create a list with an icon column and several detail columns?

You need to use a details-tree container part. First, the column parts should
have an attribute to display value specified in their settings view. Second,
the objects that you are using as the items should have methods with the
names you specified in the attribute to display fields of the column part's
settings. For the column where you want the icon, its Attribute to display
method should answer (return) an instance of Cglcon. Since the details tree
container has multiple columns, you can specify an icon for any of the
columns, not just one column and not just the first column. This is why the
icon attribute of the visual information requested is not used. This also
works with bitmap resources if you return them as pixmaps.

Hiding a Column

Answer

How do | hide a container details column using the hide action?

Hiding a container details column is not supported even though the actions
to hide and show the column are in its public interface. The reason is that

the interface actually inherits these actions. We are looking for a way avoid
having unsupported features show up in the public interface.

Removing an Icon

How come, when you remove an icon from the icons collection of a
container, it is still visible in the container view?

Chapter 3. Graphical User Interface 125

Answer

It is likely that the container does not get refreshed. There are a couple of
solutions to that. You can send a refreshAll to the container which will
update the view. You can also tear off the items attribute and use the
following code to do the same:

Smalltalk

(self subpartNamed: 'itemsCollection'")
performActionNamed: #remove
with: anltem.

Adding Icons

126

Answer

Dynamically

How do | dynamically add icons to a container and use context menus in
different variations?

To learn how to dynamically add icons to a container during run time,
instead of statically during development time, see the example in the
VisualAge for Smalltalk User's Guide and Reference, pages 229-236. This
example allows you to use a context menu while clicking the second mouse
button anywhere in he container surface except on top of the icons.

There are other ways to use the context menu. For instance, you may want
to be able to bring up the context menu while clicking the second mouse
button both on the container surface and on top of the icons. To do this, you
just have to modify the following method:

Smalltalk

fillContainer: itemsCollection defaultAction: aScriptName

iconGadget := (AbtlconGadgetView new

label: each;

largelcon: icon;

parentView: container;

openWidget;

menu: ((self subpartNamed: '"Menu’) yourself) ~ add this line
yourself).

By adding that one line, you can now click anywhere inside the container,
including on top of the icons, and see a context menu.

VisualAge for Smalltalk Handbook — Fundamentals

Another variation to the use of context menus within a container is to click
the second mouse button on top of the icon and see a context menu, but not
see a context menu when you click the second mouse button from anywhere
else in the container. To do this, edit the same method, except that the
same segment of code now looks like this:

Smalltalk

iconGadget := (AbtlconGadgetView new
label: each;
largelcon: icon;
parentView: container;
openWidget;
menu: (((self subpartNamed: '"Menu') yourself)
createWidget;
setPostCreationSettings;
yourself);
yourself).

In addition to changing this piece of code, you also must delete the
connection between the container's menu attribute and the menu's self
attribute.

After these few changes, you should be able to see a context menu by
clicking the second mouse button on the icons only, not on the container’'s
surface.

Refreshing a Container Details View

Answer

What is the refresh design for a container details view?

You can use the add: APl or perform the add: action. If you perform the
action, the model will signal to its views (in this case the details view) that
an item was added. The code works this way so you can add an item to the
collection without having to refresh the entire list. You can set the
refreshEntireListOnChange attribute to true to cause the entire list to be
refreshed with each addition. The default for the containers is to have
refreshEntireListOnChange set to false while the lists' default is true.

Chapter 3. Graphical User Interface 127

Access to Container Object Attribute

m What event do | need to trigger from so that | can have access to an
attribute of an object in a container icon area?

izl If you are using

Smalltalk

(self subpartNamed: '???") items addAll: (aCollection)

you are dealing with the ordered collection, which holds the items, and you
are using their basic protocol. That collection’'s protocol does not know
anything about event notification, which is VisualAge stuff. When using the
second way

Smalltalk

(self subpartNamed: '???") performActionNamed: #addAll
with: aCollection.

you are dealing with a variable that contains that ordered collection. It
comes down to a method

Smalltalk

AbtObservableWrapper>>abtPerformActionNamed: actionName
ifAbsent: aBlock arguments: args

Within that method a signalEvent: #whateverYourActionls occurs.

Removing an Icon

m How do | remove an icon from the container icon view?

Your problem may be that the container does not get refreshed. There are
a couple of solutions to that:

1. Send a refreshAll to the container.

2. Tear off the items attribute and use something like this:

128 VisualAge for Smalltalk Handbook — Fundamentals

Smalltalk

(self subpartNamed: 'items of blahblah')
performActionNamed: #remove with: anltem.

That causes a refresh of the container as well. You want to signal that the
items have been updated and then anything connected will refresh.

Error: "Attribute Does Not Exist "

cuestion

In the container details part, what causes an "attribute does not exist" error?

Each of the objects in the items collection must have the attribute shown in
the column header to get the data to display. If any of them doesn't, you
will get an error.

Adding an Icon to A List Part

Answer

How do | set up a list part that can show an icon in the first column,
followed by several detail columns?

You need to use a details-tree container part. First, the column parts should
have an attribute to display value specified in their settings view. Second,
the objects that you are using as the items should have methods with the
names you specified in the attribute to display fields of the column part's
settings. For the column that is to display the icon, its attribute to display
method should answer (return) an instance of Cglcon.

Drag-and-Drop

| have developed a drag-and-drop-intensive application under OS/2 that
works just fine. When | tried to port it to Windows, | expected it would work
like the native style (right-button-drag on OS/2, left-button-drag on Windows)
but | see this is not the case—I still have to drag with the right mouse button
on Windows. Why?

Chapter 3. Graphical User Interface 129

The drag-and-drop function built into VisualAge is completely emulated and
has nothing to do with the operating system settings. Which button is used
internally is completely under Smalltalk control. The default is right-button
drag under all operating systems.

If you want to use the left button on Windows to make the user interface on
Windows conform to its standard, give this a try:

Smalltalk

EwDragAndDropManager default button: Buttonl

Multiline Text

m I am developing my GUI via the Composition Editor. | added a text label, but
now | want it to be multiline. | have a window like this:

but | want it to look like this:

Is there a way to achieve this?

130 VisualAge for Smalltalk Handbook — Fundamentals

Yes. Connect the labelString attribute of the label to this script:

Smalltalk

label
| cr |

cr ;= CldtConstants at: 'LineDelimiter’.
~this is’, cr, 'a pen'.

Window Titles

m If a window is going to appear in the OS/2 task list, the title is clipped (by
0S/2) to 64 characters. When we create a window in OS/2, we automatically
add the title to the task list. The only windows whose titles do not get
added are dialog windows. However, if you were programming this in C,
you would have to add the window title to the task list explicitly. It should
be possible to create a window in Smalltalk and not add the title to the task
list.

Querying the Caret Position in Text

m | have an entry field, such as a text edit field, or multiline edit field. | want
to know where the caret (the blinking I-beam cursor) is within the text.

The parts you are talking about have the queryCursorPosition action. You
can use it in a script or through a visual connection. It is described in the
VisualAge for Smalltalk User's Reference.

Color Bitmap Resolution

m How can | improve the resolution on 256 color bitmaps in Windows?
Basically, you have to set the palette of the window to be equal to the

palette of the bitmap. To do this, connect the openedWidget event of your
window to a script like the following:

Chapter 3. Graphical User Interface 131

Smalltalk

fixColors
"Ask the image for its palette and
set the window to have the same palette.”

| imageDesc |

imageDesc := (self subpartNamed: 'Form1l')
backgroundGraphicsDescriptor.
(self subpartNamed: 'Form1') primaryWidget shell window setPalette:
imageDesc image palette.
(self subpartNamed: 'Form1') backgroundGraphicsDescriptor:
imageDesc.

Note: This example assumes that you are setting the background of a form.

Automatic Tab Moving

m How do | implement automatic tab moving in a VisualAge text field?

You can implement auto-tabbing in VisualAge by writing some script and

making a connection to that script. Here is an example: Suppose you have
two text fields. Go into the settings of TextFieldl and set its text limit to 5.
Then, connect the object event (make sure it is the event) of the text entry
field to the following script:

Smalltalk

autoTab
| position limit |

position := ((self subpartNamed: 'TextFieldl') queryCursorPosition).
limit := (self subpartNamed: 'TextFieldl') textLimit.
(position = limit)

ifTrue: [(self subpartNamed: 'TextField2') setFocus].

Now, if the user types five characters in the first text field, focus is
automatically set to the second text field.

VisualAge for Smalltalk Handbook — Fundamentals

cuestion

Is there a way to have it just tab to the next field? (I have around 10 fields
and would rather avoid hard-coding all the names.)

Use some code such as:

Smalltalk

| widget list index next |

widget := (self subpartNamed: '"Window') framingWidget.
list := widget tabList.

index := list indexOf: ((self subpartNamed: field name)
primaryWidget).
next := list at: (index + 1).

(next userData) setFocus

We hooked this to a text field and passed in the self of the text field as the
parameter.

This code is given as-is. That is, it has some drawbacks. First, when you
get to the end, you will have to know the number to reset it to. We don’'t
have that check in the code above. And, when it gets to a group of push
buttons, I'm not sure of the behavior (it may just go to the first in a group).
This is a good start, however, and the concerns mentioned can be checked
for in a script.

User Input Error

Answer

How can | get the userinputConvertError event to fire if the user does not
change an invalid field?

You must modify the method
AbtTextConverterManager>>#primCommitUserlnput: to handle this or run
this script (using aDateString as an example) when losing focus:

Smalltalk

(AbtDateConverter new) primDisplayToObject: aDateString
ifError: [Merror |
CwAppContext default asyncExecInUI: aView setFocus.

Chapter 3. Graphical User Interface 133

Closing the Window

m When | press the Esc key, the window closes. What event is triggered by
pressing the Esc key? Can | capture this event to alter the behavior?

Yes. Connect the shell's closeWidgetRequest event to a script like this:

Smalltalk

myShellCloseWidgetRequest: aConfirmationCallbackData

aConfirmationCallbackData doit: false.

The window won't close as long as doit: is set to false. When you use
openOwnedWidget as opposed to openWidget, you are actually creating a
dialog box as opposed to a standard frame window. It is the dialog box that
provides the default behavior of closing when the Esc key is pressed (and
this is operating system behavior, not part of VisualAge).

The solution above hooks to the system close action. Since you are
bringing up a dialog, the Esc key is mapped to close by the CwDialogShell
class (for details, see AbtShellView class>>cwModalWidgetClass and
AbtShellView>>primCreateWidget). If you do not set an owner window,
the CwTopLevelShell is used as the shell class (see AbtShellView
class>>cwWidgetClass).

You could map the Esc key (or any key you prefer) to close. Here's an
example. First, connect the Window part's openedWidget event to a script:

Smalltalk

hookKeyReleaseEvent
(self subpartNamed: '"Window') components do: {:view |
view primaryWidget
addEventHandler: KeyReleaseMask
receiver: self
selector: #keyReleased:clientData:callData:
clientData: nil}

This puts a key release hook on every widget under Window. Next, add a
method to handle the key release:

134 VisualAge for Smalltalk Handbook — Fundamentals

Smalltalk

keyReleased: w clientData: d callData: callData
(callData keysym == XKCancel) ifTrue: {self closewWidgetCommand}.

Note: XKCancel is the Motif name for the Esc key.

Transparent Background

m How can | make the background of some text placed on top of a bitmap be
transparent?

CwLabels cannot be made transparent. | suggest you hook the expose
callback of the form and draw the text yourself.

Getting the Anchor Block Handle

How do | get the anchor block handle of a primary visual part?

Here is an example of how you can get the anchor block handle of your
primary visual part:

Smalltalk

(self subpartNamed: Window') yourself primaryWidget
osWidget handle winQueryAnchorBlock

Turning Off Error Message

m How do | turn off the error message ** error ** that is shown by data
converters such as AbtStringConverter on text parts?

Turn off the setting reformatOnFocusChange for each of the text fields you
wish to affect. You can do this in the settings notebook.

Chapter 3. Graphical User Interface 135

Locating the Focus

m How can | determine which form contains the widget that has the focus?

The following code shows how you can determine which widget has the
focus:

Smalltalk

queryFocusForm
| focuswidget focusView |
focusWidget := self shell focusWidget.

focusWidget notNil and:
9
[(focusView := focusWidget userData) isKindOf: AbtBasicView])

ifTrue: [
[focusView notNil and: [focusView isKindOf: AbtFormView]]

whileFalse: [focusView := focusView parentView]].
“ocusView

Note that userData of the widget of AbtBasicView subclasses refer back to
their view. You could accomplish the same thing by iterating the target form
components and comparing their widget against the focus widget, but the
above is quicker.

Bitmaps on Buttons

m Is there a way to drop a bitmap (BMP) on a button visually?

Yes. Use the following code:

Smalltalk

myPushButtonView graphicsDescriptor:
(AbtlmageDescriptor new moduleName: 'bitmap.bmp’)

136 VisualAge for Smalltalk Handbook — Fundamentals

Progress Indicator Window

Answer

I would like to use a progress-indicator window in my application. | can't
seem to find a ready part for this. CwWorkingDialog seems to be the base
part, but it does not provide the percentage completed support. The
EtWindow class seems to offer all support, but | am confused as to how to
get it started. What would be the recommended way for implementing a
progress indicator window?

The following example shows how you can use the CwProgressDialog to
create a progress indicator:

Smalltalk

| shell main form dialog fraction |

shell := CwTopLevelShell createApplicationShell: 'shell’
argBlock: [:w | w title: 'Main’].

main := shell createMainWindow: 'main’
argBlock: [:w | w width: 400; height: 300].

form := main createForm: 'mainForm' argBlock: nil.

form manageChild.
main manageChild.
shell realizeWidget.

dialog := CwProgressDialog for: main.
dialog mwminputMode: MWMINPUTFULLAPPLICATIONMODAL.
dialog open.

[[(fraction := dialog fractionComplete) < 1] whileTrue:
[(Delay forSeconds: 1) wait.
fraction := fraction + (1 / 10).
dialog fractionComplete: fraction].

dialog close] fork.

Chapter 3. Graphical User Interface 137

Hot Spots

Answer

Answer

Answer

If | try to set the borderWidth attribute for a hot spot, either from the General
page for the part or from code, | see these settings when | query the value.
However, what is the reason that | won't be able to actually see the border?

You can’'t see the hot spot because it is never mapped. It is generally used
as a clickable spot for images, hence it does not draw any border.

How can | create hot spots that can be reshaped?

Create a subclass of AbtHotSpot, overriding the containsPoint: method.
Create a subclass of AbtHotSpotView and override postCreationinitialization
to use your AbtHotSpot subclass. Hot spots can only be rectangular.
However, if you need a nonrectangular shape, you can try using multiple
smaller hot spots that are next to each other to approximately cover the
area you need.

How do | find the coordinates of a hot spot?

To get the x and y coordinates of the hot spot, send it the message x or y.
To get its width and height, send width or height. This is true for all parts.

Links

cuestion

What is a link in the world of drag-and-drop?

Link means that the instances dropped get added to the target and remain
in the source. Copy duplicated the instances and move deletes them in the
source.

Wallpaper

138

Answer

How do | display an image as a wallpaper with more than 16 colors?

Here's a complete script you can use and connect to the openedWidget
event of the window:

VisualAge for Smalltalk Handbook — Fundamentals

Smalltalk

showWallpaper
| animageDescriptor |

anlmageDescriptor := AbtimageDescriptor new
moduleName: ' <d:\myPath\imageFileName>';
yourself.

(self subpartNamed: '"Window') primaryWidget shell window setPalette:
anlmageDescriptor image palette.

(self subpartNamed: 'Window') backgroundGraphicsDescriptor:
anlmageDescriptor.

In the (self subpartNamed: 'Window') above, 'Window' should be replaced
with the name of the part where you want to specify the wallpaper.

m Is it true that the wallpaper of a window part under Windows 3.1 can
represent only 16 colors?

Under Windows, by default, the color palette of the image is mapped to the
closest values of the system palette. Typically, the system palette does not
have many of the colors found in most bitmaps, so the mapping is poor. To
get the image to appear the way you want, add the following code snippet
just before you display your image.

Smalltalk

<myWindow> primaryWidget shell window setPalette:
<mylmageDescriptor> image palette

This code snippet must be executed after <myWindow> has been opened.

Labels on Message Prompter

m Can | change the labels on an AbtMessagePrompter?

No. AbtMessagePrompter uses CwMessagePrompter, which uses the native
operating system API, such as WinMessageBox under OS/2, and that does
not support button string substitution. | suggest creating your own view with
your message, then displaying it as a dialog, like this:

Chapter 3. Graphical User Interface 139

Smalltalk

myView openApplicationModalWidget suspendExecutionUntilRemoved.
(myView result == ...) ifTrue: ...

The result method is implemented by your view and is the result of the
user’'s selection, probably saved in an instance variable.

Visual Part Reuse

m Can | reuse my visual parts?

Yes, by creating reusable forms. Create a new visual part, then select and
delete the default window. Add a Form and make it the primary part. Lay
out your GUI design and add in any functionality you like. Save the part and
add it to the palette for everyone to reuse! You can also reuse menus.

Supported Image Formats

m What are the image formats that VisualAge for Smalltalk supports?

Individual bitmap files and icon resources in DLLs work for push button
images and for wallpaper. You can also have individual graphic files. Open
the settings on the button and choose label type Graphic, graphic type
Image and enter the filename (should be path relative to your VisualAge
directory). Enter a text label first if you are using hover help, since the text
for the button is what appears.

Click-Sensitive Bitmap

m How do | display a bitmap and then sense mouse clicks over it?

Look at the Graphic Link example (AbtGraphicLinkView) in the VisualAge
Help Example feature. It uses Smalltalk code to track mouse clicks and
movements over a bitmap. For your application, you might put hot spot parts
on the bitmap.

140 VisualAge for Smalltalk Handbook — Fundamentals

Setting Help

cuestion

How do | programatically set the help file and help topic IDs for the menu
items?

| assume you want to use a symbolic name that will be mapped to an actual
name at execution time. This is handy for dealing with files whose names
include version information. For example, ABTVAE30.0S2 contains such a
mapping entry. The entry abtvahelp is the symbolic entry we use in the
settings view as the help file name. It is mapped to an actual file name of
ABTVAE30 at execution time. When we updated the file for Version 4 to
ABTVAEA40, we simply updated the one entry in the mapping file and did not
have to touch any code. The entries in a given mapping file do not support
automatic substitution. The design is such that the name of the mapping file
can vary by platform (for example ABTVAE30.0S2 is the English version
while ABTVAJ30.0S2 would be Japanese) and these mapping files would
map the symbolic name to the appropriate locale-specific name. Your
application would then register the mapping file with the locale character as
a wild card. You can see an example of this in the method AbtEditBaseApp
class>>#loaded. Create locale-specific versions of the mapping file
where, within each mapping file, a consistent symbolic hame maps to the
locale-specific actual (absolute) file name and then register the mapping file
name with the locale character as a wild card.

Modifying Data Entry Parts

Answer

Is there a userModified event for data entry parts?

The available events are losing focus, which occurs whether the field value
has changed or not, and object, which is triggered for any changes including
user and programmatic changes.

Reacting to Keyboard Input

How do | receive keyboard input and react to it?

Chapter 3. Graphical User Interface 141

Answer

You can set up an event handler to handle key press events and check for
the F4 there. See page 188 of the IBM Smalitalk Programmer's Reference
for a description and example of this. Add an event handler to your window:

Smalltalk

(self subpartNamed: "Window') primaryWidget
addEventHandler: KeyPressMask

receiver: self

selector: #keyEventHandler:clientData:event:
clientData: nil.

Then you handle the event like this:

Smalltalk

keyEventHandler: widget clientData: clientData event: event
Transcript show: event keysym printString

Using Esc to Close Nonmodal Dialog

142

Answer

Can | use Esc to close a nonmodal dialog?

Since you are bringing up a dialog, the Esc key is mapped to close by the

CwbDialogShell class (see AbtShellView class>>cwModalWidgetClass and
AbtShellView>>primCreateWidget for details). If you do not set an owner
window, the CwTopLevelShell is used as the shell class (see AbtShellView
class>>cwWidgetClass).

You could map the Esc key (or any key you prefer) yourself to close. Here's
an example. First, connect the Window part's openedWidget event to a
script:

Smalltalk

hookKeyReleaseEvent

(self subpartNamed: "Window') components do:
[:view | view primaryWidget
addEventHandler: KeyReleaseMask
receiver: self
selector: #keyReleased:clientData:callData:
clientData: nil]

VisualAge for Smalltalk Handbook — Fundamentals

This puts a key release hook on every widget under Window. Next, add a
method to handle the key release:

Smalltalk

keyReleased: w clientData: d callData: callData

(callData keysym == XKCancel) ifTrue: [self closeWidgetCommand].

Note: XKCancel is the Motif name for the Esc key.

Multiline Edit Part and Tab Order

Answer

If | drop a multiline edit part on a window, | can’'t use the tab key to navigate
through the different objects on the window. The multiline edit part uses the
tab key for spacing. Is there another way to navigate through the window?

You can use Ctrl+Tab instead to navigate through the different objects on a
window.

Using Predefined Function Keys

Why does the following code not work to catch the event when pressing a
function key? The code adds an eventHandler to the widget of the part and
should cause a debugger window to come up as soon as an function key is
pressed.

Smalltalk

| widget |
widget := (self subpartNamed: 'myForm’) primaryWidget.
widget addEventHandler: KeyPressMask

receiver: self

selector: #keyPressed:clientData:event:

clientData: widget.

The event handler looks like this:

Chapter 3. Graphical User Interface 143

Smalltalk

keyPressed: widget clientData: clientData event: event
| key |
key := event keysym.

XF10 | key = XF22) ifTrue: self halt.
XF9 | key = XF21) ifTrue: self halt.

(key
(key

The above code is correct, but you should take into account that some of the
function keys have been reserved for the system. For example, PF10 on a
window (with a menu bar) will move the cursor to the first menu bar item.
Hence the debugger window will not come up in the above example.

Grabbing Typed Words

m When using a multiline edit (MLE) window, | would like to grab the words as
they are typed. The only event | saw that looked like it might be of use was
the notify on each key stroke. If | use that, I'd have to look for a blank and
then post a signal that a word has been completed. Am | missing
something? Is there a mechanism already there?

No you are not missing something. The MLE does not parse its own text. If
you are interested in dropping to the widget layer, you can also check out
the XmNvalueChangedCallback and XmNmodifyVerifyCallback. The
XmNmodifyVerifyCallback is fired before the text shows up when the user
has typed a character. The XmNvalueChangedCallback is fired after the text
has been displayed in the MLE.

Dropping an Item on a Push Button

m How can | use the drag-and-drop operation between one item of a list box
and a graphical push button representing a trash can? It seems that when |
drop an item of the list box on the graphical button, my icon is replaced by
the label of the item.

What is described above is the default behavior. However, all of the
drag-and-drop events are public, so you can do whatever you want. The
way to get the graphical push button to remain graphical is to connect the
dropped event of the push button to a script that accepts a parameter. The
parameter will be an instance of EwDropCallbackData. It contains
information on what you just dropped on the push button as well as other

144 VisualAge for Smalltalk Handbook — Fundamentals

things. Be aware, though, if you connect from any of these drag-and-drop
events, you become responsible for what happens in these cases.

Changing a Part 's Settings View

Answer

| created a new TextView part inherited from AbtTextView and extend it with
a new attribute dataRequired of type Boolean to see if this field must include
data or not.

Now | want to add a toggle button for this attribute to the attributes page in
the part's settings notebook. | found a class AbtTextViewAttributesPage in
the subapplication AbtEditViewsSubApp which probably defines this
attributes page. In opening this view part, | do not see anything except
some connections that point to nowhere. In testing the view part | get the
attributes page. Why do | get this behavior?

It is a little strange, but you are not seeing anything because the form has
no size when you edit the settings page. It has no attachments so it
tight-wraps around its children. Here's what you can do:

1. Select View Parts List... to bring up its settings and change its size to
nonzero.

2. Modify the view as you want.
3. Generate archival code and remove the code that sets the form size.
4. Regenerate the run-time code (see the test method in the archival code

for details).

Steps (3) and (4) are necessary because the Composition Editor does not
provide a way to specify that the form is an unattached form (what is called
a shrink-wrap form).

Hiding Table Columns Dynamically

If you want to hide one or more columns of a table, here is what you have to
do. Unfortunately, no action is available that lets you hide a column. You
can, however, hide the entire table. As a work-around, you can simulate the
wanted behavior by manipulating the ratioWidth of the column: Setting the
value to zero will make it look as though the column has been hidden.

Chapter 3. Graphical User Interface 145

Initializing a View Wrapper

Answer

When | use a view wrapper, the widget does not get created until | send it
the openWidget request. Therefore, | can't do anything (for example, set
some of its features) until after the first time I've issued openWidget which
in many cases is not desirable. | got around this by the following code:

Smalltalk

((self subpartNamed: '"MyWindow') value) isNil
ifTrue: [
(self subpartNamed: '"MyWindow') createValue].

However, both value and createValue selectors are private. How can | solve
this problem without resorting to the use of private methods?

You should be able to set feature values via attribute-to-attribute
connections. Although the connections will not actually do anything until the
view is created, once it is, all the connections are aligned.

Adding Columns to Tables

Answer

How can | dynamically add columns to a table?

Here is some code that will give you the ability to add columns dynamically.

146 VisualAge for Smalltalk Handbook — Fundamentals

Smalltalk

AbtTableView>>addLastColumnNamed: aColName
columnHeader: aColumnHeader
attributeName: anAttributeName
readOnly: aBoolReadOnly
converter: aConverter

"Public - This is a helper function which will create a new column
view and add it to the table. The column will be added to the end
of the table. Its width will be equal to the width of the most
narrow column currently in the table.”

| cv |

(cv := AbtTableColumnView new)
attributeName: anAttributeName;
columnHeader: aColumnHeader;
readOnly: aBoolReadOnly;
ratioWidth: self suggestedNewColumnWidth;
converter: aConverter.

self subpartNamed: aColName put: cv.

cv openWidget.

“rue

Smalltalk

AbtTableView>>subpartNamed: aColName put: aColumnView

| colNdx |
(self components includesKey: aColName)
ifTrue: [“alse].
coINdx := self components size + 1.
self subpartNamed: aColName put: aColumnView partindex: colNdx.

Chapter 3. Graphical User Interface

147

Smalltalk

AbtTableView>>suggestedNewColumnWidth

"Use this method when adding new columns dynamically at runtime
to prevent the new column from being too small.”

| ans |
self components size = 0
ifTrue: [~11].
ans := 9999999999.
self components
do: [:col | ans := ans min: col ratioWidth].
ans

N\

Smalltalk

AbtTableColumnView>>openWidget

"Public. Category: AbtRun-Internal”

| pv |
(pv := self parentView) == nil ifTrue: ["self].
pv setUpWidget.

Synchronize Table Scrolling

148

Answer

Is there any way of synchronizing the scrolling of two tables in the same
window? | would like to move the vertical scroll bar of one table and have
the scroll bar of the other table move in the same way.

To synchronize the scrolling of two tables, you will have to use callbacks.
The slider bar is a CwScrollBar widget. Callbacks can be specified for the
various slider requests (for example, moving the slider, clicking on the
arrows). Each callback method will have to scroll the second table. For
example, suppose you set up an increment callback for table A. The
method specified for this callback gets called every time the user clicks on
the slider bar down arrow. The callback method will have to scroll the
second table down one row.

To synchronizing scrolling between two tables, you would need to add
callbacks for each type of scroll request. In addition, you would need to add
them for both CwScrollBar widgets.

VisualAge for Smalltalk Handbook — Fundamentals

Changing Table Size

m How do | create a table that can grow and shrink in size?

Create an example of what you want, save that part, then look at the
abtBuildinternals method. It shows the code that constructed the part. You
can copy or modify it to dynamically add parts. A common mistake is to
forget to send openWidget to the newly added part (including container
detail columns)—it is necessary if the view is already open.

Table List Part

m Is there a table list part that has capabilities like row selection and
programmatic column setting?

EwTableListExample fullfills these requirements. EwTableList is the
CommonWidget class used by the Container Details View available on the
parts palette.

Reusable Table Part

m How do | create a reusable table part?

You should promote the width attribute of each column so it becomes an
attribute of the reusable part. They should be able to change the width
through the settings of the reusable part or via a script. The width cannot
be changed with the mouse because embedded parts are treated as
singular primitive objects.

Changing a Table Cell

m How do | keep track of changes made to a cell in a table?

It may be best to track this at the model level, not the view. That is, register
interest in your model for the events that are important to you. For
example, self for an ordered collection dropped on the free form surface will
gives you notification everytime the collection changes. Presumably your
model is more interesting than an ordered collection (person, employee,
company, whatever), so you should register interest in whatever event is
important to you (based on the public interface you defined).

Chapter 3. Graphical User Interface 149

Selecting Multiple Rows

Answer

How do | select multiple rows in a table part?

You can do this using the Container Details View. You just go into the
settings and specify Multiple as the selection type.

Changing Push Button Activation

150

Answer

How can | change push-button enablement when text is entered in a
textbox?

There are several ways to go about doing this depending on what you'd like
to happen. Here are two examples:

The first example starts off with a text box and a push button that's
initialized as disabled. You can disable a push button initially by going into
the settings for the push button and removing the check mark next to the
enabled box. Disable the push button before making the following
connection. Connect the object event of the text box to the enabled action
of the push button. Then go into the settings of the connection, select the
set parameters button, and set the value to true (check the value box). This
causes the push button to be disabled until any text is entered in the text
box. The push button then remains enabled. If you want the push button to
again become disabled for whatever reason, you would have to write script
for that. Which leads to the next example...

The second example starts off exactly like the first example. The view
contains a textbox and a disabled push button. This push button will remain
disabled until text is entered into the text box and the text box loses focus
(as when you tab out). As soon as the text box loses focus with text entered
into it, the push button becomes enabled. If you then go back to the text
box, delete the text, and tab out of it, then the push button becomes
disabled again and will remain disabled until text is entered into the text
box. This is accomplished by writing a small script that looks something
like this:

VisualAge for Smalltalk Handbook — Fundamentals

Smalltalk

enableButton
| info |
info := ((self subpartNamed: 'Text') string).
(info iIsEmpty)

ifTrue: [(self subpartNamed: '‘Push Button’) enabled: false]
ifFalse: [(self subpartNamed: 'Push Button') enabled: true].

You would connect the losingFocus event of the text box to this script.

Event Handling in Windows, AlX, and OS/2

m 0S/2 does not work the same as Windows and AlX when it comes to event
handlers. OS/2 propagates messages up the parent tree. For example, if |
have a main window with three text fields, a drop- down list, and a spin
button, and | add an event handler to detect key presses to the main
window, the child widgets also receive those messages and handle those
key press events (on OS/2). However, on Windows and AIX this is not the
case; the messages are not propagated to all children. To get around this,
you can write Windows- or AlX-specific code to send the message
recursiveDo: to your main window and set up the same event handler or
callback for all the children, the children’s children, and so forth. You
probably create a resource hog to do this, but its really the only way to
achieve this effect on Windows or AlX.

Note: Using recursiveDo: will not help you with widgets (controls) that are
composites at the operating system level. For example, this will not solve
the problem on Windows where you can't get pointer motion notification
over certain parts of the combo box control. From Smalltalk’'s perspective,
there is only one view (and hence nothing to recurse) while there are
actually two to three window handles at the operating system level.

Chapter 3. Graphical User Interface 151

Part Validation

m How do | execute an error script every time a user leaves a part to be

Answer

validated?

You must modify the method primCommitUserlnput: in
AbtTextConverterManager to handle this or run this script (using
aDateString as an example) when losing focus:

Smalltalk

(AbtDateConverter new) primDisplayToObject: aDateString
ifError: [:error]
CwAppContext default asyncExecInUl: aView setFocus.

Moving Icons

Answer

How do | move icons around in a window?

If the icons were drawn as a label widget, you would use
CwWidget>>#makeGeometryRequest:replyReturn: if the label is an
attached widget, otherwise CwWidget>>#moveWidget:y: (see the
comments of these methods for more details). Moving a widget to simulate
a spinning effect, for example, probably wouldn’'t look very smooth. I'd
probably go directly to the Cg layer, using a variation of the code in the
CgClock examples (for drawing the wheel points) and perhaps CgStix for
animating the spinning of the arrow.

Printing a Form with a Visual Part

Answer

How do | print a form | created that contains a visual part?

You create a CwPrinterShell, initialize the shell on the map callback, and
draw your text during the expose callback. The printer shell has additional
APIls to support job and page start and end. You can set fonts and colors by
modifying the attributes of the graphics context (GC) for the printer shell.
CwTextPrintingManager uses CommonPrinting to print workspaces; you can
see the basics there.

152 VisualAge for Smalltalk Handbook — Fundamentals

Text Box Problem

cuestion

| have a problem using the defaultActionRequested event of a text box. How
do | fix it?

This is a known problem. You'll need to change the method
postCreationlinitialization in AbtTextView. Locate the following piece of code
in the method and remove it:

Smalltalk

widget addCallback: XmNactivateCallback
receiver: self

selector: #defaultAction:clientData:callData:
clientData: nil.

Reusable Table Part

Answer

How do | create a reusable table part with different widths?

Promote the width attribute of each column so it becomes an attribute of the
reusable part. You should be able to change the width through the settings
of the reusable part or via a script. The width cannot be changed with the
mouse because embedded parts are treated as singular primitive objects.

Trap the Enter Key for Tabbing

Answer

I want to add a callback (XmNactivateCallback) to a toggle button so that |
can trap the Enter key to do the tabbing. Would this be the right way to do
this?

To do this, use an event handler rather than trying to add a callback not

supported by the widget. The following example sets up four toggle buttons
in a view. Run the following script when the openedWidget: event fires:

Chapter 3. Graphical User Interface 153

Smalltalk

setUpEventHandlers
| togl tog2 tog3 tog4 |

togl := (self subpartNamed: 'Toggle Buttonl') yourself.
(togl primaryWidget)

addEventHandler: KeyPressMask

receiver: self

selector: #tabTo2:clientData:event:

clientData: nil.

tog2 := (self subpartNamed: 'Toggle Button2') yourself.
(tog2 primaryWidget)

addEventHandler: KeyPressMask

receiver: self

selector: #tabTo3:clientData:event:

clientData: nil.

tog3 := (self subpartNamed: 'Toggle Button3') yourself.
(tog3 primaryWidget)

addEventHandler: KeyPressMask

receiver: self

selector: #tabTo4:clientData:event:

clientData: nil.

tog4 := (self subpartNamed: 'Toggle Button4') yourself.
(tog4 primaryWidget)

addEventHandler: KeyPressMask

receiver: self

selector: #tabTol:clientData:event:

clientData: nil.

tabTol: widget clientData: clientData event: event
event type = KeyPress
ifTrue: [(event keysym == XKReturn)
ifTrue: [(self subpartNamed: 'Toggle Buttonl') setFocus]].

tabTo2: widget clientData: clientData event: event

....and so on ...

154 VisualAge for Smalltalk Handbook — Fundamentals

Creating an Operation-in-Progress Window

Answer

I would like to create an In-Progress window that gets displayed while the
application is off querying a database. | want to block the user interface so
the users won't be able to start queuing up a lot of database queries, which
leads to a cache resource error. | have tried opening an in-progress
window as a full application modal but | am not satisfied with the ability to
hit the Esc key and exit out of the in-progress window. Is there another way
of doing this?

The VisualAge for Smalltalk processing window is achieved by:

Smalltalk

execLongOperation: [aBlock with your long running stuff]
message: 'l am thinking, please wait...".

But to be honest, this is only half the story, because the message is
implemented by AbtShellView. That means you have to send it to the
current window. That in turn leaves the problem how to find the actual
window (for example, the one having the focus). You could use something
like this:

Smalltalk

CwTopLevelShell allShells reverseDo: [:sh |
sh hasFocus ifTrue: [~ sh userData].

1.

This method returns the window having the focus and accepts the
execLongOperation:message: message. If you don't pick the window having
the focus, the focus in your application changes to the window you
reference. This is quite confusing for users— at least, so they tell me. The
above examples work in Version 3, and have not been tested in any other
version.

Chapter 3. Graphical User Interface 155

Progress Messages

m How are the progress messages in the browsers implemented?

The CwProgressDialog implements the in-progress indicator (no buttons,

just a message and a bar).

Limiting the Number of Lines in Multiple-Line Editor

Answer

We need to limit user input to 30 lines with 60 characters per line. Is there a
way to do this using a multiline editor part? | see only the ability to specify
1800 (30 * 60) characters as the maximum number for the multiline editor
part. This won't do because the user could type 1800 new-line characters,
much more than the 30 lines maximum we want. If a multiline editor part is
not usable, any suggestions?

You are correct, there is no way to set the number of lines a user can enter
into a multiline editor part, only the total amount of text. You could,
however, write a script that does this type of checking and formatting. You
would need to invoke the script every time the user presses a key. The
script could determine the number of lines in the multi-line editor part by
keeping a count of the number of line delimiters entered in the multiline
editor part's text. The script could also force a new line if the user has
typed in 60 characters but failed to hit the new-line key.

Disabling a Button

156

Answer

Suppose you have a text entry part and an add button. How can you disable
the add button whenever there is no text in the text entry part?

If the text entry part is connected to the selected item in the list part, you
can connect the button's enabled attribute to the selectionisValid attribute of
the list.

If the button is independent of the list, you have to write a small script and
connect a string event—string in the text entry part has been changed—to
the script. You should probably set the button to be disabled initially (from
the settings notebook for the button). The sort of script you need is:

VisualAge for Smalltalk Handbook — Fundamentals

Smalltalk

setButtonForString: aString
"Disable the button if the string is empty, otherwise enable it."

(self subpartNamed: Button') enabled: (aString notEmpty)

Accelerator Keys

Answer

| am trying to use accelerator keys for some menus that | would like to have
in my application. Is it possible to use accelerator keys for menu items?

Defining accelerator keys is not supported for menu items in pop-up menus.
They are supported only for menu items in the menu bar. The underlying
reason is because pop-up menus are not created until the user clicks the
right mouse button, and this would be when the accelerator table gets
created. The accelerator table then gets destroyed when the pop-up menu
goes away. In effect, if you have defined accelerator keys for a menu item
in a pop-up menu, and hit for example Ctrl-V, the menu has not been
created so the event does not get signaled. If it would be appropriate in
your application, you could design duplicate menus in your menu bar with
(accelerator keys defined) for each pop-up menu you have. That is how we
have dealt with this in the development environment.

Hover-Help on Widgets

Answer

Is it possible to get hover-help for push buttons, entry fields, and table cells
as well as simple icons? The documentation implies hover-help works for
icons only.

The underlying support for hover-help is implemented as an extended
widget and can be used for all widgets that support mouse move callbacks.
Thus, hover-help does work for other than icon push buttons. Working with
icon push buttons is the only case where, by default, a hover-help tag is
displayed. Entry fields, for example, have no string resource to use as a
default hover-help tag. In these cases, you need to hook the pop-up
callback and provide the hover-help string to be displayed in the callback
data.

The widgets not supported for hover-help are those that do not signal
mouse moves; such widgets are platform dependent. For example, on some
platforms drop-down list boxes do signal mouse moves when the pointer is

Chapter 3. Graphical User Interface 157

over the drop-down button, but do not signal mouse moves when the pointer
is over the text portion of the drop-down list. On those platforms, hover-help
is not supported for drop-down lists. There currently is no list of
unsupported widgets, since whether the widgets signal mouse moves
depends entirely on the operating system's implementation of the control.

Improving Performance

In order to improve performance with our application (which uses many
complex notebook objects) and to help with memory utilization, we
implemented an approach that hides existing visual objects rather than the
closeWidget approach. When the application needs to open a notebook, we
iterate through existing instances of the visual class and show them rather
than issuing an openWidget event.

This has had a dramatic performance improvement in our application,
making it perform as well as or even better than some C++ applications
which may display many complex notebook objects. The notebook snaps
open and clicking on the notebook pages is immediate.

Tabbing Order

158

Answer

Is there an explanation somewhere of how to set tabbing order in a variety
of situations? The simple case is straightforward and one can happily drag
the yellow tags around to change the order. But what do the blue tags
mean and how are they manipulated? Also, how can you create different
traversal groups for separate groups of buttons?

Suppose you have a form which contains a set of buttons plus another
group of buttons directly placed on the window. The yellow tags show '3:1’
and '3:2' on the directly placed buttons but there is a blue tag showing '3’
on the buttons form. The form gets tabbed to first when you want the other
buttons to be tabbed to first. Is there a way to change this?

When you see 1, 2, 3 ... (whether it's blue or yellow), that means it is a tab
group and you use the tab key to navigate to or from it. In this case, yellow
indicates that it is a tab group consisting of one part only. An example
would be an entry field. Blue indicates that it is also a tab group, but that it
has multiple parts within it. An example would be the form with multiple
push buttons in it.

You typically want to navigate between push buttons using the arrow keys,
so when you place push buttons directly on the window, it defaults to

VisualAge for Smalltalk Handbook — Fundamentals

traversal only. Consequently, you see numbers like 1.1, 1.2, 1.3, ... It's
acting as though it's within a tab group, and will always be added as 1.x.

Since you can change the tab order of parts at the same level only, you
have two options. Do not put the push buttons directly onto the window, put
them in a form as with the other push buttons. Or, check the tab group
option on the individual push buttons. You will have to use the tab key to
navigate to and from these push buttons if you choose the latter option.

Ctrl-Click Events

Answer

| can set individual button press (ButtonPressMask) and key press
(KeyPressMask) event handlers. But how can | detect if a key was pressed
at the same time a mouse button was pressed? | am trying to differentiate
between a mouse button-Ctrl key event and just a mouse button pressed
event.

You will have to process the keyboard key and mouse button events
individually. A suggestion is to set a flag when the mouse button has been
pressed (but not released). When you process the keyboard key event,
check to see if the mouse button flag has been set. If it has and the Ctrl key
was pressed, execute your mouse button+Ctrl code. You will need to clear
the mouse button flag whenever the mouse button is released.

Here's another, probably easier way, of doing the same. The method that

processes the keyboard key event can check the event state. If the state is
Button1Mask and the key pressed is Ctrl, execute your mouse button+Citrl
code. Here is what the code would look like:

Smalltalk

(event state = ButtonlMask) & (event keysym = XKControlL)

. mouse button+Ctrl logic

Chapter 3. Graphical User Interface 159

Creating Push Buttons

m How do | create push buttons on the fly?

You have two different approaches:

1. You do it in pure Smalltalk: starting from the parent part, such as an
AbtFormView, you do:

Smalltalk

(<part> widget createButton: 'myButton’ argBlock: nil)
manageChild.

In the argBlock you could specify the widget attachments The
disadvantage is that this will leave you without an AbtButtonView part,
which may be inconvenient.

2. The other method is adapted from the abtBuildInternals method:

Smalltalk

<part> subpartNamed: 'button’ put:
(tVar:= AbtButtonView newPart).
tVar openWidget.

The openWidget will actually draw the button. To position it properly
you might add a framingSpec (look into abtBuildinternals of a visual part
for an idea of how to do that).

If that does not satisfy you, add the maximum amount of buttons in the
Composition Editor and use the hide/show protocol to dynamically hide
and show your buttons. For buttons you need initially invisible, you send
a hide attached to the aboutToOpenWidget event of your window, so
they won't show.

Changing Part Labels

m How do | change the labels on the AbtMessagePrompter part?

You can't because AbtMessagePrompter uses CwMessagePrompter which
uses the native operating system API (for example, WinMessageBox under
0S/2) and that doesn't support button string substitution. | suggest creating
your own view with your message, then displaying it as a dialog, such as

160 VisualAge for Smalltalk Handbook — Fundamentals

Smalltalk

(myView result == ...) ifTrue: ...

myView openApplicationModalWidget suspendExecutionUntilRemoved.

The result method is implemented by your view and is the result of the
user's selection, probably saved in an instance variable.

Adding BMP Files to Buttons

Answer

Does VisualAge support putting BMP files directly onto buttons?

Yes, since VisualAge for Smalltalk Version 3. Good-bye one DLL; hello
dozens of .BMP files. Use the following code:

Smalltalk

myPushButtonView graphicsDescriptor:
(AbtimageDescriptor new moduleName: 'bitmap.bmp’)

Creating a Prompter

Answer

How do | create my own prompter for a GUI?

Add an instance variable result to your view, and implement a prompt
method:

Smalltalk
prompt
result := nil.
self suspendExecutionUntilRemoved.
“result

You would open the view like this:

Smalltalk

(view := MyView new) openApplicationModalWidget
myResult := view prompt.

Chapter 3. Graphical User Interface

161

Setting Focus to Next Entry Field

m How can | automatically move the tab to the next entry field in VisualAge?

You can implement automatic tabbing in VisualAge by writing some script

and making a connection to that script. Suppose your have two text entry
fields. Go into the settings of TextFieldl and set its text limit to five. If you
then connect the object event of the text entry field to the following script,
the tabbing will be done automatically.

Smalltalk

autoTab
| position limit |

position := ((self subpartNamed: TextField1l') queryCursorPosition).
limit := (self subpartNamed: TextFieldl') textLimit.

(position = limit)

ifTrue: [(self subpartNamed: TextField2') setFocus].

If the user types five characters in the first text field, focus is automatically
set onto the second text field.

Missing Carriage Return in Multiple-Line Editor

162

m I am trying to write a string, which | got from a multiple-line editor, to a

stream. It seems that | lose all the carriage returns by executing the
following code. Any help would be highly appreciated.

Smalltalk

writeFile
"Write the contents of a multiple line editor to a stream”

| fileStream, mleData |

fileStream := CfsWriteFileStream openEmpty: temp.txt'.
mleData := (self subpartNamed: Multi-line Edit') string.
fileStream nextPutAll: mleData.

fileStream close.

VisualAge for Smalltalk Handbook — Fundamentals

To solve this problem, the only thing you have to do is change string to
object. This will include a return character at the end of each string from

the multiline editor.

Action on PFkey Pressed

m I would like to close a window when the PF12 key is pressed. The problem |
have is how to see if PF12 gets pressed?

This is not quite as trivial as it seems, but it can be done:

1. Every visual part you attach to your window has a corresponding
CwWidget attached to it. It can be accessed via (self subpartNamed:
"myText') widget. It is accessible once the window is created, for
example, in scripts hooked to aboutToOpenWidget.

2. Attach a keyboard message handler to each and every such widget that
is capable of getting input focus, something like this:

Smalltalk

(self subpartNamed: 'myText') widget
addEventhandler: KeyReleaseMask
receiver: self
selector: #keyRelease:clientData:event:
clientData: nil.

3. Code the actual event handler corresponding to the selector. Create a
method with signature keyRelease:clientData:event:.

4. Every time a key is released this method will be called. The event is the
place to look for specific key information (just printString it to the
Transcript, it will tell you most everything about the key released).
Whenever you think it is appropriate to close the window, just do it.

Chapter 3. Graphical User Interface 163

164 VisualAge for Smalltalk Handbook — Fundamentals

Chapter 4.

IBM Smalltalk Programming Language

This chapter covers programming tips for the IBM Smalltalk language.

Smalltalk Books

m What mass-market Smalltalk books are available?

Answer

Smallitalk 80, The Language, Adele Goldberg & David Robson,
Addison-Wesley 1989, ISBN 0-201-13688-0

Smalltalk 80, The Interactive Programming Environment, Adele Goldberg,
Addison Wesley 1984, ISBN 0-201-11372-4

Smalltalk 80, Bits of History, Words of Advice, Glenn Krasner, Addison
Wesley 1984, ISBN 0-201-11669-3

Inside Smalltalk, Volume |, Wilf Lalonde & John Pugh, Prentice Hall 1990,
ISBN 0-13-630070-7

Inside Smalltalk, Volume II, Wilf Lalonde & John Pugh, Prentice Hall
1991, ISBN 0-13-465964-3

Object-Oriented Graphics, P. Wisskirchen, Springer-Verlag 1990

Practical Smalltalk: Using Smalltalk/V, Dan Shafer and Dean A. Ritz,
Springer-Verlag, ISBN 0-387-97394-X

Rapid Prototyping for Object Oriented Systems, Mark Mullen, Addison
Wesley 1990, ISBN 0-201-55024-5

Object-Oriented Design, Peter Coad and Ed Yourdon, Yourdon Press
1991

Object Oriented Programming for Artificial Intelligence, Ernest Tello,
Addison Wesley 1989, ISBN 0-201-09228-x

The Well Tempered Object, Stephen Travis Pope, MIT Press 1991, ISBN
0-262-16126-5

Human-Computer Interface Design Guidelines, C. Marlin Brown, Ablex
Publishing 1989, ISBN 0-89391-332-4

Designing Object-Oriented Software, Rebecca Wirfs-Brock, Brian
Wilkerson, and Lauren Wiener, Prentice-Hall 1990, ISBN 0-13-629825-7

An Introduction to Object Oriented Programming & Smalltalk, Lewis
Pinson & Richard Wiener, Addison Wesley 1988, ISBN 0-201-19127-x

[0 Copyright IBM Corp. 1997 165

Object Oriented Design with Applications, Grady Booch,
Benjamin/Cummings 1991, ISBN 0-8053-0091-0

A Quick Trip to ObjectLand: Object-Oriented Programming with
Smalltalk, PTR Prentice-Hall 1993, ISBN 0-13-012550-4

IBM Smalltalk: The Language, David N. Smith, Benjamin/Cummings
1995, ISBN 0-8053-0908-X

IBM Smalltalk Programming for Windows and OS/2, Dan Shafer and Dan
Herndon, Prima 1995, ISBN 1-55958-749-0

Smalltalk with Style, Suzanne Skublics, Edward J. Klimas, and David A.
Thomas, Prentice Hall 1996, ISBN 0-13-165549-3

m What books or reports about Smalltalk are available from IBM, besides
product documentation?
- Object-Oriented Design - A Preliminary Approach, IBM 1990, GG24-3647
Developing a CUA Workplace Application, IBM 1991, GG24-3580

Object Oriented Analysis of the ITSO Common Scenario, IBM 1990,
GG24-3566

Cooperative Processing in an Object-Oriented Environment, IBM 1991,
GG24-3801

A Practical Introduction to Object-Oriented Programming, IBM 1992,
GG24-3641-01

Smalltalk Portability: A Common Base, IBM 1992, GG24-3903
Object-Centered Environments for Smalltalk, IBM 1990, RC 15548

The Geometry Browser - A Feature Modeler in Smalltalk, IBM 1990, RC
15394

Smalltalk Standardization

166

m What is going on with the effort to standardize Smalltalk?

ANSI officially approved the IBM project proposal for Smalltalk. The project
name is X3 Project 986-D and the technical committee is X3J20.

Smalltalk Portability: A Common Base, document number GG24-3903,
contains the proposed ANSI standard.

VisualAge for Smalltalk Handbook — Fundamentals

##() Construct

Answer

What does ##() do?

The ##() construct in IBM Smalltalk is not unlike #define from the C world.
It allows you to have objects created at compile time, rather than at
run-time. We all use #(1 2 3) to create an array at compile time. Well, ##()
is no different. It just lets you create objects other than arrays. Writing

Smalltalk

##(expression)

evaluates the expression at compile time, as if it were text selected in a
workspace, but takes the resulting object and places a reference to it in
place of the ##() construct. Thus,

Smalltalk

X 1= ##(60 * 60 * 24)

would return the number of seconds in a day. The expression is evaluated
at compile time. At run time, it acts as if this had been the source code:

Smalltalk

X := 86400

Now, it is possible that the compiler could make this optimization. But how
about this?

Smalltalk

##(| birthdays |
birthdays := Dictionary new.
birthdays at: 'Boris’ put: 'Jan 05'.
birthdays at: 'Dennis’ put: 'Jul 05'.
birthdays at: 'Leo’ put: 'Jan 05'.
birthdays)

The dictionary is created at compile time, and not every time one runs the
method. (Of course, that means there is just one copy around and that may
not be what you want at all!)

Chapter 4. IBM Smalltalk Programming Language 167

Note!

The ##() construct is different from the ## construct. The ##() will
evaluate whatever is in the parentheses, making it possible for a method
to return a constant, such as ##(Date today), which is the date the
method was compiled. Note that the answer is an actual Date instance.

The ## construct is an atom (EsAtom). (You can also use ##'', for
example, the expression ##hello == ##'hello' is true). There is only
one instance of an atom with some name. Once you create an atom,
you cannot access or change the data in it. So atoms are really used for
state purposes (to avoid using symbols, to make packaging easier in
IBM Smalltalk).

— Watch this!

The ##() construct is not documented in the IBM Smalltalk manuals. Use
it at your own risk!

m But IBM Smalltalk Version 3 does many optimizations automatically, so |
don't need ##() for this. Is there a nontrivial example of usage of ##()?

Yes, for example you can use it to take some specific action each time you
recompile the class. See the next section, “Taking Actions Automatically at
Class Recompilation,” for details.

Taking Actions Automatically at Class Recompilation

m Typically, the initialize method is run once when a class is loaded (which
most systems do automatically when it is filed in). When making changes to
the class, it is easy to forget to run the method. Most people put a comment
at the top:

Smalltalk

" Don't forget to reinitialize me when you make changes:

ThisClassName initialize "

and then select the expression and evaluate it after making a change.

168 VisualAge for Smalltalk Handbook — Fundamentals

Answer

Is there a way to take actions automatically each time when the class is
recompiled?

Yes. In the initialization method, add this line:

Smalltalk

##(System message: self class name asString,
' needs to be initialized.")

This puts up a dialog at compile time to remind you to initialize the class.

The compiler, being so helpful sometimes, complains that this expression
doesn’'t do anything. So, fake it out:

Smalltalk

| junk |

junk := ##(System message: self class name asString,
' needs to be initialized.")

But you say, why not initialize the class directly, by putting this at the end of
the initialize method?

Smalltalk

##(ThisClassName initialize)

If you try it, you discover that it indeed does run the method. And you
discover after a while that it doesn't contain the latest change, but always
the one before. Make a change, and it doesn’'t show up; make another and
the first shows up! It's clear once you realize that:

Smalltalk

##(ThisClassName initialize)

runs the method that is in the system. The new method being compiled,
which you'd like to run, has not yet been inserted into the system. Thus you
run the last one that was compiled. And the next time, you run this one, and
SO on.

Chapter 4. IBM Smalltalk Programming Language 169

—— Warning!

I've discovered that writing to the Transcript from within ##() has some
problems.

Weak Pointers

Answer

What does the term "Weak Pointers” mean? Can | use weak pointers in IBM
Smalltalk?

Weak pointers are pointers you can have to objects that do not prevent the
garbage collector from destroying the objects. In other words, if there are
only weak pointers to an object and no other pointers, the garbage collector
will destroy the object. You can use weak pointers in IBM Smalltalk, for
example:

Smalltalk

| string array |

string := String new: 100.

array := (Array new: 10) makeWeak.
array at: 1 put: string.

string onFinalizeDo: #halt.

You'll get a walkback the next time the finalize cycle runs (when the system
goes idle).

Utility of Weak Pointers

170

Answer

Do weak pointers have practical importance? Can you give a couple of
examples of when | might want to use them, and what they buy me?

In VisualAge, a large number of collection classes have the word “weak” in
their name. I'll just mention briefly some usages of weak objects here.
Below, | will talk only about a simple collection (like Bag, Set,
OrderedCollection) and not Dictionary or LookUpTable. Various WeakKey
collections or WeakValue collections have slightly different behaviors that
the class names are trying to describe.

A weak collection can be used as a cache to hold cached objects. The
cache itself can be assigned to a global variable, a class variable, and so

VisualAge for Smalltalk Handbook — Fundamentals

on. Since the cache is a weak collection, references to the cache objects
are not considered permanent references.

Normally, if | want to use the same object A in several windows, | would
save that value in a global variable, or put that object A in some global
collection. It is especially true if those several windows don’t really have
any logical connection to each other. Since the object A is referenced by a
global variable, it is not a candidate for garbage collection. However, if the
global cache collection is a weak collection, every element of that collection
is a candidate for garbage collection if that particular element is no longer
referenced by any object that is live in terms of garbage collection.

Object Finalization

Answer

| heard that now finalization is a hot topic. What is it, actually? Does IBM
Smalltalk support it? If yes, in what way?

Finalization is roughly like destructors in C++. Normally, you don’'t need
to take any special actions to free objects. When an object is no longer
needed (there are no more references to it), the Smalltalk garbage collector
removes it from the object memory.

There are, however, cases when automatic garbage collection (GC) is not
enough, as when you deal with operating system resources. For example,
you can open a file and then leave the stream to GC's mercy:

Smalltalk

myMethod
(A

f := CfsReadFileStream open: '"MYFILE.TXT'.
“self

"In some moment, the GC will destroy the object
and you are probably going to suffer”

In situations like this,you want to be notified when the garbage collector is
going to destroy an object. You can do this, for example, by using weak
pointers. Point two variables to the same object, one in the weak and one
in the hard way, then examine whether the weak pointer is nil. If it is, you
know the garbage collector was trying to get rid of your object and you are
going to do an appropriate action such as closing a file.

Chapter 4. IBM Smalltalk Programming Language 171

In IBM Smalltalk, you have a much easier and stylish way of finalization. For
example, you can say

Smalltalk

myMethod

| f1
f := CfsReadFileStream open: '"MYFILE.TXT'.
f onFinalizeDo: #close.

and don't worry any more about closing the file.

Standard Methods not in API Category

Answer

While wandering through the class hierarchy in IBM Smalltalk, | noticed that
a number of what | considered standard Smalltalk APIs were in fact in
non-AP| categories. For example the value messages sent to blocks passed
as parameters are in the category ES-Internal. The method deepCopy is
another example. Is there some reason why these messages are not in an
API category?

The Smalltalk Programmers Reference says about deepCopy:

"Unlike other Smalltalk implementations, CLDT does not provide a public
default version of either deepCopy or shallowCopy in Object protocol. The
semantics of both these messages are normally specific to each class, and
often to an application.”

The categorization for #value has been taken care of for the next release.
Note, also, that Block is an abstract superclass.

Using the Correct Variable Type

172

If | want many different methods to use a dictionary, should | have the
following code:

Smalltalk

SomeName:=Dictionary new.

VisualAge for Smalltalk Handbook — Fundamentals

and assign the SomeName to be a global variable? Is this the correct way
of doing it? | guess the very first time it will ask me if | would like to make
SomeName a global variable.

If those methods are all instance methods on the same class, then you
would store the dictionary in an instance variable. Otherwise, you might
want to make it a class variable with a public get method. That way, your
global name space does not get overloaded.

Smalltalk printf()-like Formatter

m Is there any code available that does string formatting like printf() in C?

You might want to check out EsString>>#bindWith: and all its variants in
IBM Smalltalk. It's good for the case where you need to substitute strings at
set positions within a source string.

The bindWith: family of messages answers with the string formatted under
the control of the receiver. The receiver is a character string patterned after
the formatting conventions of printf() and contains field descriptors used to
insert arguments into the format string.

If you use the bindWith: family of messages and you have VisualAge for
Smalltalk, then you can send each argument the message
#convertToDisplay, and the conversion will be performed along with the
substitution. If you just have IBM Smalltalk, you may want to extend the
Object class to have an asString method that returns ~self printString,, and
you would then be able to use asString polymorphically with your
arguments.

Testing Instances and Classes

m It seems strange that | have to create special classes to test my classes and
methods. Doesn't it seem that Smalltalk should have a test method besides
instance and class methods. The idea is that a builder like VisualAge would
strip out test methods when the class is packaged. With test methods for
both class and instances, I'd be able to keep the tests with the class.

Chapter 4. IBM Smalltalk Programming Language 173

Answer

Why don’t you code “Example” comments in each method which are the
test cases. (I reckon about 30% of my code is such test cases.) You can
highlight the example code and execute it to verify the test, but as it's a
comment, it's not stored in the image. One day when | have some spare
time I'll write a program to automate this testing, though my experience is
that there are frequently insignificant changes to the output that would
frustrate the automation (I can see the difference is minor, the test program
would not).

As an aside, a crucial requirements for such testing to work is to code a
decent printOn: method in every new class, which prints enough details to
identify the result. Merely relying on Object's default "a NewClass" makes
testing very hard.

You can always use a naming convention. One that's possible in Digitalk
Smalltalk and perhaps elsewhere is to use a capital letter in the method
name (Digitalk creates Doit methods all over the place), for example: Test or
TestInteraction. It's not to hard to strip such methods from the image.

With Visualage for Smalltalk, you should be able to extend your class in a
separate test application to hold all the (instance/class) test methods for
your class.

Garbage Collection Rate

174

Answer

Can a Smalltalk application accessing many data objects in a short time
from a large relational database (via a persistence layer) cause the
workstation to page or swap excessively because the rate of object creation
exceeds the rate of garbage collection?

The only way to determine this is to try. When (and if) garbage collection
runs differs from product to product, release to release.

If you are not happy with the rate of garbage collection, you should be able
to override the default interval of garbage collection and force it whenever
you want. We noticed that IBM Smalltalk will appear hung sometimes since
the garbage collector is invoked only when the system is idle, but if you are
running a long-running task that creates a lot of objects, you can run into a
situation where you blow the available memory. The way we worked
around it is by creating a high-priority background task that wakes up every
few seconds and checks if the available memory is running low. If it is, we
force the garbage collect ourselves. It seems a patch that should not be
necessary, but it made our hang-ups go away.

VisualAge for Smalltalk Handbook — Fundamentals

Inherited Messages

m How can | see all inherited messages?

The best way to see all messages that instances of your class can
understand is to change the value for method visibility on the Class menu of
most browsers; this will show inherited methods as well as methods defined
on your class itself.

With the class methods, things are a bit more tricky. There are class
methods that you don’t see in any of your object’'s superclasses up to
Object, but which your class still does understand. For example, suppose
YourClass is a subclass of Object; YourClass class does understand the
message new, but it's not a class method of either YourClass nor Object.
How this can be? A look at the following picture makes this clear.

Behavior

T

ClassDescription

nil Class
H T
Object
? i
YourClass |- - - - -| YourClass class

For example, the method new is not a class method of Object, but all
classes understand it. That's because the class Object is itself an instance
of the metaclass Object (which in turn is an instance of the metaclass).
When you execute YourClass new, method lookup starts in YourClass class
and continues to Object class; but Object class itself is inherited from Class,

Chapter 4. IBM Smalltalk Programming Language 175

and Class is (indirectly) inherited from Behavior, and Behavior has an
instance method new. If you look at all public instance methods of
Behavior, then you will see new, which basically calls a primitive,
VMprBehaviorBasicNew. | don't know why it doesn’'t appear in the catalog
of classes, as it is contained in the CLIM-API methods category. You'll see
what I'm talking about by selecting Browse Class in your System Transcript
and entering Behavior.

File System

176

Answer

How do | get the contents of a directory?

The contents of a directory can be determined by using an instance of
CfsDirectoryDescriptor. For simplicity, a reusable class named FileManager
can be created to provide higher-level abstractions of the Common File
System API.

The following method evaluates a block with the names of the files in a
directory that match a given pattern:

Smalltalk

filesMatching: pattern on: pathName do: block

"Evalutes block with all files on pathname
which match the provided pattern. Note that only
the names of files are provided (no full paths).”

| directory entry |

directory := CfsDirectoryDescriptor
opendir: pathName
pattern: pattern
mode: FREG.

directory isCfsError ifFalse: [
[(entry := directory readdirName) notNil]

whileTrue: [block value: entry].

directory closedir]

FREG is an entry in the pool dictionary CfsConstants. The mode keyword in
the message opendir:pattern:mode: uses flags to determine which files to
find. FREG provides the names of all regular files. FDIR provides the names
of subdirectories. To get both the names of files and directories, pass FREG
: FDIR as the parameter to this keyword.

VisualAge for Smalltalk Handbook — Fundamentals

Use this method to print the names of all text files in the root directory (the
following code assumes the above method has been implemented in a class
called FileManager).

Smalltalk

FileManager
filesMatching: "*.txt’'
on: '/’
do: [:fileName | Transcript cr; show: fileName]

The root directory can be specified as a forward slash, which is very UNIX.
This works in OS/2 and in Windows as well as in AIX. It may be handy to
get a collection containing the file names:

Smalltalk

filesMatching: pattern on: pathName

"Answers a collection with all files on pathname
which match the provided pattern. Note that only
the names of files are provided (no full paths).”

| files |
files := OrderedCollection new.
self
filesMatching: pattern
on: pathName
do: [:fileName | files add: fileName].
iles

File Existence

m How do | check in Smalltalk if a file exists?

Use the methods provided above to determine if a file exists:

Chapter 4. IBM Smalltalk Programming Language 177

Smalltalk

fileExists: fileName on: pathName

"Answers whether or not the file name file
name exists on the path named pathName."”

~(self filesMatching: fileName on: pathName) notEmpty

Accessing COM Ports

m What is the correct way to access a COM port from Smalltalk? Are there
special classes or do | have to use C for that?

There are no special classes for that in Smalltalk, but you can directly use
IOCtl from Smalltalk without any C code. For example, if you want to know
how many bytes are on the input queue, use a script like this:

Smalltalk

inputQueueCount
| rc fileDescriptor queuelLength |

gueuelLength := ByteArray new: 2.
fileDescriptor := deviceFile fileDescriptor.
rc :=fileDescriptor dosDevIOCtl: loctlAsync
function: AsyncGetinquecount
pParams: nil
cbParmLenMax: 0
pcbParmLen: nil
pData: queuelLength
cbDataLenMax: queuelLength size
pcbDatalLen: nil.

(rc = 0) ifFalse: “AbtError new.
~(OSType fromBytes: queuelLength) asinteger

where you get the deviceFile with:

178 VisualAge for Smalltalk Handbook — Fundamentals

Smalltalk

open: portName
"Perform the open action.”

deviceFile := CfsFileDescriptor
open: 'COM1’
oflag: ORDWR
share: ODENYNONE.

deviceFile isNil ifTrue:
(CwMessagePrompter errorMessage: 'Error opening COM1').

You can read from COM1 with something like:

Smalltalk

((queuelLength := self inputQueueCount) > 0) ifTrue:
[deviceFile read: (buf := String new: queuelLength)
startingAt: 1
nbyte: queuelLength.
self incomingData: buf.]

Catching Errors

Answer

How do | catch errors in Smalltalk?

To catch errors that are difficult or impossible to anticipate, use the
exception handling facilities provided by IBM Smalltalk. The simplest form of
exception handling involves catching errors which occur while attempting to
evaluate a block. Use this:

Smalltalk

[<do something>]
when: <error> do: [:signal | <handle the error>]

The message when:do:, when sent to a block, evaluates the block. If an
error matching the first parameter occurs, the exception handler will be
invoked.

Chapter 4. IBM Smalltalk Programming Language 179

The first parameter describes the kind of error that can be trapped. Potential
values for this parameter can be found in the pool dictionary called
SystemExceptions. They are:

ExError — Any error
ExHalt — A halt has been encountered
ExIndexOutOfRange — An attempt to access a nonexistent array index
ExXCFSError — File system error
The second parameter is a block that takes a single argument. That
argument is an instance of class Signal. Tell the signal what to do next:.
exitWith: — Exit the block with some value
retry - Reattempt evaluation of the block

signal — Pass the responsibility for handling the error to the outer
context

File System Errors

180

Answer

How do | catch file system errors?

The following method opens the file named by its first parameter. The
second parameter is a block to evaluate in the event of an error.

Smalltalk

contentsOfFileNamed: fileName ifError: errorBlock

"Answers the contents of the text file named aString.
If an error occurs, then the result of evaluating
errorBlock is answered.”

| file contents |
file := CfsReadFileStream open: fileName.
file isCfsError ifTrue: [“errorBlock value].
contents := [file contents]
when: ExCFSError do: [:signal | signal exitWith: nil].
file close.
contents notNil ifTrue: [“contents].
~errorBlock value

VisualAge for Smalltalk Handbook — Fundamentals

First, the file is opened. If an error occurs during the opening of a file, the
result of the open: message will be an object that answers true to isCfsError.

Second, the attempt to read the contents of the file is wrapped in a block.
That block is sent the message #when:do:. The first parameter to this
message is the kind of error we are interested in (EXCFSError in this case),
and the second parameter is a block containing the code to evaluate in the
event that this kind of error occurs. The block takes a single parameter, an
instance of class Signal.

In this case, an error when trying to read a file is considered final. The
message exitWith:, sent to the Signal, will exit the block with the provided
value (nil in this case).

The variable contents should either be a string or nil. The file is closed and
if successful, the contents is answered. Otherwise, the result of evaluating
errorBlock is answered.

Catching All Errors

m How do | catch all errors?

Use ExError for the kind of error to catch:

Smalltalk

| succeeded |

succeeded := [<do something>. true]
when: ExError do: [:signal | signal exitWith: false]

In this example, the variable succeeded is set to true if the <do
something> works without signaling any errors; the variable is set to false
otherwise.

You should not generally try to catch all errors, because you will also catch
programming errors, including messages not understood. Flaws in your
code may go unnoticed with unexpected results.

Chapter 4. IBM Smalltalk Programming Language 181

Exception-Handling Code

m When should | include exception handling code?

In general, exception handling should be added after you are convinced
your code works. Exception handling should be used to catch unexpected
problems— for example, your file server shutting down.

Fixed Decimal Class

m Is there a fixed decimal class available or any other support that helps with
the rounding issues encountered with floating decimals?

If you are stuck with a Smalltalk without fixed decimal, don’t forget that
Smalltalk fractions are true fractions, so 10075/100 is a true representation
of 100.75, although it will print as 403/4. Also, Decimal class is part of the
base product in Version 3.

Object Class Identification

m How can | programmatically see if anObject belongs to aClass?

This is actually two separate questions.

Object>>#isKindOf: aClass answers a Boolean which is true if aClass is
the class or a superclass of the receiver, and false otherwise.

Object>>#isMemberOf: aClass answers a Boolean which is true if aClass is
the class of the receiver, and false otherwise.

Floating Point Numbers

m | believe there is much oddity with the behavior of floating point numbers:
(534.92 * 100) is displayed as 53492.0
53492.0 truncated is displayed as 53492
(534.92 * 100) truncated is displayed as 53491

Is this as bug?

182 VisualAge for Smalltalk Handbook — Fundamentals

This is not a bug. No matter how odd they look, floats are precisely what
scientific and engineering problems need. Those oddities were carefully and
specifically designed.

Floating point numbers are designed for use in the engineering and
scientific communities where calculations involve wide ranges of
number sizes.

One basic rule is: Never compare Floats for equality

It is impossible, in general, to precisely convert decimal numbers to
binary, and floats are binary. Thus most numbers are wrong as soon as
they are converted. Multiplying them by 100.0 may make a particular
calculation look right but just shift the problem to another calculation.

Certain operations can cause the loss of precision. One famous gotcha
involves subtracting two floats that are nearly equal. The precision of
the result may be only a digit or two, or even none at all.

To see what is actually going on | used some code that prints floating point
numbers to any length. | also coded a method which prints IEEE
double-precision floats in hexadecimal. (The method is near the end.) The
exponents, in hexadecimal, are the number of bits to shift the fraction.

Lets look at some examples. First, just some plain numbers:

Smalltalk

0.00 printHex '0e00’
1.00 printHex '1.0e0’
10.0 printHex '1.4000000000000e3’
16.0 printHex '1.0e4’

Now, the numbers from the thread, and one number that's 0.01 larger:

Smalltalk

1502.03 printHex '1.7781EB851EB85eA
1502.04 printHex '1.77828F5C28F5CeA’ (Note difference in fifth digit.)
1051.42 printHex '1.6DAE147AE148eA’

The printStringWidth method prints numbers to the given character width.
The width used here is 30, which means 28 digits (less period and sign). As
a result, it may show junk past the end of the number. In the cases below, it
shows extra zeros.

Chapter 4. IBM Smalltalk Programming Language 183

184

Smalltalk

1502.03 printStringWidth: 30
'1502.0299999999999700000000000'

1051.42 printStringWidth: 30
'1051.4200000000000700000000000’

Now, calculating the difference we see that the expected answer 450.61 is
not quite what we get:

Smalltalk

(1502.03 - 1051.42) printStringWidth: 30
'450.60999999999990000000000000'

450.61 printStringWidth: 30
'450.61000000000001000000000000’

(1502.03 - 1051.42) printHex '1.C29C28F5C28F4e8'
450.61 printHex '1.C29C28F5C28F6e8’

In fact, the difference is just in the rightmost two bits, but that's enough to
make it not equal. Now, what do roundTo: and truncateTo: do?

Smalltalk

((1502.03 - 1051.42) roundTo: 0.01) printStringWidth: 30
'450.61000000000001000000000000°

((1502.03 - 1051.42) truncateTo: 0.01) printStringWidth: 30
'450.60000000000002000000000000°

Clearly, equality testing is not going to work. But, consider the following:

Smalltalk

(1502.03-1051.42) between: 450.605 and: 450.615

which does answer true and will answer true unless and until the real,
internal precision gets very much smaller (or the values get much, much
larger). The former is not likely when doing currency calculations.

A method which does the between:and: test for floats is:

VisualAge for Smalltalk Handbook — Fundamentals

Smalltalk

| Float publicMethods |

equals: aFloat to: delta

" Compare self (a float) with aFloat to a 'precision’ of delta.
Example: 1502.03 equals: 1051.42 to: 0.01 "

| deltah |

deltah := delta / 2.

~ self between: aFloat-deltah
and: aFloat+deltah

Examples:
Smalltalk
(1502.03 - 1051.42) equals: 450.61 to: 0.01 true
(1502.03 - 1051.42) equals: 450.61 to: 0.001 true
(1502.03 - 1051.42) equals: 450.61 to: 0.0000001 true
(1502.03 - 1051.42) equals: 450.61 to: 100.0 true
(1502.03 - 1051.42) equals: 450.62 to: 0.01 false
(1502.03 - 1051.42) equals: 450.60 to: 0.01 false

Chapter 4. IBM Smalltalk Programming Language 185

Smalltalk

IFloat publicMethods !

printHex
" Answer a string which is the hexadecimal representation of a float.
Assumes |IEEE format "
| shifty sign exp fraction str |

shifty := 0.
8 to: 1 by: -1 do: [:n|
shifty := shifty<<8 + (self basicAt: n)].

sign := (shifty bitAt: 64).

shifty clearBit: 64.

exp := (shifty >> 52).

fraction := shifty bitAnd: 16rO00FFFFFFFFFFFFF.

(exp = 0) & (fraction = 0) ifTrue: [~'0e00'].

str := sign = 0 ifTrue: ["] ifFalse: ['-"].

exp := exp - 16r3FF.

str := str, "1, (fraction printStringRadix: 16 showRadix: false).
str := str,'e’, (exp printStringRadix: 16 showRadix: false).

~ str

Reversing Collections

m What collections can be reversed?

The answer is all sequenceable collections, that is, SequenceableCollection
and all its subclasses implement the reverse method.

Substrings

m Something that looks and sounds simple is not turning out to be simple at
all. 1 am dealing with a string in the following format: lastName, firstName,
midlnitial. From this string | want to create a new string that contains only
the lastName but | can't figure out how to do this.

186 VisualAge for Smalltalk Handbook — Fundamentals

Answer

There are many ways to unpack a string. One way to get the /lastName is the
following:

Smalltalk

| str array lastName initial |

str := 'Doe, John A'.
array := str subStrings.
lastName := array at: 1.
initial := array at: 3.

Implementation of #become:

Answer

How efficient is become: in IBM Smalltalk Version 3? | had thought that it
was all done internally by placing a proxy for the new object in the same
memory address as the old object, so that the garbage collector then
removed these proxies (the added level of indirection is temporary).
However, someone has suggested that this may not be true. Apparently,
Parkplace does it this way, but Digitalk doesn't, and their implementation is
not very efficient. Anyone know anything?

| can’'t answer your question for sure, but here is some information on
become:.

Once, Smalltalk implementations had an object table. Object pointers were
indexes into the table. A become: was simply a swap of two pointers in the
object table. It was fast, and symmetrical.

But, object tables were of fixed size and one had to know ahead of time how
big a table to allocate. Further, each object reference was indirect through
the table: calculate the table address given the index and then fetch the real
pointer to the object.

So what to do? Without an object table, doing a full-fledged become:
requires scanning all objects in the world to find pointers to other objects
and changing the affected pointers each place they are found. What was a
few microseconds suddenly became several seconds. Not good!

So, two schools of wizards developed. One school forbade symmetric
become: entirely. All become: had to be asymmetric, with the second object
simply replacing the first. While this still required scanning the world, it was
faster than the work required to to a full symmetric become:.

Chapter 4. IBM Smalltalk Programming Language 187

188

The second school felt that become: was too important to go away. They
made all object pointers indirect— not through an object table, but through a
hidden pointer. While this took more memory, and made object references
slower than the other wizard’s solution, it was better than using an object
table.

But which wizard is which? One can often tell a wizard by the spells they
use. In Smalltalk, running some timing code often lets one deduce which
spell was used. Below, are tests of the three implementations | have handy:
IBM Smalltalk V3 on a 486 under Warp, VisualWorks 2.0 on a Mac Quadra
950 (68040), and Digitalk Smalltalk/V-Mac on the same Quadra. | ran some
tests. First is the become: test:

Smalltalk

System globalGarbageCollect.
Time millisecondsToRun: [
1000 timesRepeat: [

lab |
a := 'asdf' copy.
b := a.
a become: 'qwer' copy.
a = b ifFalse: [self error: "Whoops!'].

b 1]

It creates an object, assigns it to two variables (so to speak), and then does
a become: with a similar object. When done, it tests to see if the two
objects have the same value. If not, something went astray. It answers b,
which has the same value as a. (Select the innermost block contents and do
evaluate it.) A similar test uses assignment instead:

Smalltalk

Time millisecondsToRun: [
1000 timesRepeat: |

lab |

a := 'asdf' copy.

b := a.

a = 'gwer' copy.

a = b ifTrue: [self error: "Whoops!'].
b]]

VisualAge for Smalltalk Handbook — Fundamentals

Since it uses assignment, b is unchanged and the test is reversed. If an
implementation has an object table, or uses pointer indirection, one would
expect the two methods to run with very similar timings. If it has no object
table, but has to search the world, the two should be very different. When
timing the tests on IBM Smalltalk Version 3, | had the following results: 6230,
6232, 6220, 6264. The results without globalGarbageCollect were 13417,
12105, 10348, 14050, 3355. Then | used the second method with the results
being 66, 69, 66. The ratio is roughly 6200/66 or roughly 100:1. Now | was
timing the code on VisualWorks 2.0. The first method with become: resulted
in 396, 464, 460, the second method came back with 56, 52. The ratio here is
roughly 400/50 or 8:1. Finally, | timed the test on Smalltalk/V-MAC. The
result of the first version were 9617, 6917, 8100, 8417. The second method
resulted in 183, 183, 183. The ratio is roughly 7000/180 or roughly 40:1. In
conclusion, IBM and Digitalk got 100:1 and 40:1 which indicates considerable
slowness is involved. VisualWorks gave only 9:1, which is a lot faster. One
would suspect the wizards are using different spells, but which ones? Isn't
100:1 too fast for a search of the whole world? Isn't 9:1 too slow for a simple
indirection? | don't know...

#to: Method

Answer

What does the Number class>>to: do? | get to:do:, and | understand what
this does, but what is this plain to:?

The to: message answers an instance of a collection named Interval.

Smalltalk

1 to: 10

is equivalent to:

Smalltalk

Interval from: 1 to: 10

and is equivalent to:

Smalltalk

Interval from: 1 to: 10 by: 1

Chapter 4. IBM Smalltalk Programming Language 189

Intervals act like collections if you read from them, but they cannot be
modified. Further, they are not stored as collections so that (1 to: 1000000)
doesn’t take any more space than (1 to: 10). For example, you can write
loops just as with any other kind of collection:

Smalltalk

(Interval from: 1 to: 10) do: [...block...]

For convenience, the to: (and to:by:) messages of Number answer intervals
so this can be written as:

Smalltalk

(1 to: 10) do: [...block...]

And for convenience, the to:do: (and the to:by:do:) messages of Number
make things even easier:

Smalltalk

1 to: 10 do: [...block...]

Interval>>reverse Method

190

Answer

The comment explaining what reverse does, says: "Answer a object
conforming to the same protocols as the receiver, but with its elements
arranged in reverse order.” | can't make head or tail of this. Why not say
simply "Answer an Interval in reverse order?”

Inspect the following code:

Smalltalk

(0 to: 5) reverse

The elements of the result are just as you expected. However, the class of
the result may not be what you expected (notice it's an Array, not an
Interval).

VisualAge for Smalltalk Handbook — Fundamentals

Updating Widgets

m We have some code that sends messages to a visual part, which is then
supposed to display some status information in a text window. The code
works fine except that the status messages are showing up asynchonously
(that is, none show up at all until they all show up at once in a big flood). |
am guessing that what is happening is that the VisualAge part is getting
some events queued up, but that these events aren’t handled until the user
interface process gets control again. Is there some way of forcing these
events to be handled right away so that the updates to the status text
window will be synchronous?

To do so, try the updateWidget message. For example, here is a sample
script for a window with a button, a text part, and a label. This script should
be invoked from the button click:

Smalltalk

buttonClicked
"Demonstrate how to update text on a widget”

1 to: 100 do: [:i |
(self subpartNamed: 'Labell’) object: i printString.
(self subpartNamed: 'Labell’) primaryWidget updateWidget.
(self subpartNamed: 'Textl") object: i printString.
(self subpartNamed: 'Textl') primaryWidget updateWidget.
(self subpartNamed: 'Push Buttonl') object: i printString

All of these controls will reflect the changes instantly. The push button does
not need to have an updateWidget.

Incremental Compiler

m Does IBM Smalltalk come with an incremental compiler?

Yes, IBM Smalltalk does use incremental compilation. Incrememental
compilation means that when you save a changed Smalltalk program
(typically quite short), it is compiled as part of the Save process; you don't
have to recompile everything in the Smalltalk application, just what you've
changed. You rarely notice the compiler working, it's so fast.

Chapter 4. IBM Smalltalk Programming Language 191

IBM Smalltalk comes with a lot of other features for programmer
productivity: the TrailBlazer code browser (unique to IBM), application
change management in the IBM Smalltalk Professional version, and and
Motif-based GUI widgets that work on all platforms.

Caching Compiler

cuestion

Is the IBM Smalltalk compiler a caching compiler?

Absolutely. IBM Smalltalk moved from being one of the slowest to being the
fastest with Version 3.

Creation of Blocks at Run-time

192

Answer

Is it possible to create and execute blocks of Smalltalk code at run time?
For example, | want to read a block from a file. The string | read should then
be converted to a Smalltalk block and this block should be executed.

The basic answer is no, because you need to ship the Smalltalk compiler as
part of your application, and that's not allowed in the Smalltalk license
agreements.

The fuller answer is to ask why you want to do this. Are you dynamically
creating blocks in response to (say) user input, or just selecting one block
from a collection (stored on disk)?

If the former, you will need some sort of compiler or interpreter to translate
the user’'s input to the blocks in the first place, so you could instead produce
an interpreter that works on the user's input, and store that input on disk
instead of the block you would have produced

If you are just selecting a block from a collection, perhaps you should be
creating classes that all implement a behavior according to the user's input;
the methods that implement these behaviours contain the code that would
have been in your blocks.

VisualAge for Smalltalk Handbook — Fundamentals

Pool Dictionaries

Answer

What is the exact mechanism used by Smalltalk to resolve Pool Dictionaries
constant references? Apparently it is not a static substitution of the value at
compile time (because pool dictionary entries can be dynamically changed),
nor, | believe, is there a complete dictionary lookup.

The association (key and value pair), not the value itself, is compiled into
the method. Therefore, run-time dictionary lookups are not needed and
changes to the value done via the pool dictionary don't require any
recompiling of the method.

Text Color Changes

Answer

While the application is running, | send the message

Smalltalk

(self subpartNamed: 'Text2')
backgroundColor:'yellow’;
foregroundColor: 'blue’ ;
show.

to a text subpart. When | put a halt anywhere in the running code, then
Text2 shows the changed color. When | don't stop in the code, then the
changed color is not displayed. What can | do to have the color change
visible with a running application? | need this indication to know what is
happening with the application.

Sounds like you are not giving the user interface process a chance to run.
Either use updateWidget to force it to update immediately, or fork your work
process at a lower priority (Processor userBackgroundPriority) and use
CwAppContext default syncExeclnUI: to update the user interface

Chapter 4. IBM Smalltalk Programming Language 193

Sorting SortedCollections

m In Digitalk Smalltalk, SortedCollection includes the method reSort. I'm
trying to implement my own reSort method:

Smalltalk

reSort
| newColl |

size==0 ifTrue: ["self].

newColl := self species new: size.
newColl sortBlock: self sortBlock.
newColl addAll: self.

elements := newColl elements.

However, this method produces random results (the contents of the
SortedCollection don't get sorted). Am | missing something?

Yes, you get the same result if you evaluate the following code in a

Workspace:
Smalltalk
| newColl coll |
coll := #(andi boris vincent) asSortedCollection.
newColl := coll species new: coll size.

newColl sortBlock: coll sortBlock.
newColl addAll: coll.

coll elements: newColl elements.

~coll.

But now, try this:

194 VisualAge for Smalltalk Handbook — Fundamentals

Smalltalk

| newColl coll |
coll := #(andi boris vincent) asSortedCollection.
newColl := coll species new: coll size.

newColl sortBlock: coll sortBlock.
newColl sorted: true.
newColl addAll: coll.

coll elements: newColl elements.

“~coll.

Now, the resulting collection gets sorted.

Compiler Severity Level

m How do | control the compiler warning severity level?

You must have the TrailBlazer loaded and enabled. From the TrailBlazer
pulldown menu, select Options — Compiler Warning Level

Finding the Sender Signature

m How do | get a hold of the signature (Class>>#method) for the sender of a
method? In other words, during the execution of a method, how can | find

out who sent me?

To get the sending method, just send:

Smalltalk

Processor activeProcess methodAtFrame: 1.

This will answer the CompiledMethod who sent the method currently
executing.

It can be extremely instructive to have a look at EsimageStarUp class >>
outputWalkback:on:process:

Chapter 4. IBM Smalltalk Programming Language 195

The debugger itself provides a good clue to information like this, but note
that much of this code is development-time only and private. That said, take
a look at:

Process>>#receiverAtFrame:
Process>>#stackAtFrame:offset: (good comments in this method)

View the senders of stackAtFrame:offset: for lots of examples of how to use
it.

Sender Context

m How do | find the sender context of a method?

LU Ul You can use

Smalltalk

Process>>contextAtFrame: frameDepth

The following script prints out the top ten stack frames:

Smalltalk

| level nFrames |

level := 10.

nFrames := Processor activeProcess numberOfFrames - 1.

1 to: (level min: nFrames) do:

[f]
Transcript cr;

show: (Processor activeProcess methodAtFrame: f) printString;
show: ' to’;
show: (Processor activeProcess receiverAtFrame: f) printString.

196 VisualAge for Smalltalk Handbook — Fundamentals

Pool Dictionary Tips

m Are there tips to follow when working with pool dictionaries?

Yes. In general, replace pool dictionary values using the at: method. If you
replace the pool dictionary associations (or the entire pool dictionary) then
you need to recompile all the methods that reference its values. When a
method uses a pool constant, the association from the pool is stored directly
in the compiled method. At execution time, the value is taken from the
association and used. If you update the association value (using #atto the
new pool will not be reflected in the execution of the code until it gets
recompiled. It is always best to establish pool dictionaries at load time by
using toBelLoadedCode for your application. Even if you cannot assign
values immediately as they must be computed through the application’'s
logic, you should still build the dictionary with keys and use some form of
lazy initialization to enter the values at an appropriate time. This helps not
only with import and export, but also for loading your application into fresh
images.

Text Display on Update

m Why does my text not show up when | update the database?

You can pause a process by using the Delay class, but it seems like
something you shouldn’'t have to do. The typical way of coding this is as
follows:

1. Put up progress indicator
2. Fork background process: forkAt: Processor userBackgroundPriority

3. Background process calls CwAppContext default asyncExeclnUI:
<update progress indicator> occasionally.

4. Background process finishes, calls CwAppContext default syncExeclnUI:
<close process indicator>

Sometimes developers forget step (2) and run off the user interface process.
It doesn’t halt VisualAge because the database component forks work
processes, but they don’'t get user interface updates as they expect.
Alternative approaches to background processing are covered in the IBM
Smalltalk Programmer's Reference.

Chapter 4. IBM Smalltalk Programming Language 197

Pool Dictionary

Answer

How do | define a pool dictionary?

A pool dictionary is simply a dictionary that is used to declare constants.
You can define it with:

Smalltalk

Smalltalk at: #YourPoolDictionaryName put: (Dictionary new).

or:

Smalltalk

Smalltalk declarePoolDictionary: #YourPoolDictionaryName.

Swapper Error

Answer

Why do | get an error message when loading variable references? It says
“swapper error.”

Sounds like what you've dumped has a reference (possibly a subclass of,
extension to, or contains a class variable instance of) a class that was
reduced away in the run-time image you are binding to. Was the run-time
image you are binding to created by the packager as a reduced image? If
so, you must pay careful attention to both what actually exists in that image
and what the application files you create require to ensure that the
application file does not refer to nonexistent classes, methods, or both.

Hover-Help Behavior

198

cuestion

Why do | see unpredictable behavior using hover-help?

By default, hover-help displays the labelString attribute of a graphical label
or push button. All other parts, including textual labels and push buttons do
not display hover-help. Also if no label string is specified for a graphic label
or push button, no hover-help will be displayed. To specify the label string

for a graphic push button, open the settings for the part, click on Text under
Label type , specify the label string, click on Graphic again under Label type ,
and click OK.

VisualAge for Smalltalk Handbook — Fundamentals

Aborting a Process Stack

m How can | abort the current process stack?

Either use exception blocks, such as at:ifAbsent:, or exceptions (see the IBM
Smalltalk Programmer's Reference). If you are just looking to stop the
exceptions from propagating down the stack, you can add a signal exitWith:
nil to the end of your exception block. If you instead want your entire
application to stop, then you can just System exit.

Exiting an Image

m In my application, is there any means to exit the image programmatically?

Yes, EmSystemConfiguration>>#exit exits the image immediately, so try
this:

Smalltalk

System exit

Configured Subsystems

m How do | see what subsystems | am running?

You can programmatically see what variant of each basic subsystem you
are running, try this:

Smalltalk

System configuredSubsystems

This will answer a LookupTable, which on OS/2 may contain something like

this:
"ABT’ "'VA'
"ABTVER’ 'V 3.0b’
'CFS’ '0S/2’
'CG’ "PM’

Chapter 4. IBM Smalltalk Programming Language 199

'CLDT’ 'ES’
'CLIM’ 'ES’
'CP’ 'PM’
'CPM' 'ES’
'CW' '"PM’

Image Copyright

Answer

How do | go about getting the image copyright programmatically?

You can get a string with the image copyright programmaticaly through
executing

Smalltalk

System copyright

Command Line Arguments

m Do | have access to the command line arguments?

If you want the Smalltalk equivalent of the C variables argc and argv, send

the following:

Smalltalk

System commandLine

This will return you an array of strings (including the executable name at
index 1).

Run-Time Image

m How do | find out whether the the current image is a run-time image?

200 VisualAge for Smalltalk Handbook — Fundamentals

IBM Smalltalk has its own notion of whether the running image is a run-time
image. You can get this information by sending

Smalltalk

System isRuntime

EsWeakSet and Finalization

m How do | go about synchronizing an EsWeakSet with the real state of
objects?

EsWeakSet and finalization do work together; that is, finalization keeps a
weak set of objects that could potentially be finalized in the next cycle. The
finalization cycle is run when the system is idle.

Continue Background Process

m Is there any way for a process to continue execution after
suspendExecutionUntilRemoved has been issued?

The example below shows that execution of background processing
continues during suspendExecutionUntilRemoved.

Smalltalk

| shell widget |

shell := AbtShellView newPart openWidget.

[[(widget := shell widget) notNil and: [widget isDestroyed not]]

whileTrue: [CgDisplay default bell: 100. (Delay forSeconds: 3) wait]]
forkAt: Processor userSchedulingPriority.

shell suspendExecutionUntilRemoved.

Chapter 4. IBM Smalltalk Programming Language 201

Automatic Log-Off

cuestion

How do | implement a timeout feature that automatically logs off a user after
a minute of inactivity?

This is tricky stuff. Our Multimedia parts do something like this for the same
purpose. The approach is to replace the handlers in the EventTable for all
mouse and keyboard events, and reset a timer each time one of these is hit.
See OsWidget>>mtrTrackAlllnputActivity in the subapplication
AbtMultimediaAuthoringPM/Win. You have to be careful that the code you
invoke in the new handlers is safe for all widgets, and reset the handlers
when you are done.

I can also think of another way, although | have not tried it— | suspect if you
modified the implementors of callCallbackList:callData: to log the time,
you'd get a hit whenever there was activity (focus change, keystrokes,
mouse active, etc). The drawback of this approach is you'd be modifying
the base image. Not a crime, but means you own it.

Synchronizing a Visual Part

202

cuestion

How do | synchronize a visual part with the Smalltalk object it is called
from?

If you simply want to wait in a script for a window you opened to be closed,
the easiest way is to use

Smalltalk

myWindow openWidget.
myWindow suspendExecutionUntilIRemoved.
... "whatever you want to happen after the user closed the window"

The user interface process has the same restrictions as Presentation
Manager (PM), that is, you must return to the polling loop or the user
interface (Ul) will lock. Therefore, you cannot block on a semaphore in the
Ul process; if you do, you'll lock the Ul if the semaphore is not posted
quickly. When you execute code from a Workspace with Execute, that code
is evaluated in the Ul process. An example is (Semaphore new) wait. If |
select and execute this, the Ul will lock (press and hold Alt+SysRq, or
press the User Break button on Windows 95/NT, AIX to unlock). However, if
| fork around it, it doesn’t lock because it is not running on the Ul process.

VisualAge for Smalltalk Handbook — Fundamentals

I don't understand why you need to stop the user interface, but if you must,
here's a safe way:

Smalltalk

["keep waiting condition”]
whileTrue: [CwAppContext default readAndDispatch].

This is equivalent to going into a peek loop in PM, that is:

Smalltalk

while ("keep waiting condition”) [
if (WinPeekMsg(...))
WinDispatchMsg(...);

This keeps the Ul responsive, but | don't recommend it except for
implementing modality as btShellView>>#suspendExecutionUntilRemoved
does.

Execution Start

m How does my VisualAge application start execution?

In the Smalltalk image, the default packaging specification prompts you for
launch code. This is text that is compiled into a method and called after the
runtime image is started just before dropping into the polling loop. In the
VisualAge image, the default packaging specification doesn’'t prompt you for
any launch code, it sends runtimeStartUp (don't forget the capital U) to all
resident applications instead. So you either need to supply launch code or
a runtimeStartUp method. If you are in a VisualAge image but your
application is not a VisualAge application, then you can specify
EpStandardRuntimeSpecification which will prompt you for launch code and
may end up with a smaller run-time image.

Chapter 4. IBM Smalltalk Programming Language 203

Inheritance of Visual Parts

m When inheriting visual parts, you don't have the same flexibility as when

inheriting scripts. In the case where you override the inherited visual part
(or “specialize it”), any subsequent changes to the superclass part are not
visible to the subclass, as saving the changes causes the regeneration of
the abtBuildIinternals and other run-time methods, which are completely
overridden by the same run-time methods in the subclass.

Here are scenarios for visual parts:

Class B is inherited from class A. Class B remains unchanged. Class A
is changed. The changes to class A will show up in class B.

Class B is inherited from class A. Class B is changed or specialized.
Class A is then changed. The changes to class A will now not show up
in class B.

As a result, inheriting visual parts should be thought of as a one-time copy.
Therefore, you should be careful to stabilize the visual part class you are
inheriting from as much as possible before inheriting.

Multithreading

204

m Does VisualAge support OS/2 multithreading ?

You can create multithreaded-like applications through the use of Smalltalk

processes. Although the processes actually run under a single thread, calls
to external functions can run on a thread separate from the base Smalltalk.
Although the ability to access all OS/2 APIs does exist, some functions such
as semaphores are implemented inside Smalltalk to support its scheduling
of processes. When you call external code from VisualAge, all of its
processing and the external function's processing are executed on a single
thread. This means that while the function is being run, processing for the
rest of VisualAge is halted, including processing for the normal operation of
its user interface. To overcome this problem, VisualAge enables you to
reroute the execution of any external functions to a separate thread so that
normal processing can continue while the function is running.

VisualAge for Smalltalk Handbook — Fundamentals

Global Variable

m How do | create a global variable?

Since the names of global variables are nothing more than keys in the
Smalltalk dictionary, a new global variable is added by adding a new key to
this dictionary. The global variable should begin with a capital letter. For
example, the following statement adds a new global variable called
MyCustomers with a value of nil:

Smalltalk

Smalltalk at: #MyCustomers put: nil.

If you subsequently want the variable, just execute:

Smalltalk

MyCustomers := <value>.

Even with this method, you have to be very careful that MyCustomers is not
already an existing global (for example, a class) or you may break the
system.

Avoid the use of global variables in applications, if at all possible. The use
of global variables violates the principle of data encapsulation. Many times,
adding a new object or adding behavior to an existing object will provide the
same function as a global variable.

Updating Class Attributes in a Run-time Image

m If a user modifies the value of a class attribute in a runtime image, is the
change automatically saved from one execution to the next? In other words,
does the run-time image get updated as the user exits the application?

You cannot (normally) update a run-time image. In order to do save

changes, you have to choose other techniques, for example, external files
(using the CfsFileStream class).

Chapter 4. IBM Smalltalk Programming Language 205

Class Methods at Run-Time

m Is there a way to check if a method exists in a class (at run-time); something
like allMethodsNamed: selector.

The following code returns true if my class or a superclass contains a
method implementation for the message selector and false otherwise:

Smalltalk

myClass respondsTo: #myMethod)
ifTrue: ["method exists”]
ifFalse: ["method doesn’t exist”].

Objects 's Knowledge of Reference

m Review the following code:

Smalltalk
|ab|
a := SomecClass new.
b := a.

When variable b is assigned the value pointed to by variable a, does the
object that variable a is pointing to have any knowledge that it is being
passed around? | there a way to inform the object when it is referenced?

The variable b (not the object b) is assigned the value pointed to by the
variable a. There are no messages sent and no code is triggered.

One approach to solve this problem is to put a wrapper around the object
and let others pass the wrapper around. Your class would look something
like this:

206 VisualAge for Smalltalk Handbook — Fundamentals

Smalltalk

SomeClass class>>new
~ Wrapper holds: self new

SomeClass>>x

VAN

X

SomeClass>>x: aValue
x := aValue

The Wrapper class would look like this:

Smalltalk

Wrapper class>>holds: anObject
~ self new holds: anObject

Wrapper>>holds: anObject
wrappedObject := anObject

Wrapper>>x
wrappedObject aboutToExecute: #Xx.
~ wrappedObject x

Wrapper>>x: aValue
wrappedObject aboutToExecute: #Xx:.
~ wrappedObject x: aValue

Then,

Smalltalk

|ab|

a := SomeClass new.
b := a.

b x: 234

causes the object in 'a' to be sent the aboutToExecute: message passing
#X:.

Chapter 4. IBM Smalltalk Programming Language 207

Smalltalk Class or AbtAppBldrPart

m What is the difference in using a Smalltalk class as opposed to a nonvisual

Answer

part when creating business classes and what are the implications?

One of the main differences between a Smalltalk class and a VisualAge
nonvisual part is that you have a Composition Editor with the latter. The
Composition Editor allows you to do visual programming within the
nonvisual part. This means that you can drop parts on the Composition
Editor and make connections between them. Obviously you wouldn't put
visual parts, for example a text part, on the Composition Editor of a
nonvisual part, but you could place any nonvisual part or Smalltalk class on
the Composition Editor and make connections between anything defined in
the public interface for those parts.

When you want to create a nonvisual part for which you don't need
composition facilities, you can subclass AbtPart instead of AbtAppBIldrPart.

Cleaning Up Unused File Handles

208

Answer

If you get a walkback while you have a file open, that file remains open until
you exit the image. Is there a way to clean up all of these open files?

The best way to address this situation is to act defensively. You can set up
an exception handler so that when a walkback occurs, the file handles are
automatically closed. Here is an example:

Smalltalk

| inputFile stream tempString |
s ="\
inputFile := CwFileSelectionPrompter new
title: 'File to open’;
prompt.
stream := CfsReadFileStream open: inputFile.
stream isCfsError
ifTrue: [self error: stream message].
[[stream atEnd] whileFalse: [
tempString := tempString, stream next asString].
stream close
] whenExceptionDo: [stream close].
“tempString

VisualAge for Smalltalk Handbook — Fundamentals

Initializing Class Variables

cuestion

How can you initialize class variables in the Trailblazer? | would like to
initialize a class variable with a pool dictionary.

Probably toBeLoadedCode would be the best place. This string is stored
with the application in the manager and is evaluated (compiled) when the
application is loaded. Since it is evaluated before any of the application's
classes are loaded, you can define pool dictionaries that are referenced in
the application’s classes.

You can store a code string to be evaluated with YourApplication
toBelLoadedCode: 'yourcode' or bring up a simple editor with
YourApplication abtEditToBeLoadedCode. The TrailBlazer can modify these
directly by selecting an application (Browse Applications) and changing the
lower pane property to ToBelLoadedCode.

Forking and Cycles

Answer

I have an application in which | display a window containing a graphic that,
through the use of a timer, appears to move. That is, the users see an
image move across the window to illustrate that information is being
downloaded from a database.

To do this, | have used fork, forkAt:, and a number of other techniques. The
problem is that | cannot get the graphic moving smoothly while the domain
is initiated. When | run both pieces of code, it appears that the graphics get
held up during the actual query call, and the instantiation gets held up by
the timer. The resulting behavior is that the graphics appear but don’'t move
until the query has finished. Would this be the right approach to do this?

Getting a smooth graphic is difficult when you depend on the scheduling
algorithm. Instead, it would be better to use signaling from the work
process to the status process. For example, for each step through the
database table, you signal the status process.

This is often necessary because graphics update runs at the low priority.
By forcing graphics updates at regular intervals, you assure your user is
seeing true progress, not simply a bouncing ball graphic that indicates
passage of time.

Trying to provide a smooth visual with background processes running is
difficult because of two factors: user interface processes try to run when

Chapter 4. IBM Smalltalk Programming Language 209

everything is idle, and when they finally do, they run to completion (under
the assumption that won’t be long). You can try and override this behavior
using yield and CwAppContext default syncExeclnUIl: <>, but often the
results are not smooth and predictable.

Converting Numbers Using printString

210

m In an older version of VisualAge | could perform the following:

Smalltalk

1.02 asDecimal printString

This would produce a string of '1.02". If | try to do the same in Version 3.0 it
would produce the following string: 1.02d16.15'. How can | make Version 3
produce a result similar to that of Version 2?

The printString method is really for debug purposes, since it is not sensitive
to national language support (NLS) considerations (period vs. comma,
negative indicator, and so on). Instead, use the locale classes (IBM
Smalltalk) or AbtConverter classes (VisualAge). For example,

Smalltalk

(AbtDecimalConverter new) objectToPrint: 1.02 asDecimal.

or

Smalltalk

| stream |

stream := WriteStream on: (String new: 128).
Locale default IcNumeric printNumber: 1.02 asDecimal on: stream.
stream contents.

Both of these examples answer '1.02" (on a machine where the decimal
separator is defined as '.").

VisualAge for Smalltalk Handbook — Fundamentals

Garbage Collection of Instances

Answer

Is there a fast way to get rid of unwanted instances? Suppose these
instances are in a linked list so that they are always referenced. You could
use the alllnstances method to find all the instances and make them
become: String new. However, this is very slow, so another thing you could
do is create a class variable to store all the instances, then when it is time,
you make them become: String new. Even if you cache the instances in the
class variable, the process of become: String new is still very slow. Now,
how can you quickly remove these instances so they can be garbage
collected?

The best way by far to solve a problem like this is to find the source. Then
you don't have to try and solve the symptom with things like become:. You
need to determine the critical reference. A linked list is not a problem. The
garbage collector is capable of detecting circular references and will collect
such objects if they are not referenced by anything outside the circular list.
That is, in your case, something else is holding on to something in that
linked list. It is difficult to find out which item in the list is the being
referenced.

You might try running System abtScrublmage. If your linked list goes away,
then see which of the steps freed your object by clearing the dependencies,
terminating processes, and so on. If it does not, then you probably have a
reference either in class or class instance variables or a reference in the
Smalltalk dictionary itself.

An object is garbage collected when there are no references to it that
ultimately references something in the global (or old) space. There are two
types of garbage collections: flips and sweeps. A flip is lightweight— if an
object is referenced by anyone it is included in the flip (called a flip because
objects are flipped between two areas of memory). A sweep is more costly
because it starts in the old space and traces references to the end. Sweeps
take 5-10 seconds on my machine, but rarely occur.

The goal is to maximize the recovery of objects in flips, and minimize the
sweeps. It is helpful to eliminate old space types of references such as
globals and class variables, and to avoid communes (circular references).

Objects that survive several flips are tenured to old space under the
assumption that they're going to be around for a long time and it is a waste
to keep copying (flipping) them. In Version 3, there are command-line
options to change or limit the size of the various spaces.

Chapter 4. IBM Smalltalk Programming Language 211

4-Digit Years

m Evaluating the expression Date today yields 04-01-96. What | want it to yield
is 04-01-1996. Is there a way | can achieve this?

With VisualAge you can do this by specifying it in the settings for an entry
field, or programatically like this:

Smalltalk

(AbtDateConverter new) showFourDigitYear: true;
objectToDisplay: Date today.

Or, if you are running IBM Smalltalk, you can also use:

Smalltalk

IcTime := Locale current IcTime copy.
IcTime dFmt: "% m-%d-%Y'.
IcTime printDate: Date today on: Transcript.

They are basically the same. The problem with Date today printString is it
always tries to go with the current locale. If you want to override the locale,
you can add an entry to your NLS.CNF file: dFmt="%m-%d-%Y'. This will
override the date format returned by the operating system. See
EsNlIslmageStartUp>>abtActionTable for the other possibilities.

Fixing Date Years

m When you enter two characters in the year area of a date field, it defaults to
207? Is there a way to get date years to default to the current century rather
than the 21st?

The rules for normalization of the year are as follows:

1. 100< = y< = 9999 - take as is.

2. 0<= y< = 79 - assume 21st century (2000..2079)
3. 80< = y< = 99 - assume 20st century (1980..1999)
4

All others are invalid.

212 VisualAge for Smalltalk Handbook — Fundamentals

You may want to modify the instance method normalizeYear: in
AbtDateParse class to customize the default.

ABTPATH

Answer

Is there any way to find out the ABTPATH value (set in config.sys) in
VisualAge for Smalltalk?

There is a method available to strings that will allow you to scan the
environment variables for the path indicated. It is called abtScanEnv. For
the ABTPATH value, you can evaluate:

Smalltalk

"abtpath’ abtScanEnv

— Note!

This method is private, and really shouldn't be used. However, there is
no other way to do this.

Double-Triggering of Changed Events

m How do | make events work for Smalltalk Classes?

When VisualAge was originally created, it was intended that Smalltalk

classes from other environments could be ported directly. To accommodate
such an ability, the development staff included some code that automatically
triggers the feature connections of a part whenever an attribute changes or
an action is performed (presumably, in either case, the attributes of a part
might change).

One symptom of this problem is the triggering of attribute-changed events
twice whenever any attribute changes or an action is performed. The
signalEvent:with: code in the setter method for an attribute triggers the
event and the special code automatically triggers the event, a second time.
Besides being a little inefficient, this has the added problem of signaling all
events automatically for us, regardless of the code executed.

To handle all events explicitly, the automatic mechanism can be turned off
by overriding the following instance methods for each Smalltalk class:

Chapter 4. IBM Smalltalk Programming Language 213

Smalltalk

featuresAffectedByAction: actionName
"For objects that do not signal their own change events. Defines the
features affected by an action. Do not signal any events, the receiver
handles all change events itself.”

()

Smalltalk

featuresAffectedByAttributeChange: attributeName
"For objects that do not signal their own change events.
Do not signal any events, the receiver handles all change events
itself.”

~H#()

For both methods, the code has been replaced by the simple return of an
empty array (“#()), indicating that no change-events need to be signaled. For
both methods, answering an array containing #self (a Symbol) signals
change-events for all the receiver's features.

Be warned that with these methods overridden, you have the responsibility
for triggering all events yourself (VisualAge will do nothing for you
automatically). If you have an attribute that is an OrderedCollection, for
example, and you add an object to that OrderedCollection in a method (or
script) you have to trigger the changed event for that collection yourself.

The ToDolist class, subclass of Object, keeps a list of things to do in an
OrderedCollection in an attribute named /ist. The action addToList: invokes
the method addTolList:

Smalltalk

addTolList: aString
"Adds a string to the receiver's list.”

self list add: aString.
self signalEvent: #list with: self list

The last line of the above method explicitly signals the event, telling
interested parties that the /ist attribute has changed.

214 VisualAge for Smalltalk Handbook — Fundamentals

Inheriting Visuals Associated with a View Class

m The visual representation is considered a singular entity. When you create
a subclass, you get a one-time snapshot of the visual representation of your
superclass, which is then overridden when you save your subclass.

Think of it as a method. You can override the method in a subclass, and
you can even copy most of the contents down for tweaking in your subclass.
However, depending on how and what you change, you may no longer be
able to use superclass, and any changes you make in the superclass
implementation will no longer affect the behavior of your subclass.

The reasons you must be very careful are basically the same as the reasons
why inheritance is not done automatically. Changes can occur that would
leave your view in an inconsistent (or at least confused state). For example:

Viewl has Buttonl.

View2 inherits from Viewl. It adds Button2 whose left edge is attached
to the right edge of Buttonl.

Suppose you now update Viewl by removing (or replacing) Buttonl. What
happens to View2? Should it lose Buttonl too, or does it still need it? If we
dropped it, what does that say about the placement of Button2? This is
actually a simplistic scenario. Others can lead to much more severe issues.
Connections can be very problematic, especially since all connections are
placed in a single method.

Now with the archival code, you can make the decisions. You can override
the appropriate methods and keep Buttonl in View2, or you can modify the
method that creates Button2 and change it so that it does not attach itself to
Buttonl. But be warned, once you start down this path, using the
Composition Editor to maintain your views is probably not feasible.

Again, | can't over-emphasize the risks you are taking by doing this. Does
this sound like the voice of experience? Yes, unfortunately it is. If you are
not fond of or comfortable with scripting today, then this is absolutely not for
you!

Chapter 4. IBM Smalltalk Programming Language 215

Garbage Collector Problems

Answer

I am having a problem that instances are not removed by the garbage
collection process. If | open a class MyView 30 times, then MyView has 30
instances even after | forced garbage collection. | don't expect other objects
to reference instances of MyView. Could there be any other reason that
instances of MyView are not garbage collected?

A suggestion would be to start doing this:
1. Save your image (so you can come back to it if necessary).
2. Execute System abtScrublmage.

3. Check for instances.

a. If they are still there, you start to suspect class variables or globals
in the Smalltalk dictionary.

b. If they are gone, then start the image again (so you can get those
instances back) and execute the pieces of abtScrublmage
individually to determine what caused them to finally be garbage
collected (that is, was it terminating any processes, reinitializing the
widgets, or flushing the dependents?) If it was the dependents, then
the most common cause is that people send the method closeWidget
rather than using the action (which actually uses the method
closeWidgetCommand).

Integer Representation

Answer

How can | change the internal representation of Integer from 16 bit to 32 bit?

Smalltalk integers are not stored as 16-bit or 32-bit integers. The're actually
30 bit integers until that's not enough, then they grow as long as you need
them to be.

Method Tracing

m Has anyone done any method tracing in IBM Smalltalk? | need to count

actual method calls by class for a given transaction. The profiler gives me
only a percentage of time spent in each method based on samplings. In
essence, what | want to do is: just before a method is pushed onto the
stack, I'd like to write out a line to a text file with the class and method

216 VisualAge for Smalltalk Handbook — Fundamentals

Answer

name. | currently cannot do this because | get a “source code not
available” message.

Yes, it's certainly possible to do this. The easiest way is to act like a
debugger and repeatedly step through the code. It's slow, but it works.

The source code to some of the system is missing, but that shouldn’'t matter,
since you don't need source code to find the class name and selector.

Storing Object of Unlimited Size

Answer

| am using the Swapper (the class parent of Dumper and Loader) to write
my objects to disk. I've heard that you can’t write any single object to disk
that exceeds 65000 bytes. Is there a workaround to solve this?

The limitation is that no single primitive object can be greater than 64 KB in
size. (Its actually a few bytes less because of object headers.) Primitive
objects that must be less than 64 KB are Strings, DBStrings, ByteArrays,
and Arrays. (Note that each array element is a 32-bit pointer, so that an
array with 16*1024 elements will exceed the limit because the continguous
storage area for the array itself violates the limit.)

The script at the end demonstrates successful storing and retrieving of
object collections whose aggregate size is over 4 MB, but no single element
violates the 64 KB limit.

If you have a need to store data that contains large primitive objects (such
as very large strings), then you may indeed need to use a commercial
database package. (Optionally, if you know where these large objects are
and if they aren’t too prevalent, you could break them up and reglue them
yourself. You would be the best judge of the appropriateness of this
approach.)

Some objects, such as Classes and BlockContexts, cannot be swapped out.
If your object graph contains any of these, then you will have other
problems. (I believe that sorted collections often hang on to a sort block—
this may be a source of trouble.)

Chapter 4. IBM Smalltalk Programming Language 217

Smalltalk

| objects dumper totalBytes |
objects := OrderedCollection new.
100 timesRepeat: [

objects add:

((String new: 48 * 1024)
atAllPut: $x;
yourself)

].
objects do: [:ea |

ea at: 40 * 1024 put: $*].
dumper := ObjectDumper new.
totalBytes := dumper totalSizeBeforeUnload: objects.
System message:

'total bytes in persistend object= ', totalBytes printString.
dumper unload: objects intoFile: 'foo.obj'.
objects := ObjectLoader new loadFromFile: 'foo.obj'.
objects do: [:ea |

(ea at: 40 * 1024) = $*

ifFalse: [self error: '"bad obj']

].

System message: 'Everything went fine.’

Collections and #do:

218

Answer

I was trying to find out how the method do: works when | send it to an
ordered collection. | found out that AdditiveSequentiableCollection has the
instance variable implementationCollection and the method do:. This
method probably uses do: from SequencableCollection. Where does
implementationCollection get initialized and to what?

Collections in IBM Smalltalk aren’t the same as the collections in other
Smalltalk implementations. That is, their public protocol is the same, but
the implementation has been significantly optimized. The implementation
changes depending on the size of the collection. The
implementationCollection variable is the reference to the collection which is
created based on size and characteristics.

If you look in OrderedCollection class>>new, you'll see that it actually
works with an EsLinearOrderedCollection. SortedCollection is more
interesting, since you'll see in SortedCollection (Class)>>new: it creates
either an EslnsertionSortedCollection or an EsHeapSortedCollection

VisualAge for Smalltalk Handbook — Fundamentals

depending on if there are 16 or fewer elements. The InsertionSorted
implemention does an insertion sort, where the heap does a Heap sort. For
fewer than 16 elements, the insertion sort is faster than doing a heap.

Thus, the SortedCollection new starts life as an insertion-sorted collection,
then changes to heap-sorted collection when we get to 17 elements. The
ImplementationCollection instance variable keeps track of the details of
what object is really represending the list, and if | remember right, this is a
strategy pattern.

Fixed Object Space

cuestion

Does IBM Smalltalk have fixed object space?

Yes. We have a message called makeFixed that will protect an object from
garbage collection. That is, makeFixed relieves the garbage collector from
having to flip around lots of long-lived objects (at the cost of manual
deallocation).

Parsing Strings with Date/Time

Answer

Is there a method for parsing a string to get an instance of Date? That is, to
do something like this:

Smalltalk

'08-23-93" asDate

and receive an instance of Date as a result. The same question applies to
Strings representing Time.

You might want to write a method (in the String class) using the existing
data converters. Try something like this:

Smalltalk

asDate
~AbtDateConverter new displayToObject: self.

Chapter 4. IBM Smalltalk Programming Language 219

Smalltalk

asTime
~abtTimeConverter new dispalyToObject: self.

One point to watch for with this approach, however, is performance. IBM
Smalltalk type converters are intended primarily for handling user input. If
you peek into the implementation you see that there is a lot of code for
error detection, error handling, and locale-specific format support.

If you convert many strings repeatedly, AbtTimeConverter object creation
imposes significant overhead. For example, if you implement

Smalltalk

String>>aslinteger
~AbtIintegerConverter new displayToObject: self

then this will result the following code to take up to 3000 milliseconds:

Smalltalk
lab]|

a = '66543'".
b :='10.7".

Time millisecondsToRun: [1000 timesRepeat: [b asinteger. a
asinteger]]

For such cases, reusing a cached AbtintegerConverter will yield a
noticeable improvement. You can change your implementation of
String>>asinteger as follows:

Smalltalk

String>>aslinteger
~self asNumber

| expect this to be over 30 times faster than the AbtintegerConverter
implementation, but it obviously does not solve your problem with dates and
times. If you feel you don't need all the error handling and locale support,
and you need performance suitable for loop processing, you might consider
writing your own simple parser class, with tokenizing and conversion
methods that are optimized for your application.

220 VisualAge for Smalltalk Handbook — Fundamentals

Identity Test on String

Answer

I have noticed an interesting fact on testing the identity of two string
instances:

Smalltalk
lab|
a := 'myString’.
b := 'myString’.

Given the above script, | thought that a == b would result in false while
executing a = b gives you true as the result. But | found IBM Smalltalk
returns true as the result of the identity test (a == b) and | am not quite
sure why a and b are identical.

The reason for this behavior is due to compiler optimization. Here's an
example. Suppose A and B are global variables:

Smalltalk

A := 'my string'.
B := 'my string’.
A ==1B

If the code above is evaluated as a group, you'll get true. If you evaluate
each line separately, A == B will return false.

When you create strings with the single quote, you are creating a literal
string. Literal strings cannot be modified so as an optimization the variable
a and variable b actually point to the same object. This would usually
create problems, but since it's a literal you can’t modify either one of them,
so it doesn't really matter that they're the same object.

For example, if you try this code snippet the results will be what you
expected.

Chapter 4. IBM Smalltalk Programming Language 221

Smalltalk
lab]|
a := 9 printString.
b := 9 printString.
a=m>b - true
a ==b - false

Replacing Character in String

222

Answer

In some other Smalltalk implementations, | can replace characters in a
String by using the method:

Smalltalk

String>>at:put:

In VisualAge, if | try the following:

Smalltalk

'dog’ at: 1 put: $D

| get a walkback with the following error: “Store into read-only object.”
What is happening? And what is the right approach for replacing characters
in a string?

In your case, 'dog' is a literal. (Some other examples of literals are 3.14,
#D101, and 1234). You should never try and replace characters in a literal
string. This is one of the most common sources of errors in other Smalltalk
platforms. IBM solves this problem by preventing it altogether. If you want to
do this, make a copy of the string first, like this:

Smalltalk

'dog’ copy at: 1 put: $D

VisualAge for Smalltalk Handbook — Fundamentals

Padding Strings

m Is there a method that allows me to pad a string with n number of
characters to the left or right?

EsString>>abtPadWith:upToLength:onRight: is the method you are looking
for. Here are a couple of examples of how the method works:

Smalltalk

'1" abtPadWith: $0 upToLength: 5 onRight: false - '00001’
'abc’ abtPadWith: $d upToLength: 4 onRight: true - "abcd’

Trimming a String

m How do | trim a string padded with spaces?

If you want to remove only the leading and trailing spaces, use trimBlanks.
If you want to remove all the white space, use abrWithoutWhitespace.

Inhibiting List Selection

m | need to be able to inhibit list selection when users click on specific items
within Cw... and Ew... list widgets, but there doesn’'t seem to be a public
interface for doing so. | know, native aboutToChangeSelection events exist
down on the GUI platforms, I've implemented them on Windows (not sure
about OS/2). The documentation I've read make no mention of any callback
return values that could be used towards this end. I'd like to avoid
subclassing or extending classes in OSwidget layer if possible.

The Ew... list widgets (EwList and subclasses) have a selectionPolicy:

interface (have a look at the comment). This should enable you to do what
you want.

Chapter 4. IBM Smalltalk Programming Language 223

Resizable Table Rows

Answer

| am using VisualAge Professional for OS/2 and WindowBuilder Pro for 0S/2
(3.0) and am having difficulty trying to use the multiline text edit policy within
an EwTableList widget. | hope someone can come up with a simple solution
for what | am trying to do.

We have an interface that is supposed to look and work much like a
contemporary spreadsheet. However, we intend to display information in
cells that may be several lines long. | have created an EwTableList widget.
Within one of the columns, | use an EwTextEditPolicy, passing the editMode
as multiple lines. Everything works great! | can enter as many lines as |
wish.

The problem | have is what occurs when | leave the cell. The cell displays
only a single line of text. Ideally, | would like to expand the edited row to a
size capable of displaying the complete text. Alternatively, | would like to
allow users to resize rows in the same way they can resize columns. | have
tried messing with itemHeight settings, but they appear to affect every row
within the table.

| am told that you can create dynamic row heights via setting the itemHeight
to nil (do this in prelnitWindow). This feature is undocumented, but | have it
on good authority that it works. Setting itemHeight to nil causes the table to
base each row height on the data in that row. | don't think it allows you to
have user-resizable rows. That would probably require subclassing
EwTableList itself. You might want to trace through the code in EwTableList
(and its superclasses) that deal with itemHeight. It is very illuminating.

If you set the itemHeight to nil, the EwTableList will send the ewHeightUsing:
method to the value in each of the cells. Your contents are EsStrings,
therefore they should already pick up the implementation there where for
each line feed the height is increased by the size of the font.

Adding wmUser Messages

224

How do | add a wmUser message? The C DLL that I'm interfacing to sends
wmX messages to my Smalltalk image for processing. I've figured out how
to add missing Presentation Manager wmX messages via the OSWidget
method eventTableAt:put:with:, but not wmUser messages.

VisualAge for Smalltalk Handbook — Fundamentals

| could subclass OSWidget, add my new event and then reimplement
windowProc:with:with: to check for my event and process it. Is this the
correct or preferred way?

When you say reimplement windowProc:with:with: you mean in your
subclass, right? This is certainly the most efficient way of doing this. The
other option would be to add an entry in the event table and extend
OSWidget to add the new event. However, the event table is currently a
1023 element array and arrays can't be grown, so in order to get WM_USER
(4096) in there, you'd need to replace the current array with an all-new one.

New Operating System Event

m How do | register a new operating system event?

To register a new event use: OSWidget method eventTableAt: aninteger put:
anObject where aninteger is the event number and anObject is a symbol
(that is, your selector name).

Class Instance Variables

m Are there class instance variables in IBM Smalltalk?

Yes, they are there. Here is a sample:

Smalltalk

Object subclass: #AbtNLSCoordinator
classinstanceVariableNames: 'currentCodePage '
instanceVariableNames: "'
classVariableNames: 'CharacterSet CurrentLocaleMapping
LocaleMappingCharacters '
poolDictionaries: 'AbtConstants CfsConstants AbtPrimitiveNLSStrings
AbtMsgBase '

Chapter 4. IBM Smalltalk Programming Language 225

Class Naming

226

Answer

Are there any performance considerations for the length Smalltalk class
names and instance variable names? In other words, will a system with a
bunch of 40-character names run slower than a system with a bunch of
4-character names. In DB/2, shorter table names relate to faster response
time because of more table entries in the hash table.

First you need to understand one of the very important concepts in
Smalltalk, the difference between instance identity and equality. Two
instance are “==" if they are the same object, which is to say they occupy
the same memory location. But “=" may be different. An expression a = b
answers true if the method for “=" in the receivers class answers true.
That method may be redefined as appropriate for each class. The default
method for “=" is the one in Object which is the same method as “==."
But for Strings you will find a different method that checks that the
characters are the same.

Symbol is a subclass of String that maintains a SymbolTable as a class
variable. It is designed so that only one instance of Symbol has a given
spelling. This means that “=" can be redefined (again) to be the test for
object identity. The names of classes are Symbols and all the method
selectors are Symbols. All the lookups, and the like, can use object identity
comparison, just checking the address rather than comparing all the
characters. So the length of the names doesn’t matter at all.

Instance variable names are Strings, but they are used only by the compiler.
Once compiled, the methods refer to instance variables by slot number
rather than by name, so the strings are not compared at run time. There is
obviously some size impact that may affect performance to some degree,
but only if there is an issue of total available memory.

There is an optimization in IBM Smalltalk that can fool you into thinking that
part of what | wrote above is wrong. We would expect that

Smalltalk

'abc’' = "abc'

answers true, but

VisualAge for Smalltalk Handbook — Fundamentals

Smalltalk

'abc == 'abc’

should answer false. It answers true instead?

In IBM Smalltalk, the compiler creates literal strings as read-only objects
and makes an optimization to use the same instance for any strings with the
same spelling which are compiled in the same method or workspace
expression. To get the right answer, we need to make a copy

Smalltalk

'abc' == 'abc' copy - false
but

Smalltalk

#abc == #abc copy - true

Anyway, trying to place any sort of naming restriction on Smalltalk to meet
database limitations is not the right approach.

Reusing the Settings View

m Is it possible to reuse the VisualAge template for the settings view? | am
creating custom parts and would like my settings to have the same look and
feel as other VisualAge parts.

Are you asking if it's technically possible, or legally possible? | believe the
answer to be “yes” to either question. For the technical side, you can
generate archival code and do a find or replace to change the class name to
your settings view, and then file that code in.

Chapter 4. IBM Smalltalk Programming Language 227

Exception: #doesNotUnderstand

m I need to know the IBM Smalltalk way of specifying an exception handler for
doesNotUnderstand. In Digitalk Smalltalk, it used to look like this:

Smalltalk

[self foo]
on: MessageNotUnderstood
do: [self doesNotUnderstandHandler]

What is the IBM Smalltalk equivalent of this?

If you look at the method doesNotUnderstand: in Object, you see:

Smalltalk

doesNotUnderstand: aMessage
"Report to the user that the receiver class
for superclasses do not implement any methods
for the message selector contained within the
argument aMessage.”

“self error: (self doesNotUnderstandError: aMessage)

The upshot of this is there is no exception specifically for the
doesNotUnderstand: method. You would have to catch it by catching all
errors, as in this code snippet:

Smalltalk
i

[i do: [:each | each become: nil]]
when: ExError
do: [:signal |
System message: signal argument.
signal exitwith: nil]

This code is interesting in many ways. You may want to play with it for
some time; for example, try to initialize /i to something that does or does not
understand do:, and also try to exitWith: something a little more interesting
than nil.

228 VisualAge for Smalltalk Handbook — Fundamentals

Of course, instead of catching all exceptions, you can create the new
exception for doesNotUnderstand:, and change the method to signal that
exception instead.

Creating Classes from Smalltalk Script

m What's the proper way to create a class in Smalltalk code (the name is
entered in an entry field) and adding a few methods? I'm running in the
team environment. I've tried various combinations of
Compiler>>#evaluate: and Compiler>>#compile:in: but have the
following problems:

1. The class | create has no owner. No biggie, but | thought that EmUser
currentUser would own classes created with evaluate..

2. Methods | compile seem to lose their source code. | stole the code from
the SubApplication class method for creating the method for starting
run-time views (don’t remember the method name) so | don't see what
I'm doing differently. Could have something to do with the ownership
question though.

| see you enjoy this kind of fooling with the environment. Anyway, you can
try this after calling Compiler class>>#compile:inClass:

Smalltalk

compiledMethod methodClass
install: compiledMethod
asPrivate: asPrivateBoolean
withSource: sourceString
ifNewAddTo: compiledMethod methodClass controller
categorizeln: #('all' 'the' 'categories’ 'you' 'want’).

However, | suggest you instead call
compile:notifying:ifNewAddTo:categorizeln: or
compileAsPrivate:notifying:ifNewAddTo:categorizeln:, which is the preferred
method.

Chapter 4. IBM Smalltalk Programming Language 229

Keyboard Event Handler

230

Answer

| need to be able to capture the following key pressed events:
Shift + F10 Activate Pop-up Menu
Alt + F6 Switch between associated windows

I'm able to capture single key pressed events but not multiple ones. Is
there a way to use IBM Smalltalk to capture multiple key-pressed events
other than menu accelerator keys? Does VisualAge provide a mechansim
for capturing multiple key pressed events?

Yes it is possible to capture multiple key pressed events. See below for a
tehnique to do this.

As to Shift+F10 and Alt+F6, on the Windows 95 version of VisualAge, these
two particular events are not trappable; that is, they do not generate Cw
event-handler callbacks. | suspect this is because the native widget is
trapping these or they have operating system significance. There is some
interesting protocol with interceptEvents: and CwOverride shells but with the
lack of any good documentation | am in the dark on this one.

For the multiple key-pressed events, | assume you are using a method along
the lines

Smalltalk

aWidget
addEventHandler: KeyPressMask
receiver: receiver
selector: #keyPressed:clientData:callData:
clientData: nil.

This will get you a callback each time a key is pressed for aWidget.
Implementing the three keyword method keyPressed:clientData:callData on
the receiver object results in calling it each time a key is pressed. If you
look at the callData object (the third argument to the message), it is an
instance of a CwKeyEvent. CwKeyEvent has a state that can indicate
whether keys such as Alt, Shift, or Ctrl were pressed together with the
original key character. It is a little esoteric, but the state is an integer that
represents a single byte, bits of which are set on or off depending on which
key was pressed. Fortunately, CwConstants contains pool dictionary entries
that identify the masks and the best thing to do is to hide this complexity on
an extension of CwKeyEvent:

VisualAge for Smalltalk Handbook — Fundamentals

Smalltalk

CwKeyEvent>>#isAltPressed
~(self state & Mod1Mask) OO 0

CwKeyEvent>>#isShiftPressed
~(self state & ShiftMask) 0O 0

CwKeyEvent>>#isCtrltPressed
~(self state & ControlMask) L[] O

In your callback method, if you want to see whether Shift and F10 are
pressed together, the code would be along the lines

Smalltalk

keyPressed: aWidget clientData: clientData: callData: callData
(callData isShiftPressed and: { callData keysym = XKF10 })
ifTrue: [...].

This assumes you can see the pool dictionary CwConstants in your class.

Changing Object Class

Answer

Does IBM Smalltalk provide a way to change the class of an object,
something equivalent to ObjectWork's changClassToThatOf:?

There is an undocumented primitive to do this, but you have to write your
own method. Try something like this:

Smalltalk

Object>>changeToClass: aBehavior
"Change the Class of the receiver to aBehavior”
"Note -- does not verify compatible class shape”
<primitive: VMprObjectClassColon>
“~self primitiveFailed

Chapter 4. IBM Smalltalk Programming Language

231

Cleaning Up the Image

cuestion

During development, my image has grown far too big. Is there an easy way
for me to clean up the image?

The image has probably grown for two reasons:
1. You have loaded a lot of applications in it, or
2. You have a lot of instances alive in it.

I would first consider unloading applications you are not working with or
starting with a clean image (the one you originally started from) and loading
only the applications you need. In the second case, if you know the class of
the instances that are bothering you, you could try

Smalltalk

aClass alllnstances do: [:i | i becomes: nil]

That would free the memory used by these instances.

Finding Methods Containing a String

232

Answer

How would one locate a string within a given class or application in IBM
Smalltalk? | thought this would be trivial, given the rich set of text
comparison tools, but | can't find any tools or menu selections to make this
easy. For example, | want to search through application A to find all
methods that contain the text string B. Does anyone have a swatch of code
I could use for this? I'd like to extend the Envy browsers to make this
function accessible, but code that one can evaluate in a workspace would
be wonderful.

If you are looking for methods referencing a given literal, sending

Smalltalk

System allMethodsReferencingLiteral: 3.14

will open a References browser listing all methods referencing 3.14.

The following code searches for a literal string in source of all the methods
of all classes. (Change Object allSubclasses.... to something more
meaningful to reduce time and hits):

VisualAge for Smalltalk Handbook — Fundamentals

Smalltalk

| str pat methods |
methods := OrderedCollection new.
str := 'Elephant’ "Search for this string”
pat := Pattern new: str.
Object allSubclasses do: [:cls |
cls selectors do: [:sel |
(pat match: (cls sourceCodeAt: sel) index: 1) notNil
ifTrue: [methods add: (cls compiledMethodAt: sel)]
].
cls class selectors do: [:sel |
(pat match: (cls class sourceCodeAt: sel) index: 1) notNil
ifTrue: [methods add: (cls class compiledMethodAt: sel)]

MethodBrowser new
label: 'References to: ', str;
literal: str;
openOn: methods

Free Disk Space

m Does anybody know how to retrieve free disk space information on Windows

platforms?

The GetDiskFreeSpace function call returns the following information:

1.

2
3.
4

Pointers to variables where the above information can be returned must
must be passed to the GetDiskFreeSpace function. To get the total amount
of free disk space, you must multiply the sectors per cluster by the bytes per

Number of sectors per cluster

. Number of bytes per sector

Number of free clusters on the disk

. Total number of clsuters on the disk

sector by the number of free clusters.

Listed below is code that will call the GetDiskFreeSpace function, calculate

the amount of free space on C:, and display that value in a message
prompter.

Chapter 4. IBM Smalltalk Programming Language

Smalltalk

| oscall freeSpace sectorsPerCluster bytesPerSector
freeClusters totalClusters rc |

oscall := OSCall new.
sectorsPerCluster := ByteArray new: 4.
bytesPerSector := ByteArray new: 4.
freeClusters := ByteArray new: 4.
totalClusters := ByteArray new: 4.

rc := oscall getDiskFreeSpace: 'C!'
IpSectorsPerCluster: sectorsPerCluster
IpBytesPerSector: bytesPerSector
IpFreeClusters: freeClusters
IpClusters: totalClusters.

freeSpace := (sectorsPerCluster abtAsinteger) *
(bytesPerSector abtAsinteger) *
(freeClusters abtAsinteger).

CwMessagePrompter message: 'Free space on disk C: is ',
freeSpace printString.

Using LookupTable Instead of Dictionary

234

m | just did some timings of LookupTable and Dictionary. LookupTable is

faster, typically about 15% to 20%, but the difference is greatly influenced,
sometimes dwarfed, by the selection of the key class.

The table below shows the test code run with both Dictionary and
LookupTable and four kinds of keys. In each case a random number
between 0.0 and 1.0 is selected. The number is used, sometimes after is is
transformed, as a key.

Strings Floats Nice Ints Bad Ints

(0..1) 1..1000 1..huge
Dictionary 136 22500 60 61
LookupTable 120 18600 50 51

The keys are formed like this:

VisualAge for Smalltalk Handbook — Fundamentals

Strings A printString of the random number

Floats The raw random number in the 0.0-1.0 range

Nice Ints An integer in the 1-1000 range; 1000 is the collection size.
Bad Ints An integer in the 1-7654000 range (arbitrary range)

Here are some observations:

Integers happen to be extra nice keys because they are their own
hashes and seem to distribute well over the dictionary and table size.

Strings hash quickly to a nice integer.

Floats hash by truncating to an integer and answering that integer. That
is always zero for the selected keys. (A fact | didn't know until | tried to
explain the awful results.)

(Note that the integer tests actually run with approximately 640 keys,
because of the way random keys are generated, whereas the float and
string tests have 1000 keys. Cases with 100 integers run with a result of
about 100 and are thus not twice as good as strings as might be
assumed from the raw data in the table.)

Symbols also make great dictionary keys, because each has an
associated unique integer hash. However, it is not good practice to
create a large number of new symbols; use symbols only for method
names.

The following test routine is almost the same for all tests. It generates up to
1000 keys and inserts them into either a dictionary or a table. It also builds a
set that contains the keys. The timing test consists of accessing each key
twice, once to fetch the value and once to set the value.

Chapter 4. IBM Smalltalk Programming Language 235

Smalltalk

| randy coll set n slot key |
n := 1000.
coll := Dictionary new. " « THIS LINE CAN CHANGE "
randy := EsRandom new.
set := Set new.
n timesRepeat: [
key := randy next.
slot := key printString. " « THIS LINE CAN CHANGE "
coll at: slot put: randy next.
set add: slot].
~ Time millisecondsToRun: [
set do: [:e |
coll at: e put: (coll at: e)]

]

136 137 " « This line shows one or more timing results "

In the following, the example above would be shown as:

Smalltalk

coll := Dictionary new.
slot := key printString.
136 137

Comparison with Random Strings As Keys

Smalltalk

coll := Dictionary new.
slot := key printString.
136 137

coll := LookupTable new.
slot := key printString.
119 121

Comparison with Floating Point Numbers As Keys

236 VisualAge for Smalltalk Handbook — Fundamentals

Smalltalk

coll := Dictionary new.
slot := key.

22480

coll := LookupTable new.
slot := key.

18548 18877

Comparison with Integers in the 1 -1000 Range As Keys

Smalltalk

coll := Dictionary new.
slot := (key * n) truncated + 1.
59 59 60 65

coll := LookupTable new.
slot := (key * n) truncated + 1.
51 49 53

Comparison with Integers in the 1 -7654000 Range As Keys

Smalltalk

coll := Dictionary new.
slot := (key * n) truncated * 7654 + 1.
64 61 60

coll := LookupTable new.
slot := (key * n) truncated * 7654 + 1.
51 51

Concatenation and Streams

m Strings can be formed from smaller strings by using the concatenation
message (comma) or streams. Here is a comparison of the two:

Chapter 4. IBM Smalltalk Programming Language 237

238

Smalltalk

lumpSomesStrings: arrayOfStrings

| bigLump |
bigLump := String new.
arrayOfStrings
do: [:aString |
bigLump := bigLump, aString].
”~ bigLump

This is simple and straightforward, but note that each assignment to
bigLump involves copying the previous contents of bigLump to a new place
and copying aString behind it. When bigLump becomes long, there is a lot of
copying going on.

An alternative and better solution when strings become large uses streams
and works like this:

Smalltalk

lumpSomesStrings: arrayOfStrings
| aStream |
aStream := WriteStream on: String new.
arrayOfStrings
do: [:aString |
stream nextPutAll: aString].
~ stream contents

Basically, a stream continues to add on new stuff behind previous stuff in a
large working collection (called the stream contents). If the working
collection fills up, the stream allocates a bigger collection and copies the
data to it.

It is possible to prevent all copying by specifying the size of the collection:

VisualAge for Smalltalk Handbook — Fundamentals

Smalltalk

lumpSomesStrings: arrayOfStrings

arrayOfStrings
do: [:aString |
stream nextPutAll: aString].
~ stream contents

| aStream length | "
length := arrayOfStrings "
inject: 0 "~ new"”
into: [:len :str | len + str len]. "

aStream := WriteStream on: (String new: length). " — changed”

changed”
~ new”

new"

(The inject:into: method is not often used, but it

should be! Here it is used to

sum the lengths of all of the strings in arrayOfStrings and in one simple

expression!)

All of these examples answer the same string (at least, accoring to #=).

Comparing Floating-Point Values

m This expression answers false, but it looks like it should answer true:

Smalltalk

(45.0 * 1.15 * 10.0) = (45.0 * 10.0 * 1.15)

So, is it a problem? No. Why?

| used a printHex method to look at raw floating

point values:

Expression Result

Notes

1.5d0 printHex '1.8000000000000e0’

Test case that converts
evenly

The value is in hex; the exponent is hex and is the number of bits to shift

the value. For the other values, it shows:

Expression Result Notes
1.15 printHex '1.2666666666666€0’ Not exact conversion
45.0 printHex '1.6800000000000e5’ Exact conversion

Chapter 4. IBM Smalltalk Programming Language 239

Expression Result Notes

10.0 printHex '1.4000000000000e3’ Exact conversion

Note how 1.15 seems to run forever. It is not represented exactly in binary.
Now, let's look at the results of the calculation:

Smalltalk

(45.0 * 1.15 * 10.0) printHex '1.2BFFFFFFFFFFe9’
(45.0 * 10.0 * 1.15) printHex '1.2C0000000000e9’

Note how the first expression answers a value just a tiny bit smaller; adding
a one bit at the rightmost position makes the first equal to the second. It's
just off the minimum value that a float can be and still be different.

Such are the hazards of comparing floats for equality. The top three rules in
using floating point values are:

1. Do not compare floats for equality.

2. Do not use floats for monetary computations.

3. Do not compare floats for equality.

Immutable Objects and ldentity Objects

240

m There are two similar terms that are often confused: /dentity and
Immutable. Here is a definition of both:

Identity object

An object where each object with the same value is the same object.
Identity objects include characters, small integers, true, false, nil, and
symbols.

The reason why each of these objetcs is an identity object differs, but
the result is the same. If a and b refer to identity objects, and a=b is
true, then a==b is always true as well. Thus, (2+2)==(1+3) is
always true.

Immutable object

An object whose contents are never modified. Instead of modifying the
contents, a new object is answered.

VisualAge for Smalltalk Handbook — Fundamentals

Two objects with the same value are different objects: 2.0 + 2.0
produces a 4.0 that is different from the 4.0 produced by 1.0+3.0; both
have the same value but are not the same object.

Immutable objects include large integers, floats, and anything else you
happen to code to be immutable. If a and b refer to immutable objects,
and a=b is true, then a==b may or may not be true as well.

Identity objects and immutable objects are not opposite terms. In fact, all
identity objects are immutable objects. Here is some related information:

Mutable objects

Mutable objects have internal states that can be changed. Most objects
are mutable, including most of the objects people typically write.

Points, for example, are mutable. One can write (p x: p x + 1) to
increment the x value. The result is stored in the same instance of point.
No new point is answered. All variables that pointed to the point still
point to it with its new value.

Small integers

Small integers are immutable because they are encoded directly in the
object pointer. This is an optimization and not something esoteric in the
basics of OOP or Smalltalk. It is a hack, but one that provides a huge
gain in performance.

Ideally such optimizations should go unnoticed, and this one almost
does. It requires some bit of odd code to tell when an integer is a small
integer, or where the boundary is with large integers. (See IBM
Smalltalk: The Language for some code.)

The encoding in current Smalltalk systems usually takes 2-3 bits of a
32-bit address for flags. With two bits, 30 bits are left for encoding an
integer. However, this internal representation is never accessible to
Smalltalk code. Users, even those who dig into the innards, see just
integers; the class may differ depending on the size, but the direct
encoding into an object pointer is never seen. This is also true with
characters, which are often encoded in the object pointer as well.

Adding

Now, when it is time to add, say 1, to a small integer, the encoded value
is converted into a regular hardware integer value, 1 is added, and the
result is converted back into some kind of integer. The answer is always
a new object.

Chapter 4. IBM Smalltalk Programming Language 241

Characters cannot be added to, but they do have a value that can be
converted to an integer. This integer can be incremented and converted
to a different character (if it is not too big).

In neither case is the immutable object changed internally; the result is

always a new value, and all variables that hold the original value still
hold it.

242 VisualAge for Smalltalk Handbook — Fundamentals

Chapter 5.

ENVY

In this chapter, we cover the ENVY programming environment.

Working with

Answer

the Team Environment

We expect to have to put in quite a number of hours on our VisualAge for
Smalltalk project on a tight schedule. We are running in the Team
environment at the office. We would also like to do some development at
home. We have access to our Team server library drive remotely via LAN
Distance and Netware. Rather than have to go through all that is required
to export the application or its parts, we'd like to simply have a client
environment at home as well as at work. The license agreement seems to
allow this so, from a technical point of view, how should we set up the
environment? Are there any issues with respect to synchronizing the home
client image with that at the office? Do we need to make our image
consistent or recache the pointers?

Principally speaking, | do not see how your home setup differs from your
office setup. Basically you share the same library across your remote LAN
extension. Since nothing is really locked in the library, there should be no
problem loading your editions at home.

The only risk | can think of is working on the same edition of a class in two
or more images, since every method save implies a release of the current
method edition into the class. Therefore, you might run into problems when
trying to version or release the class, since you may not have all the
currently released methods in your image. But even then a "reload current”
on the class will do the trick.

You also may want to consider taking your image with you so that you are
working with the same open editions. The alternative is to version your
code before leaving home (or leaving the office), and then just load it from
the library when you arrive.

Actually, there is really no need to cart the image back and forth. Here is a
simple process that you can follow to do nontrivial development at both the

office and at home. This process requires no new software or hardware. It
typically takes me 15 minutes or less to do the versioning and exporting and
zipping required to prepare my work for travel:

[0 Copyright IBM Corp. 1997 243

1. Bootstrap your home system with a starter manager and a matching
image. You can create the manager by exporting the latest version of
each configuration map or application loaded in your image.

2. Going from home to work: Version off the day's changes (up to the
application or map level) and export them to a new library. Zip it and
put it on diskette. Import the code into the office manager when you get
to work. Load your changes into the image and start working.

3. Going from work to home: version off the day’'s changes (up to the
application or map level) and export them to a new library. Zip it and
put it on diskette. Import the code into your home manager when you
get back home. Load your changes into the image and start working.

Don't worry about having Version 999 or whatever. The only thing that
matters is the name that you use to version the code when you ship. If this
is a psychological barrier, then start your version numbers at 0.1 and let

them grow to 0.nnn. When you are ready to ship, version it as 1.0.

Versioning often is a good habit. It makes for excellent checkpoints.
Versioning is a tool. It is your friend. Use it.

Shared Library Password Protection

Answer

How do | protect certain components of my library against unauthorized
access? For example, in a university environment, rather than sharing
code, students need to hide their work from other students.

The VisualAge for Smalltalk Professional Server is meant for sharing
information, but it does have password control. You should be able to
define a password for each student to limit their access to only their work in
a common repository. Then define an application for each student where
they and their professor are the only group members. This is covered in the
VisualAge for Smalitalk User's Guide.

Libraries

244

The Professional version of VisualAge for Smalltalk permits the creation of
libraries. These libraries are useful for moving applications from one
installation to another. They can also be used for making backups or for
providing a reusable library to share between development installations.

VisualAge for Smalltalk Handbook — Fundamentals

Import and Export

m How do | import and export applications from a library file?

In the VisualAge for Smalltalk Organizer, open the menu titled Applications.

Select submenu Import/Export . Select menu item Import Applications... In
the resulting file dialog, locate the library file (with .dat extension) and click
OK.

The contents of the library file will be presented. Select the application and
version that you want to import and click the >> button (this includes the
selected application and version in the list of things to import). Click OK.
The version(s) of the application(s) you selected will be imported into your
current library, but they will not be loaded into your image.

Loading Applications

m How do | load applications from the library?

In the VisualAge for Smalltalk organizer, open the menu titled Applications .
Select submenu Load. Select menu item Available Applications...

A list of applications that have not been loaded in the image will be
presented. Select the application and version that you want to load and
click the >> button (this includes the selected application and version in
the list of things to load). Click OK. The versions of the applications you
selected will be loaded into your image. Save the image.

Chapter 5. ENVY 245

Moving Components Between Libraries

You can move components between two libraries directly without exporting
or importing them. For example, to move your applications from a Version
3.0 Manager to a Version 3.0a Manager without exporting or importing, do
the following:

From within your Version 3.0a image that is connected to the Version 3.0a
manager, choose Import, and specify the Version 3.0 (old) manager as the
file to import from. It will then bring up the list of all applications in the
manager. You can choose all that you need to import over.

Remember: Your Manager is essentially a normal .DAT file.

Archival

Answer

Code

I'm using VisualAge for Smalltalk Professional. | use only import/export,
and not filein/fileout. Do | still need to generate archival code?

No, you don't need the archival code. The primary purpose of archival code
is for sharing code between standalone images. With the Professional
product, import/export is much preferred. So, with VisualAge for Smalltalk
Professional, there may be only two cases when you might want archival
code:

If you want to move code to a "Standard” image

If you are creating several copies of a part and want to modify the
filed-out version of it to file it in.

Identifying the Released Version

246

Answer

How do | see which version is released? | know how to determine which
version of a class is currently loaded in my image, but how do | determine
which version is the released one without having to Load Released and then
examine which one responds?

There are many ways to find out which class version is the released version
in an application. One way is to browse the application editions. From the
Application Manager, select the application you want, then browse the
application editions. Select the edition you want to see; the class versions
listed are the released versions.

VisualAge for Smalltalk Handbook — Fundamentals

Change Management for Flat Files

Answer

I am using VisualAge for Smalltalk Professional for change management of
my Smalltalk code. However, | also have some flat files that are used as
part of the product as well (metadata and the like). Does VisualAge for
Smalltalk Professional have any capability to manage these too, or am |
forced to use a different approach for my non-Smalltalk product files?

If your team is comfortable with the VisualAge for Smalltalk Professional
version control system, there's nothing stop you from saving the contents of
those files as Smalltalk comments in some method. VisualAge for Smalltalk
Professional manages applications, classes, and methods by storing them in
its library file. It also expects the methods to compile under Smalltalk but
comments don't have to compile.

You can easily extract the text of methods and write them out to files again
in Smalltalk. Besides, other revision-control systems are doing just that in
their own way.

A much more sophisticated approach is to look into the support provided by
the LibraryObjects application. This allows you to associate any object that
can be persisted by the ObjectDumper with a given class in an application.
All that you need to add to this is some trivial CommonFileSystem code to
read your files into a byte array (for storing) and some code to write the
byte array back out to a named file (for restoring).

This gives you the version control that you are looking for. It has the added
benefit that your files can be binary or text. (You can't store binary files in
the comment fields unless you use something like uuencode to turn them
into a stream of hexadecimal charaters.)

Date Stamp for Versioned Classes

Answer

An editioned class or application has a date-created stamp. What about
after you've versioned the class or application? How can | see from the
browser or manager what the date of the versioning is?

Versions are really just editions, but in a versioned state. Therefore, even
though you are looking at a versioned edition, you can still find out its
timestamp, but it is the timestamp when the edition was created.

If you want the version name to include the timestamp as part of its
signature, do the following: From the Transcript menu, select Smalltalk tools

Chapter 5. ENVY 247

— Open Preferences Workspace . Scroll down a bit to find the following line
within the Configuration Management section:

Smalltalk

EmTimeStamp showVersionTimeStamps: false

Change false to true, swipe the line, and execute.

Note

This still shows only the timestamp of the edition, that is, when the
edition was created, not when it was versioned.

Applications and Subapplications

Answer

| am not quite sure when to use applications and when to use
subapplications. Would someone please explain the differences and the
criteria generally used for determining when a set of classes are
considering a subapplication?

Subapplications are used for functional grouping, or for class extentions that
need platform-specific functions or supports. By default, when you load an
application, all its subapplications will also be loaded.

Especially for platform specific support, an application will have some
configurable expressions to specify which of its subapplications should not
be loaded on a certain platform.

Connecting to a Cloned Library

cuestion

Can | connect an old image to a cloned library?
Yes, you can, but recache your pointers!

Never connect an old image to a cloned library without having recached
your pointers first! Otherwise your cloned repository could get corrupted.

248 VisualAge for Smalltalk Handbook — Fundamentals

Reloading an Application

Answer

How do I, in code, reload the currently loaded edition of an application?

Try this:

Smalltalk

EmClassDevelopment imageBuilder loadApplications:
(OrderedCollection new add: <App Name>; yourself)

Loading Previous Editions of Application

Answer

Is there a fast way to load all recent class editions of the entire application?
Each time, when | get a native image from the server and don’t create a
new version of the application in advance, | have to load the last edition of
all classes manually. Is there a faster way of doing this?

One way you can manage your code so that the transition to a new image is
less painful is to create a configuration map pointing to the application
editions you are interested in. If you do this, you can load in all your
applications with one operation.

Deleting an Application

Answer

Can I, if | have installed VisualAge for Smalltalk Professional, delete an
application by simply selecting delete from the applications menu on the
organizer?

Deleting really just deletes an application from a configuration map, it does
not delete the application from the library. If your application is not yet
associated with any configuration map, the best you can do is unload it from
your image and try to forget it exists.

Creating a new application does affect the library manager. Unfortunately,
there is no way to remove your application from the library except to purge
your application and clone the library.

Another way would be to start with a new manager, and import the
applications that you want from the old into the new.

Chapter 5. ENVY 249

Answer

How do | delete an application when there is no configuration map?

Unload the application. (Check the "How Do I..." help from Transcript).
Deleting really just deletes an application from a configuration map, it does
not delete the application from the manager. In your case, your application
is not yet associated with any configuration map and the best you can do is
unload it from your image and try to forget it exists.

Creating a New Application

Answer

Does creating a new application immediately write to the library manager?

Yes. You can see this by creating an application and looking at the list of
applications in an Applications Editions browser. The name of your new
application appears in the list. Creating a new application does affect the
library. Unfortunately, there is no way to remove your application except to
purge it and clone the manager. Or, as we do, start with a new manager
and import the applications that you want from the old into the new.

Removing an Application

cuestion

How can | remove an application from the loadable applications list?

You, or your library supervisor, can purge the application if it is versioned
using an Application Editions browser. (See the IBM Smalitalk User's Guide.)
Make sure that you unload the application version before purging it.

Deleting Old Versions of Classes

250

Answer

Is there a way to delete old versions of classes from user-defined
applications?

No, a version is immutable. Once you version the application, you have to
open a new edition to make changes. When we are restructuring
applications, we open an edition, move or delete the affected classes, then
version the application as obsolete or “do not use.” If the intention is to
reduce the manager's size by deleting the classes, be aware that deleting
doesn’'t shrink the manager, only cloning does.

VisualAge for Smalltalk Handbook — Fundamentals

Getting Rid of Damaged Classes

cuestion

Answer

How do | get rid of damaged classes when my image refuses to let me
delete the class?

Version and release your classes, applications, and configuration maps.
Get a fresh image and reload your stuff.

How do | use the exporting option to get rid of unwanted versions of my
library instead of using cloning?

Get a new copy of the ABTMGR30.DAT file from the CD and start with that.
In addition to an online copy of the original manager, we keep a base
manager that has all of the original application versions plus any PTFs and
third-party applications. Since we keep this base manager up to date, it
becomes very easy for us to purge by exporting just our applications to a
copy of the base.

Prompting for Ownership

Answer

How do | get an image to prompt the user for "Who does this image belong
to?”

Try this:

Smalltalk

EmUser resetimageOwner "sets the image owner to nil”

Then save the image and exit VisualAge for Smalltalk. When VisualAge for
Smalltalk starts, you get the "who does this image belong to” prompt.

Moving Development Code

How do | move development code between libraries?

Chapter 5. ENVY 251

Answer

The best way is by creating a new library, then exporting a configuration
map or applications to the library. Exporting requires the parts to be
versioned because editions cannot be exported.

Distributing an Application for OS/2 and AIX

Answer

How do | distribute an application for both OS/2 and AIX clients?

You must package on the target environment. We access a single manager
on an AIX machine for all environments using TCP/IP and the EMSRV
support; thus no import/export is necessary, just a load and package.

Exporting an Application to a Non-LAN PC

Answer

How do | export an application to another PC not attached to a LAN?

You can create an export file that contains the application that you want to
copy to the other VisualAge for Smalltalk workstation.
Keep in mind the following:

The component being exported must be a version.

The component version you want to export cannot already exist in the
target library. If it does already exist in that library, the system exports
only those components not already there.

Here's what you do. From your source image:

Open an Application Manager browser from the transcript (Smalltalk
Tools — Manage Applications).

From the list of applications, select the application version you want to
export.

From the Application menu option, select System - Export To.

In the displayed prompter, specify the path and file name for the target
library.

Click on OK. The system moves a copy of the application version from
the library you are currently using to the target library.

If you cannot fit this file on one diskette, try using saveram or some other
tool that can split and pack files.

From the image on the VisualAge for Smalltalk workstation where you wish
to import the application:

252 VisualAge for Smalltalk Handbook — Fundamentals

Open the Application Manager Browser

From the Application menu option, select Select — Import —
Applications .

In the displayed prompter, specify a path and file name for the library
storing the component.

Click on OK. A window is displayed, prompting you for the name and
version of the application you want to import.

Select an application; then select a version of the application.

Click on OK. A copy of the application version is moved from the
selected library into the library you are currently using.

Associating .DAT files with Features

Answer

How can | figure out which feature was installed or loaded from which .DAT
file. Does there exist a cross-reference list so | can identify the .DAT file with
a given feature?

To figure out which .DAT is which, you can look at the .CTL files, which are
found in the feature subdirectory. The first word in the file tells you the
name of the feature as you see it in the Load Features list. The rest of that
first line is just information that tells VisualAge for Smalltalk under what
conditions to load the feature. The important information is the rest of the
file. It lists the configuration map versions that are loaded for the feature
and the .DAT file they are loaded from. You can use this list to determine
whether you have used a .DAT file or not.

Manager Consistency

Answer

How can | check my library manager for consistency so that | don't end up
with a badly corrupted repository where data is lost?

You can use the EmLibraryStatistics to check your manager for consistency.

To use EmLibraryStatistics, read the comments in the class method
checkConsistencyOf:.

Chapter 5. ENVY 253

Exporting a Pool Dictionary

Answer

Suppose | define a new pool dictionary for my application. How can | make
sure that this pool dictionary is loaded when | export the application to
another image?

There are a few methods that you will need to implement to en sure that
your pool dictionaries are defined in the image prior to loading your
application. They are toBelLoadedCode:, wasRemovedCode: and
installToBeLoadedCode. Details can be found in the IBM Smalitalk User's
Guide.

Exporting Configuration Maps

Answer

I'd like to export a whole bunch of configuration maps (specific versions of
specific configuration maps) to an empty .DAT library. I'd like to do this
without the user interface so that | can run this unattended overnight. Do
you have a script that can do this?

You can do this without a script. Select export from the pop-up menu in the
configuration maps pane (not the versions, but names) of the configuration
maps browser. Then select the target library, and you'll be prompted for all
map or version pairs up front.

Manager Growth Rate

254

cuestion

What is the approximate rate of the Manager file growth on the server? |
heard about 1 MB per day per developer. Is it true?

It comes down to how much code your developers can crank out or change
per day. If they migrate some existing application into a brand new
VisualAge for Smalltalk library, chances are the library will grow with
however much code is being migrated into the manager.

If your developers write Smalltalk code from scratch (keyboard input)
chances are that they won’t be able to type anywhere near 1 million key
strokes of desirable Smalltalk code per day. One can try for half that on a
DBCS input. Modifying an existing method may store incremental changes
only (I don't deal with that algorithm.) If you make changes via the
VisualAge for Smalltalk Composition Editor, the run-time code is stored as
various methods, so there won't be much difference in the way method

VisualAge for Smalltalk Handbook — Fundamentals

source code is stored. This may allow for method changes at a faster rate
than manual input.

A 1 GB drive should give you very comfortable room for development. Even
though you may not need that much, a 1 GB drive should be cheap enough
today to buy that luxury, where a 300 MB or 500 MB drive would risk the
later discovery that you'll have to spend time to move the manager to a
larger drive.

Anyway, make sure that your team has a good reliable means to back up
the shared manager file. You don't really need to back up each developer
image file, as the files can be rebuilt from the manager or library file. And
make as frequent (daily, weekly) a backup schedule as you can afford.

Class Changes versus Alternatives

m What is the difference between class changes and class alternatives?

I found the following information in an ENVY/Manager user manual. | hope
the information is helpful.

File Out Changes

File out methods in the primary class editions that are different from the
corresponding methods in the alternative class editions.

File Out Alternatives
File out methods in the alternative class editions that are different from

the corresponding methods in the primary class editions.

“Primary” seems to indicate the editions that appear in the left pane of a
changes browser. “Alternative” method editions appear in the right pane of
the browser.

Moving Windows Library to AIX

m We are developing in Windows now but are considering also doing some
AlIX development. My understanding is that this would require us to move
our manager to AlX. Is the procedure for doing this documented
somewhere? | took a quick look through the VisualAge for Smalltalk Users
Guide where other library administration tasks are documented, but didn't
see anything. | assume that there's more to it than just copying the
manager file, but what?

Chapter 5. ENVY 255

Answer

You should reinstall the server code on AlX following the instructions in the
READMEs, and so on, and then copy your library file from Windows over the
library that was added during the server install on AIX. Also, all of your
clients will need to update their abt.cnf to point to the new library location
and to use EMSRYV as the transport mechanism.

Identical

256

Answer

Users

In our team development environment, we have two distinct users who have
the same name. | suppose this happened from importing classes from
another library, or maybe there is a space after the name. In any case, can
anyone make a recommendation as to how best to get rid of one of these
users? Right now, they are both owners of different classes and managers
of applications.

Assign new owners (or managers) to the classes and applications created
under the user that you don't want. To do this, use the Become New Owner
and Become New Manager options of a Group Members menu.

Next you might want to check for any classes still owned by the user (Select
Queries — Classes Owned By from the Smalltalk Tools menu). Finally,
purge the user.

You should also understand how you got into this situation. There are two
inportant parts to a user:

1. The external name. This is what you see in the browsers and this does
not have to be unique.

2. The unique name. This is used by the system to differentiate users.

In your case, the users have unique underlying names, but their visible
names happen to be the same. If you wish, you could simply change the
visible name as described above.

The lesson to learn is that you should not define new users without making
sure that the unique names are consistent. The easiest way to do this is to
export and import the users explicitly or to allow the definitions to come
over as a byproduct of code import or export.

VisualAge for Smalltalk Handbook — Fundamentals

Classes Available in the Library

m Is there any way to develop a snooper that can be used to compare the
loaded classes against what is available in the library? A function like that
would provide the user with the capability of selectively picking up fixes on
a periodic basis into an existing image. Is it feasible to develop such a
utility that could be run on demand?

The Team version/release control features give you the functionality that
you are looking for. The way you can work with it is to have configuration
maps for the various major components of the product, and applications
within those configuration maps. Whenever you open an application to
make a change, you immediately release the application’'s edition to the
configuration map (opening the configuration map as well if necessary).

Now, to get the latest and greatest, check out your configuration maps to
see if any new application editions have been released, and if so, you can
load them if you are interested. Once you have open application editions,
you can see any newly released classes by examining the application in the
Application Manager. If the released class does not match the one currently
loaded in your image, it will have a > symbol next to it.

To further assist you, there is a Query menu option under Smalltalk Tools on
the Transcript window. The choice for unreleased classes will print a list (to
the Transcript) of every class in your image (by application) that is not the
released version for that application. You can also use this in addition to
Open Class Editions to help you locate all the changes you have made
leading up to a build so you know what you need to version and release.

ENVY/Windows95/Novell

m What about accessing ENVY/Manager library using Windows 95 clients and
Netware servers?

IBM has recently certified ENVY/Manager library access using Windows 95
clients and Netware 3.12 and 4.1 servers.

Windows 95 clients must use only the Novell Client32 for Windows 95
requestor. IBM has tested library access using the Microsoft Client for
Netware Networks and has found problems that may result in corrupt
libraries if this requestor is used. The problem has been logged with
Microsoft Australia Technical Support as Problem 1570370.

Chapter 5. ENVY 257

258

The Client32 for Windows 95 requestor must be used only in conjunction
with two patches available from Novell:

c3295c.exe (Client32 for Windows 95 Update C)
landr5.exe (server patch)

If these two patches are not used, users may experience severe
performance problems when reading from attached servers and may also
find that locks are not correctly released if more than one image is running
concurrently on the same machine. The two patches will correct both of
these problems.

The Client32 for Windows 95 requestor has many parameters that may be
changed in the Advanced Settings dialog. IBM has tested with default
settings provided on installation which in most cases trade data integrity for
performance (for example, True Commit set to off). Although other settings
have not been tested, changing any of the settings in the “Performance,
Cache” parameter group to less optimistic values should not present any
problems.

ENVY/Manager's release lock mode parameter should be set to true when
using this configuration.

VisualAge for Smalltalk Handbook — Fundamentals

Chapter 6. Microsoft Windows

In this chapter, we cover VisualAge for Smalltalk on the Microsoft Windows
platform.

Sizing the Windows 95 Toolbar

m The Windows 95 toolbar sizes improperly at run time, potentially covering
other visual parts. To work around this problem, adjust the framingSpec of
the tool bar so that its bottom edge is attached to another widget. This will
prevent the toolbar from covering other widgets. A fix for this problem is
available in the downloadable update.

Windows 95 TreeView

m The Windows 95 TreeView traps the collapse and expand events but does
not properly signal the corresponding VisualAge events. Therefore,
connecting to the itemExpanded or itemCollapsed event of the TreeView
does not work. The AbtCwTreeView methods below correct the problem.

Smalltalk

collapseNode: aWidget clientData: clientData callData: callData
"Private - The node collapse callback was called.”

self signalEvent: #itemCollapsed with:
(self partForNode: callData value)

Smalltalk

expandNode: aWidget clientData: clientData callData: callData
"Private - The node expand callback was called.”

self signalEvent: #itemExpanded with:
(self partForNode: callData value)

As an alternative, you can register Smalltalk callbacks in your parts to
handle the itemExpanded and itemCollapsed events. Use code like that
shown below:

[0 Copyright IBM Corp. 1997 259

Smalltalk

widget
addCallback: #expandCallback
receiver: self
selector: #expandNode:clientData:callData:
clientData: nil.

widget
addCallback: #collapseCallback
receiver: self
selector: #collapseNode:clientData:callData:
clientData: nil.

You would then need to implement the expandNode:clientData:callData: and
collapseNode:clientData:callData: selectors in your parts to handle the
registered events. See the IBM Smalltalk Programmer's Reference for more
information about callbacks.

Deactivation of OLE Embedded WordPro Document

m An unhandled exception occurs when deactivating an embedded, in-place
activated OLE client container that contains a Lotus WordPro document. To
work around this problem, when using WordPro documents, specify an
activationPolicy of XmOPEN in the OLE Client part to disable in-place
activation.

Copying from Windows Explorer into an OLE Client Part

m Use copy and paste to share OLE objects between the Windows Explorer
and an OLE Client part. Dropping an OLE object that was dragged from the
Windows Explorer onto an OLE Client part does not work.

Generating OLE Methods

m The OLE Class Generator generates set methods that signal the wrong
event name. For example, the generated name of the change symbol for
the attribute count is #countChanged. However, the generated count: setter
method contains the following code:

260 VisualAge for Smalltalk Handbook — Fundamentals

Smalltalk

self signalEvent: #count with: aValue

The signalEvent code will have no effect because the change symbol for the
does not match the signaled event name. To fix this, change the
OlexPropertyDescription>>#abtSetSelectorWithinterace: method. Change
the code lines:

Smalltalk

nextPutAll: 'self signalEvent: ' ;
nextPutAll: selectorName asSymbol printString ;

to:

Smalltalk

nextPutAll: 'self signalEvent: ' ;
nextPutAll: (selectorName , 'Changed’) asSymbol printString;

Free Disk Space on Windows Platform

m Does anybody know how to retrieve free disk space information on Windows
platforms?

The GetDiskFreeSpace function call returns the following information:
1. Number of sectors per cluster
2. Number of bytes per sector
3. Number of free clusters on the disk
4. Total number of clsuters on the disk
Pointers to variables where the above information can be returned must be
passed to the GetDiskFreeSpace function. To get the total amount of free

disk space, you must multiply the sectors per cluster by the bytes per sector
by the number of free clusters.

Listed below is code that will call the GetDiskFreeSpace function, calculate
the amount of free space on C:, and display that value in a message
prompter.

Chapter 6. Microsoft Windows 261

262

Smalltalk

| oscall freeSpace sectorsPerCluster bytesPerSector
freeClusters totalClusters rc |

oscall := OSCall new.
sectorsPerCluster := ByteArray new: 4.
bytesPerSector := ByteArray new: 4.
freeClusters := ByteArray new: 4.
totalClusters := ByteArray new: 4.

rc := oscall getDiskFreeSpace: 'C!’
IpSectorsPerCluster: sectorsPerCluster
IpBytesPerSector: bytesPerSector
IpFreeClusters: freeClusters
IpClusters: totalClusters.

freeSpace := (sectorsPerCluster abtAsinteger) *
(bytesPerSector abtAsinteger) *
(freeClusters abtAsinteger).

CwMessagePrompter message: 'Free space on disk C: is ',
freeSpace printString.

VisualAge for Smalltalk Handbook — Fundamentals

Chapter 7. National Language Support

In this chapter, we cover questions related to national language support of
VisualAge for Smalltalk.

Code Page Support

m Does VisualAge for Smalltalk support my particular code page?

VisualAge for Smalltalk makes an operating system call to translate the
string. If the operating system call doesn’t support the conversion between
the code pages, then it will try to translate with the translate tables you
provide. The operating system calls are different for each platform. To see if
the call is supported on your machine, take any string and pass the
message convertToCodePage:

Smalltalk

'"Hello World' convertToCodePage: 37

where the number passed is the code page you wish to convert to.

If the code page is not supported, the method convertToCodePage: will
return an AbtError with errorText set to ‘Conversion from codepage <...>
to codepage <...> is not supported'.

Code Page and MPR Problems

m The code page is stored in the MPR file so it can be correctly translated to
the new code page. For example, on my machine on Windows, character
252 = 0 (U umlaut). On OS/2, that same character is 129. However, | don't
have to modify the MPR file | generated on Windows because code points
are automatically translated for text stored in MPR files. The
ABTRULES.NLS file contains the mappings, and AbtCharacterTranslator
handles the translations. All you have to do is this:

1. Generate your external strings with: YourApp
abtGenerateExternalStringsifNecessary.

2. Add abtExternalizedStringBuildingInfo method to your application.
3. Add /oaded method that calls self abtRegisterExternalStrings.

[0 Copyright IBM Corp. 1997 263

4. Add unloaded method that calls self abtUnregisterExternalStrings.

Required CAT Files

m The following script helps you to determine, based on your packager output
log, which *.CAT files you need with your run-time image. Just save the
output log to a file and then run this script:

Smalltalk

| stream tokens file |
file := (CwFileSelectionPrompter new)
title: 'Packaging Messages’; prompt.

(file isNil) ifTrue: [*nil].
stream := CfsReadFileStream open: file.
[stream atEnd] whileFalse: [
tokens := stream nextLine subStrings.
((tokens size > 0) and: [((tokens at: 1)
indexOfSubCollection: 'NIsCat’ startingAt: 1) > 0]) ifTrue: [
Transcript cr; show: 'References messages in: ',
((Smalltalk at: (tokens at: 1) asGlobalKey) at: '''"CATALOGNAME")]].
stream close.

Decimal Point Representations

m Is it possible to change the default decimal point for the current local
representation which probably is a comma?

The following code results in 0,75 if the local representation of a decimal
uses a comma:

Smalltalk

Locale current IcNumeric printNumber: (3/4) asFloat on: Transcript

The next code will result in 0.75, and the reason is that the compiler needs
to be able to recognize a float from a method named ",".

264 VisualAge for Smalltalk Handbook — Fundamentals

Smalltalk

(3/4) asFloat printOn: Transcript

When you use printString on a Float, you are getting a representation that
can be highlighted and evaluated (compiled). For occasions where you
need locale-specific output, you instead use the printNumber:on: method.

Using Multiple National Languages

m How do | use multiple national languages with VisualAge for Smalltalk?

See the VisualAge for Smalltalk User's Guide, for a complete discussion of
how national language support (NLS) enablement works.

Adding French Characters to English

m How do | allow input of French characters in my English application?

I've been running Windows 95 lately, and for typing French characters | use
the "U.S. International” keyboard layout. That maps certain deadkeys, such
as ' (apostrophe) followed by e gives & (e accent grave). I'm not certain
0S/2 has this same keyboard layout scheme, if not you could implement it
yourself fairly easily using the text field modify verify callback. ' (single
quote) followed by a character (e) adds accent grave, back quote followed
by a character (a, e, u) adds accent aigu, Shift+6 (caret) followed by a
character (a, e, 0, u) adds accent circonflexe,” double-quote followed by a
character (e, i) adds accent umlaut, Accent character followed by space
adds character (such as ' + space = '), followed by ¢ adds c cedilla. The
only drawback I've found to this scheme is that if you need to type lots of
qguoted text, it is irritating because you have to remember to type an extra
space. Of course, the other option is to switch your keyboard to the French
layout. For U.S. users it will change most notably the location of the A, Q,
M, period, comma, numbers, and so on. The other scheme I've seen, called
Transparent Language, is to map the up/down arrow to cycle through
accented characters. This is a good approach if characters are rarely
entered (Macintosh uses a similar scheme, but uses the control key).

Chapter 7. National Language Support 265

Problems with National Language Support in Version 3

Answer

I have a problem with national language support in Version 3. Why?

This could be a problem with the nispath search. (I believe that the dynamic
example does not rely on the search; it expects you to tell it the exact file.)
Are there any old (nontranslated) MPRs earlier in the NLS search path. The
search starts at the working directory and then works its way down the
entries in nispath. You can see which MPR each nlsgroup is bound to by
executing this code fragment:

Smalltalk

AbtMRIManager requestsAndResolutions do: [:aRequest |

Transcript cr; nextPutAll: aRequest request printString.
aRequest isResolved
ifTrue: [
Transcript tab;tab; nextPutAll: aRequest
resolution fileSpec fullName]
ifFalse: [Transcript tab;tab; nextPutAll: 'not resolved.’]].

Code Page Conversion between 0S/2 and Windows

266

Answer

How can | develop an application with VisualAge for Smalltalk for OS/2, and
then reuse it from VisualAge for Smalltalk for Windows, where the code
page in OS/2 is 850 and in Windows it's 437?

Windows uses code page 819 (ISO 8859-1) regardless of what the code page
is set to in DOS. The code page for DOS my be 437, but Windows ignores it.
Code page 819 doesn't exist in OS/2.

Although OS/2 doesn’t support code page 819, code pages 819 and 850 have
consistent mappings for points 32-126. After that, it is hit or miss as to
whether or not they match.

In Version 3 of VisualAge for Smalltalk, we automatically map the characters
in label strings, messages, and the like to the correct code points for you.

In Version 2.0, however, you have to do the mappings yourself. The easiest
way to do this is to select the separate application strings option for the
application you want to run in both OS/2 and Windows. Next, export the
strings to a file. Edit this file (under Windows) and change all the characters

VisualAge for Smalltalk Handbook — Fundamentals

that aren’t mapped correctly. After editing the file, import the strings (again
under Windows). When you run the application under Windows, the new
strings will be displayed.

The problem does not exist if you are using DB2/2 version 2.1. They take
care of the code page translation for you.

Double-Byte Character Set

When installing on a Windows DBCS machine, please use the default
specified on the Select Folder dialog. Because the English version of
InstallShield does not support DBCS strings, translated strings appear
incorrectly in the list of existing folder names.

In the Simplified Chinese environment on AlX, several of the dialogs may
have strings truncated (vertically and horizontally) because of the system
font used by VisualAge for Smalltalk. By installing a different set of font
aliases for Simplified Chinese or changing the named fonts for several
VisualAge for Smalltalk dialog controls (button labels, headings and
subheadings, icon text, and text), the truncated strings will appear correctly.
To change the VisualAge named fonts (used for settings pages and icon
text), please refer to the "VISUALAGE NAMED FONTS" section of the
Preferences Workspace. The Preferences Workspace can be displayed by
selecting Options — Preferences Workspace from the VisualAge for
Smalltalk Organizer dialog.

Chapter 7. National Language Support 267

268 VisualAge for Smalltalk Handbook — Fundamentals

Appendix A. Special Notices

This publication is intended to help VisualAge for Smalltalk developers avoid
common programming pitfalls and as a guide for frequently asked questions
about the IBM Smalltalk language, VisualAge for Smalltalk, and its features.
The information in this publication is not intended as the specification of any
programming interfaces that are provided by VisualAge for Smalltalk. See
the PUBLICATIONS section of the IBM Programming Announcement for
VisualAge for Smalltalk for more information about what publications are
considered to be product documentation.

References in this publication to IBM products, programs or services do not
imply that IBM intends to make these available in all countries in which IBM
operates. Any reference to an IBM product, program, or service is not
intended to state or imply that only IBM's product, program, or service may
be used. Any functionally equivalent program that does not infringe any of
IBM's intellectual property rights may be used instead of the IBM product,
program or service.

Information in this book was developed in conjunction with use of the
equipment specified, and is limited in application to those specific hardware
and software products and levels.

IBM may have patents or pending patent applications covering subject
matter in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to
the IBM Director of Licensing, IBM Corporation, 500 Columbus Avenue,
Thornwood, NY 10594 USA.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the
mutual use of the information which has been exchanged, should contact
IBM Corporation, Dept. 600A, Mail Drop 1329, Somers, NY 10589 USA.

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The information contained in this document has not been submitted to any
formal IBM test and is distributed AS IS. The information about non-IBM
("vendor”) products in this manual has been supplied by the vendor and IBM
assumes no responsibility for its accuracy or completeness. The use of this
information or the implementation of any of these techniques is a customer
responsibility and depends on the customer's ability to evaluate and

[0 Copyright IBM Corp. 1997 269

integrate them into the customer's operational environment. While each
item may have been reviewed by IBM for accuracy in a specific situation,
there is no guarantee that the same or similar results will be obtained
elsewhere. Customers attempting to adapt these techniques to their own
environments do so at their own risk.

The following terms are trademarks of the International Business Machines
Corporation in the United States and/or other countries:

AlX AlIX/6000
Application System/400 APPN
AS/400 CICS
Common User Access CUA
DATABASE 2 DB2
DB2/2 DB2/400
DB2/6000 IBM

IMS MQ
MQSeries MVS
MVS/ESA Object Connection
0S/2 0S/400
Presentation Manager PS/2
RPG/400 SOM
SQL/400 TalkLink
VisualAge VisualGen
Visuallnfo

The following terms are trademarks of other companies:

C-bus is a trademark of Corollary, Inc.

PC Direct is a trademark of zZiff Communications Company and is
used by IBM Corporation under license.

UNIX is a registered trademark in the United States and other
countries licensed exclusively through X/Open Company Limited.
Microsoft, Windows, and the Windows 95 logo

are trademarks or registered trademarks of Microsoft Corporation.

HP, HP-UX Hewlett-Packard Company
Sun, Solaris Sun Microsystems, Inc.
Lotus, Notes Lotus Development Corporation

Other trademarks are trademarks of their respective companies.

270 VisualAge for Smalltalk Handbook — Fundamentals

Appendix B. Related Publications

The publications listed in this section are considered particularly suitable for
a more detailed discussion of the topics covered in this redbook.

International Technical Support Organization Publications

For information on ordering these ITSO publications see “How to Get ITSO
Redbooks” on page 275.

VisualAge: Concepts and Features, GG24-3946

VisualAge and Transaction Processing in a Client/Server Environment,
GG24-4487

AS/400 Application Development with VisualAge for Smalltalk, SG24-2535

World Wide Web Server Development with VisualAge for Smalltalk,
SG24-4734

VisualAge: Building GUIs for Existing Applications, GG24-4244
VisualAge for Smalltalk Distributed, SG24-4521
VisualAge for Smalitalk and SOMobjects, SG24-4390

OO Programming with Client Access for OS/400 and ODBC using
VisualAge for Smalltalk, SG24-4718

Application Development with VisualAge for Smalltalk and MQSeries,
SG24-2117

Object-Oriented Application Development with VisualAge for C++ for
0S5/2, SG24-2593

Programming with VisualAge for C++ for Windows, SG24-4782
IBM VisualAge for Cobol for OS/2: Workframe User Guide, SG24-4604
IBM VisualAge for Cobol for OS/2: Primer, SG24-4605

IBM VisualAge for Cobol for OS/2: Object-Oriented Programming,
SG24-4606

Visual Modeling Technique, Object Technology using Visual
Programming, SG24-4227

[0 Copyright IBM Corp. 1997 271

Redbooks on CD-ROMs

Redbooks are also available on CD-ROMs. Order a subscription and
receive updates 2-4 times a year at significant savings.

CD-ROM Title Subscription Collection Kit
Number Number
System/390 Redbooks Collection SBOF-7201 SK2T-2177
Networking and Systems Management Redbooks Collection SBOF-7370 SK2T-6022
Transaction Processing and Data Management Redbook SBOF-7240 SK2T-8038
AS/400 Redbooks Collection SBOF-7270 SK2T-2849
RS/6000 Redbooks Collection (HTML, BkMgr) SBOF-7230 SK2T-8040
RS/6000 Redbooks Collection (PostScript) SBOF-7205 SK2T-8041
Application Development Redbooks Collection SBOF-7290 SK2T-8037
Personal Systems Redbooks Collection SBOF-7250 SK2T-8042

Other Publications

272

These publications are also relevant as further information sources:
VisualAge for Smallitalk User's Guide, SC34-4518

VisualAge for Smalltalk Programmer's Guide to Building Parts for Fun
and Profit, SC34-4496

IBM Smalltalk Programmer's Reference, SC34-4493
IBM Smalitalk User's Guide, SC34-4536

IBM Smalltalk: The Language, by David N. Smith, Benjamin/Cummings
Publishing Company, ISBN: 0-8053-0908

VisualAge and Transaction Processing in a Client/Server Environment, by
Andreas Bitterer, Michel Brassard, William Nadal, and Chris Wong,
Prentice Hall PTR, 1996, ISBN: 0-13-460874-7

AS/400 Application Development with VisualAge for Smalltalk, by
Andreas Bitterer, Masahiko Hamada, John Oosthuizen, Gino Porciello,
and Hakon Rambek, Prentice Hall PTR, 1997, ISBN: 0-13-520453-4

World Wide Web Programming: VisualAge for C++ and Smalltalk, by
Andreas Bitterer and Marc Carrel-Billiard, Prentice Hall PTR, 1997, ISBN:
0-13-612466-6

Object-Oriented Application Development with VisualAge for C++ for
0S/2, by Marc Carrel-Billiard, Peter Jakab, Isabelle Mauny, and Rainer
Vetter. Prentice Hall PTR, 1996, ISBN: 0-13-242447-9

Programming with VisualAge for C++ for Windows, by Marc
Carrel-Billiard, Michael Friess, and Isabelle Mauny, Prentice Hall PTR,
1997, ISBN: 0-13-618208-9

VisualAge for Smalltalk Handbook — Fundamentals

VisualAge for Smalltalk Distributed, by Walter Fang, Sven Guyet, Randy
Haven, Matti Vilmi, and Eduardo Eckmann, Prentice Hall PTR, 1996,
ISBN: 0-13-570805-2

VisualAge for Smalltalk SOMsupport, by Walter Fang, Raymond Chu, and
Markus Weyerh&auser, Prentice Hall PTR, 1997, ISBN: 0-13-570813-3

IBM Smalltalk Programming for Windows and OS/2, by Dan Shafer and
Scott Herndon, Prima Publishing, 1995, ISBN: 1-55958-749-0

Visual Modeling Technique, by Daniel Tkach, Walter Fang, and Andrew
So, Addison-Wesley, 1996, ISBN: 0-8053-2574-3

Smalltalk with Style, by Edward Klimas, Suzanne Skublics, and David
Thomas, Prentice Hall PTR, 1996, ISBN: 0-13-165549-3

Object Technology in Application Development, by Daniel Tkach and
Richard Puttick, Benjamin/Cummings Publishing Company, ISBN:
0-8053-2572-7

Designing Object-Oriented Software, by Rebecca Wirfs-Brock, Brian
Wilkerson, and Lauren Wiener, Prentice Hall PTR, 1994, ISBN:
0-13-629825-7

TCP/IP Tutorial and Technical Overview, by Eamon Murphy, Steve
Hayes, and Matthias Enders, Prentice Hall PTR, 1995, ISBN:
0-13-460858-5

Object-Oriented Interface Design: IBM Common User Access Guidelines,
SC34-4399

Appendix B. Related Publications 273

274 VisualAge for Smalltalk Handbook — Fundamentals

How to Get ITSO Redbooks

This section explains how both customers and IBM employees can find out about ITSO redbooks,
CD-ROMs, workshops, and residencies. A form for ordering books and CD-ROMs is also provided.

This information was current at the time of publication, but is continually subject to change. The
latest information may be found at URL http://www.redbooks.ibm.com.

How IBM Employees Can Get ITSO Redbooks

Employees may request ITSO deliverables (redbooks, BookManager BOOKs, and CD-ROMs) and
information about redbooks, workshops, and residencies in the following ways:

PUBORDER — to order hardcopies in United States

GOPHER link to the Internet - type GOPHER.WTSCPOK.ITSO.IBM.COM
Tools disks

To get LIST3820s of redbooks, type one of the following commands:

TOOLS SENDTO EHONE4 TOOLS2 REDPRINT GET SG24xxxx PACKAGE
TOOLS SENDTO CANVM2 TOOLS REDPRINT GET SG24xxxx PACKAGE (Canadian users only)

To get BookManager BOOKs of redbooks, type the following command:
TOOLCAT REDBOOKS
To get lists of redbooks, type one of the following commands:

TOOLS SENDTO USDIST MKTTOOLS MKTTOOLS GET ITSOCAT TXT
TOOLS SENDTO USDIST MKTTOOLS MKTTOOLS GET LISTSERV PACKAGE

To register for information on workshops, residencies, and redbooks, type the following command:
TOOLS SENDTO WTSCPOK TOOLS ZDISK GET ITSOREGI 1996

For a list of product area specialists in the ITSO: type the following command:
TOOLS SENDTO WTSCPOK TOOLS ZDISK GET ORGCARD PACKAGE

Redbooks Home Page on the World Wide Web

http://w3.itso.ibm.com/redbooks

IBM Direct Publications Catalog on the World Wide Web

http://www.elink.ibmlink.ibm.com/pbl/pb1

IBM employees may obtain LIST3820s of redbooks from this page.

REDBOOKS category on INEWS

Online — send orders to: USIB6FPL at IBMMAIL or DKIBMBSH at IBMMAIL

Internet Listserver

With an Internet e-mail address, anyone can subscribe to an IBM Announcement Listserver. To
initiate the service, send an e-mail note to announce@webster.ibmlink.ibm.com with the keyword
subscribe in the body of the note (leave the subject line blank). A category form and detailed
instructions will be sent to you.

[0 Copyright IBM Corp. 1997 275

How Customers Can Get ITSO Redbooks

Customers may request ITSO deliverables (redbooks, BookManager BOOKs, and CD-ROMs) and
information about redbooks, workshops, and residencies in the following ways:

Online Orders — send orders to:

IBMMAIL

usib6fpl at ibmmail
caibmbkz at ibmmail
dkibmbsh at ibmmail

Internet
usib6fpl@ibmmail.com
Imannix@vnet.ibm.com
bookshop@dk.ibm.com

In United States:
In Canada:
Outside North America:

Telephone orders

1-800-879-2755
1-800-1BM-4YOU

United States (toll free)
Canada (toll free)

Outside North America
(+45) 4810-1320 - Danish
(+45) 4810-1420 - Dutch
(+45) 4810-1540 - English
(+45) 4810-1670 - Finnish
(+45) 4810-1220 - French

(long distance charges apply)
(+45) 4810-1020 - German
(+45) 4810-1620 - ltalian
(+45) 4810-1270 - Norwegian
(+45) 4810-1120 - Spanish
(+45) 4810-1170 - Swedish

Mail Orders — send orders to:

IBM Publications

Publications Customer Support
P.O. Box 29570

Raleigh, NC 27626-0570

USA

IBM Publications

144-4th Avenue, S.W.
Calgary, Alberta T2P 3N5
Canada

IBM Direct Services
Sortemosevej 21
DK-3450 Allergd
Denmark

Fax — send orders to:

United States (toll free)
Canada
Outside North America

1-800-445-9269
1-403-267-4455
(+45) 48 14 2207 (long distance charge)

1-800-IBM-4FAX (United States) or (+1)001-408-256-5422 (Outside USA) — ask for:

Index # 4421 Abstracts of new redbooks
Index # 4422 IBM redbooks
Index # 4420 Redbooks for last six months

Direct Services - send note to softwareshop@vnet.ibm.com
On the World Wide Web

Redbooks Home Page
IBM Direct Publications Catalog

http://www.redbooks.ibm.com
http://www.elink.ibmlink.ibm.com/pbl/pbl

Internet Listserver

With an Internet e-mail address, anyone can subscribe to an IBM Announcement Listserver. To
initiate the service, send an e-mail note to announce@webster.ibmlink.ibm.com with the keyword
subscribe in the body of the note (leave the subject line blank).

276 VisualAge for Smalltalk Handbook — Fundamentals

IBM Redbook Order Form

Please send me the following:

Title Order Number Quantity
First name Last name

Company

Address

City Postal code Country

Telephone number Telefax number VAT number

¢ Invoice to customer number

¢ Credit card number

Credit card expiration date Card issued to Signhature
We accept American Express, Diners, Eurocard, Master Card, and Visa. Payment by credit card not
available in all countries. Signature mandatory for credit card payment.

How to Get ITSO Redbooks

277

278 VisualAge for Smalltalk Handbook — Fundamentals

Glossary

A

abstract class . A class that provides common
behavior across a set of subclasses but is not
itself designed to have instances that work.

abstraction . A simplified description or view of
something that emphasizes characteristics or
purposes relevant to the user while suppressing
details that are immaterial or distracting.

accessor methods . Methods that an object
provides to define the interface to its instance
variables. The accessor method to return the
value of an instance variable is often called a
get method or getter method, and the accessor
method to assign a value to an instance variable
is called a set method or setter method.

access plan . The control structure produced
during compile time that is used to process SQL
statements encountered when the program is
run.

action. In VisualAge, a function or operation
that a part can perform upon receiving a
message. Actions enable a part's public
interface to give other parts access to its
behaviors. Compare to event and attribute.

activate . To make a resource of a node ready
to perform the functions for which it was
designed. Contrast with deactivate.

activator . In distributed processing
environments, a program running in the
background (sometimes called a "daemon
process”) that initially activates other programs
the first time they are called.

active. (1) Able to communicate on the
network. A token-ring network adapter is active
if it is able to transmit and receive on the
network. (2) Operational. (3) Pertaining to a
node or device that is connected or is available
for connection to another node or device.

(4) Currently transmitting or receiving.

[0 Copyright IBM Corp. 1997

adapter. Hardware card that allows a device,
such as a PC, to communicate with another
device, such as a monitor, a printer, or other 1/0
device.

address . (1) In data communication, the
IEEE-assigned unique code or the unique locally
administered code assigned to each device or
workstation connected to a network. (2) A
character, group of characters, or a value that
identifies a register, a particular part of storage,
a data source, or a data sink. The value is
represented by one or more characters. (3) To
refer to a device or an item of data by its
address. (4) The location in the storage of a
computer where data is stored. (5) In word
processing, the location, identified by the
address code, of a specific section of the
recording medium or storage.

Advanced Program-to-Program Communication
(APPC). (1) IBM's architected solution for
program-to-program communication, distributed
transaction processing, and remote database
access. A transaction program (TP) using the
APPC APl can communicate with other TPs on
systems that support APPC. (2) An
implementation of the Systems Network
Architecture (SNA) logical unit (LU) 6.2 protocol
that enables interconnected systems to
communicate and share the processing of
programs.

agent. A VisualAge part used to encapsulate
business logic and data access executed outside
a VisualAge for Smalltalk image.

allocate . A logical unit (LU) 6.2 application
program interface (API) verb used to assign a
session to a conversation for the conversation’'s
use. Contrast with deallocate.

American National Standard Code for

Information Interchange (ASCII) The standard
code, using a coded character set consisting of
7-bit coded characters (8 bits including parity
check), used for information interchange among

279

data processing systems, data communication

systems, and associated equipment. The ASCII
set consists of control characters and graphics
characters.

analog. Pertaining to data consisting of
continuously variable physical quantities.
Contrast with digital.

anonymous FTP . Using the FTP function of the
Internet anonymously by not logging in with an
actual, secret login ID and password. Often
permitted by large, host computers that are
willing to share openly some of the files on their
system to outside users who otherwise would
not be able to log in. See also FTP.

API. See application program interface.

APPC. See Advanced Program-to-Program
Communication.

application . (1) The use to which an information
processing system is put; for example, a payroll
application or an order-entry application. (2) A
collection of defined and extended classes that
provides a reusable piece of functionality. An
application contains and organizes functionally
related classes. It also can contain
subapplications and specify prerequisites.

application layer . In Open Systems
Architecture, the layer of the OSI reference
model that provides a means for application
processes residing in different open systems to
exchange information.

application manager (1) A team member who
is responsible for the overall state of an
application. An application manager coordinates
the activities of the application’'s developers and
assigns ownership of classes to team members.
(2) The browser from which users can create,
delete, manage, or configure applications in
their image.

application program (1) A program written for
or by a user that applies to the user’s work.
Some application programs receive support and
services from a special kind of application
program called a network application program.

280 VisualAge for Smalltalk Handbook — Fundamentals

(2) A program used to connect and
communicate with stations in a network,
enabling users to perform application-oriented
activities.

Note: Do not use the term application in place
of application program.

application program interface (API) . An
architected functional interface supplied by an
operating system or other software system. The
interface enables an application program written
in a high-level language to use specific data or
functions of the underlying system.

application programmer A person who
primarily writes and modifies programs for
application data. Contrast with system
programmer.

Archie . An Internet tool for finding files stored
on anonymous FTP sites. You need to know the
exact file name or a substring of it.

architecture . A logical structure that
encompasses operating principles including
services, functions, and protocols.

argument . A data element included as part of a
message. Arguments provide additional
information that the receiver can use to perform
the requested operation. Binary messages and
keyword messages take arguments. In a
keyword message, a colon (:) following a
keyword indicates that an argument is required.

ARPANet. (Advanced Research Projects
Agency Network), the precursor to the Internet.
Developed in the late 1960s and early 1970s by
the US Department of Defense as an experiment
in wide-area-networking that would survive a
nuclear war. See also Internet.

array literal . A literal that is an indexed
sequence of literals. The symbol # precedes
this sequence and parentheses enclose the
sequence. For example, #(5 7 9) is an array of
three integers.

ASCIl. (American Standard Code for
Information Interchange), this is the world-wide
standard for the code numbers used by

computers to represent all the upper and
lower-case Latin letters, numbers, punctuation,
etc. There are 128 standard ASCII codes each
of which can be represented by a 7-digit binary
number, 0000000 through 1111111.

atomic . (1) Pertaining to the smallest element
in a composite object that can be manipulated
independently. (2) Pertaining to a set of
operations performed such that either all the
operations performed or none of the operations
are performed. (3) Pertaining to a set of
operations that cannot be interrupted, such as a
critical section of a parallel program.

attribute . (1) In VisualAge, data that represents
a property of a part. (For example, a customer
part could have a name attribute and an
address attribute.) Attributes enable a part's
public interface to give other parts access to its
properties. An attribute can itself be a part,
with its own behavior and attributes. Compare
to event and action. (2) Information that
describes the characteristics of system objects
or program objects.

attribute-to-attribute connection A connection
from an attribute of one part to an attribute of
another part. When one attribute is updated,
the other attribute is updated automatically.
See also connection.

attribute-to-script connection A connection
from an attribute of a part to a script. The
connected attribute receives its value from the
script, which can make calculations based on the
values of other parts. See also connection.

authority . The right to do something on the
system or to use an object, such as a file or
document, in the system.

authorization list A list that gives a group of
users one or more types of access to objects
(such as files or programs) or data in the objects
(such as records in a file). It consists of a list of
two or more user IDs and their authorities for
system resources.

B

backbone . A high-speed line or series of
connections that forms a major pathway within a
network. The term is relative, as a backbone in
a small network is likely to be much smaller
than many nonbackbone lines in a large
network. See also Network.

bandwidth . The transmission capacity of the
lines that carry the Internet’'s electronic traffic.
Historically, it's imposed severe limitations on
the ability of the Internet to deliver all that we
are demanding it deliver, but fiber-optic cables
will ensure that bandwidth soon will be
essentially limitless and free.

Basic Input/Output System (BIOS) In IBM
personal computers with PC 1/O channel
architecture, microcode that controls basic
hardware operations such as interactions with
diskette drives, fixed disk drives, and the
keyboard.

baud. In common usage the baud rate of a
modem is how many bits it can send or receive
per second. Technically, baud is the number of
times per second that the carrier signal shifts
value; for example a 1200 bit/second modem
actually runs at 300 baud, but it moves 4 bits
per baud. See also bit, modem.

behavior . (1) The set of external characteristics
that an object exhibits. (2) The abstract class
that provides common behavior for class and
metaclass objects.

binary . (1) Pertaining to a system of numbers
to the base two; the binary digits are 0 and 1.
(2) Pertaining to a selection, choice, or condition
that has two possible different values or states.

bind. The process by which the output from the
SQL precompiler is converted to a usable
structure called an access plan. This process is
the one during which access paths to the data
are selected and some authorization checking is
performed.

Glossary 281

bit. (binary digit) A single digit number in base
2, in other words, either a 1 or a zero. The
smallest unit of computerized data. Bandwidth
is usually measured in bits per second. See
also bandwidth, bps, byte, kilobyte, megabyte.

block . A Smalltalk object consisting of one or
more statements, enclosed in brackets [],
passed as arguments or used as the receiver of
messages that implement control flow. Blocks
can define temporary variables for their own
use.

Bps. (bits per second) A measurement of how
fast data is moved from one place to another. A
28.8 modem can move 28,800 bits per second.
See also bandwidth, bit.

browse . A way of looking at a file that does not
allow you to change it.

browser . (1) A window that supports one or
more programming activities, such as creating
new classes or methods, modifying existing
classes or methods, or viewing library members.
(2) Software that enables users to browse
through the cyberspace of the World Wide Web.
See also Client, URL, WWW.

buffer. (1) A portion of storage used to hold
input or output data temporarily. (2) A routine
or storage used to compensate for a difference
in data rate or time of occurrence of events,
when transferring data from one device to
another.

byte. A set of bits that represent a single
character. Usually there are 8 bits in a byte,
sometimes more, depending on how the
measurement is being made.

C

cascaded messages . Multiple messages sent to
the same receiver object. The messages are
separated by a semicolon (;).

category . (1) On the VisualAge Composition
Editor, a selectable grouping of parts
represented by an icon in the left-most column.

282 VisualAge for Smalltalk Handbook — Fundamentals

Selecting a category displays the parts
belonging to that category in the next column
over. (2) A logical association of a group of
methods within a class, with a name assigned by
the class developer.

CGI Link. A stand-alone executable program
that receives incoming CGI requests and routes
them to the VisualAge application. CGI Link runs
on the HTTP server, which does not have to be
the same as the machine running the VisualAge
application.

CGl Link session data . A Web Connection
nonvisual part that holds a persistent data
object. You can use CGI Link Session Data to
store an application-specific object that remains
valid from one CGI query to the next, for the
duration of a session .

change-event symbol In VisualAge, the code
used to signal that an attribute has changed in
value.

character . A symbol used in printing. For
example, a letter of the alphabet, a numeral,
punctuation, or any other symbol that
represents information.

character literal . A literal that is any single
character preceded by a dollar sign ($).

CICS. See Customer Information Control
System.

class. The specification of an object, including
its attributes and behavior. Once defined, a
class can be used as a template for the creation
of object instances. Class, therefore, can also
refer to the collection of objects that share those
specifications. A class exists within a hierarchy
of classes in which it inherits attributes and
behavior from its superclasses, which exist
closer to the root of the hierarchy. See also
inheritance, metaclass, polymorphism, private
class and public class.

class definition
containing:

The definition of a class,

Class name

Type of class
Immediate superclass for the class
Instance, class, and class instance variables

Pool dictionaries that the class uses.

class developer . A team member who develops
and changes classes. The team member who
created an edition of a class is that edition's
class developer. Contrast with class owner.

class extension . An extension to the
functionality of a class defined by another
application. The extension consists of one or
more methods that define the added
functionality or behavior. These methods cannot
modify the existing behavior of the defined
class; they can only add behavior specific to the
application that contains the extended class.

class hierarchy . A tree structure that defines
the relationships among classes. A class has
subclasses down the hierarchy from itself and
superclasses up the hierarchy from itself. The
methods and variables of a class are inherited
by its subclasses.

class instance variable Private data that
belongs to a class. The defining class and each
subclass maintain their own copy of the data.
Only the class methods of the class can directly
reference the data. Changing the data in one
class does not change it for the other classes in
the hierarchy. Contrast with class variable.

class method . A method that provides behavior
for a class. Class methods are usually used to
define ways to create instances of the class.
Contrast with instance method.

class owner . Team member responsible for the
integrity of that class in an application edition.
The class owner is responsible for releasing
class versions. Contrast with class developer.

class variable . Data that is shared by the
defining class and its subclasses. The instance
methods and class methods of the defining class
and its subclasses can directly reference this

data. Changing the data in one class changes it
for all of the other classes. Contrast with class
instance variable.

client. A software program that is used to
contact and obtain data from a server software
program on another computer, often across a
great distance. Each client program is designed
to work with one or more specific kinds of
server programs, and each server requires a
specific kind of client. A Web browser is a
specific kind of client. See also browser, server.

client object . An object that requests services
from other objects.

client/server . The model of interaction in
distributed data processing in which a program
at one location sends a request to a program at
another location and awaits a response. The
requesting program is called a client, and the
answering program is called a server.

code page. A font component that associates
code points and character identifiers. A code

page also identifies how undefined code points
are handled.

collection . (1) In Smalltalk, a set of elements in
which each element is an object. (2) In SQL, a
set of objects created by the SQL/400 licensed
program that consists of and logically classifies
a set of objects, such as tables, views, and
indexes.

command . (1) A request for performance of an
operation or execution of a program. (2) A
character string from a source external to a
system that represents a request for system
action.

comment . A set of characters enclosed in
double quotation marks. Smalltalk ignores
comments and does not execute them.

Common Gateway Interface A standard
protocol through which a Web server can
execute programs running on the server
machine. CGI programs are executed in
response to requests from Web client browsers.

Glossary 283

Common Object Request Broker Architecture
(CORBA). An architectural standard proposed
by the Object Management Group (OMG), an
industry standards organization, for creating
object descriptions that are portable among
programming languages and execution
platforms.

Common Programming Interface

Communications (CPI-C) . An IBM
communications architecture that defines a
programming interface for peer-to-peer
communications that is common across different
environments and platforms. Also referred to as
CPI Communications or CPI-C.

Common User Access (CUA) . An IBM
architecture for designing graphical user
interfaces that uses a set of standard
components and terminology.

component . A functional grouping of classes
and related files within a product. See also
system component.

composite part . A part that contains other
parts; it can also contain data and behavior of
its own. For example, a user interface view is a
composite part composed of subparts such as
entry fields, push buttons, and text.

Composition Editor In VisualAge, a view that is
used to build a graphical user interface and to
make connections among parts.

concrete class . A subclass of an abstract class
that is a specialization of the abstract class. For
example, the concrete class, OrderedCollection,
is a subclass of the abstract class, Collection.

configuration . (1) A description of a group of
components that identifies, for each component,
the component edition or version that is part of
the group. (2) The arrangement of a computer
system or network as defined by the nature,
number, and chief characteristics of its
functional units. More specifically, the term may
refer to a hardware configuration or a software
configuration. (3) The devices and programs
that make up a system, subsystem, or network.

284 VisualAge for Smalltalk Handbook — Fundamentals

configuration file The collective set of
definitions that describes a configuration.

configuration map A named group of
application editions. A configuration map
usually represents a product or one of its major
parts.

connection . (1) In VisualAge, a formal, explicit
relationship between parts. Connections define
the ways in which parts communicate with one
another. Making connections is the basic
technique used for building any VisualAge
application. See also attribute-to-script,
attribute-to-attribute, event-to-script, and
event-to-action connection. (2) A linkage
between nodes. Connections are established
and released at the Network, Session, and
Presentation Layers.

construction from parts A software
development technology in which applications
are assembled from reusable and existing
software components known as parts.

control language . The set of all commands with
which users request functions from the system.

controller . A unit that controls input/output
operations for one or more devices.

conversation . In SNA, a logical connection
between two transaction programs using an LU
6.2 session. Conversations are delimited by
brackets to gain exclusive use of a session.

CORBA. See Common Object Request Broker
Architecture.

CPI-C. See Common Programming Interface
Communications.

CUA. See Common User Access.

Customer Information Control System (CICS)

An IBM licensed program that enables
transactions entered at remote terminals to be
processed by user-written applications. It
includes facilities for building, using, and
maintaining databases.

Cyberspace . Term originated by author William
Gibson in his novel Neuromancer, the word
Cyberspace is currently used to describe the
whole range of information resources available
through computer networks.

D

data area. A system object used to
communicate data such as common language
variable values between the programs within a
job and between jobs. A data area is identified
to the system as a specific object type. The
system-recognized identifier for the object type
is *DTAARA.

database file . A system object of the type *FILE
that contains descriptions of how input data is to
be presented to a program from internal storage
and how output data is to be presented to
internal storage from a program. The collection
of all database files makes up the database (all
the data files stored in the system).

database manager . A VisualAge or IBM
Smalltalk database component that models a
database management system in order to
provide the interface between an application
and the database management system.

data description specifications (DDS) A format
for describing the user's database files or
device files to the system. Describing a file in
DDS is similar to filling in information on a form
that is arranged in columns and rows. The most
common characteristics, such as the names and
lengths of fields, are described by putting
entries in specific columns on the form. Another
part of the form allows special parameters that
describe less common and more varied
characteristics. The finished specifications are
then used as the source for creating the file.

data integrity . (1) The condition that exists as
long as accidental or intentional destruction,
alteration, or loss of data does not occur.

(2) Preservation of data for its intended use.

data processing . The systematic performance
of operations upon data; for example, handling,
merging, sorting, and computing.

data queue . A way to communicate and put
data used by several programs in a job or
between jobs. The data queue is identified to
the system as a specific type of object. The
system-recognized identifier for the object type
is *DTAQ.

data structure . The syntactic structure of
symbolic expressions and their storage
allocation characteristics.

data transfer . (1) The result of the transmission
of data signals from any data source to a data
receiver. (2) The movement, or copying, of data
from one location and the storage of the data at
another location.

deactivate . To take a resource of a node out of
service, rendering it inoperable, or to place it in
a state in which it cannot perform the functions
for which it was designed. Contrast with
activate.

deallocate . A logical unit (LU) 6.2 application
program interface (API) verb that terminates a
conversation, thereby freeing the session for a
future conversation. Contrast with allocate.

debugger . A software tool used to detect,
trace, and eliminate errors in computer
programs or other software.

default. Pertaining to an attribute, value, or
option that is assumed when none is explicitly
specified.

delimiter . (1) A character used to indicate the
beginning or end of a character string. (2) A bit
pattern that defines the beginning or end of a
frame or token on a LAN.

dependent LU . Any logical unit (LU) that
receives an ACTLU over a link. Such LUs can
act only as secondary logical units (SLUs) and
can have only one LU-LU session at a time.
Contrast with independent LU.

Glossary 285

destination . Any point or location, such as a
node, station, or particular terminal, to which
information is to be sent.

device. An input/output unit such as a terminal,
display, or printer.

dictionary . In Smalltalk, an unordered collection
whose elements are accessed by an explicitly
assigned external key. See also pool dictionary.

digital . (1) Pertaining to data in the form of
digits. Contrast with analog. (2) Pertaining to
data consisting of numerical values or discrete
units.

disabled . (1) Pertaining to a state of a
processing unit that prevents the occurrence of
certain types of interruptions. (2) Pertaining to
the state in which a transmission control unit or
audio response unit cannot accept incoming
calls on a line.

display . (1) To present information for viewing,
usually on a terminal screen or a hard-copy
device. (2) A device or medium on which
information is presented, such as a terminal
screen.

Display . (1) A Smalltalk command that executes
the selected code and displays the result. (2) In
IBM Smalltalk, an X/Motif concept that models
the user's hardware display. The functions of
the X/Motif Display object are implemented in
the IBM Smalltalk CgDisplay class.

distributed application A workstation
application that runs in cooperation with
programs running on other processes or
machines. Client/server applications are a
subset of distributed applications.

distributed computing environment (DCE) . A
set of services and tools that support the
creation, use, and maintenance of distributed
applications in a heterogeneous computing
environment.

286 VisualAge for Smalltalk Handbook — Fundamentals

Distributed System Object Model (DSOM) . An
extension to SOM enabling SOM objects to
reside on multiple network nodes.

DLL. See dynamic link library.

domain. (1) An access method, its application
programs, communication controllers,
connecting lines, modems, and attached
terminals. (2) In SNA, a system services control
point (SSCP) and the physical units (PUs), logical
units (LUs), links, link stations, and all the
associated resources that the SSCP has the
ability to control by means of activation
requests and deactivation requests.

domain name . The unique name that identifies
an Internet site. Domain names always have
two or more parts, separated by dots. The part
on the left is the most specific, and the part on
the right is the most general. A given machine
may have more than one domain name but a
given domain name points to only one machine.
Usually, all of the machines on a given network
will have the same thing as the right-hand
portion of their domain names, for example,
gateway.mynetwork.com.br,
mail.mynetwork.com.br, www.mynetwork.com.br,
and so on. It is also possible for a domain name
to exist but not be connected to an actual
machine. This is often done so that a group or
business can have an Internet e-mail address
without having to establish a real Internet site.
In these cases, some real Internet machine must
handle the mail on behalf of the listed domain
name. See also IP Number.

dynamic data exchange (DDE) . A
communication mechanism between processes
that enables two applications to exchange data
in a client/server relationship.

dynamic link library (DLL) A file containing
data and code objects that can be used by
programs or applications during loading or at
run time but are not part of the program’s
executable (.EXE) file.

E

EBCDIC. Extended binary-coded decimal
interchange code. A coded character set
consisting of 8-bit coded characters.

edition . In the VisualAge or IBM Smalltalk team
programming environment, a software
component that is subject to further change. A
software component can have one or more
editions, identified by a time stamp stating the
date and time of the edition's creation. Many
changes can be made to a single edition of a
class. In contrast, every change to a method
creates a new edition of that method. In its
broadest sense, edition can include scratch
edition and version.

EHLLAPI. Emulator high-level language
application programming interface. A
programming interface that enables a
workstation application to communicate with a
mainframe application. EHLLAPI operates in
conjunction with a terminal (such as 3270)
emulator.

e-mail. (Electronic mail) Messages transmitted
over the Internet from user to user. E-mail can
contain text, but also can carry with it files of
any type as attachments.

enabled. (1) On a LAN, pertaining to an
adapter or device that is active, operational, and
able to receive frames from the network.

(2) Pertaining to a state of a processing unit
that allows the occurrence of certain types of
interruptions. (3) Pertaining to the state in
which a transmission control unit or an audio
response unit can accept incoming calls on a
line.

encapsulation . The hiding of a software object's
internal data representation. The object provides
an interface that queries and manipulates the
data without exposing its underlying structure.

end user. A person, device, program, or
computer system that utilizes a computer
network for the purpose of data processing and
information exchange.

enterprise . A business or organization that
consists of two or more sites separated by a
public right-of-way or a geographical distance.

Ethernet. A very common method of
networking computers in a LAN. Ethernet will
handle about 10,000,000 bits/second and can be
used with almost any kind of computer. See
also bandwidth, LAN.

event. A representation of a change that occurs
to a part. The events on a part's public
interface enable other interested parts to
receive notification when something about the
part changes. For example, a push button
generates an event signaling that it has been
clicked, which might cause another part to
display a window. Compare to attribute.

event-to-action connection A connection that
causes an action to be performed when an
event occurs. See also connection.

event-to-script connection A connection that
causes a script to run when an event occurs.
See also connection.

exception . An abnormal condition such as an
I/O error encountered in processing a data set
or a file.

execute. To perform the actions specified by a
program or a portion of a program.

execution . The process of carrying out an
instruction or instructions of a computer
program by a computer.

expression . In Smalltalk, the syntactic
representation of one or more messages. An
expression can consist of subexpressions
representing the receiver and arguments of the
message. The expression can also cause the
assignment of its result to one or more
variables.

external source . The format of Smalltalk source

code that is filed out to an external file. See
also file in and file out.

Glossary 287

F

feature. (1) A major component of a software
product that can be ordered separately. (2) In
VisualAge, an action, attribute, or event that is
available from a part's public interface and to
which other parts can connect. See also
attribute and event.

field. A group of related bytes (such as name
or amount) that are treated as a unit in a
record.

file. (1) A generic term for the object type that
refers to a database file, a device file, or a save
file. The system-recognized identifier for the
object type is *FILE. (2) In the hierarchical file
system, a piece of related information (data),
such as a document. (3) In SQL, the term is
generally referred to as a table.

file in. A Smalltalk command for compiling
external definitions of applications, classes, and
methods from a text file.

file name . (1) A name assigned to or declared
for a file. (2) The name used by a program to
identify a file.

file out. A Smalltalk command for writing
definitions of applications, classes, and methods
to an external text file.

firewall . A combination of hardware and
software that protects a local area network
(LAN) from Internet hackers. It separates the
network into two or more parts and restricts
outsiders to the area outside the firewall.
Private or sensitive information is kept inside
the firewall.

first-in first-out (FIFO) A queuing technique in
which the next request to be processed from a
queue is the request of the highest priority that
has been on the queue for the longest time.

fixed-length record A record having the same
length as all other records with which it is
logically or physically associated.

288 VisualAge for Smalltalk Handbook — Fundamentals

form. An HTML element that can include entry
fields, push buttons, and other user-interface
controls through which users can enter
information. Sometimes called a fill-in form.

format. (1) A specified arrangement of such
things as characters, fields, and lines, usually
used for displays, printouts, or files. (2) To
arrange such things as characters, fields, and
lines.

FQDN. (Fully Qualified Domain Name) The
official name assigned to a computer.
Organizations register names, such as ibm.com
or utulsa.edu. They then assign unique names
to their computers, such as watson5.ibm.com or
tornado.cs.utulsa.edu.

framework . A library of classes, intended for
reuse, that fall within a particular domain (for
example, a communications framework or a
graphics framework).

free-form surface . In VisualAge, the large open
area of the Composition Editor window. The
free-form surface holds the visual parts
contained by the views a user builds and
representations of the nonvisual parts that an
application includes.

FTP. (File Transfer Protocol) The basic Internet
function that enables files to be transferred
between computers. You can use it to download
files from a remote, host computer, as well as to
upload files from your computer to a remote,
host computer. (See Anonymous FTP).

function . (1) A specific purpose of an entity, or
its characteristic action. (2) In data
communications, a machine action such as
carriage return or line feed.

G

garbage collection A Smalltalk process for
periodically identifying unreferenced objects and
deallocating their memory.

gateway . A device and its associated software
that interconnect networks or systems of

different architectures. The connection is
usually made above the reference model
network layer.

GET. One of the methods used in HTTP
requests. A GET request is used to retrieve data
from an HTTP server. See also POST.

GIF. (Graphics Interchange Format) A graphics
file format that is commonly used on the
Internet to provide graphics images in Web
pages.

global variable . A variable that any method in
any object can access.

graphical user interface (GUI) A type of
interface that enables users to communicate
with a program by manipulating graphical
elements rather than by entering commands.
Typically, a graphical user interface includes a
combination of graphics, pointing devices, menu
bars, overlapping windows, and icons.

graphics . (1) The making of charts and
pictures. (2) Pertaining to charts, tables, and
their creation.

group member . A team member who belongs
to a group that is responsible for developing an
application.

GUI. See graphical user interface.

H

hardware . Physical equipment as opposed to
programs, procedures, rules, and associated
documentation.

header. The portion of a message that contains
control information for the message such as one
or more destination fields, name of the
originating station, input sequence number,
character string indicating the type of message,
and priority level for the message.

HLLAPI. High-level language application
programming interface. A programming
interface that enables a workstation application
to communicate with a mainframe application.

HLLAPI usually operates in conjunction with a
terminal emulator.

host. (1) A computer that "hosts" outside
computer users by providing files, services or
sharing its resources. (2) Any computer on a
network that is a repository for services
available to other computers on the network. It
is quite common to have one host machine
provide several services, such as WWW and
USENET. See also Node, Network.

host computer . (1) The primary or controlling
computer in a multicomputer installation or
network. (2) In a network, a processing unit in
where a network access method resides.

host variable . A variable in an SQL statement
used for substituting data values into the
statement at execution time.

HTML (hypertext markup language). The basic
language that is used to build hypertext
documents on the World Wide Web. It is used in
basic, plain ASCII-text documents, but when
those documents are interpreted (called
rendering) by a Web browser such as Netscape,
the document can display formatted text, color,
a variety of fonts, graphic images, special
effects, hypertext jumps to other Internet
locations and information forms.

HTTP (hypertext transfer protocol) . The
protocol for moving hypertext files across the
Internet. Requires a HTTP client program on
one end, and an HTTP server program on the
other end. HTTP is the most important protocol
used in the World Wide Web (WWW). See also
Client, Server, WWW.

HTTP request. A transaction initiated by a Web
browser and adhering to HTTP. The server
usually responds with HTML data, but can send
other kinds of objects as well.

hypertext . Text in a document that contains a
hidden link to other text. You can click a mouse
on a hypertext word and it will take you to the
text designated in the link. Hypertext is used in
Windows help programs and CD encyclopedias
to jump to related references elsewhere within

Glossary 289

the same document. The wonderful thing about
hypertext, however, is its ability to link— using

HTTP over the Web - to any Web document in
the world, yet still require only a single mouse

click to jump clear around the world.

icon. A small pictorial representation of an
object.

image. A Smalltalk file that provides a
development environment on an individual
workstation. An image contains object
instances, classes, and methods. It must be
loaded into the Smalltalk virtual machine in
order to run.

implementor . For any given message selector,
a method that implements that selector.

IMS. Information Management System/Virtual
Storage.

inactive . (1) Not operational. (2) Pertaining to
a node or device not connected or not available
for connection to another node or device.

independent LU . A logical unit (LU) that does
not receive an ACTLU over a link. Such LUs
can act as primary logical units (PLUs) or
secondary logical units (SLUs) and can have one
or more LU-LU sessions at a time. Contrast
with dependent LU.

index . A set of pointers that are logically
arranged by the values of a key. Indexes
provide quick access and can enforce
uniqueness on the rows in a table.

inheritance . A relationship among classes in
which one class shares the structure and
behavior of another. A subclass inherits from a
superclass.

initialize . In a LAN, to prepare the adapter (and
adapter support code, if used) for use by an
application program.

input/output (1/0) . (1) Pertaining to a device
whose parts can perform an input process and

290 VisualAge for Smalltalk Handbook — Fundamentals

an output process at the same time.

(2) Pertaining to a functional unit or channel
involved in an input process, output process, or
both, concurrently or not, and to the data
involved in such a process.

inspector . A Smalltalk tool for viewing the data
of any Smalltalk object.

instance . An object that is a single occurrence
of a particular class. An instance exists in
memory or external media in persistent form.
Compare to persistent object.

instance method . In Smalltalk, a method that
provides behavior for particular instances of a
class. Messages that invoke instance methods
are sent to particular instances, rather than to
the class as a whole. Contrast with class
method.

instance variable . Private data that belongs to
an instance of a class and is hidden from direct
access by all other objects. Instance variables
can be accessed only by the instance methods
of the defining class and its subclasses.

interface . (1) A shared boundary between two
functional units, defined by functional
characteristics, common physical
interconnection characteristics, signal
characteristics, and other characteristics as
appropriate. (2) A shared boundary. An
interface may be a hardware component to link
two devices or a portion of storage or registers
accessed by two or more computer programs.
(3) Hardware, software, or both, that links
systems, programs, or devices.

interface aids . In VisualAge, when used
together with the RecordStructure classes, the
interface aids convert existing C or COBOL
definitions into Smalltalk objects.

Internet. The vast collection of interconnected
networks that all use the TCP/IP protocols and
that evolved from the ARPANET of the late
1960's and early 1970's. By July of 1995, the
Internet was connecting roughly 60,000
independent networks into a vast global net.

intranet . A private network inside a company
or organization that uses the same kinds of
software that you would find on the public
Internet, but that is only for internal use. As the
Internet has become more popular, many of the
tools used on the Internet are being used in
private networks, for example, many companies
have Web servers that are available only to
employees.

IP. (Internet Protocol) The rules that provide
basic Internet functions. See TCP/IP.

IP Number. An Internet address that is a
unigue number consisting of four parts
separated by dots, sometimes called a dotted
quad. (For example: 198.204.112.1) Every
Internet computer has an IP number and most
computers also have one or more domain
names that are plain language substitutes for
the dotted quad.

ISDN. (Integrated Services Digital Network) A
set of communications standards that enable a
single phone line or optical cable to carry voice,
digital network services and video. ISDN is
intended to eventually replace our standard
telephone system.

iterative development A software development
process that allows progress in stages. At the
end of each stage, the result is verified by end
users. Through such verification, requirements
are dynamically identified and refined while the
product is under development.

J

Java. Java is a new programming language
invented by Sun Microsystems that is
specifically designed for writing programs that
can be safely downloaded to your computer
through the Internet and immediately run
without fear of viruses or other harm to your
computer or files. Using small Java programs
(called applets, Web pages can include
functions such as animations, calculators, and
other fancy tricks. We can expect to see a huge
variety of features added to the Web using Java,
since you can write a Java program to do

almost anything a regular computer program
can do, and then include that Java program in a
Web page.

job control language (JCL) A problem-oriented
language designed to express statements in a
job that are used to identify the job or describe
its requirements to an operating system.

journal . A system object that identifies the
objects being journaled, the current journal
receiver, and all journal receivers on the system
for the journal. The system-recognized identifier
for the object type is *JRN.

journaling . The process of recording, in a
journal, the changes made to a physical file
member. Journaling allows the programmer to
reconstruct a physical member by applying or
removing the changes in the journal to a saved
version of the physical file member.

journal receiver . A system object that contains
journal entries added when changes are made
to an object, for example, when an update is
made to a file being journaled. The
system-recognized identifier for the object type
is *JRNRCV.

JPEG. (Joint Photographic Experts Group) The
name of the committee that designed the
photographic image-compression standard.
JPEG is optimized for compressing full-color or
gray-scale photographic-type, digital images. It
doesn’'t work well on drawn images such as line
drawings, and it does not handle black-and-white
images or video images.

K

kbps . (kilobits per second) A speed rating for
computer modems that measures (in units of
1024 bits) the maximum number of bits the
device can transfer in one second under ideal
conditions.

keyword . (1) One of the predefined words of an
artificial language. (2) One of the significant
and informative words in a title or document
that describes the content of that document.

Glossary 291

(3) A name or symbol that identifies a
parameter. (4) A part of a command operand
that consists of a specific character string (such
as DSNAME=).

keyword message . A message that takes one
or more arguments. A keyword is an identifier
followed by a colon (:). Each keyword requires
one argument, and the order of the keywords is
important. 'hello’ at: 2 put: $H is an example of
a keyword message; at: and put: are keyword
selectors, 2 and $H are the arguments. See also
message.

kilobyte . A thousand bytes. Actually, usually
1024 (2™10) bytes. See also byte, bit.

L

LAN. See local area network.

library . (1) A shared repository represented by
a single file. It stores source code, object
(compiled) code, and persistent objects,
including editions, versions, and releases of
software components. (2) A system object that
serves as a directory to other objects. A library
groups related objects and allows the user to
find objects by name. To identify a specific
object to the system, a user needs only to
provide the object name, the object type, and
the name of the library containing the object.

link. (1) The logical connection between nodes
including the end-to-end link control procedures.
(2) The combination of physical media,
protocols, and programming that connects
devices on a network. (3) In computer
programming, the part of a program, in some
cases a single instruction or an address, that
passes control and parameters between
separate portions of the computer program.

(4) To interconnect items of data or portions of
one or more computer programs. (5) In SNA,
the combination of the link connection and link
stations joining network nodes.

listserv . An Internet application that
automatically serves mailing lists by sending
electronic newsletters to a stored database of

292 VisualAge for Smalltalk Handbook — Fundamentals

Internet user addresses. Users can handle their
own subscribe/unsubscribe actions without
requiring anyone at the server location to
personally handle the transaction.

literal . An object that can be created by the
compiler. A literal can be a number, a character
string, a single character, a symbol, or an array.
All literals are unique: Two literals with the
same value refer to the same object. The object
created by a literal is read-only; it cannot be
changed.

literal text . Text in an HTML Text part that is
passed to the client browser exactly as entered.
You can use literal text to code HTML tagging
that is not directly supported by the Web
Connection parts.

load. A system operation that links the
compiled code for a software component from a
library into an active image. Loading also
performs other operations that enable the
component to run, such as linking prerequisites.

local address . In SNA, an address used in a
peripheral node in place of an SNA network
address and transformed to or from an SNA
network address by the boundary function in a
subarea node.

local area network (LAN) . (1) A network in
which devices are connected to one another for
communication and can be connected to a larger
network. See also token ring. (2) A network in
which communications are limited to a
moderately sized geographic area such as a
single office building, warehouse, or campus,
and do not generally extend across public
rights-of-way. Contrast with wide area network.

local node . In the subsystem, the node from
which one views the rest of the OSI
network—the node for which resources are
defined. Contrast with remote node.

logical file . A description of how data is to be
presented to or received from a program. This
type of database file contains no data, but it
defines record formats for one or more physical
files. The record formats allow a developer to

present different views of the data in a physical
file.

logical unit (LU) . In SNA, a port through which a
user gains access to the services of a network.
A logical unit can support two types of
sessions—with the host, and with other LUs.

See Jogical unit 6.2.

logical unit (LU) 6.2 . A type of logical unit that
supports general communication between
programs in a distributed processing
environment. LU 6.2 is characterized by (1) a
peer relationship between session partners, (2)
efficient utilization of a session for multiple
transactions, (3) comprehensive end-to-end
error processing, and (4) a generic application
program interface (API) consisting of structured
verbs that are mapped to a product
implementation. Synonym for Advanced
Program-to-Program Communications.

Login. The account name used to gain access
to a computer system. Not kept secret (unlike
password).

LU type. In SNA, the classification of a LU-LU
session in terms of the specific subset of SNA
protocols and options supported by the logical
units (LUs) for that session, namely:

The mandatory and optional values allowed
in the session activation request

The usage of data stream controls, function
management headers (FMHs), request unit
(RU) parameters, and sense codes

Presentation services protocols such as
those associated with FMH usage.

LU types 0, 1, 2, 3, 4, 6.1, 6.2, and 7 are defined.

M

machine-readable information (MRI)
Language-sensitive information associated with
a computer program, such as program
integrated information or softcopy
documentation.

management services . In SNA, one of the types
of network services in control points (CPs) and
physical units (PUs). Management services are
the services provided to assist in the
management of SNA networks, such as problem
management, performance and accounting
management, configuration management and
change management.

megabyte . A million bytes. A thousand
kilobytes. See also byte, bit, kilobyte.

message . In Smalltalk, a communication from
one object to another that requests the
receiving object to execute a method. A
message consists of a reference to the receiving
object, followed by a selector indicating the
requested method, and (in many cases)
arguments to be used in executing the method.
There are three types of messages: binary,
keyword, and unary.

metaclass . The specification of a class; the
complete description of a class's attributes,
behavior, and implementation. Every class has
a metaclass, of which it is the sole instance.
Contrast with class.

method . Executable code that implements the
logic of a particular message for a class. In
VisualAge, methods are also called scripts. See
also class method, instance method, private
method, and public method.

MIME. (Multipurpose Internet Mail Extensions)
A set of Internet functions that extend normal
e-mail capabilities and enable nontext computer
files to be attached to e-mail. Nontext files
include graphics, spreadsheets, formatted
word-processor documents, sound files, and so
on. Files sent by MIME arrive at their
destination as exact copies of the original so
that you can send fully formatted word
processing files, spreadsheets, graphics images
and software applications to other users via
simple e-mail. Besides email software, the
MIME standard is also universally used by Web
servers to identify the files they are sending to
Web clients, in this way new file formats can be
accommodated simply by updating the
browsers' list of pairs of MIME types and

Glossary 293

appropriate software for handling each type.
See also browser, client, server.

model. A nonvisual part that represents the
state and behavior of a real-world object, such
as a customer or an account. Contrast with
view.

mode name . A symbolic name for a set of
session characteristics. For LU 6.2, a mode
name and a partner LU name together define a
group of parallel sessions having the same
characteristics.

module . A program unit that is discrete and
identifiable with respect to compiling, combining
with other units, and loading; for example, the
input to or output from an assembler, compiler,
linkage editor, or executive routine.

monitor . (1) A functional unit that observes and
records selected activities for analysis within a
data processing system. Possible uses are to
show significant departures from the norm, or to
determine levels of utilization of particular
functional units. (2) Software or hardware that
observes, supervises, controls, or verifies
operations of a system.

Multiple Virtual Storage (MVS) An IBM
licensed program whose full name is the
Operating System/Virtual Storage (OS/VS) with
Multiple Virtual Storage/System Product for
System/370. It is a software operating system
controlling the execution of programs.

multireceive dialog A dialog that takes one
data record from the object that initiates the
dialog, sends it to a remote program, and
returns multiple records from the remote
program to the initiating object. Compare to
simple dialog.

294 VisualAge for Smalltalk Handbook — Fundamentals

N

NetBIOS. See Network Basic Input/Output
System.

network . (1) A configuration of data processing
devices and software connected for information
interchange. (2) An arrangement of nodes and
connecting branches. Connections are made
between data stations.

network address . In SNA, an address,
consisting of subarea and element fields, that
identifies a link, a link station, or a network
addressable unit. Subarea nodes use network
addresses; peripheral nodes use local
addresses. The boundary function in the
subarea node to which a peripheral node is
attached transforms local addresses to network
addresses and vice versa. See /ocal address.

Network Basic Input/Output System (NetBIOS)

An operating system interface for application
programs used on IBM personal computers that
are attached to an IBM Token-Ring Network.

network layer . (1) In the Open Systems
Interconnection reference model, the layer that
provides for the entities in the transport layer
the means for routing and switching blocks of
data through the network between the open
systems in which those entities reside. (2) The
layer that provides services to establish a path
between systems with a predictable quality of
service. See Open Systems Interconnection
(0Sl).

network management . The conceptual control
element of a station that interfaces with all of
the architectural layers of that station and is
responsible for the resetting and setting of
control parameters, obtaining reports of error
conditions, and determining whether the station
should be connected to or disconnected from the
network.

nil. The object in Smalltalk that means no
value. All variables initially refer to nil. It is the
single instance of the UndefinedObject class.

node. (1) Any device, attached to a network,
that transmits and/or receives data. (2) An
endpoint of a link, or a junction common to two
or more links in a network. (3) In a network, a
point where one or more functional units
interconnect transmission lines.

node name . In VTAM, the symbolic name
assigned to a specific major or minor node
during network definition.

nonvisual class . A class in a VisualAge
application that specifies a nonvisual part. For
example, Person, Address, and BankAccount are
nonvisual classes.

nonvisual part . A part that has no visual
representation at run time. A nonvisual part
typically represents some real-world object that
exists in the business environment. Contrast
with view, visual part.

notebook . In VisualAge, a view that resembles
a bound notebook, containing pages separated
into sections by tabbed divider pages. A user

can turn the pages of a notebook or select the

tabs to move from one section to another.

O

object. (1) The basic building block in Smalltalk
development. An object is anything that exhibits
behavior. All code and data in Smalltalk must be
part of an object. (2) On the AS/400 system, an
object is a named storage space consisting of a
set of characteristics that describes itself and, in
some cases, data. Some examples of objects
are programs, files, and libraries.

object code . Compiler or assembler output that
is itself executable machine code or is suitable
for processing to produce executable machine
code. Contrast with source code.

object factory . A nonvisual part capable of
dynamically creating new instances of a
specified part. For example, during the
execution of an application, an object factory
can create instances of a new class to collect
the data being generated.

object-oriented programming A programming
methodology built around objects and based on
sending messages back and forth between those
objects. The basic concepts of object-oriented
programming are encapsulation, inheritance,
and polymorphism.

object persistency A characteristic that
enables objects to exist beyond the time in
which their creating application runs. One use of
object persistency is sharing objects among
programmers in a development environment.

open system . (1) A system with specified
standards that therefore can be readily
connected to other systems that comply with the
same standards. (2) A data communications
system that conforms to the standards and
protocols defined by Open Systems
Interconnection (OSI).

open systems architecture (OSA) A model that
represents a network as a hierarchical structure
of layers of functions; each layer provides a set
of functions that can be accessed and that can
be used by the layer above it.

Note: Layers are independent in the sense that
implementation of a layer can be changed
without affecting other layers.

Open Systems Interconnection (OSI) (1) The
interconnection of open systems in accordance
with specific ISO standards. (2) The use of
standardized procedures to enable the
interconnection of data processing systems.
Note: The OSI architecture establishes a
framework for coordinating the development of
current and future standards for the
interconnection of computer systems. Network
functions are divided into seven layers. Each
layer represents a group of related data
processing and communication functions that
can be carried out in a standard way to support
different applications.

operating system Software that controls the

execution of programs. An operating system
can provide services such as resource

Glossary 295

allocation, scheduling, input/output control, and
data management.

operation . (1) A defined action, namely, the act
of obtaining a result from one or more operands
in accordance with a rule that completely
specifies the result for any permissible
combination of operands. (2) A program step
undertaken or executed by a computer. (3) An
action performed on one or more data items,
such as adding, multiplying, comparing, or
moving.

option . (1) A specification in a statement, a
selection from a menu, or a setting of a switch
that may be used to influence the execution of a
program. (2) A hardware or software function
that may be selected or enabled as part of a
configuration process. (3) A piece of hardware
(such as a network adapter) that can be
installed in a device to modify or enhance
device function.

P

panel. (1) A formatted display of information
that appears on a terminal screen. Contrast
with screen. (2) In computer graphics, a display
image that defines the locations and
characteristics of display fields on a display
surface.

parameter. (1) A data element included as part
of a message to provide information that the
object might need. In Smalltalk, generally
referred to as an argument. (2) A variable that
is given a constant value for a specified
application and that may denote the application.
(3) An item in a menu or for which the user
specifies a value or for which the system
provides a value when the menu is interpreted.
(4) Data passed between programs or
procedures.

part. A self-contained software object with a
standardized public interface, consisting of a set
of external features that allow the part to
interact with other parts. The parts on the
VisualAge parts palette can be used as
templates to create instances of objects.

296 VisualAge for Smalltalk Handbook — Fundamentals

parts palette . In the VisualAge Composition
Editor, an organized collection of visual and
nonvisual parts used in building composite parts
for an application. The parts palette is organized
into categories. Application developers can add
parts to the palette for use in defining
applications or other parts.

password . In computer security, a string of
characters known to the computer system and a
user, who must specify it to gain full or limited
access to a system and to the data stored within
it.

path. (1) In a network, any route between any
two nodes. (2) The route traversed by the
information exchanged between two attaching
devices in a network. (3) A command in IBM
Personal Computer Disk Operating System (PC
DOS) and IBM Operating System/2 (OS/2) that
specifies directories to be searched for
commands or batch files that are not found by a
search of the current directory.

PATH_INFO. A CGI variable, usually
transmitted to the CGI program in the form of an
environment variable. The PATH_INFO variable
contains all path information from the URL
following the name of the CGI executable. For a
Web Connection application, this information is
the same as the VisualAge part name.

persistent object . Instances stored outside of
the image. A persistent object must be loaded
into virtual or real storage before it can process
messages sent to it.

personal computer (PC) . A desk-top,
free-standing, or portable microcomputer that
usually consists of a system unit, a display, a
monitor, a keyboard, one or more diskette
drives, internal fixed-disk storage, and an
optional printer. PCs are designed primarily to
give independent computing power to a single
user and are inexpensively priced for purchase
by individuals or small businesses. Examples
include the various models of the IBM personal
computers and the IBM Personal System/2
computer.

physical connection The ability of two
connectors to mate and make electrical contact.
In a network, devices that are physically
connected can communicate only if they share
the same protocol.

physical file . A description of how data is to be
presented to or received from a program and
how data is actually stored in the database. A
physical file contains one record format and one
or more members.

physical unit (PU) . In SNA, a type of network
addressable unit (NAU). A physical unit (PU)
manages and monitors the resources (such as
attached links) of a node, as requested by a
system services control point (SSCP) through an
SSCP-PU session. An SSCP activates a session
with the physical unit in order to indirectly
manage, through the PU, resources of the node
such as attached links.

pointer . (1) An identifier that indicates the
location of an item of data. (2) A data element
that indicates the location of another data
element. (3) A physical or symbolic identifier of
a unique target.

polymorphism The ability of different objects
to respond to the same message in different
ways. Different objects can have very different
method implementations for the same message.
An object can send a message without concern
for its underlying implementation.

pool dictionary A dictionary object whose keys
define variables that can be shared by multiple
classes. All methods for a class can access the
variables in a pool dictionary if the class

declares the pool dictionary as part of its scope.

port. (1) A place where information goes into or
out of a computer, or both. For example, the
serial port on a personal computer is where a
modem would be connected. (2) On the Internet
port often refers to a number that is part of a
URL, appearing after a colon (:) right after the
domain name. Every service on an Internet
server listens on a particular port number on
that server. Most services have standard port
numbers; Web servers normally listen on port

80. Services can also listen on nonstandard
ports, in which case the port number must be
specified in a URL when accessing the server.
(3) Refers to translating a piece of software to
bring it from one type of computer system to
another. See also domain name, server, URL.

POST. One of the methods used in HTTP
requests. A POST request is used to send data
to an HTTP server. See also GET.

prerequisite application An application
required by another application for it to function
successfully. An application can extend or
reference one or more of the prerequisite
application's classes. In team development,
prerequisite applications are particular versions
or editions of applications.

presentation layer . In the Open Systems
Interconnection reference model, the layer that
provides for the selection of a common syntax
for representing information and for
transformation of application data into or from
this common syntax.

primary logical unit (PLU) In SNA, the logical
unit (LU) that contains the primary half-session
for a particular LU-LU session. Each session
must have a PLU and secondary logical unit
(SLU). The PLU is the unit responsible for the
bind and is the controlling LU for the session. A
particular LU may contain both primary and
secondary half-sessions for different active
LU-LU sessions.

primary part . In a composite part constructed
with the VisualAge Composition Editor, the
subpart whose public interface is fully exposed
on the public interface of the composite part.
The primary part is transparently visible to parts
outside the composite part and is the subpart
with which most interaction will take place.

private class . In VisualAge or IBM Smalltalk, a
class that is not part of the system API but is
provided as part of the internal functioning of
the system. A private class is not visible
outside its containing application. If you use a
VisualAge or IBM Smalltalk class marked as
private, you might have to modify your code in

Glossary 297

order for it to work with a future release of
VisualAge or IBM Smalltalk. Contrast with
public class.

private method . In VisualAge or IBM Smalltalk,
a method that is not part of the system API but
is provided as part of the internal functioning of
the system. If you use a method marked as
private, you might have to modify your code in
order for it to work with a future release of
VisualAge or IBM Smalltalk. Contrast with
public method. Individual application
development projects can use the public and
private designations as a means of organizing
their code.

process . In Smalltalk, a sequence of actions
described by expressions and performed by the
system's virtual machine.

property . A unique characteristic of a part.

protocol . (1) The set of all messages to which
an object will respond. (2) Specification of the
structure and meaning (the semantics) of
messages that are exchanged between a client
and a server. (3) A set of semantic and
syntactic rules that determine the behavior of
functional units in achieving communication.

(4) In SNA, the meanings of and the sequencing
rules for requests and responses used for
managing the network, transferring data, and

synchronizing the states of network components.

(5) A specification for the format and relative
timing of information exchanged between
communicating parties.

proxy . An application gateway from one
network to another for a specific network
application like Telnet of FTP, for example, a
firewall's proxy Telnet server performs
authentication of the user and then lets the
traffic flow through the proxy as if it were not
there. Function is performed in the firewall and
not in the client workstation, causing more load
in the firewall. Compare with socks.

PRPQ. Programming Request for Price
Quotation. A customer request for a price
quotation for a licensed program to be designed

298 VisualAge for Smalltalk Handbook — Fundamentals

especially for a particular group of customers or
an application. Documentation for the program
is provided only to those customers who order
the PRPQ.

pseudocode . An artificial language used to
describe computer program algorithms without
using the syntax of any particular programming
language. The code requires translation before
execution.

public class . A class that is provided as part of
the VisualAge or IBM Smalltalk API. A public
class is visible to applications other than its
containing application. Public classes are
designed to function with future releases of
VisualAge or IBM Smalltalk and with operating
systems supported by VisualAge or IBM
Smalltalk. Contrast with private class.

public interface . A set of external features that
enable a part to interact with other parts. A
part's public interface is made up of three
characteristics: attributes, actions, and events.

Public Interface Editor A VisualAge view used
to create and modify attributes, actions, and
events, which together make up the public
interface of a part.

public method . A method that is provided as
part of the VisualAge or IBM Smalltalk API.
Public methods are designed to function with
future releases of VisualAge or IBM Smalltalk
and with operating systems supported by
VisualAge or IBM Smalltalk. Contrast with
private method. Individual application
development projects can use the public and
private designations as a means of organizing
their code.

Q

query specification A database query
definition. All queries issued to a database by
VisualAge or IBM Smalltalk must be defined by
a query specification.

quick form . In the VisualAge Composition
Editor, a menu option that enables application

developers to quickly create a default view for a
part.

R

receive. To obtain and store information
transmitted from a device.

receiver . The object that receives a message.
Contrast with sender.

record . (1) (ISO) In programming languages,
an aggregate that consists of data objects,
possibly with different attributes, that usually
have identifiers attached to them. In some
programming languages, records are called
structures. (2) (TC97) A set of data treated as a
unit. (3) A set of one or more related data
items grouped for processing. (4) In VTAM, the
unit of data transmission for record mode. A
record represents whatever amount of data the
transmitting node chooses to send.

RecordStructure . An object that contains
information about the format, structure, and
types of the data it contains.

RecordStructure classes Classes that provide
a flexible, open architecture for converting
Smalltalk objects to and from data types of
other languages.

release. A system operation on a component
that changes its containing component’s
configuration. Releasing a component adds its
released edition or version to the configuration
for its containing component. When a containing
component is loaded into an image, the released
editions or versions of the components it
contains are also loaded.

remote. Concerning the peripheral parts of a
network not centrally linked to the host
processor and generally using
telecommunication lines with public right-of-way.

remote node . Any node other than the local
node. Contrast with /ocal node.

repository . (1) An organized, shared body of
information that can support business and
data-processing activities. (2) In VisualAge or
IBM Smalltalk, the multiuser library that stores
components such as applications, classes, and
methods created by application developers. It
stores source code, object code, and persistent
objects.

request. A service primitive issued by a
service user to call a function supported by the
service provider.

reset button . A type of push button that can
appear on a form. A reset button restores all
input fields to their default states.

resource . (1) Any facility of the computing
system or operating system required by a job or
task, and including main storage, input/output
devices, the processing unit, data sets, and
control or processing programs. (2) In the
NetView program, any hardware or software that
provides function to the network.

response . A service primitive issued by a
service user to complete the procedures
associated with a confirmed service.

return code . (1) A value (usually hexadecimal)
provided by an adapter or a program to indicate
the result of an action, command, or operation.
(2) A code used to influence the execution of
succeeding instructions.

return value . An object or data type that a
receiver object passes to a sender object in
response to a message.

router . A network device that enables the
network to reroute messages it receives that
are intended for other networks. The network
with the router receives the message and sends
it on its way exactly as received. In normal
operations, they do not store any of the
messages that they pass through.

routine . Part of a program, or a sequence of

instructions called by a program, that may have
some general or frequent use.

Glossary 299

RPG. A programming language designed for
writing application programs for business data
processing requirements. The application
programs range from report writing and inquiry
programs to applications such as payroll, order
entry, and production planning.

S

scratch edition A mutable and private copy of
an application for a user who is not necessarily
the application’'s manager. The scratch edition
only exists in that user's image. Using a scratch
edition, one can modify an application version,
and the existing classes contained in it, without
actually creating a new edition. Each scratch
edition has << >> displayed around the
edition timestamp or version name. Contrast
with edition, version.

screen. An illuminated display surface; for
example, the display surface of a CRT or plasma
panel. Contrast with panel.

script . A series of Smalltalk statements that
implement an action for a part. Scripts are
equivalent to Smalltalk methods.

Script Editor . A VisualAge view that enables a
developer to implement part behavior by writing
Smalltalk scripts (methods). The Script Editor
shows all the objects that can be referenced by
a method and all previously defined methods of
a part's class.

selector . The component of a message that
specifies the requested operation. There are
three kinds of selectors: binary, keyword, and
unary.

sender. An object that sends a message to
another object. On the level of code
implementation, the sender is considered to be
the sending method within the class or instance
that issues the message. Contrast with
receiver.

server. (1) A computer that provides services
to multiple users or workstations in a network;
for example, a file server, print server, or mail

300 VisualAge for Smalltalk Handbook — Fundamentals

server. (2) An object that performs one or more
tasks on behalf of a client. The server can be a
computer (a file server), a specific process on a
server, or a distributed object. A single server
machine could have several different server
software packages running on it, thus providing
many different servers to clients on the network.
See also client, network.

service . (1) A specific behavior that an object
is responsible for exhibiting. (2) In network
architecture, the capabilities that a layer and the
layers closer to the physical media provide to
the layers closer to the end user. (3) A set of
service primitives that a layer provides to the
layer above it.

service object . A nonvisual part that gives
access to the outside world of a VisualAge for
Smalltalk image.

session . (1) A connection between two
application programs that allows them to
communicate. (2) In SNA, a logical connection
between two network addressable units that can
be activated, tailored to provide various
protocols, and deactivated as requested.

(3) The data transport connection resulting from
a call or link between two devices. (4) The
period of time during which a user of a node can
communicate with an interactive system, usually
the elapsed time between logon and logoff.

(5) In network architecture, an association of
facilities necessary for establishing, maintaining,
and releasing connections for communication
between stations. (6) A series of CGI queries
that come from the same client and belong to
the same logical sequence. A session is
identified by a unique session key, which is
generated by VisualAge. A session begins when
a client initially connects (without a session key)
and ends when a specified timeout period has
elapsed since the last connection.

session key . A unique string, generated
automatically by VisualAge, that identifies a
session. All requests and replies carry the
session key in hidden HTML data fields.

session layer . The layer that provides the
services that organize and synchronize

communications between functional units in
different open systems located in the
presentation layer.

settings view . A view of a part that provides a
way to display and set the attributes and options
associated with the part.

simple dialog . A dialog that takes one data
record from the initiating object and sends it to
a remote program, which returns the result to
the initiating object. Compare to multireceive
dialog.

Smalltalk (ST) . (1) A complete programming
environment for developing object-oriented
applications. Smalltalk is a pure implementation
of object-oriented concepts; every entity in the
environment is an object. (2) The name of the
programming language that the Smalltalk
programming environment supports. (3) In the
IBM Smalltalk programming environment, the
name of the System Dictionary containing the
global variables.

SNA. See Systems Network Architecture.

socket. (1) In the TCP/IP environment, a socket
is an endpoint for communication between
processes or applications. A socket that can
send data to and receive data from a remote
node is a connected socket. (2) Synonym for
port.

socks . Software to intercept and redirect all
TCP/IP requests at the firewall. It handles data
to and from applications such as Telnet, FTP,
Mosaic, and Gopher. Provides users in a
secured network access to resources outside the
network by directing data through the firewall.
Firewall users must use client programs
specifically designed to work with the sockd
server.

software . (1) Programs, procedures, rules, and
any associated documentation pertaining to the
operation of a system. (2) Contrast with
hardware.

SOM. See system object model.

source code . Compiler or assembler input,
written in a source language. Contrast with
object code.

source file . A file of programming code that is
not compiled into machine language. A source
file can be created by the specification of
FILETYPE(*SRC) on the Create command. A
source file can contain source statements for
such items as high-level language programs and
data description specifications (DDS).

SQL. Structured Query Language. A language
used to access relational databases.

SQL Editor . An interactive tool for creating
structured query language (SQL) statements. It
consists of a set of dialogs that prompt the user
for information about database tables and use
that information to generate SQL statements.

statement . A language syntactic unit consisting
of an operator, or other statement identifier,
followed by one or more operands.

stored procedure . A procedure stored in a
database system that contains SQL and other
control statements.

structured query language (SQL) A language
used to access relational databases.

subapplication An application contained by
another application. Using subapplications, one
can organize the classes of an application into a
tree of subapplications or isolate the parts of an
application that are platform-specific.

subclass . A class that inherits behaviors and
specifications (in other words, methods and
variables) from another class. Contrast with
superclass.

subclass type . In VisualAge or IBM Smalltalk,
an indication of how a subclass inherits instance
variables from its superclass.

submit button A type of push button that can

appear on a form. A submit button initiates a
connection to the HTTP server and sends a CGI

Glossary 301

query, using the data from the input fields as
parameters.

subpart. A part that is embedded within a
composite part.

subsystem . A secondary or subordinate
system, or programming support, usually
capable of operating independently of or
asynchronously with a controlling system.

superclass . A class from which another class
inherits behaviors and specifications (in other
words, methods and variables). Contrast with
subclass.

symbol . In Smalltalk, an object that represents
a string used as a name within the system. A
symbol literal is a sequence of characters
preceded by the pound sign (#) with no
embedded blanks, such as #George or
#messageSelector.

synchronous . (1) Pertaining to two or more
processes that depend on the occurrences of a
specific event such as common timing signal.
(2) Occurring with a regular or predictable
timing relationship.

system . In data processing, a collection of
people, machines, and methods organized to
accomplish a set of specific functions.

system component A component that manages
storage of code and access to that stored code.
A library file is a system component that stores
and manages code. A user object is a system
component that represents a person who can
use a library.

system object model (SOM) . An
object-structured protocol that enables
applications to access and use objects and
object definitions, regardless of the
programming language created that them, with
no need to recompile the application.

systems management . The process of
monitoring, coordinating, and controlling
resources within open systems.

302 VisualAge for Smalltalk Handbook — Fundamentals

Systems Network Architecture (SNA) . The
description of the logical structure, formats,
protocols, and operational sequences for
transmitting information units through, and
controlling the configuration and operation of,
networks.

T

TCP/IP. (Transmission Control Protocol/Internet
Protocol) The basic programming foundation that
carries computer messages around the globe
via the Internet. The suite of protocols that
defines the Internet. Originally designed for the
UNIX operating system, TCP/IP software is now
available for every major kind of computer
operating system. To be truly on the Internet,
your computer must have TCP/IP software.

team programming Development of a system,
program, or application suite by a team of two
or more programmers or application developers.

tear-off attribute . An attribute that an
application developer has exposed to work with
as though it were a standalone part.

Telnet. An Internet protocol that lets you
connect your PC as a remote workstation to a
host computer anywhere in the world and to use
that computer as if you were logged on locally.
You often have the ability to use all of the
software and capability on the host computer,
even if it's a huge mainframe.

temporary variable . A variable whose scope is
limited to the Smalltalk method or block in which
it is defined. A temporary variable takes an
assigned value.

terminal . A device that is capable of sending
and receiving information over a link; it is
usually equipped with a keyboard and some kind
of display, such as a screen or a printer.

token ring . A network with a ring topology that
passes tokens from one attaching device (node)
to another. A node that is ready to send can

capture a token and insert data for transmission.

tool bar . In the VisualAge Composition Editor,
the strip of icons along the top of the free-form
surface. The tool bar contains tools to help
construct composite parts. These tools are also
available through the Tools pull-down menu of
the Composition Editor window.

transaction . (1) In client/server transaction
processing, a business activity or set of
activities that transforms a database from one
state to another (for example, making an airline
reservation or custom ordering an automobile).
(2) In an SNA network, an exchange between
two programs that usually involves a specific set
of initial input data that causes the execution of
a specific task or job. Examples of transactions
include the entry of a customer’s deposit that
results in the updating of the customer’s
balance, and the transfer of a message to one
or more destination points.

transaction program A program that processes
transactions in or through a logical unit (LU)
type 6.2 in an SNA network. Application
transaction programs are end users in an SNA
network; they process transactions for service
transaction programs and for other end users.
Service transaction programs are IBM-supplied
programs that typically provide utility services
to application transaction programs.

Transcript window
window in Smalltalk.

The main controlling

Transmission Control Protocol/Internet Protocol
(TCP/IP). A set of protocols that allow
cooperating computers to share resources
across a heterogeneous network.

U

uniform resource locator (URL) A standard
identifier for a resource on the World Wide Web,
used by a Web browser to initiate a connection.
The URL includes the communications protocol
to use, the name of the server, and path
information identifying the object to be retrieved
on the server.

usability . The quality of a system, program, or
device that enables users to easily understand
and conveniently use it.

user interface (Ul) . The hardware, software, or
both that enables a user to interact with a
computer. In VisualAge, user interface normally
refers to the visual presentation with which a
user interacts and its underlying software.

user profile . A file that contains the user's
password, the list of special authorities assigned
to a user, and the objects the user owns. It is
used by the system to verify the user's
authorization to read or use objects, such as
files or devices, or to run the jobs on the
system. Each user profile must have a unique
name.

user space . In OS/400 application programming
interfaces, an object consisting of a collection of
bytes that can be used for storing any
user-defined information. The
system-recognized identifier for the object type
is *USRSPC.

\Y,

variable . (1) A storage place within an object
for a data element. The data element is an
object, such as a number or date, stored as an
attribute of the containing object. (2) In
VisualAge, a part that receives an identity at run
time. A variable by itself contains no data or
program logic; it must be connected in such a
way that it receives runtime identity from a part
elsewhere in the application.

version . In the VisualAge or IBM Smalltalk
team programming environment, an edition of a
software component that cannot be changed.
Each version has a version name. Contrast with
edition.

view. A composite visual part. A view can
display and change the underlying nonvisual
objects of an application. In VisualAge, views
are both the end result of developing an
application and the basic unit of composition of
user interfaces. Compare to visual part.

Glossary 303

Virtual Storage Access Method (VSAM) . An
access method for direct or sequential
processing of fixed and variable-length records
on direct access devices. The records in a
VSAM data set or file can be organized in
logical sequence by a key field (key sequence),
in the physical sequence in which they are
written on the data set or file (entry-sequence),
or by relative-record number.

Virtual Telecommunications Access Method
(VTAM). An IBM licensed program that controls
communication and the flow of data in an SNA
network. It provides single-domain,
multiple-domain, and interconnected network
capability.

visible class . A class that another class can
subclass or refer to by name in a method.
Visible refers to the scope in which the class
name can be used. For a class in a given
application, visible classes include:

All classes defined in the same application
All public classes defined in any
subapplication

All prerequisite classes, including
prerequisites of prerequisites to the lowest
level

visual part . A part that has a visual
representation at run time. Visual parts, such
as windows, push buttons, and entry fields,
make up the user interface of an application.
Compare to view. Contrast with nonvisual part.

visual programming tool A tool, such as
VisualAge, that provides a means for specifying
programs graphically. Application programmers
write applications by manipulating graphical
representations of components.

304 VisualAge for Smalltalk Handbook — Fundamentals

W

WAN. (Wide Area Network)— Any internet or
network that covers an area larger than a single
building or campus. See also Internet, LAN,
network.

wide area network (WAN) . A data
communications network designed to serve an
area of hundreds or thousands of miles—for
example, public and private packet-switching
networks, and national telephone networks.

widget . An object that provides a user-interface
abstraction; for example, a scrollbar widget.
Widgets support obtaining input from the user
and displaying output to the user.

window . (1) A rectangular area of the screen
with visible boundaries in which information is
displayed. Windows can overlap on the screen,
giving the appearance of one window being on
top of another. (2) In the VisualAge Composition
Editor, a part that can be used as a container for
other visual parts, such as push buttons.

workstation . (1) An I/O device that allows
either transmission of data or the reception of
data (or both) from a host system, as needed to
perform a job; for example, a display station or
printer. (2) A configuration of I/O equipment at
which an operator works. (3) A terminal or
microcomputer, usually one connected to a
mainframe or network, at which a user can
perform tasks.

World Wide Web . (WWW) (W3) (the Web) An
Internet client-server distributed information and
retrieval system based upon HTTP that transfers
hypertext documents across a varied array of
computer systems. The Web was created by the
CERN High-Energy Physics Laboratories in
Geneva, Switzerland in 1991. CERN boosted the
Web into international prominence on the
Internet.

List of Abbreviations

AlX Advanced Interactive
eXecutive
APAR authorized program

analysis report

APPC advanced
program-to-program
communication

APPN advanced peer-to-peer
networking

BMP bitmap

CAE Client Application
Enabler

CDROM compact disk read only
memory

CG common graphics

CcaGl Common Gateway
Interface

cics customer information

control system
CcL/ call level interface

CORBA Common Object
Request Broker
Architecture

CPI-C common programming
interface for
communications

CPU central processing unit

CRC class responsibility
collaborators

CUA Common User Access

DAP developer assistance
program

DBA database administrator

DBF database file

DBMS database management
system

DB2 Database 2

[0 Copyright IBM Corp. 1997

DDCS

DDL

DDM

DDS

DLL
DSN
DSOM

ECS

EPI

ESA

FTP
GIF

GPF

GUI

HLLAPI

HPFS

HTML

HTTP

HTTPD

IBM

IDL

distributed database
connection services

database definition
language

Distributed Data
Management

data description
specifications

dynamic link library
data set name

distributed system
object model

electronic customer
support

external presentation
interface

enterprise systems
architecture

File Transfer Protocol

graphic interchange
format

general protection fault
graphical user interface

high level language
application program
interface

high performance file
system

Hypertext Markup
Language

Hypertext Transfer
Protocol

Hypertext Transfer
Protocol daemon

International Business
Machines Corporation

interface definition
language

305

ILE

IMS

IPC

IPMD

ISO

ISP

ISV

ITSO

JDBC

LAN
LF
MB
MIME

MLE

MQ
MRI

MVS
NLS

NT
ODBC

OIDL

OLTP

306

VisualAge for Smalltalk Handbook —

integrated language
environment

information
management system

inter-processor
communication

IBM presentation
manager debugger

International
Organization for
Standardization

Internet service
provider

independent software
vendor

International Technical
Support Organization

Java Database
Connectivity

local area network
logical file
megabyte

Multipurpose Internet
Mail Extensions

multiline edit
message queueing

machine readable
information

multiple virtual storage

national language
support

new technology

Open Database
Connectivity

object interface
definition language

on-line transaction
processing

Fundamentals

oMT

ooP

OOSE

ORB
os
0s/2
PCS
PM
PTF
RAM
RDBMS

RFT
RPC
RPG

SGML

SHTTP

som
soL

SSL

TCP/IP

URL

VM
VMT

www

object modeling
technique

object-oriented
programming

object-oriented software
engineering

object request broker
operating system
Operating System/2
PC/Support
presentation manager
program temporary fix
random access memory

relational database
management system

request for technology
remote procedure call

report program
generator

standard generalized
mark-up language

Secure Hypertext
Transfer Protocol

system object model

structured query
language

secure sockets layer

Transmission Control
Protocol/Internet
Protocol

uniform resource
locator

virtual machine

visual modeling
technique

world wide web

Index

Numerics
3270
cursor position Vol2:79
host presentation space Vol2:79

A

abend, transaction Vol2:72
aborting process stack 199
aboutToExecute 207
ABTPATH 213
accelerator keys 157, 230
access set Vol2:127, Vol2:145, Vol2:169
accessing COM port 178
action
closelLibrary Vol2:98
closeWidget 25, 95
default 113
destroyPart 95
activator Vol2:199, Vvol2:203
active, terminating processes 25
ActiveX 14
adding
column to table 146
container icons dynamically 126
icon to list 129
items to combo box 110
menu choices 105
records to container 120
agent class 65
AIX
calling C function Vol2:103
DB2/6000 Vol2:119
DB2/6000 binding Vol2:121
DDE VvolI2:108
distributing application 252
event handler 151
moving library to 255
MQSeries Vol2:73
packaging 47
reports feature Vol2:225
simplified Chinese 267

[0 Copyright IBM Corp. 1997

altering behavior 40
anchor block handle 135
animated busy cursor 105
ANSI
Smalltalk
committee 2
standardization 166
SQL Vol2:140
Anynet Vol2:51
API
break Vol2:138
common file system 176
data queue Vol2:40
DosStartSession Vol2:84
EHNAPPC_QuerySystems Vol2:17
MQ Vol2:76
nonblocking Vol2:91
0S/2 PMs Vol2:88
router Vol2:4
system Vol2:50
APPC
AS/400 configuration Vol2:33
AS/400 connection Vol2:35, Vol2:50
ASCII work station controller Vol2:4
blocking factor Vol2:15
LU 6.2 Vol2:9
proc dialog Vol2:71
router Vol2:35
stack Vol2:51
AppletAuthor 22
application
AS/400
native Vol2:8
packaging Vol2:8, Vol2:21
runtime prerequisites Vol2:9
changing database name Vol2:174
CICS Vvol2:72
COBOL Vvol2:71
creating new 250

delete 249
distributing 252
edition 246

editions browser 250

307

application (continued)
exporting 245
exporting to non-LAN PC 252
global variables 205
importing 245
launching 203
LibraryObjects
loading 47, 245
merging 49
MQ sample Vol2:76
multiple windows 89
native Vol2:8
not owned 61
owner 256
packaging Vol2:57, Vol2:251
packaging distributed Vol2:212
prerequisites Vol2:22
purging 250
releasing 61
reloading current edition
removing 250
report packaging Vol2:230
running unattended Vol2:129
sharing data Vol2:43
sharing query Vol2:145
start execution 203

247

249

synchronizing AS/400 and VisualAge Vol2:8
unable to version 61
unloading 56
using 248
versioning 61
application prerequisites 52
ApplicationLoader 47
apply push button 38
architecture
GUIl 87
layered 63
archival code 32, 34, 54, 68, 246
arguments, command line 200
array Vol2:37
AS/400
5250 screen Vol2:24
accessing VisualAge application Vol2:8

APPC Vol2:7

APPC configuration Vol2:33
asynchronous job Vol2:12
blocking factor Vol2:15

308 VisualAge for Smalltalk Handbook —

Fundamentals

AS/400 (continued)

busy cursor Vol2:17

code page Vol2:12

commit boundary Vol2:1
communication error Vol2:2

complex data structures Vol2:37
compound key Vol2:29

configured systems Vol2:2
connecting Vol2:18

connecting to Vol2:2

connection feature, reinstalling Vol2:8
connection problem Vol2:35

data queue Vol2:34

database Vol2:11

DDM Vol2:26

DDS Vvol2:31

document Vol2:50

examples Vol2:14

feature installation Vol2:23

file access part Vol2:4

fixpack problem Vol2:54

ILE Vol2:24

job description Vol2:12

job queue Vol2:59
library list Vol2:57
migrating Vol2:27
multiple connections
multitasking Vol2:15
native application Vol2:8
ODBC default library Vol2:45
ODBC requirements Vol2:6
OfficeVision/400 Vol2:50
opening and closing file
packaging application
password Vol2:18
Personal Communications Vol2:37
physical file member Vol2:11
record class Vol2:3

record description Vol2:31, Vol2:35
reestablishing connection Vol2:56
referential integrity Vol2:55
repeating record structures
RPC Vvol2:1
RPC message
Rumba Vol2:10
runtime prerequisites Vol2:9
screen scraping Vol2:24

Vol2:10

Vol2:43
Vol2:8, Vol2:21, Vol2:22

Vol2:37

Vol2:51

AS/400 (continued)
service program Vol2:24
sign-on Vol2:2
sign-on dialog Vol2:17
sign-on screen Vol2:44
simultaneous DDM access
SQL vol2:11
stored procedure Vol2:32
synchronizing VisualAge application
transaction program Vol2:23
user ID Vol2:18
user profile Vol2:54
using Windows 3.1 Vol2:62
work station function Vol2:10
ASCII
EBCDIC conversion Vol2:75
reporting in file Vol2:232
work station controller Vol2:4
association, pool dictionary 193
asynchronous job Vol2:12
atom 168
attribute
changed event 213
cursorPosition Vol2:79
lastError Vol2:72
promptForUserldAndPassword Vol2:17
resultlsReady Vol2:1
selectionlsValid 156
synchronizing 45
tabContents 115
updating class 205
audio cards 85

Vol2:39

Vol2:8

automatic
log-off 202
tab moving 132
tabbing 132, 162

AVA playback 85

B

back-tabbing in details views 74
background
process
continuing 201
database update Vol2:155
task, garbage collection 174

background, transparent 135
beep 101
bibliography 271, Vol2:259

bind, command syntax Vol2:117
bitmap

click-sensitive 140

color 131

colors 139
image formats 140
on notebook tab 115
push button 161
resolution 131
bitmap on button 136
block
creating at run-time 192
reading from file 192
blocking factor Vol2:15, Vol2:19

broker
file Vol2:61
registry Vol2:33
browser

DBCS part name Vol2:255
progress message 156
suppressing URL query string Vol2:253
BRW format generator 43
building visual forms Vol2:3
business
class 208
object
garbage collection Vol2:112
key alteration Vol2:112
busy cursor 100, 105
button
activation 150
bitmap 136, 161
disabling 106, 156, Vol2:249
dynamic 160
enabling 150
mask 159
toggle 105

C

C Vvol2:89, Vol2:91, Vol2:96, Vol2:103
CA/400
ODBC Vol2:5, Vol2:42

Index

309

cache 50, Vol2:19 channel file Vol2:73
caching compiler 192 character

CAE Vol2:5 identity 240
calculated field Vol2:230 replacing in string 222
call stack, trace 21 strange Vol2:3

call-level interface Vol2:120 character set translation table 44
callback check box, container 119
CICS ECI Vol2:104 CICS

losing focus 56
mouse move 157

accessing COBOL Vol2:71
callback Vol2:104

synchronizing table scrolling 148 code page translation Vol2:73
calling ECI Vol2:72, VoI2:73

convention Vol2:95, vol2:101 EPI Vvol2:115

OSObjects Vol2:95 EPI identification Vol2:110

harclock Vol2:110

literal Vol2:110

logical unit of work Vol2:72
LU2 identification Vol2:109
opening proc dialog Vol2:72

capturing
key pressed events 230
stack information 28
caret cursor 102
carriage return, missing 162

CAT files 50, 264, Vol2:251 program Vol2:72
catalog of classes Vol2:230 screen scraping Vol2:111
catching transaction abend Vol2:72

circular reference 97
class
AbtAppBldrPart 208
AbtAppBldrView 32
AbtCompoundType
AbtConverter 210

all errors 181

errors 179
category

class methods 67

CLIM-API 175

ES-Internal 172

62, Vol2:98

instance methods 66 AbtDatabaseSamples Vol2:140
naming 66 AbtDateConverter 212, 219
CCSID Vol2:12 AbtDateParse 213
cell AbtDeferredUpdatedManager 31

hover help 157 Vol2:153
monitor changes 149

centered, opening window 93

change management 247

changing

AbtEditDatabaseSupport
AbtError Vol2:97, Vol2:165
AbtForeign Vol2:73
AbtForeignRecord Vol2:73
AbtFrameView 109

label color 120 AbtlbmCliDatabaseManager Vol2:166
mouse pointer 98 AbtlbmDatabaseConnection Vol2:167
object class 231 AbtlbmResultTable Vol2:163

scroll bar size 124 AbtintegerConverter 219, 220

table AbtObservableObject 24
cell 149 AbtOracleLongField Vol2:130
format 36 AbtPart 208
size 149 AbtPointer Vol2:81

AbtProgramStarter Vol2:84
AbtQuerySpec Vol2:127
310 VisualAge for Smalltalk Handbook — Fundamentals

class (continued)
AbtRecord 62
AbtResultTable Vol2:167
AbtRowColumnView 109
AbtSampleLauncherView Vol2:140
AbtShellView 69, 155
AbtTextConverterManager 152
AbtTextView 145
AbtTimeConverter 219
agent 65
alternatives 255
AS/400 record Vol2:3
AS400APPCConfiguration Vol2:33
AS400DataQueueEntry Vol2:6
AS400DirectFile Vol2:49
AS400KeyedFile Vol2:49
AS400RecordDescription Vol2:35
AS400RemoteCommand Vol2:53
AS400RemoteProcedureCall Vol2:36
AS400SequentialFile Vol2:49, Vol2:50
AS400System Vol2:18
available in library 257
BplBusinessObj Vol2:112
business 208
catalog Vol2:230
CfsDirectoryDescriptor 176
changes 255
changing 231
comparing 257
controller 65
creating from script 229
CwOverrideShell 98
damaged 251
DatabaseAccessSet Vol2:192
Date 212
date stamp 247
Delay 197
delete old version 250
DsCallbackRec Vol2:196
DsDistributedSystem Vol2:202
DsTCPCommunicator Vol2:202
DsTracer Vol2:196
DtListBuilderCollection Vol2:209
E4AS400Broker Vol2:33
E4CommunicationService Vol2:54
E4FrameWorkApp Vol2:33
E4KeyedFile Vol2:61

class (continued)

E4KeyedFiles Vol2:44
E4Service Vol2:17, Vol2:33
editions 249
EmFileQutinterface 28
EmLibraryStatistics 71, 253
ensure packaging 49
EsLinearOrderedCollection 218
EwList 223

EwTableList 224
EwTextEditPolicy 224
extending 40

extending server Vol2:215
extension 40, 49, 64
facade 65

fixed decimal 182
generating with SOM prefix Vol2:238
hierarchy 172
identification 182
instance variables 225
invisible 45

load editions 249

loaded method 44

locale 210, 264

manager 66

method 175

methods at run-time 206
missing 52

missing SOM definition Vol2:243
model 65

naming 226

naming convention 63
ObjectDumper 39, 217
ObjectLoader 39, 217
OSHab Vol2:88

OSHps Vol2:88

OSObject Vol2:81, Vol2:95
OSObjectPointer Vol2:81
OSWwidget 74, 225

owner 256

packaging modifications 49
PlatformFunction Vol2:95
recompiling 169
RECORD VoI2:3, Vol2:48
released version 246
renaming 29, 31

reusing 63

Index

311

class (continued)
SequencableCollection
SequenceableCollection
session Vol2:114
sharing instance across object
spaces Vol2:207
SortedCollection 218
specifying policy 57
string 186
Swapper 217
SymbolTable
testing 173
Time Vol2:19
unreleased 257
updating attributes
variable 173
variables, initializing 209
with instances, deleting 35
XPlatformAdministration 87

218
186

226

205

CLI Vol2:120, Vol2:166, Vol2:193
client
concurrent processes Vol2:39
MQ Vol2:73

0OS/2 optimized Vol2:21
passing data Vol2:36
run-time access Vol2:218
socket Vol2:68
transaction abend Vol2:72
unsupported 61
Client32 83
ClientAccess/400

32-bit optimized client Vol2:7
advanced connection Vol2:59
AS/400 database Vol2:11

ODBC Vol2:45, Vol2:48, Vol2:135
ODBC driver Vol2:5
ODBC requirements Vol2:7
opening automatically Vol2:59
optimized for OS/2 Vol2:50
router Vol2:37
status Vol2:17
TCP/IP Vol2:51
user ID Vol2:17
Windows Vol2:59

cloned library 248

312 VisualAge for Smalltalk Handbook —

Fundamentals

close option, disabling 97
closing
widget 96
window 95
CM/2 Vol2:50
AS/400 access Vol2:4
configured AS/400 systems Vol2:2
conversation security Vol2:27
optimized client Vol2:21
packaging AS/400 application
profile list Vol2:28
setup Vol2:18, Vol2:27
user ID Vvol2:17
CM/400 Vol2:7, Vol2:50
COBOL 9, 55, Vol2:83, Vol2:98, Vol2:101
COBOL, accessing through CICS Vol2:71
code page
AS/400 Vol2:12
CICS VolI2:73
connection specification
conversion 75, 263, 266
missing translation table
MPR file 263
support 263
collection
do: 218
heap-sorted 219
interval 189
reversing 186
sorted 194, 218
color
bitmap resolution
changing 193
iterator header
label 120
wallpaper
column
adding to table
hiding 145
navigating between
resizing 123
COM port, accessing
combo box
adding items
behavior 114
default action 113
selected item Vol2:62

Vol2:21

Vol2:109

44

131

Vol2:231

138

146

117

178

110

combo box (continued) configuration map (continued)

synchronizing 109 distribution matrix Vol2:206
command exporting 252, 254
bind syntax Vol2:117 loaded features 253
CRTLF VolI2:31 version control 257
DSPNETA VolI2:10 configured subsystems 199
OVRDBF Vol2:43 connecting
OVRSCOPE VolI2:43 to AS/400 Vol2:2
remote Vol2:43, Vol2:53 to remote host Vol2:2
STRCMTCTL Vol2:1 connection menu, customizing 33
command line, arguments 200 connection, releasing 95
commitment container
boundary Vol2:1 adding icons dynamically 126
control Vol2:1, Vol2:59, Vol2:75, Vol2:78, adding records 120
Vol2:145 back-tabbing in details views 74
common file system APl 176 check box 119
common widgets, reinitializing 25 column list box 119
communication context menu 127
AS/400 Vvol2:2 deselecting items 121
saving image Vol2:35 details tree 121
static session acquisition Vol2:114 details tree children 124
Windows 3.1 Vol2:62 details view 124
Communications Manager/2 hiding column 125
See CM/2 hiding heading 124
comparing icon column 125
floating point 183 nonexistent attribute 129
floating-point 239 object attribute 128
compatibility 10 OLE client 260
compile time, creating object 167 refreshing 128
compiler refreshing details view 127
caching 192 remove items 125
incremental 191 removing icon 128
literal strings 227 resizing columns 123
optimization 221 scroll bar 124
severity level 195 selecting multiple rows 150
warning 195 selection 117
component, moving between libraries 246 sharing menu 108
composition editor, window location 90 valid objects 117
compound key Vol2:28 context menu 74
CompuServe xix, 12, Vol2:9 continuing background process 201
concatenation 237 control widget, buffering 30
configuration controller class 65
5250PLU Vol2:2 conversation
VisualAge 213 security Vol2:18, Vol2:27
configuration map conversion tables Vol2:13

deleting application 249
distributed load Vol2:201

Index 313

210
138

converting numbers
coordinates of hot spot
copy-book Vol2:101
copyright 200
CORBA 2, 64, Vvol2:195, Vol2:239
CPI-C Vol2:114
creating

class from script 229

object at compile time
Crystal Wave 85
CTL file 80
Ctrl-click events
CUA compliance
cursor

animated 105

busy 100, vol2:17

caret 102

change pointer 98

control Vol2:179

deleting rows Vol2:163

file position Vol2:4

icon 103

position in text 131

position on 3270 terminal

positioning window at 90

reusing Vol2:133

scrollable Vol2:167

stability Vol2:58
customizing connection menu 33
CwConstants 41

167

159
10, 88

Vol2:79

D

damaged class
data
integrity Vol2:15
structures Vol2:37
translation Vvol2:73
data converter, error message
data definition specification
See DDS

40, 251

135

data entry part 141
data queue
filling record Vol2:6
passing data Vol2:36

PTF VoI2:31
sharing Vol2:43

314 VisualAge for Smalltalk Handbook —

Fundamentals

data queue (continued)

synchronizing applications Vol2:8

variable length Vol2:34

data types Vol2:130
database
access set Vol2:127, Vol2:152, Vol2:157,

Vol2:169, Vol2:185, Vol2:192
active connection Vol2:193
ANSI SQL Vol2:140
APIl methods Vol2:163
automatic connect Vol2:148
automatic log-on Vol2:131
bind Vol2:147
binding Vol2:140, Vol2:173
blocking factor Vol2:15
CAE/2 Vvol2:145
call-level interface Vol2:120
canceling request Vol2:137
changing high-level qualifier
changing name Vol2:174
CLI Vol2:120, Vol2:165, Vol2:167
connect Vol2:147
connection

error Vol2:164

information Vol2:167
specification Vol2:144
status Vol2:128
via Smalltalk code
conversion Vol2:137
creating table Vol2:161
current date Vol2:135
cursor Vol2:163, Vol2:167
cursor control Vol2:179
date representation Vol2:135
DB2/400 Vol2:146
DB2/6000 Vol2:145
DB2/VM Vol2:146
DBF format Vol2:171
DDCS/2 Vol2:145
disabling error messages
DLL Vol2:166
driver problem Vol2:175
error SQL0236W VolI2:188
feature installation Vol2:173, Vol2:181
fetch Vvol2:148
forking process
hard-coded name

Vol2:177

Vol2:138

Vol2:165

197
Vol2:144

database (continued)
high-level qualifier Vol2:157, Vol2:177
host variable Vol2:146, Vol2:162
host variable with wild card Vol2:140
insert Vol2:160
intercepting SQLCODE 100 Vol2:184
locked row Vol2:145
log-on Vol2:148
log-on prompt Vol2:128, Vol2:129
log-on specification Vol2:139
manager Vol2:120, Vol2:151
maximum number of rows Vol2:153
migrating Vol2:165
migrating to CLI Vol2:168
migration Vol2:137
minimum run-time files Vol2:191
missing query fields Vol2:171
name Vol2:144
object-oriented Vol2:171
ODBC VoI2:148, Vol2:156
ODBC to CLI migration Vol2:168
outer join Vol2:146
override Vol2:43
portability Vol2:137
query Vol2:152
reconnecting server Vol2:120
sample Vol2:190
scrollable cursor Vol2:167
Smalltalk access Vol2:154
stored procedure Vol2:32, Vol2:156
stored procedures Vol2:146
text Vol2:132
thread Vol2:143
transaction Vol2:14
updating 197
user feedback Vol2:155
user privilege Vol2:176
wild card Vol2:140
Windows 95 Vol2:165

date
conversion Vol2:13
converting 219
defaults 212
format 212, vol2:135
representation Vol2:135
retrieving current Vol2:135
stamp 247

DB2/2 Vol2:5, Vol2:6, Vol2:49, Vol2:124, Vol2:125

DB2/400 VolI2:135

DB2/6000 Vol2:119, Vol2:121, Vol2:124, Vol2:140

DBCS Vol2:50, Vol2:223, Vol2:255
DDCS/2 Vol2:6, Vol2:49
DDE VolI2:108
DDM Vvol2:11, Vol2:14, VoI2:16
data stream Vol2:39
keyed file Vol2:26
open file Vol2:44
opening and closing file Vol2:43
performance Vol2:26
priority Vol2:41
sharing conversation Vol2:39
simultaneous access Vol2:39
ULDRECF Vol2:27
DDS
generate records Vol2:31
record name Vol2:58
temporary generated Vol2:58
debug
C DLL Vol2:96
distributed client Vol2:219
DLL Vol2:86
source breakpoint Vol2:86
decimal
converting 210
fixed 182
point 264
default action 113
default icon 27
deferred update part 30
deleting
application 249
class with instances 35
old classes 29
parts with instances 35
dependency mechanism 34
dependent attachments, widget 97
dependents, reinitializing 25
deselecting items 121
destroying
notebook page 116
object 170
widget 95

Index

315

details view distributed (continued)

refreshing 127 tracing Vol2:195
details views, back-tabbing in container 74 transaction management Vol2:217
device, COM port 178 unloading feature Vol2:223
dialog Windows 95 server Vol2:222
box 134 Windows for Workgroups Vol2:202
message box 89 Distributed Data Management
modal 94 See DDM
nonmodal 142 distributing application 252
sign-on Vol2:17 distribution fees 9
dictionary distribution matrix Vol2:196, Vol2:201, Vol2:206,
dependent 96 Vol2:210
global 173 DLL
global variable 205 allocating memory Vol2:96
lookup 193 available platform function Vol2:96
versus lookup table 234 closing 55, Vol2:98
digital video player 84 debugging Vol2:86, Vol2:96
directory, contents 176 freeing Vol2:83
disabling IPMD Vol2:86
close option 97 LIBPATH Vol2:83
methods 56 locking Vol2:98
mouse pointer 101 memory leak Vol2:96
notebook tab 125 Oracle Vol2:122
push button 106, 156 passing complex structure Vol2:98
disk space 233, 261 source breakpoint Vol2:86
display, retreiving resolution 92 unable to replace Vol2:83
distributed document, OfficeVision/400 Vol2:50
activation Vol2:199 double-byte character set 267
adding client Vol2:209 double-triggering of event 213
client run-time access Vol2:218 drag and drop
DBCS VolI2:223 list box 110
debugging client Vol2:219 drag-and-drop
handling TCP/IP addresses Vol2:213 link 138
headless server Vol2:200 on push button 144
initialization Vol2:202 porting 129
loading feature Vol2:217 DRDA Vol2:5
modifying server Vol2:209 driver
name server Vol2:201 audio 85
packaging Vol2:200, Vol2:212 dBase Vol2:128
port number Vol2:221 Jet Vol2:127
run-time startup Vol2:218 Microsoft Access Vol2:123
security error Vol2:199 ODBC Vvol2:123
seeing data moving Vol2:203 ODBC license Vol2:191
SOM/DSOM implementation Vol2:211 text Vol2:132
startup delay Vol2:212 DSOM
testing for TCP/IP Vol2:202 accessing object Vol2:241
threads Vol2:208 daemon Vol2:240

316 VisualAge for Smalltalk Handbook — Fundamentals

DSOM (continued)

ending VisualAge Vol2:241

hanging system Vol2:239

synchronous call Vol2:240
dynamic

menu 105, 107

push button 160

where clause Vol2:125, Vol2:147
dynamic link library

See DDL

E

EBCDIC, ASCII conversion Vol2:75
ECI Vvol2:72
edition
date stamp 247
loading previous 249
reloading current 249
timestamp 247
EHLLAPI Vol2:21, VoI2:80
EMSRV 47, 82, 84, 252, 256
emulation
5250 Vol2:21
encapsulation 65
environment variable 29, vol2:241
ENVY 2,4,7, 243
ENVY/400 Vol2:49
ENVY/Manager 257
EPl vol2:115
equality 184, 221, 226, 240
error

126 connecting to Oracle Vol2:122

30081n Vol2:120

Abt.154e Vol2:83
ABT.SQL.9.w Vol2:152
AS/400 communication Vol2:2
attribute does not exist 129
block Vol2:142

bypassing prompter Vol2:142
catching 179

catching all 181, 228
CfsError Vol2:8

client not authorized Vol2:214
code 1 Vol2:124

database connection Vol2:164
disabling message Vol2:165

error (continued)
distributed load Vol2:201
file in use 43
file system 180
MCHO0802 Vol2:34
NetBIOS Vol2:70
opening proc dialog Vol2:72
ORA-00942 vol2:177
primitive 73, Vol2:97
readAll method Vol2:44
return code 72
saving part 69
security Vol2:199
somFindClass Vol2:243
SQLO236W VoI2:188
SQLO805N Vol2:173
SQLSTATE 37000 VolI2:123
SQLSTATE S1010 Vvol2:124
successor uniqueness violation
swapper 198
SYS317x 72
TCP/IP startup Vol2:210
terminating SOM Vol2:241
time-out Vol2:111
transaction abend Vol2:72
turning off message 135
user input 133
Win32s Vol2:226
error message
displaying 36
explanation 68
escaping infinite loop 27
Ethernet Vol2:10
EtWorkspace 48
event
aboutToOpenWidget 93, 110
changed 213
Ctrl key and click 159
defaultActionRequested 70
double-triggering 213
errorOccurred Vol2:72
gettingFocus 102
handler
enter key 153
function key 143
keyboard 142, 159, 230
platform 151

Vol2:109

Index

317

event (continued)
itemChildrenRequested Vol2:62
itemCollapsed 259
itemExpanded 259
key pressed 230
losingFocus 102
not trappable 230
profiler 21
registered 260
registering 225
resized 96
selectedindexChanged 110
selectedltemsChanged 117
selectionChanged 105, 106
triggering 44
userlnputConvertError 133
userModified 141
EwDropCallbackData 144
exception
doesNotUnderstand 228
process stack 199
exception handling
catching errors 179
code 182
database code Vol2:119
debugging DLL Vol2:86
doesNotUnderstand 228
object space connection
open file 208
SOM Vol2:239
transaction abend Vol2:72
unique key Vol2:46
exit dialog message box 89

Explorer 260
exporting
application 245

configuration map 254

pool dictionary 254
extending

classes 40

pop-up menu 57

F

facade class 65
fatal errors 36

318

Vol2:196

VisualAge for Smalltalk Handbook —

Fundamentals

fault tolerance
feature
AlX reports
DAT file 253
loading 80
unloading 82, Vol2:223, Vol2:254
field
break Vol2:230
calculated Vol2:230
dynamically adding to report
iterator Vol2:226
literal Vol2:109
unprinted Vol2:232
watch Vol2:230

Vol2:211, Vol2:220

Vol2:225

FIFO Vol2:36

file
access mode Vol2:46
access part Vol2:4, Vol2:60
agent Vol2:61
AS4RTE20.MRI Vol2:44
blocking factor Vol2:15
broker Vol2:61
closing 208

commitment control Vol2:59
compound key Vol2:28

DDM Vol2:26

direct Vol2:26

existence 177

handle 208

handle limits on UNIX Vol2:224
in use error 43

join Vol2:48
keyed Vol2:26, Vol2:29, Vol2:60
library list Vol2:57

locking Vol2:45
logical record format
macro Vol2:113
member Vol2:11
opening and closing Vol2:43
physical Vol2:11, Vol2:14
read next Vol2:4

read previous Vol2:4

real library Vol2:61

Vol2:47

record cache Vol2:19
record description Vol2:31
removing handles 208

sequential Vol2:26

Vol2:233

file (continued)
sharing Vol2:24
sharing field names Vol2:47
simultaneous DDM access
system 176
system, error 180
unique key Vol2:46
UNIX Vol2:224
file-in 28
file-out 28
filing out classes 29
final form text Vol2:50
finalization 201
finding mouse pointer location
fixed character field Vol2:141
fixed decimal class 182
fixed object space 219
fixes Vol2:9
flat file 247
flips 211
floating point
behavior 182
comparing 183
decimal 264
rounding 182
subtracting 183
floating window 98
floating-point
comparing values 239
focus
setting 162
widget 136
folder, shared Vol2:4
font, scaled Vol2:233
forcing packager 47
forking
background process 197
database read Vol2:15
form
checker 118
data Vol2:250
printing 152
reusable 140
formatting string 173
FoxPro Vol2:127

Vol2:39

102

fractions 182
freeing up resources 24
function key 143, 163

G

gadgets, icon 107
garbage collection
business object Vol2:112
fixed object 219
forcing 174, 216
instances 211
object finalization 171
protection 219
rate 174
removing dependents Vol2:33
weak pointer 170
general protection fault 73
generating
archival code 246
OLE methods 260
getters and setters, generating 54
ghosts 26
GIF, on Web page Vol2:250
global variable 172, 205
graphical label, push buttons 32
graphics, priority 209

grid part 20
grouping methods 66
GUI

architecture 87
wrapper Vol2:25

F{
heading, hiding 124
headless server Vol2:200
help, setting 141
hiding
container column 125
heading on container details view 124
notebook page 116
table column 145
visual objects 158
hierarchical break Vol2:235
high-level qualifier Vol2:157, Vol2:177

Index

319

HLLAPI
host
3270 emulator Vol2:79
passing data Vol2:36
presentation space Vol2:79, Vol2:80
server program Vol2:36

Vol2:80, Vol2:111, Vol2:114

services Vol2:12
transaction interface Vol2:113
variable Vol2:42, Vol2:127, Vol2:140, Vol2:146,
Vol2:162
ODBC, driver Vol2:42
hot spot
border 138
coordinates 138
image 140
reshaping 138
hover help
behavior 198
push buttons 32
widgets 157
HP printer Vol2:233
HTML

form Vol2:249
form data Vol2:250

image Vol2:250
links Vol2:252
literal text Vol2:252

session data Vol2:252

I
ICAPI
icon
adding dynamically to container
adding to list 129
as cursor 103
DLL 48
gadgets 107
in container column
missing 50
missing after packaging 50
moving 152
on menu 108
push button 157
removing from container
VisualAge 70

20

126

125

125, 128

320 VisualAge for Smalltalk Handbook —

Fundamentals

identical users 256
identity 221, 226, 240
ILE Vol2:24
image
backup copy 24
base 23
calling from OS/2 Vol2:91
CAT files 264
cleaning 23

cleared cache 50
click-sensitive 140
closing windows 95

component 15

component, packaging 75
concurrently running 83
connecting to cloned library 248

copyright 200

creating 23
disconnecting remote Vol2:209
exiting 199

finding remote object space
pointers Vol2:219
formats 140

growing after packaging 26
hot spot 138

live updating 33

loading different 30
memory allocation 39
merging applications 49
missing class 52

owner 251

package size Vol2:22

packaged 46

packaging prerequisites 52
preventing growth 25

rebind strings 75

reduced runtime 47,78

reducing size 23, 25, 232

remote Vol2:209

remote object space pointers Vol2:219
required .CAT files 50

run-time 200, 205, 264

saving Vol2:35

saving before packaging 26, 50
size 24, 48, 54

stock 47, 50

synchronizing 243

image (continued)
update 249
using iterator field break Vol2:226

using phantom instance variables Vol2:113

virgin 23

wallpaper 138
immutable object 240
importing application 245
IMS

communication Vol2:114

harclock Vol2:110

LU2 identification Vol2:109

screen scraping Vol2:111

stacked processing Vol2:114

transaction modeling Vol2:112
in-place activation 260
in-progress window 155
inactivity, log-off 202
including classes in package 46
incremental compiler 191
indexed message editor 62
inetd Vol2:73
infinite loop 27
Informix 8
inheritance

RECORD subclass Vol2:48

script 204

visual class 215

visual part 204
inherited message 175
inhibiting list selection 223
initializing class variables 209
input

error 133

validating 118
inspector

opening 38

performance Vol2:19
installation, AS/400 Connection Vol2:23
installing feature 253
instance

equality 226

garbage collection 211

identity 226

phantom variables Vol2:113

removing Vol2:209

sharing across object spaces Vol2:207

instance (continued)
testing 173
integer
as key 235
hash 235
internal representation 216
small 241
intercepting key stroke Vol2:80
interface repository Vol2:243

Internet

ITSO xvii
interrupting infinite loop 28
interval

reverse 190
to: method 189
invisible part 45
INZPFM Vol2:26
IPMD Vol2:86
IRDUMP Vol2:243
ISAPI 20
iterating over widgets 94
iterator
field break Vol2:226
header, color Vol2:231
ITSO
feedback xviii
FTP server xviii
Internet xvii
redbooks home page xvii
World Wide Web xvii

J

Java beans 22
job
asynchronous Vol2:12
DDM requests Vol2:43
description Vol2:12
library list Vol2:57
log Vol2:53
queue Vol2:59
sharing data Vol2:43
unspecified key Vol2:63
join, outer Vol2:146
JPEG support 20

Index

321

K

key
accelerator 157
alteration Vvol2:112
compound Vol2:28
Ctrl 159
dictionary 234
function 163
intercepting stroke Vvol2:80
lookup table 234
partial Vol2:29
pressed event 230
release 134
simple Vol2:29
specifying Vol2:29
unigue Vol2:46
unspecified Vol2:63

keyboard
event handler 230
foreign characters 265
handling 159
input 141

L

label
changing color 120
multiline text 130
LAN
LAN Server/400 Vol2:7
OS/2 LAN Server Vol2:7
last selected item 112
launching application 203
legacy code 9

library
access 84
available classes 257
cloned 248

closing DLL VoI2:98
consistency 253
corruption 83

deleting application 249
ENVY/Manager 257
growth rate 254
importing application 245
list Vol2:57

322 VisualAge for Smalltalk Handbook —

Fundamentals

library (continued)
manager 249
moving
code 251
components 246
to AIX 255
object space Vol2:212
password protection 244
protecting 244
remote access 243
reuse 244
shared folder Vol2:4
single-user mode Vol2:23
LIFO Vol2:36
limiting lines in MLE 156
link 138

list
adding icon 129
widget 223
list box

behavior 112
container column 119
drag-and-drop 110, 144
scrolling 112

literal
field Vol2:109
string 221
strings 227
text Vol2:252
loading

application 245
application in run-time image
different image 30
feature 253
variable references 198
local log-on Vol2:131
locale 264
locating widget focus 136
location
mouse pointer 102
reference Vol2:196
window 90
lock, releasing 83
locking
compatibility Vol2:128
file Vol2:45
row Vol2:145

47

locking (continued)
scheme Vol2:128
log-off, automatic 202
logical
file Vol2:48
record format Vol2:47
unit of work Vol2:72, Vol2:78
long field Vol2:130
lookup table, using 234
looping walkback 56
LU 6.2 VoI2:109

M
macro file Vvol2:113
manager
class 66
cloning 250

consistency 253
growth rate 254
size 250
managing network traffic Vvol2:211
mapping widgets across systems 87
marshaling Vol2:216
maturity VisualAge 2
maximized window, opening 92
maximizing window 91
MCHO0802 Vol2:34
member, physical file Vol2:11
memory
allocation 39
garbage collection 174
invalid location 73
leak Vol2:96
menu
accelerator key 157
adding choices 105
disabling button 106
dynamic 105
for icon gadgets 107
icon 108
on Windows NT 74
reusable 108
sharing 108
toggle button 105
merging applications 49

message

box, exit dialog 89
CPF503A Vol2:55
descriptor Vol2:74
inherited 175

misspelled Vol2:110

MQ Vol2:74

prompter, labels 139
transcript logging Vol2:205
wmUser 224

method Vol2:26, Vol2:27

167

= 221

== 221
abeReinitializeDependents 24
aboutToChangeSelection 223
abrWithoutWhitespace 223
abtAddress Vol2:97
abtBuildInternals 32, vol2:111
abtExternalizedStringBuildinginfo 263
abtPadWith:upToLength:onRight: 223
abtScanEnv 29, 213
abtScrublmage 24, 25, 211, 216
abtShowBusyCursorWhile Vol2:18
abtSignal Vol2:70

abtWait Vol2:70

activeProcess 196

allinstances 211
allMethodsReferencinglLiteral: 232
allUserTableNameslIfError Vol2:170
apply 38

asDate 219

asinteger 219

asPointer Vol2:97

asTime 219

at:put: 222
availableSystemNames Vol2:34
avoiding standard names 46
basicAllinstances 56

become 187

become: 211

bindwith 173

blockingFactor Vol2:19

break Vol2:138
calculatelnterfaceSpec 68
calculatePartBuilder 68
closeWidget 158

Index

323

method (continued)
closeWidgetCommand 97
commandLine 200
commitUnitOfWork Vol2:145
connectioninfo Vol2:167
containing string 232

contextAtFrame: 196
convertToCodePage Vol2:76
copy 222

copyright 200

deepCopy 172

defaultActionRequested 153

deleteRow Vol2:142

destroyPart Vol2:249
disabling 56

do: 218

elements: 194
equals:to: 182

eventTableAt:put: 225
exceptionOccurred Vol2:46
execLongOperation:message:
executeQueryAsTransaction
fileExists 178
finallnitialize 90

155

for:do:ifError: Vol2:167
forMutualExclusion Vol2:16
getDiskFreeSpace 233, 261

getQuerySpecNamed: Vol2:153
grabPointer 101

grouping 66
includedMethods 53
initialize 168
initializeWhereClause Vol2:125
initializeWidgetClasses 87
installToBeLoadedCode 254
interceptEvents: 230
interface specification
invokeAsynchronous
isRuntime 201
loaded 44, 263
makeFixed 219
makeWeak 170

Vol2:71

maximumNumberRows Vol2:153
methodAtFrame: 196
millisecondsToRun Vol2:19
new 175

newRow Vol2:142

324 VisualAge for Smalltalk Handbook —

Vol2:145

Vol2:1, Vol2:12, Vol2:40

Fundamentals

method (continued)

normalizeYear: 213
numberOfFrames 196

OLE, generating 260

openReadOnly Vol2:15, Vol2:19, Vol2:58
openReadWrite Vol2:15, Vol2:19
openWidget 158
packagerincludeClasses 47
packagerincludeClassNames 49, 53
packagerincludeSelectors 49, Vol2:200
packagingRulesFor: 50
packagingRulesFor: 52
platformWidgetClass 87
platformWidgetGadget 87
postCreationlnitialization 70
preferredConnectionFeatures 33
prePackagingActionsFor Vol2:22, Vol2:33
primCommitUserinput: 152
printHex 186
printNumber:on:
printString 210
printStringWidth
prompt 94
readAll Vol2:14, Vol2:41, Vol2:44
readAt Vol2:28

readNext Vol2:27
readNextKey Vol2:26
receiverAtFrame: 196

265

183

reconfigureAllSystems Vol2:27
registerLogonSpec: Vol2:139
removeFromParentPart Vol2:249
reSort 194

reverse 186, 190
rowsAsStrings Vol2:182

selectionPolicy: 223

sender context 196

sender signature 195
setGridLineStyleAndColor 36
setPosition 93
setSensitive: 106
showBusyCursor 100
showBusyCursorWhile:
shutDownAll Vol2:33
signOff Vvol2:34

size limit Vvol2:111
sorted: 194

species 194

100, Vol2:18

method (continued)
startUp Vol2:33
syncExecinUl: 193
to: 189
toBeLoadedCode 209, 254, Vol2:74
trace call stack 21
trimBlanks 223
unloaded 264
updateWidget 191, 193
useDashedLines 36
value 172
visibility 175
wasRemovedCode 254
widgetUnderCursor 102
windowProc:with:with: 225
method tracing 216
migration
DB2/2 Vol2:125
minimizing window 94
minimum window size 96
missing
archival code 68
carriage return 162
icons 50
method 53
modal dialog 94
model class 65
modifying system menu 41
Motif
documentation 88
widget 87
XKCancel 135
mouse
click with Ctrl key 159
cursor position 102
dragging 108

pointer
changing 98
location 102
moving
classes 29
icons 152
MPR files Vol2:251
MQ

client Vol2:73
commitment control Vol2:78
connection problem Vol2:78

MQ (continued)

EBCDIC conversion Vol2:75

logical unit of work Vol2:78

reading message Vol2:74

sample application Vol2:76

syncpoint processing Vol2:75
MQ client code Vol2:79
MQSeries, AIX Vol2:73
MRI file 63
multiline edit part

limiting lines 156

missing CR 162

parsing text 144

tab order 143

typed words 144
multiline edit window 144
multiline text 130
multimedia

example 38

opening device 84
multiple

AS/400 connections Vol2:10

inheritance 10

rows, selecting 150

select list 112

windows, application 89
multirow query Vol2:133, Vol2:231
multitasking Vol2:15
multithreading 28, 204
mutable object 241
MWave 85

N

name server
changing entries Vol2:211
persistent Vol2:213
named pipe Vol2:91
naming convention 63, 174
national language support
See NLS
navigating between columns 117
NetBIOS
asynchronous function Vol2:71
dictionary Vol2:70
random errors Vol2:70

Index

325

Netware object (continued)

client 84 finalization 171
server 84 identity 226, 240
network immutable 240
managing traffic Vvol2:211 list part Vol2:59
node Vol2:10 loader 39
NFS drive 82 long-living 219
NLS marshaling Vol2:216
decimals 210 memory 187
double-byte character set 267 mutable 241
multiple languages 265 partitioning Vol2:216
report writer default fonts Vol2:229 peer-to-peer communication Vol2:207
search path 266 primitive 217
nonmodal dialog 142 printer Vol2:229
nonvisual part 208 read-only 227
notebook reference 206
advancing pages 114 remote Vol2:197
bitmap on tab 115 sending as parameter Vol2:208
destroying page 116 sending message to client image Vol2:203
disabling tab 125 SOM Vol2:240
hiding page 116 space Vol2:198
migrating 117 surviving flips 211
portable 117 table 187
porting across platforms 117 traffic 21
settings view 75 transaction Vol2:110
skipping through 114 undefined 69, Vol2:2
tab contents 115 visualizer 21
turning pages 114 writing to file 217
validating input 118 object linking and embedding
Novell 83, 257 See OLE
NSAPI 20 object space
number activator Vol2:203
converting 210 connecting to different libraries Vol2:202
floating point 182 connection close Vol2:196
precision 183 different libraries Vol2:212
rounding 182 duplicating Vol2:214

extending server class Vol2:215
fault tolerance Vol2:211

O finding remote pointers Vol2:219
object initial connection Vol2:203
changing class 231 moving parameters Vol2:215
class identification 182 partitioning object Vol2:216
copying between spaces Vol2:198 performance Vol2:216
creating at compile time 167 profiling Vol2:203
creation 174 security files Vol2:222
destroying 170 sharing class instances Vol2:207

dumper 39, 247, Vol2:229

326 VisualAge for Smalltalk Handbook — Fundamentals

object-oriented database Vol2:171
OoDBC
administrator Vol2:135
AS/400 access Vol2:5
AS/400 database Vol2:11
blocking Vol2:172
ClientAccess/400 Vol2:45, Vol2:48
create view Vol2:32
data source Vol2:135
data source name Vol2:191
DB2/400 Vol2:135
DBF format Vol2:171
default library Vol2:45
description Vol2:175
driver manager Vol2:48
file access part Vol2:60
host variable Vol2:42
keywords Vol2:157
license Vol2:191
log-on Vol2:128
ODBC.INI Vol2:45, Vol2:157
0S/2 Vol2:134
parameter marker Vol2:42
parameters Vol2:157
PC Support Vol2:48
requirements Vol2:7
SQLSTATE 37000 Vol2:123
SQLSTATE S1010 Vol2:124
stored procedure Vol2:32, Vol2:193
text driver Vol2:132
TopLink Vol2:118
ODBC.INI Vvol2:45
ODBCADM VolI2:134
OfficeVision/400 Vol2:50

OLE
class generator 260
client 260

generating methods 260
sharing objects 260
open database connectivity
See ODBC

opening
inspector 38
multimedia device 84
window centered 93
window maximized 92

openness VisualAge 3
operating system, registering event 225
optimized 32-bit client Vol2:7
Oracle
blocking Vol2:172
break APl VolI2:138
connection Vol2:122
data types Vol2:130
DLL Vol2:122
driver Vol2:175
error 126 Vol2:122
error ORA-00942 Vvol2:177
organizer
preferences 75
views 42
0S/2
AS/400 access through CM/2 Vol2:4
calling image from Vol2:91
calling PM API functions Vol2:88
code page conversion 266
distributing application 252
drag-and-drop 129
event handler 151
LAN Server Vol2:7
LIBPATH VoI2:83
maximize window 91
memory leak Vol2:96
MQ Vvol2:79
MQSeries Vol2:75
multithreading 204
notebook 116, 117
ODBC Vvol2:134
optimized client Vol2:21
PM APl Vol2:88
session manager Vol2:84
shutdown 43
SOM object Vol2:246
swap file Vol2:96
task list 131
thread Vol2:143
Warp client 84
workplace shell Vol2:247
0S/400
host servers Vol2:23
host services Vol2:12

Index

327

outer join Vol2:146 packaging in target environment 47

OV/400 Vvol2:50 padding strings 223
overlapping fields 95 palette 131, 139
override database Vol2:43 parameter

passing 34, Vol2:98
parameter marker Vol2:42

P parsing
package, including classes in 46 COBOL copy-book Vvol2:101
packaged image 46 macro file Vol2:113
packaging 54 string 219
application Vol2:57 part
application prerequisites 52, Vol2:22 AS/400 file access Vol2:4
AS/400 Vol2:22 changing settings view 145
AS/400 application Vol2:8, Vol2:21 composite Vol2:251
AS/400 sign-on screen Vol2:44 DBCS name Vol2:255
changing database name Vol2:174 destroying 95
class modifications 49 distributing Vol2:210
database samples Vol2:194 error when saving 69
distributed Vvol2:217 invisible 45
distributed application Vol2:212 labels 160
distributed tracing Vol2:195 object list Vol2:59
for other platform 48 primary 69
garbage collecting 26 printing form 152
image growing 26 reusable table 149, 153
image size Vol2:22 SOM object Vol2:240
instruction 76 table list 149
launch code 203 validation 152
method exclusion Vol2:200 with instances, deleting 35
missing icons 50 partial key Vol2:29
missing method 53 passing
packaged image browser 47 data Vol2:36
pool dictionaries 51 parameters 34
remote object pointer Vol2:204 password protection 244
removing methods 46 pausing process 197
report application Vol2:230 PC Support
required CAT and MPR files 76 communication error Vol2:2
required CAT files 264 Rumba Vol2:10
required classes 49 status Vol2:17
required ICs 75 TCP/IP Vol2:51
retaining classes Vol2:218 user ID Vol2:17
scan messages 50 PCL print stream Vol2:233
target environment 252 peer-to-peer communication Vol2:207
Web application Vol2:251 performance
without SWP files Vol2:3 access set Vol2:127
workspace 48 activator Vol2:199
packaging AIX 47 class naming 226

concatenation 237

328 VisualAge for Smalltalk Handbook — Fundamentals

performance (continued)
copying object Vol2:221
CPI-C Vol2:114
DDM Vol2:26
degrading 24
dictionary 234

dynamic session acquisition Vol2:114

file access part Vol2:60

hiding visual objects 158

image size 24

logical view Vol2:26

lookup table 234

Novell Client32 258

object space Vol2:216

ODBC Vol2:48, VolI2:60, Vol2:172

opening and closing file Vol2:43

opening widgets 158

Oracle Vol2:172

readAll Vol2:14

record cache Vol2:19

report printing Vol2:233

Smalltalk versus RPG Vol2:19

SQL Vol2:48

stream 237

trace logging 54

type converters 220

unloading application 56

Windows 95 83
persistence 217, Vol2:213
Personal Communications Vol2:37
phantom instance variables Vol2:113
physical file Vol2:14
platform

drag-and-drop 20, 129

function Vol2:95

function, available Vol2:96

maximize window 91

porting notebook 117

screen resolution 95

Windows 16-bit Vol2:62
PlatformFunction Vol2:101
PlatformWidgetsConstants 41
pointer

dead Vol2:204

manipulation Vol2:82

motion mask 102

object table 187

pointer (continued)
passing Vol2:101
recaching 243, 248
remote object Vol2:197
retaining address Vol2:89
weak 170

pool dictionary
Abt3270HIllapiConstants Vol2:80
AbtMQConstants Vol2:74
CfsConstants 176
corrupted Vol2:3
defining 198
establishing 197
excluded keys 51
exporting 254
NIsGlobals Vol2:136
packaging 51
replacing associations 197
repopulating Vol2:3
resolving references 193
SystemExceptions 180

using 197
pop-up menu, extending 57
port

COM 178

number Vol2:221
portability

CUA 88

Windows 95 88
portable notebook 117
porting
drag-and-drop 129
notebook across platforms 117
Smalltalk applications 10
positioning window at cursor 90
POSIX 2
PostScript Vol2:232
precision 183
prerequisite 52, 81
preventing image growth 25
primary part 69
primitive
error code 73, Vol2:97
failed Vvol2:124
object 217

Index

329

printer purging application 250

save settings Vol2:229 push button

printf() 173 apply 38

printing bitmap 161
conditional Vol2:227 disabling 156

printing form with visual part 152 dynamic 160

proc dialog graphical label 32
APPC Vvol2:71 hover help 32, 157, 198
CICS Vvol2:72 icon 157

code page Vol2:73
transaction abend Vol2:72

process
aborting stack 199 QENVAUXD Vol2:12
background 201 QENVY VvoI2:12
forking 197 QEVYMAIN Vol2:23, Vol2:34
pausing 197 QGPL Vol2:43
synchronization 209 QGYSETG Vol2:34, Vol2:53
processor 196 QIWS Vol2:23, Vol2:34
profiler 216, Vol2:211 QTEMP Vol2:43
program query
asynchronous calling Vol2:40 host variable Vol2:162
CICS Vol2:72 message SQLO80O5N Vvol2:173
COBOL Vvol2:71 missing fields Vol2:171
listener Vol2:73 sharing Vvol2:145
partner Vol2:34 tables and views Vol2:170
signaling end Vol2:84 URL string Vol2:253
starter Vol2:59, Vol2:84 queue
synchronous calling Vol2:40 handle Vol2:78
working directory Vol2:84 manager Vol2:78
progress quick form Vol2:3, Vol2:146
indicator 137, Vol2:155
message 156 R
prompter

bypassing Vol2:142 recaching pointer 243, 248

changing labels 160 TECOTd_ -
creating 161 adding to container 120

data source name Vol2:148 A5/490 Vol2:3
labels 139 blocklhg Vol2:19
commitment control Vol2:59

properties view 75 o o
deriving description Vol2:48

protecting library 244

PTF description Vol2:3, Vol2:31, Vol2:35
ClientAccess/400 Vol2:135 f||||ng from data queue Vol2:6
data queue Vol2:31 locking Vol2:45

QGYSETG Vol2:34 logical format Vol2:47

remote command Vol2:53 read next Vol2:4
read previous Vol2:4

repeated structures Vol2:37

330 VisualAge for Smalltalk Handbook — Fundamentals

record (continued)
transaction Vol2:109
unique key Vol2:46

reduced runtime image 47

reducing image size 23

reference
circular 97
object 206

referential integrity Vol2:55
refreshing container details view 127
registered
connection, removing 30
events 260
registering OS event 225
reinitializing
common widgets 25
dependents 25
reinstalling AS/400 Connection feature Vol2:8
released version 246
releasing
connections 95
locks 83
reloading application 249
remote command Vol2:43, Vol2:53
remote host, connecting to Vol2:2
remote object
dead pointer Vol2:204
packaging Vol2:204
without object ID Vol2:197
remote procedure call
See RPC
removed class 45
removing
application 250
archival code 37
blanks in string 223
close option 97
damaged classes 40
elements from view 71
instances 35
registered event-to-script connection 30
renaming
class 29, 31
visual part 31
repeating record structures Vol2:37

replacing default icon 27
report
adding fields dynamically Vol2:233
break protocol Vol2:236
calculated field Vol2:230
coElement Vol2:236
conditional printing Vol2:227, Vol2:233
counting unprinted value Vol2:232
default fonts Vol2:229
field breaks Vol2:230
hidden details Vol2:227
hierarchical break Vol2:235
HP printer Vol2:233
in ASCII file Vol2:232
iterator field break Vol2:226
omit printing Vol2:233
owner language Vol2:232
packaging application Vol2:230
printing performance Vol2:233
printing underlined words Vol2:232
saving printer settings Vol2:229
sums Vol2:227
underlined words Vol2:232
using multirow query Vol2:231
using scripts Vol2:231
Win32s error Vol2:226
reshaping hot spot 138
resizing container columns 123
resolution

bitmap 131
centered window 93
display 92

independence 95

screen 95
resource

catalog 12

compiler 27

freeing up 24
retrieving display resolution 92
returning value, modal dialog 94
reusable

form 140
menu 108
reusing

cursor Vol2:133
settings view 227
table part 149, 153

Index

331

reusing (continued) script

visual class 65 client Vol2:66
visual part 140 creating class from 229
reversing collections 186 double execution 70
revisable form text Vol2:50 server Vol2:66
rounding 182 TCP/IP VoI2:66
router Vol2:4, Vol2:10 scroll bar, changing size 124
APPC VvolI2:35 scrolling table 148
0S/2 client Vol2:21 SCSI drive 40
starting automatically Vol2:59 security
row conversation Vol2:18, Vol2:27
create Vol2:142 object space Vol2:222
delete Vol2:142 verifying parameters Vol2:2
loading all Vol2:179 selecting multiple rows 150
locked Vol2:145 semaphore Vol2:14, Vol2:16, Vol2:39, Vol2:41,
maximum number Vol2:153 Vol2:91
removing brackets Vol2:182 sender
rowsAsStrings Vol2:182 context 196
selecting multiple 150 signature 195
RPC serial port 178
argument passing Vol2:36 server 257
asynchronous Vol2:42 service program Vol2:24
asynchronous invocation Vol2:1 session
asynchronous job Vol2:12 acquisition Vol2:114
ILE service program Vol2:24 class Vol2:114
large arguments Vol2:42 data Vol2:249, Vol2:252, Vol2:253
message Vol2:51 setting focus 162
multiple programs Vol2:1 settings view
parameter Vol2:34 changing 145
passing data Vol2:36 reusing 227
setting commit boundary Vol2:1 severity level 195
synchronous Vol2:40 shadow Vol2:211
transaction Vol2:14 shape, hot spot 138
RPG VvolI2:19, Vol2:32, Vol2:36, Vol2:40 SHARE.EXE Vol2:24
Rumba Vol2:10 shared folder Vol2:4
running subsystems 199 sharing
runtime data among applications Vol2:43
AS/400 prerequisites Vol2:9 files Vol2:24
distribution fees 9 menu 108
image, reduced 47 OLE objects 260

record Vol2:45
shutdown OS/2 43

S sign-on
screen dialog Vol2:17
resolution 95 screen Vol2:44

scraping Vol2:24, vol2:111
size, window position 93

332 VisualAge for Smalltalk Handbook — Fundamentals

signature, finding sender 195
single-row Query Vol2:192
sizing table 149
Smalltalk
advantages 4
APl 172
books 165
caching compiler 192
closing DLL 55
committee 2
creating table Vol2:161
database access Vol2:154
database connection VoI2:138
description 2
distributing compiler 9
event 213
exception handling 179
fault tolerance Vol2:220
formatter 173
fractions 182
GUI architecture 87
incremental compiler 191
integer 216
method size limit Vol2:111
multiple inheritance 10
performance versus RPG Vol2:19
porting applications 10
process model Vol2:199
Server for MVS 15
source code 9
SQL INSERT VolI2:160
standardization 166
strategy 7
type converters 220
Usenet group 12
using TCP/IP Vol2:66
versus C++ 5
versus Java 7
widget 87
smooth graphics 209
socket Vol2:66, Vol2:68
Solaris server 82
SOM
CORBA VoI2:239
development toolkit Vol2:244
DSOM hanging system Vol2:239
environment variable Vol2:241

SOM (continued)

exception Vol2:239

feature Vol2:244

generating class with prefix Vol2:238
inout sequences Vol2:244
interface repository Vol2:245
LIBPATH Vol2:243

missing class definition Vol2:243
object Vol2:245

object as part Vol2:240

0OS/2 desktop Vol2:246

prefix Vol2:238

terminating error Vol2:241
wrapper Vol2:240, Vol2:245

sorted collection 194
SoundBlaster 85

space planning, window 93
SQL

ANSI support Vol2:140
AS/400 database Vol2:5, Vol2:11
building statement Vol2:148
cursor Vol2:179

dynamic where clause Vol2:125
embedded Vol2:121

error 30081n Vol2:120

error 37000 Vol2:123

error S1010 Vol2:124
exception handling Vol2:119
for update of Vol2:127

host variable with wild card Vol2:140
IN clause Vol2:146

INSERT VolI2:160

Jet driver Vol2:127

locked row Vol2:145

ODBC Vol2:32

ODBC requirements Vol2:6
outer join Vol2:146
performance Vol2:48
statement Vol2:143

trace Vol2:164

wild card Vol2:140

SQL Server 8, Vol2:185
stability, VisualAge 2
stack

aborting process 199
frames 196
information, capturing 28

Index

333

stack (continued)
overflow 72
trace Vol2:213
stacked processing Vol2:114
static
communication session acquisition
SQL 18
stock image
stored procedure
Vol2:185, Vol2:193
storing settings 39
stream 237, Vol2:70
string
asPointer Vol2:97
finding in methods
formatting 173
identity 221
literal 221, 227
padding 223
parsing 219
removing blanks
replacing character
substitute 173
substring 186
trimming 223
subapplication, using 248
subclass, visual part 204, 215
substrings 186

47, 50

232

223
222

Vol2:114

Vol2:32, Vol2:146, Vol2:156,

subsystems, configured 199
successor uniqueness violation Vol2:109
swapper

error 198

large objects 217
loading application
swapping 174
sweeps 211
Sybase 8
symbol, as dictionary key 235
synchronizing
attributes
combo box
image 243
table scrolling
visual part 202
windows 95

47

45
109

148

334 VisualAge for Smalltalk Handbook —

Fundamentals

synchronous RPC Vol2:40
syncpoint processing Vol2:75

SYS317x error 72
system
connected Vol2:17
menu 41

menu, modifying 41
system object model
See SOM

T

tab
group
order
tabbing
automatic
enter key
table
adding column
changing cell 149
changing format 36
changing size 149
creating in Smalltalk Vol2:161

158
143, 158

162
153

146

hiding column 145
list 149
resizing rows 224
reusing part 149, 153
scrolling 148
selecting multiple rows 150
sizing 149
synchronizing scrolling 148
widths 153

TalkLink 11

target environment, packaging in 47

task list 131

TCP/IP
address in use Vol2:66
AS/400 communication Vol2:51
ClientAccess/400 Vol2:50
DDM Vol2:50
distributed name server Vol2:201
distributed testing Vol2:202
fault tolerance Vol2:220
handling addresses Vol2:213
hard-coded addresses Vol2:196

local name server Vol2:222

TCP/IP (continued)

name server Vol2:201, Vol2:210

port number Vol2:221
socket Vol2:66
stack Vol2:51, Vol2:65
startup error Vol2:210
testing setup Vol2:65
using in scripts Vol2:66
Windows 16-bit Vol2:62
WinSock Vol2:65
Team Connection 6
team environment 243, 257
identical users 256
terminating
active processes 25
infinite loop 28

testing
class 173
instance 173
text

box, default action 153
changing color 193
cursor position 131
database Vol2:132
transparent 135

thread 28, Vvol2:114, Vvol2:138, Vol2:143, Vol2:208

timestamp 247
Tivoli 21

toggle button 105
token-ring Vol2:10

tool bar
creating 109
sizing 259
TopLink Vol2:118
trace

database connection Vol2:164

distributed Vol2:195

logging 54

method call stack 21

run-time startup Vol2:205
tracking table cell changes 149
TrailBlazer

class policy 57

code browser 192

compiler warning level 195

generating accessors 54

initializing class variables 209

TrailBlazer (continued)
toBeLoadedCode 209
transaction
abend Vol2:72
canceling database request Vol2:137
code page Vol2:73
database Vol2:14
distributed Vvol2:217
interface Vol2:113
interleaving Vol2:39
multileaving Vol2:39
object Vvol2:110
program Vol2:23
record Vol2:109
single Vol2:114
transcript, logging messages Vol2:205
transfer queue Vol2:73
translation table 44
transparent text background 135
trapping errors 180
tree view 259
triggering events 44
trimming string 223
turning notebook pages 114
turning off error message 135
type converters 220

U

undefined object 69, Vol2:2, Vol2:8
unique key Vol2:46
UNIX 74, Vol2:189, Vol2:224
unloading

application 56

feature 82
unspecified key Vol2:63
unused file handles 208

updating
database 197
widget 191

upward compatibility 10
usenet 12
user
identical 256
privilege Vol2:176
user input
error 133

Index

335

user input (continued)
type converters 220
user profile management Vol2:18, Vol2:117,
Vol2:131
user profile, AS/400 Vol2:54

Vv

validating input 118

variable
character field Vol2:141
global 205
references, swapper error 198
type 172

verifying security parameters Vol2:2
version
identifying released 246
immutable 250
versioning application 61
view
initializing wrapper
removing elements 71
wrapper 89
visual part
anchor block handle 135
customizing connection menu 33
inheritance 204
primary 70
printing form 152
renaming 31
reusing 140
subclass 215
synchronizing 202
window location 90
VisualAge
ABTPATH 213
communications protocols 8
CompuServe 12
configuration 213
configuration management 7
CUA compliance 10
databases 8
description 1
features
in version 3 13
in version 4 14
fixes Vvol2:9

336 VisualAge for Smalltalk Handbook — Fundamentals

VisualAge (continued)

icon 70
installed features 253
maturity 2

multiple versions 26
object repository 6
ODBC Vvol2:5
openness 3
Organizer 75
packaging 8
platforms 6

porting applications 10
replacing icon 27
resource catalog 12
running from external SCSI drive

stability 2
starting 71
support xix, 11
TalkLink 11

upward compatibility 10

Windows Vol2:4
VisualAge Generator 5
visualization feature 82
visualizer 6

W

walkback
capturing information Vol2:213
looping 56

wallpaper 138
watch field Vvol2:230
weak pointer 170
Web Connection
AppletAuthor 22

CGI 20

ICAPI 20

ISAPI 20

JPEG 20

NSAPI 20
where clause Vol2:125, Vol2:133
widget

attachments 95

circular reference 97
closing 96

dependent attachments 97
destroying 95

40

widget (continued)
hover help 157
iterating over 94
key release 134
list 223
locating focus 136
mapping across systems 87
native presentation manager
updating 191
view wrapper 146
wildcard Vol2:140
Win32s 70, Vol2:226

window
always on top 98
border 93

centered 93
closing 95, 134
closing on PF key 163
Esc key 134
find active 155
in task list 131
in-progress 155
iterating over widgets 94
location 90
log-on Vol2:3
maximizing 91
minimizing 94
minimum size 96
moving icons 152
opening centered 93
opening maximized 92
palette 131
position 93
positioning at cursor 90
progress indicator 137
size 96
space planning 93
synchronization 95
title 131
title bar 93

Windows
16-bit Vol2:62
AS/400 application Vol2:4
code page conversion 266
database support Vol2:181
DBCS Vol2:255
disk space 261

Vol2:94

Windows (continued)
drag-and-drop 129
event handler 151
explorer 260
for Workgroups Vol2:203
installing on DBCS system 267
logo 15
maximize window 91
moving library to AIX 255
notebook 117
Personal Communications Vol2:37
router Vol2:4
sharing files Vol2:24
WinSock Vol2:65
Windows 3.1, MQ client Vol2:79
Windows 95
as distributed server Vol2:222
client 83
controls 88
DB2 support Vol2:165
local name server Vol2:222
Netware server 257
requester 83
sizing toolbar 259
TreeView 259
Windows NT client 84
WinSock Vol2:65
WordPro 260
work station controller
ASCIl Vvol2:4
work station function Vol2:10, Vol2:21
workspace packaging 48
wrapper
COBOL Vol2:98
initializing 146
legacy code 9
object 206
PM control Vol2:94
SOM Vol2:240, Vol2:245
view 89
writing stack trace to file 29
WSI server Vol2:254

Index

337

X
X

resources 88

server 74
X3 Project 986-D 166
XmNmodifyVerifyCallback 144
XmNvalueChangedCallback 144
XmOPEN 260

Y

year format 212

338 VisualAge for Smalltalk Handbook — Fundamentals

ITSO Redbook Evaluation

VisualAge for Smalltalk Handbook Volume 1: Fundamentals
SG24-4828-00

Your feedback is very important to help us maintain the quality of ITSO redbooks. Please complete
this questionnaire and return it using one of the following methods:

Use the online evaluation form found at http://www.redbooks.com
Fax this form to: USA International Access Code + 1 914 432 8264
Send your comments in an Internet note to redbook@vnet.ibm.com

Please rate your overall satisfaction with this book using the scale:
(1 = very good, 2 = good, 3 = average, 4 = poor, 5 = very poor)

Overall Satisfaction
Please answer the following questions:

Was this redbook published in time for your needs? Yes No

If no, please explain:

What other redbooks would you like to see published?

Comments/Suggestions: (THANK YOU FOR YOUR FEEDBACK!)

[0 Copyright IBM Corp. 1997 339

Printed in U.S.A.

i ” ‘“ “ “ ‘ “ “ “

	VisualAge for Smalltalk Handbook
	Volume 1: Fundamentals
	VisualAge for Smalltalk Handbook
	Volume 1: Fundamentals
	Contents
	Preface
	Chapter 1. What Is VisualAge for Smalltalk?
	Chapter 2. General Information
	Chapter 3. Graphical User Interface
	Chapter 4. IBM Smalltalk Programming Language
	Chapter 5. ENVY
	Chapter 6. Microsoft Windows
	Chapter 7. National Language Support
	Appendix A. Special Notices
	Appendix B. Related Publications
	How to Get ITSO Redbooks
	Glossary

	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	V
	U
	W
	List of Abbreviations
	Index

	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	ITSO Redbook Evaluation

