
7
ON YOUR OWN

FINDING WHAT YOU NEED

The best effect of any book is that
it excites the reader to self activity.

THOMAS CABLYLE

Before you further extend your program, write other programs,
and become an expert at the Smalltalk system, you should know a few
hints. As we said before, each Smalltalk class is like a "module" or
"package," and the entire Smalltalk-80 system is like a large subroutine
library. The browser is an information retrieval window into that library.
Classes are grouped into "categories" to make them easier to find. Some
categories contain classes which are related by all being subclasses of a
particular class (the subclasses of Number in Numeric-Numbers, for
example). In general, a common purpose or a common use unites the
classes in a category, and while some of them are subclasses of each
other, many are not.

You are not expected to memorize where to find classes, or which
classes respond to which messages. However, the Kernel", Numeric-,
and Collections- categories are so important that we urge you to read
Chapters 6 through 14 in the Blue Book to learn what these classes do
and where to find them in the browser.

100 ON YOUR OWN [CH. 7]

When you sit down to "write a program" in the conventional sense,
you will almost always define a new class. When you add functionality
to the system, or modify the behavior of the system, you will usually
add methods to existing classes. Another common practice is to make
a subclass of an existing class, solely to override a couple of its meth-
ods, being confident that you won't interfere with the normal function-
ing of that class.

As a Smalltalk programmer you rarely just sit down and write code.
A common practice is to find another part of the system that does
something very similar to the thing you want to do. You read that code,
copy it into the method you are writing, and modify it to your specific
needs. There are several techniques for finding a piece of code when
you see its actions in another part of the system. Let's try some of these
techniques. Suppose you know the name of class String, but don't know
which category it is in. Enter area E of a browser or the transcript.
Type String category and choose print it from the middle-button menu.
The answer, Collections-Text, is inserted in the text just after your
selection, as shown in Figure 7.1. (You will need to cancel the change
to the text before the system will let you try the other examples here.)

Another technique to find a piece of code is to interrupt the sys-
tem when it is doing the thing you want to find out about. Suppose
you can run the Tower of Hanoi animation, but don't know where to
find the code in the browser. You can start the hanoi animation and
then type control C (Command period on a Macintosh). A new window

FINDING WHAT YOU NEED 101

will appear. If you open the error window by choosing debug from the
middle-button menu, you will see the execution stack in the upper
pane. You can find the code you are after by clicking on the various
message names in the upper pane (see Figure 7.2). The debugger is
extremely useful, but we haven't the space to cover it here. See Chap-
ter 19 of the User's Guide for complete instructions.

When you are reading a specific piece of code, you will want to
know more about the variables and messages you find. Suppose you
are looking at the code for the method hanoi in the browser. You see a
reference to something called FilllnTheBlank, but you have no idea what
it is. Select FilllnTheBlank and then choose explain from the middle-
button menu. The system will tell you about the thing you have selected.
explain works for any single token in a method, including variables,
selectors, pieces of selectors, and all punctuation, (explain has been
taken out of Apple's Level 0 image to save space.) Sometimes the
description includes a Smalltalk expression, which is meant to be eval-
uated, as shown in Figure 7.3.

When you say do it, the system asks you to frame a new browser
that is specialized to the variable or class. You can now explore class
FilllnTheBlank and see what messages it responds to (see Figure 7.4).

Suppose that you are exploring a class and are trying to discover
what an instance variable in that class does. For example, take the
instance variable stacks in the class AnimatedTowersOf Hanoi. In area B
of the browser, select AnimatedTowersOf Hanoi. The first thing to do is
to choose comment and read it. If the comment is not very illuminat-

102 ON YOUR OWN [CH. 7]

ing, you may want to see every place in the system that the variable
stacks is used. In area B, choose inst var refs from the middle-button
menu. The browser puts up a new menu that lists the instance vari-
ables by name. Click on stacks, as shown in Figure 7.5.

The system asks you to frame a window for a new browser on a list
of methods. This browser shows you all the methods in the system in
which the instance variable stacks appears. You can see the method in
the lower pane by clicking on its name in the upper pane. You can

FINDING WHAT YOU NEED 103

make changes to the method and accept it without leaving this method
list window. Whenever you need to change all uses of a variable sys-
tematically, this kind of window is ideal (see Figure 7.6).

The item class var refs in the middle-button menu is exactly like
inst var refs. It shows you all the places a particular class variable is
used.

104 ON YOUR OWN [CH. 7]

As you read code, you will often come across an unfamiliar mes-
sage name. Suppose you are looking at the method moveDisk:to: in area
E of the browser, and you notice the selector addFirst:. To see the code
that implements addFirst:, go to area D and choose messages from the
middle-button menu (see Figure 7.7).

A new menu will appear with the names of all messages sent from
moveDisk:to: (see Figure 7.8). Click on addFirst:.

FINDING WHAT YOU NEED 10S

The system will ask you to frame a special browser containing all
the methods in the entire system that are named addFirst: (see Figure
7.9).

Notice that the classes LinkedList and RunArray have specialized
responses to the message addFirst:. Suppose you want to see another
call on addFirst: in order to really understand how it works. Click on
OrderedCollection addFirst:, as shown in Figure 7.9. Now hold down
the middle-button in the upper part of the window, and choose send-
ers (see Figure 7.10).

senders finds all methods in the system which call addFirst:, and
the system asks you to frame a window in which to show them (see
Figure 7.11).

The list of senders of addFirst: includes calls on all three of the
implementations (definitions in different classes), since the system can-
not determine the class of the receiver of the message until runtime.
Any message list menu, like area D of the browser, allows you to choose
messages and senders from its middle-button menu. See the Inquiry
section in the System Workspace window for some useful ready-made
templates for searching the system. (Also see Section 5.4 and Chapter
10 of the User's Guide.)

In the Tower of Hanoi program, the method move-
Tower:from:to:using: is not in the class AnimatedTowersOfHanoi. It is
inherited from Object because TowerOf Hanoi is a subclass of Object and

106 ON YOUR OWN [CH. 7]

AnimatedTowersOfHanoi is a subclass of TowerOf Hanoi. When you are
exploring a class, it is valuable to see the subclass relationships. Enter
the browser, and make sure AnimatedTowersOfHanoi is selected in area

FINDING WHAT YOU NEED 107

B. Choose hierarchy from the middle-button menu. Area E will change
into a picture of the subclass hierarchy (see Figure 7.12).

A system with overlapping windows and the ability to copy code
from one window to another allows you to adopt a style of work differ-
ent from a "full screen" editor on a character display. While writing
code you may want three browsers (or spawned windows) open at once.
One contains the method you are currently writing, one is for looking
at the rest of your own code (the methods you just wrote), and one is
for browsing around the system to find things to copy or use.

To open a new browser, move the cursor so that it is in the gray
area between windows, and choose browser from the middle-button
pop-up menu. (As you might guess, file list, workspace, system tran-
script, and system workspace on the same menu create new instances
of other windows. If you ever accidentally hit the right button of the
mouse and close a window unintentionally, you can use these menu
items to get back another window of the same kind.)

Since this book is a slim introductory volume, we have not cov-
ered a number of important topics in Smalltalk. Here is a brief list of
topics, so that you will experience "name recognition" when you hear
about them later, or see them in the Smalltalk system.

• You can send a message to a class, instead of to one of its instances.
Messages to a class are most often used to create instances or to
ask about class-wide information. Some examples we have seen
are Array new:, FilllnTheBlank request:, and Character value:. You

108 ON YOUR OWN [CH. 7]

can view class messages by clicking on the word class at the
bottom of area B in the browser. See Chapter 5 of the Blue
Book.

• Besides local variables and instance variables, there are three
other kinds of variables. Global variables are stored in a dictio-
nary called Smalltalk. You are able to mention the name of a
class in a method because all classes are stored under their names
as globals. The globals that are not classes (and thus cannot be
found in the browser) are listed in the Globals section of the
System Workspace window. We have seen "class variables," such
as DiskGap in HanoiDisk. They are common to a particular class,
its subclasses, and all of their instances. Pool variables are a
particularly obscure kind, shared by classes that are not related
by subclassing. See Chapter 3 of the Blue Book.

• We have not explained subclasses, superclasses, and inheri-
tance in their full glory. See Chapter 4 of the Blue Book. In
some versions of Smalltalk, a class can even inherit behavior
from more than one direct superclass.

• Inspector windows are useful because they let you look inside
objects. You can send the message inspect to any object, or you
can choose inspect from the middle-button menu in any win-
dow that is a list of objects. Lists of objects appear in the bottom
panes of the debugger and also in inspect windows. Once in an
inspector, you can change the values of the instance variables of
the object.

• The System Workspace is simply a window full of text. You may
have used it already to bring in source code from a file. The text
in the window is a series of templates for commonly used actions.
You edit an expression to customize it, select it, and then choose
do it or print it. (do it executes the code and print it both exe-
cutes the code and inserts the result in line.) The commands are
for interacting with an external operating system (the Files sec-
tion), saving your work (fileOutChanges), searching the system
(the Inquiry section), managing Smalltalk's global resources (Dis-
play and Processor), and making measurements (coreLeft, spyOn:).
See Section 6.3 and the System Workspace Index of the User's
Guide.

• "Projects" are multiple screens that you can flip among. They
are useful for separating different projects you are working on.
You can set up a screen full of windows for each project you are
working on (such as writing a paper, reading your mail, and
designing a new browser), and then flip quickly between them.
See Chapter 4 of the User's Guide.

WHAT IS OBJECT-ORIENTED PROGRAMMING? 109

• There are four different tools for managing programs you have
written. You can save the entire state of your system by choos-
ing save or quit from the middle-button menu in the gray space
between windows. You can write out the source code for indi-
vidual classes (file out in the middle-button menu in area B of
the browser), or all your changes (in the System Workspace). Or,
you can use the Change-Management Browser for a high degree
of control over your changes.

• Yes, we even offer insurance! If your machine crashes, you can
always get the text of all the methods you wrote before the crash
by restarting the system and then executing (Smalltalk recover:
10000). For the specifics, read Chapter 23 of the User's Guide.

WHAT IS OBJECT-ORIENTED PROGRAMMING, REALLY?

The series of example programs we have built to solve the Tower
of Hanoi puzzle represents a spectrum of style. The first version (in
class Object) was simply a transcription of the normal recursive solu-
tion. Even though the Smalltalk version used objects and sent mes-
sages to them, it was not an example of object-oriented programming.
It is perfectly possible to write the exact analog of FORTRAN programs
in Smalltalk. When we divided the problem up into disks and a game-
wide object, the algorithm became more object-oriented. The algo-
rithm used in AnimatedTowerOfHanoi and HanoiDisk was not totally
object-oriented, however, because the recursive version could com-
pute the solution without using the stacks or the data in the disks! The
rule-based algorithm really uses its data structures. In class Tower-
ByRules and HanoiDiskRules, the objects use their data structures and
decide where to move by sending messages to each other. In the last
chapter we wrote a program that is truly object-oriented.

The idea of modular code is well established in computer science,
but it alone does not make a program object-oriented. In a language
other than Smalltalk, the routines that deal with a specific function are
packaged together. The data structures, however, are usually global.
In a typical text editor, it is common for all routines that actually mod-
ify the text to be in one package, but usually the data structures that
hold the actual text are global. Any other routine could reach in and
change text. In real-world systems, "reaching in the back door" to modify
the data structure is quite common. Suppose segments of text in the
text editor have "dirty bits" associated with them. This bit needs to be
turned on every time a piece of text is modified or the changes will not
be saved to disk. The only way a programmer can be sure that the dirty

110 ON YOUR OWN [CH. 7]

bit is being set every time it should be is to search the entire program
for places that write into the textual data structures. In Smalltalk, if an
object owns some data, no other object can reach that data without
sending a message to the owner. If an instance of class Text needs to
enforce the setting of dirty bits, the programmer must search only the
methods in class Text.

Let's get away from talking about protection of data. Imagine that
every fragment of program and every piece of data are floating together
in space. Now imagine pieces of string between code and the data it
uses, and between segments of code that are used together or perform
a similar function. Let's move everything around until the total amount
of string is the smallest. Clustered around each data structure are the
routines that use it. Natural divisions in the code become apparent.
When a problem is segmented into classes along natural boundaries,
the resulting program is beautiful. Dividing a problem up into objects
is a process of putting things where they belong.

The most important part of object-oriented programming is not
any technical advantage it gives, but the fact that it crosses a threshold
of perception. When we put all of the information associated with a
disk into class HanoiDisk, we didn't just clean up the code in
AnimatedTowerOfHanoi. We allowed ourselves to think of that body of
information and action as a single unit, namely, "a disk." We are used
to perceiving the world around us as made up of "objects," and our
brains arrange information into "chunks." By using objects in a pro-
gramming language, we can tap into an existing convention. Thinking
of an algorithm in terms of objects makes it easier to understand. This
ease of understanding often comes not from the details of the class you
are working on, but from not having to think about the rest of the
program. When you are working inside one class, you are largely safe
from the side effects and complexities of parts of your program outside
that class.

Dividing a problem up into objects and defining actions that are
"natural" for those objects actually make programs simpler. When the
actions of an object are divided into the right kinds of "chunks," we
can think and write code at a higher level. We know that the methods
we call from the high-level code are correct, because they match the
way we think about the problem. When that trust exists, we make
fewer mistakes. We carry around less tension about whether the sub-
ordinate procedures are doing the right thing. Programs are unclut-
tered and easier to maintain.

In Smalltalk, the overhead of sending a message is small. Since
sending a message is the only thing you can do in a piece of Smalltalk

WHAT IS OBJECT-ORIENTED PROGRAMMING? 111

code, it has been optimized. An average method has ten to fifty mes-
sage sends in it. If an expression keeps cropping up over and over in a
program, it probably deserves to be a separate method. The goal in
Smalltalk is to make creating a new method as easy as possible. Writing
a new method and calling it in the original program should be easier
than defining a new procedure in Pascal. Declarations and preambles
are very short in Smalltalk, and you can edit, run, and debug without
changing environments. Processing a file through a compiler after typ-
ing a program into it introduces unnecessary complexity. Why should
a file system come between you and your program? Messages and
methods are meant to be lightweight and quick to install. In Smalltalk,
compiling a method and linking it into the system take only a few sec-
onds, as opposed to several minutes in a "batch-processed" Pascal or
C system where many modules may have to be recompiled.

Some of the signs of non-object-oriented programming are too many
loops and too much indexing of multi-level data structures. Compare
the method for bestMove in HanoiDiskRules (shown below) with the
equivalent code in a style that is not object oriented.

bestMove | secondBest |
"If self can move two places, which is best? Return the top disk of

the pole that this disk has not been on recently."
TheTowers polesOtherThan: self do: [:targetDisk |

width < targetDisk width ifTrue:
[secondBest <- targetDisk.
targetDisk pole = previousPole ifFalse: [f targetDisk]]].

t secondBest "as a last resort, return a pole it was on recently"

If we rewrite this program in the style of a traditional language,
the code becomes bulky and hard to understand. polesOtherThan:do: is
not written as a separate procedure, but this is probably how most
Pascal programmers would write it.

bestMove: movingDisk on: currentPole
"If movingDisk can move to two places, which is best? Return

the pole that the disk fits on and has not been on recently."
1 to: 3 do: [:targetPole | "each other pole"

targetPole ~= currentPole ifTrue:
["Not the current pole"

(stacks at: targetPole) isEmpty
ifTrue: ["We know it fits on an empty pole"

secondBest <- targetPole.

112 ON YOUR OWN [CH. 7]

"Is this the pole we just came from? Look in an array of
previousPoles"

targetPole = (previousPoles at: movingDisk) ifFalse:
[t targetPole "the best"]]

ifFalse: ["a real disk is on top"
"compare the widths"
movingDisk < ((stacks at: targetPole) at:

(stackTops at: targetPole))
ifTrue:["itfits"

"Is this the pole we just came from?
Look in an array of previousPoles"

targetPole = (previousPoles at: movingDisk) ifFalse:
[f targetPole "the best"]]]]].

f secondSest "as a last resort, return the pole it was on recently"

Good design and clean code are not the sole province of Smalltalk.
It is possible to write extremely beautiful code in other languages, as
well as terrible code in Smalltalk. Smalltalk even has its own particular
kinds of brier patches. (Look at the code in Behavior, ClassDescription,
and Class that runs when you accept a class definition for an existing
class in which you rename its instance variables.) The designers of
Smalltalk believe that you already know what makes a good design and
clean code. Smalltalk tries to encourage you to follow your instincts for
good design.

Now that you've successfully created a truly object-oriented ani-
mated program, consider yourself an Official Level One Smalltalk Pro-
grammer! Perhaps the next step is to add some bells and whistles to
your animated Tower of Hanoi program. Appendix 4 has seven sugges-
tions (four bells and three whistles), with Appendix 5 hinting at the
answers and Appendix 6 just giving them away. If you want to learn
even more about Smalltalk, we suggest going through the User's Guide
(the bit-editor is really fun). You might then read Part I of the Blue
Book, and try the FinancialHistory example in Appendix I of the User's
Guide. You've had a taste of Smalltalk, and we hope to have whetted
your appetite. Bon appetit!

