
Chanmome Livy

Digitized by the Internet Archive

In 2023

https://archive.org/details/smalltalkobjectsO00Oliuc

Pa DLTALK, OBJECT SCAND DESIGN

Smalltalk, Objects,
and Design

Chamond Liu

LL
MANNING

Greenwich

(74° w. long.)

The publisher offers discounts on this book when ordered in quantity.

For more information please contact:

Special Sales Department
Manning Publications Co.

3, Lewis Street

Greenwich, CT 06830

or

lee@manning.com

Fax: (203) 661-9018

Typesetting: Sheila Carlisle

Copy editor: Dave Lynch

Cover: Leslie Haimes

Copyright © 1996 by Manning Publications Co.

I | All rights reserved.

No part of this publication may be reproduced, stored in a retreival system, or transmitted,

in any form by any means, electronic, mechanical, photocopying, or otherwise, without prior

written permission of the publisher.

Recognizing the importance of preserving what has been written, it is the policy of Manning

Publications to have the books we publish printed on acid-free paper, and we exert our best

efforts to that end.

The author and the publisher of this book make no warranties of any kind, expressed or

implied, with regard to the information contained in this book. The author and publisher shall

not be liable in any event for any loss or damages caused by, or arising out of, the use of

information contained in this book.

All products mentioned in this book are trademarks or registered trademarks of their respective

holders. Use of a term in this book should not be regarded as affecting the validity of any
trademark or service mark.

Library of Congress Cataloging—in—Publication Data

Liu, Chamond.

Smalltalk, objects and design / Chamond Liu.

cme

Includes bibliographical references and index.

ISBN 1-884777-27-9 (hc)

1. Smalltalk (Computer program language) 2. Object-oriented

programming (Computer science) I. Title.

QA76.73.S59L58 1996

005.13'3--dce20 96-28551

CIP
96 97 98 99CR10987654321

Printed in the United States of America

Contents

Acknowledgments xi

Preface xiii

Il Objects 1
1.1 Objects 1

1.2 Examples of Smalltalk messages (telegrams) 5
1.3. Pitfall: the effect versus the return 6

1.4 Why objects matter 7
1.5 Recap: objects 8

1.6 Exercise: warmup (the image) 9

1.7 Commentary: perspectives on objects 9

2 Classes and inheritance 11

2.1 Classes 11

2.2 The word “class” 13

2.3. Inheritance 13

2.4 Terminology 18

2.5 Exercise: hierarchies 21

2.6 Solution and discussion: Aggregation hierarchies 21
2.7 Example: aggregation plus inheritance 22

2.8 Syntaxes for inheritance 23
2.9 Example: inheritance in Smalltalk 24

2.10 Exercise: building a class hierarchy 26

2.11 Commentary: what is object-oriented programming? 27

2.12 Commentary: other languages 29

2.13 Commentary: history 30

vi

3 Smalltalk introduction 32

el

gua

58)

3.4

oye)

3.6

Sef

3.8

Abe)

Elementary objects 32

Messages and their precedences 33

Pitfalls: basic Smalltalk gotchas 34

Examples 36

Exercise: a hypothetical method 37

Solution and discussion 38

Kinds of variables 39

Pitfall: variables # objects 40

Classes are objects 40

3.10 Control flow 42

3.11 Commentary: metaclasses 43

4 Exercisesp—Foundations 44

4.1

4.2

4.3

4.4

4.5

Precautions 44

Finding things in Smalltalk 46

Elements of Smalltalk 48

Smalltalk’s debugger 57

Provocations 59

5 Abstract classes 61

ap!

5.2

De)

5.4

1s)

5.6

D7

5.8

Exercise in object-oriented design 62

Solution and discussion 62

Pure virtual (subclassResponsibility) methods 64

Exercise: discovering pure virtuals 65

Solution and discussion 65

Ensuring no instances 65

Concrete behavior in abstract classes 67

Summary: methods in abstract classes 68

6 Containers and other indispensable ideas 69
6.1

6.2

6.3

6.4

65

6.6

6.7

6.8

6.9

Heterogeneity and homogeneity 70

Exercise: heterogeneity and homogeneity 71

Exercise: dictionaries 72

Preparatory exercise: identity versus equality 73

Identity dictionaries 74

Exercise: identity dictionaries 75

Overriding equality 75

Exercise: anomaly of the disappearing element 76
Exercise: excursion into Streams 77

6.10 Containers versus aggregations 78

6.11 Shallow and deep copying 79

vil

6.12 Commentary: value and reference semantics 80

6.13 Commentary: containers in C++ 81

7 CRC cards 82
#1

rey:

fo

7.4

Design exercise 83

Solution and discussion 84

Common questions and answers 87

Commentary: analysis, design, and implementation 88

8 Exercises—Implementing a design 91

8.1

8.2

8.3

8.4

8.5

8.6

oF.

8.8

8.9

Create the classes 91

A testcase 91

Write “new” methods 92

Write instance methods 92

Test your solution 93
Engineering discipline 94

A minor variation 94

“Private” methods 94

Commentary: getters and setters 95

8.10 Summary 96

9 When (not) to inherit 97
oe

9.2

 ,

9.4

pe

9.6

9.7

Historical background 97

Inverting hierarchies 98

Buy or inherit? 99

Exercise 100

Solution and discussion 100

Conclusions 102

Commentary: multiple inheritance 103

10 Use cases and dynamic relationships 105
10.1

10.2

10.3

10.4

10.5

10.6

10.7

Interaction diagrams 105

Exercise 108

Solution and discussion 109

Use cases and interaction diagrams in analysis and design 110

Limitations 112

Summary 113
Commentary: historical note 114

11 The venerable model-view-controller 115

le

LA ne

PS

Model-view-controller example 115

Exercise 118

How MVC works 119

vill

11.4 Exercise: the original dependency mechanism 121

11.5 MVC: benefits and difficulties 122

11.6 What's become of MVC? 124

12 Building windows 127
12.1. What you need to know about Motif 128

12.2 Widget resources 130

12.3. Excursion: pool dictionaries 131

12.4 Exercise: a first window 133

12.5 Exercise: a window for the account balance 134

12.6 Exercise: a window for the transaction log 135

12.7 Exercise: a window containing both widgets 136

12.8 Assessment: building windows 136

12.9 Callbacks and events 137

12.10 Preparation 138

12.11 Exercise: mouse event handling 138

12.12 Challenging exercise: dynamic updates 139
12.13 Summary 140

13 Designing the UT: a brief tour 142

13.1 User interfaces 142

13.2 Elementary examples 143

13.3. Coherent conceptual models 144

13.4 Metaphor 146

13.5 Magic 148
13.6 Exercise: design a user interface 151

13.7. Discussion of your results 152

13.8 Isomorphism 155

13.9 Summary 156

14 Polymorphism 158

14.1 Dynamic binding 158

14.2 Dynamic binding enables...polymorphism 159
14.3 Aword on terminology 161

14.4 Exercise: polymorphism 162
14.5 Solutions and discussion 162

14.6 Exercise: Smalltalk’s if-less-ness 163

14.7. Solution 163

14.8 Summary tip 165

14.9 Commentary: performance 165

14.10 Commentary: Smalltalk, C++, and type-checking 166

14.11 Commentary: the tomato in the mailbox 169

14.12 Commentary: multi-methods 170

15 Practicing polymorphism 173
tow

15.2

3

15.4

15.5

15.6

Design exercise I: a shape editor 173
Solution and discussion 174

Design exercise II: undo and redo 176

Solution and discussion 177

Implementing undo 179
Summary 180

16 How object-oriented languages work 181

16.1

16.2

16.3

16.4

16.5

16.6

16.7

16.8

Virtual machines 181
Method lookup 183
Memory management: a brief history of garbage collection

The irony of garbage collection 191

Commentary: why not garbage collect C++? 192

Smalltalk deviates from uniformity 193

Exercises” 195
Summary 197

17 Two kinds of inheritance 198

| ee

Vie

ly

17.4

>

17.6

277

17.8

Wee!

Beauty and the beast 198

Why types matter: polymorphism 200

Commentary: an aside on subsets 201

Commentary: what does “consistency” mean? 201

Consistency and Smalltalk 207

Exercise: Smalltalk’s container “types” 208

Solution and discussion 208

Exercise: Smalltalk’s container “classes” 210

Solution and discussion 210

17.10 Summary 211

17.11 Commentary: standardizing Smalltalk 212

18 Design patterns 213

18.1

18.2

18.3

18.4

18.5

18.6

Notation 214

Smart container (aka collection-worker) 215

Reification 216

Command 217

Factory method 219

Objects from records 220

187

18.7 Proxies and ghosts, I 224

18.8 Proxies and ghosts, II 226
18.9 Dependency 228

18.10 Solitaire (aka singleton) 230

18.11 Duet (aka pas de deux, double dispatch) 231

18.12 Lawyer (aka object handler) 233

18.13 Composite 235

18.14 Visitor 236

18.15 Conclusion 239

18.16 Commentary: history 240

19 Frameworks (one hearty example) 242

19.1 Problems 243
19.2 Materialization 244

19.3 Managing object identity 246

19.4 Searching (filtering) 248

19.5 Updating 251

19.6 Summary 252

19.7 Commentary: varieties of brokers 254

19.8 Commentary: buying outdoes inheriting (sometimes) 255

20 Metaclasses 257
20.1 Facts about metaclasses 257

20.2 Inheritance 258

20.3 Method new 259

20.4 The full picture 260

20.5 Recapitulation 262

20.6 Exercises 263

21 Why developing software is still hard 264
21.1 Misconceptions 264

21.2 Where projects go awry: borders 267

21.3. Characteristics of successful projects 269

21.4 An optimistic conclusion 272

Appendix: Some differences between dialects 275

References 277

Index 283

Acknowledgments

This book derives from two activities—developing and teaching courses, and develop-

ing software. But the real sources are the people I’ve encountered along the way. Many
of them have profoundly shaped my thinking about software—Dave Collins, Peter

Deutsch, Amarjeet Garewal, Steve Goetze, Ralph Johnson, Doug Lea, Bertrand

Meyer, Tom Morgan, Dave Thomas, Rebecca Wirfs-Brock, and Kirk Wolf—and

many others have left smaller but chaotically important impressions: Bruce Anderson,

Marilyn Bates, Katherine Betz, Desmond D’Souza, Phil Hartley, Richard Helm, Felix

Laura, and John Vlissides. From here the list is too long to enumerate, for it includes

individuals with whom I sweated over their businesses’ real object-oriented design and

programming problems, plus all the students and instructors through the years from

whom I learned about teaching objects and Smalltalk and C++.

I am grateful to the many people who were kind enough to share their opinions on
draft manuscripts. Bruce Anderson assailed hackneyed expressions and examples;

Kent Beck made me rethink my pedagogical approach; Katherine Betz streamlined

discussions; Michele Choate caught stylistic slips; Eric Clayberg taught me new things

about Smalltalk; Dave Collins, a closet historian, set chronologies straight; Ken Coo-

per pointed out awkward transitions; Lisa Goetze suggested improvements to the exer-

cises; Steve Goetze was a sounding board for impetuous ideas and, sensitive to the

zeitgeist, warned me off gratuitous soapboxes; Ralph Johnson's enthusiasm and tact

kept me going when there was still no end in sight; Doug Lea urged technical respect-

ability where there was none; Ruth Liu distinguished what I actually said from what I

meant to say; Tom Morgan flushed out structural and conceptual flaws; Larry Smith

was the conscience of the IBM Smalltalk product; Dave Thomas alerted me to trends

from the ANSI standardization effort; Michael Tsuji painstakingly and repeatedly dis-

sected the entire manuscript from the standpoint of someone who professed to be

ignorant of objects, and so highlighted innumerable spots where readers would have

gone astray; and Kirk Wolf’s razor-sharp sensibilities caught sloppy assertions about

objects. Kim Arthur, David Bernstein, Wai-Mee Ching, Bill Creager, Amarjeet Gare-

wal, John Granlund, and Greg Lee also provided helpful comments. For felicitous

xi

xii ACKNOWLEDGMENTS

anecdotal tidbits, I am grateful to Kent Beck, Roy Campbell, Dave Collins, Erich
Gamma, Tami Kinsey, Hal Lorin, and Kirk Wolf.

Thanks also to the unsung heroes of the publishing world: Tommy Barker, Steve
Brill, Lee Fitzpatrick, Leslie Haimes, Ted Kennedy, Mary Piergies, and especially Mar-

jan Bace for his guidance on the care and feeding of a book; Dave Lynch for his illu-
minating and provocative copyediting; and Sheila Carlisle for the care and precision

with which she transformed the raw manuscript into an attractive form. | also thank

IBM for giving me time to begin this project. Neither they nor I imagined it would
take so long.

Everything owes something to root causes (had it not been for such-and-such, this-

and-that would never have happened). Thus I, and every practicing object-oriented
programmer, am indebted to Alan Kay and his associates at the Learning Research

Group at Xerox PARC for inventing Smalltalk, and Bjarne Stroustrup for giving us the

C++ counterpoint. The dialectic between these schools of thought inspires much of

what follows.

CHAMOND LIU

chamond@acm.org

Clarity Computing

Preface

This book is about Smalltalk and objects, in more or less balanced measure. By this I
mean that there is ample Smalltalk to expose and crystallize in the reader’s mind all the

important object-oriented design ideas, and not so much as to distract from them.

Smalltalk is an excellent vehicle for this task because it is small and simple enough that

learning about it intrudes as little as possible on learning about design. Yet it is rich

enough to precisely clarify what can otherwise degenerate into academic discussions.

By no means is this an advanced book, on either Smalltalk or objects. | have strived

to stick to the matters that seasoned Smalltalk developers are fully aware of but con-

sider too obvious to explain. These matters range from what today would be deemed
elementary (“What do I mean by an object?”) to sophisticated (“Can I reuse a pattern
of objects?”), but mostly reside somewhere in the middle ground. I think back to how
long (too long) it took me to internalize all these “obvious” matters and imagine that

some well-placed explanations along the way could have saved me a good bit of trou-
ble. I hope to save some of you that trouble.

One can’t talk about objects and Smalltalk without also talking in practically the

same breath about design. “Design” is a word that all computer people know, yet

many still disagree about its meaning, or what it produces, or when it begins and ends.

For the purposes of this book, to design is to discover alternatives, weigh them, and

consciously choose among them. Design, like life, is all about striking the right bal-

ance. In this sense of design, we are liable to be designing even at moments when our

job description says we are doing something else entirely: we may discover design
alternatives and weigh or reject them while we are doing object analysis or modeling,

writing code, or peeling carrots.

The goal is to design more like veteran software developers do. They choose

among alternatives quickly and subconsciously, drawing upon years of experience,
something like chess grandmasters choosing among moves. Lacking this experience,

novices have a hard time discovering plausible alternatives, and an impossible time dis-

covering subtle ones. For their sake then, I often argue alternatives and the trade-offs
between them, so that they will have an outside chance of considering the same design

alternatives that the veterans do.

xiii

xiv PREFACE

The approach is not encyclopedic. Absent are systematic tours through class librar-

ies, discussions of the visual programming or collaborative development tools that are

available for Smalltalk environments, and discourses about notations and methodolo-

gies. Notations are as capable of obscuring ideas as they are of elucidating them, so the

few that appear are deferred until they become indispensable to the presentation. If it
is not already clear, let me also issue the explicit disclaimer that this is not a catalog of

Smalltalk tricks and techniques.

Smalltalk is not the only way to think about object-oriented software. C++, the
most widespread object-oriented language, contrasts sharply with Smalltalk in so

many ways that awareness of C++ enriches the overall object-oriented experience.

Therefore I include remarks about C++ whenever they may enhance your appreciation

of objects.
For those new to objects, reading the chapters in order will make most sense. On

the other hand, because of my own weakness for selectively reading portions of books,
many chapters are relatively independent and accessible without having to digest
everything that comes before. Thus, you can pick chapters and sections according to
your background and goals, and if you encounter some you can’t (or don't want to)

crack, leave them and return later. It is even plausible to plunge immediately into

Smalltalk (Chapter 3), referring to the first two chapters only as needed.

The examples are all as simple as possible, because the simplest things form the

clearest and most surprising lessons. Exercises appear irregularly, whenever under-

standing the topic at hand demands active participation. There is a blend of design

exercises and programming exercises that require a Smalltalk workstation. Solutions

accompany the meatier design exercises, but of course even for exercises with solutions
I recommend you try them first on your own.

The programming exercises are written on an IBM Smalltalk base. You can work

them on either the Professional or Standard version of IBM Smalltalk or VisualAge.

Most of them are generic enough that they, or variations of them, can be made to work

for other dialects of Smalltalk, but only ambitious readers should attempt to do so. A

few small hints for such readers appear in the Appendix. The exercises on windowing

are a notable exception: interpreting them into other dialects will be beyond the means

of even the most determined reader. Every dialect has its own event and windowing
protocols, so building windows in other dialects is a wholly different experience.

Learning occurs differently in different people. That is why diversions—I call them
“commentaries”—are separated out for some readers to blow by and others to dive
into, according to their fancy. These diversions are variously technical (like compari-
sons with other ways of doing objects, particularly C++), historical, or philosophical.

PREFACE xv

When you finish the book, I hope you will be able to think about software prob-
lems in some of the ways that the veterans do, and be able to implement your thoughts
in Smalltalk. Not expertly, however. Mastery of both object-oriented design and
Smalltalk comes only with actual practice. Of course, these are truisms for any activi-
ties, from driving a car to playing the piano. But Smalltalk, more than most software
tools, requires you to plunge in and abandon yourself to the language and environ-
ment. A taste for adventure definitely helps, more than in learning how to drive a car.

Notes on the organization

This is not an orthodox book. Much of its structure derives from my experiences in
sustaining the eagerness and momentum of typical Smalltalk beginners for thirty-six
or so hours a week, making sure that they learn some really important things. For
example, polymorphism does not appear as a formal topic until Chapter 14, not
because it is the fourteenth most important topic, but because students have matured
enough by then to get an adrenaline rush from it.

You will not find a predictable or monotonous rhythm. People learn best when they
sometimes sweat and program in the depths of Smalltalk proper, and at other times sit
back and reflect on how ideas interconnect. One chapter (4) consists entirely of hands-
on exercises, but on balance the book is weighted more toward thinking than coding.

Here, then, are a few alerts about the content.
The first fifteen chapters cover the basics, material that every practicing developer

absolutely must know about objects in Smalltalk. The first two chapters establish a
groundwork of objects, classes, and inheritance in a way that is meant to be com-
pletely reassuring. All nuances, paradoxes, and the like are reserved for later.

Chapter 3 is practically the only “language” exposition in the book. It covers prob-
ably 95 percent of the Smalltalk language and also forewarns readers of common got-
chas. Chapter 4 is a concentrated opportunity to practice the lessons of Chapter 3 as
well as many more essentials. You should surface from it with a sound intuition of
what it’s like to live in a Smalltalk programming environment. The orthodox
approach is to spread this material around ar least a little, but Smalltalk has so few facts
and laws that it is feasible to get the bulk of them out of the way in this one fell swoop.

Chapters 5 and 6 begin the assault on major object-oriented conceptual matters,
namely abstract classes, containers, and object identity. The next two chapters, 7 and
8, pause to tackle the nuts and bolts of designing and implementing a basic applica-
tion. Chapters 9 and 10 resume the discussion of ideas essential to the sound practice
of objects. This material questions, among other things, when inheritance produces
the right design.

xvi PREFACE

The next three chapters, 11 through 13, form a unit on the topic of user interfaces.

They begin with an obligatory discussion of model-view-controller, continue with

Motif programming (which is specific to the IBM dialect of Smalltalk), and conclude

with how not to make a mess of the user interface. This final chapter in the unit is

unusual for a book on objects. It is an attempt to emphasize the connection between
objects and user interfaces and confront heads-down programmers with the moral

obligation to do it justice.

Chapters 14 and 15 expound on polymorphism from several angles, enough to
browbeat everyone into internalizing its value and applicability. These chapters fit-

tingly conclude coverage of the essentials, the omission of any of which would be a

major embarrassment for me and you.

Chapter 16 demystifies the workings of method dispatch, storage management,

and the like, mostly emphasizing Smalltalk, but contrasting with C++ for the sake of

perspective. The purpose is not so much academic as to demonstrate how these con-

trasting workings influence the development gestalt of an object-oriented language.

Chapter 17 should raise your consciousness about the two distinct rationales for

inheriting, which I call beauty and the beast. Sensitivity to this issue is an earmark of
mature object-oriented designers. The chapter includes a lengthy discussion of consis-
tency (page 201), bordering on the philosophical, which is probably the headiest sec-

tion in the book.

Chapter 18 covers some favorite design patterns, and how to realize them in Small-

talk. Because it ties together so many ideas, it should reassure you that you have actu-

ally learned something, because you will understand the patterns if and only if you've

been conscientious about all the programming and thinking that have gone before.

Chapter 19 illustrates what object-oriented frameworks are and why they matter

by way of one concrete client/server framework.

Chapter 20 is another demystifying chapter, and the most optional one in the

book. I discuss the basics of metaclasses (a class's class) from the standpoint of what

they buy the programmer, as well as the extraordinary lengths to which Smalltalk goes
to preserve a uniform view of objects. Metaclasses are the final technical topic in the

book, and are positioned last because the reader needs to have thoroughly internalized

Smalltalk’s conceptual underpinnings before appreciating them.

The book concludes with a subjective assessment (Chapter 21) of what is wrong

and right with typical object-oriented development efforts.

PREFACE xvii

Typographical conventions

Boldface type, as in MyClass, indicates Smalltalk names and code. Italics indicate

emphasis and also special instructions, like picking the Display menu item. Text that

would appear on a computer screen is in bold italics, as in Here is the result.
In keeping with a spirit of candor, no attempt has been made to homogenize the

appearance of screen shots of Smalltalk browsers. Browsers vary from dialect to dialect,
of course, but also within a dialect (e.g., the standard and Trailblazer browsers in IBM

Smalltalk). For that matter, they can even be customized to display or suppress informa-
tion, according to the whims of the programmer. Rather than present a facade of con-

sistency, the browsers you will see are the ones that I happened to be using at the time.

“My good friend, every profession requires
effort and devotion and practice.”

— advice to the young Perceval

[de Troyes 1190]

CHAPTER I

Objects

The central idea in object-oriented programming is, of course, the programming

object. This opening chapter explores this idea, and along the way introduces just a

little Smalltalk. But don’t get caught up in the details of the Smalltalk fragments here;

their purpose is to illustrate concepts.

1.1 Objects

A programming object has some operations plus some

information. We often portray programming objects
as “doughnuts,” as in this drawing of a bank account

object on the left. If you—a “client”—want to use this

object, you are aware of three operations that it ought

to be able to do: tell you its balance, withdraw some

money, or deposit some money. That's it. In fact, you

don’t even get to know that $150 are ensconced within

the object. That information is held privately within the object, inaccessible to your

prying eyes. Thus a more accurate picture of your point of view is as shown below.

We can define a programming object as having

an outside, consisting of the operations you can ask

of it, plus an inside, concealing information from

you that may nevertheless be used by the object's

operations. You can see the outside, but not the

inside. The software engineering term for this idea is

encapsulation: the inside of the object is encapsulated

D OBJECTS | CHAPTER 1

by the object’s operations. As a rule, data are inside and operations are outside. (We

will see occasions when this rule is not what we want, but for the time being it is a

good rule of thumb.)

If it happens that you really want to know about the inside of an object, like the
account’s balance, you can hope to get it only indirectly, by using one of the object's
operations. In this example, one hopes that, by invoking the balance operation, the

object will respond by announcing that it contains $150. Notice the notational quirk:
deposit: and withdraw: are followed by colons, but balance is not. This is a Smalltalk

idiosyncrasy. It’s a convenient way to indicate that an operation requires an argu-

ment—when you deposit or withdraw money from an account, you specify an
amount; when you ask for the balance, you dont.

Another way to conceptualize a programming object is to

think of it as a little person: You can ask this little person, this

homunculus (from the Latin, man + little), to perform any of

his operations, but you haven't any idea how he actually imple-
ments them, or what he uses from his own insides to do them.

When youre designing an object’s operations, you should not

be embarrassed to think of the object as a little person and
wonder, “What ought a smart little account object be capable of?”

This blatantly anthropomorphic question sounds like a cheap trick. But meta-

phor—I include imagery and simile and analogy—is a powerful cognitive tool. Meta-

phors let you use what you already know about one domain (like people) to clarify
your thoughts about a less familiar domain (like banking software). This device

encourages you to say things like, “An account ought to be smart enough to hand out

money or tell me how much money he has.” \s a matter of fact, the idea of a program-

ming object in the original Smalltalk, Sm talk-72, was a metaphor for a biological

cell [Kay 1988]. Imagery like this may not measure up to, “Shall I compare thee to a

summer's day?” but you get the idea [Shakespeare 1609].

Now that you understand what objects are, let’s develop some ways to think about

using them. When you “ask” an object to perform one of its operations, you send it a
message. Now, everyone cavalierly assumes they understand what a message is, which

is a sign that they haven’t thought much about it. The trouble is that “message” con-
notes many ideas. (An e-mail message? A whisper? The thing on my answering
machine? A Post-it? A TCP/IP packet?) “Message” is too abstract a word. A better
word is telegram. A “telegram” is tangible: I can touch it, I can see the information it
carries, and I can picture the moment it arrives at the door of its addressee. It is not
some vague electronic-sounding thing like a “message.” Therefore, I encourage you to
think of an old-fashioned telegram whenever you see the term “message.”

1.1 OBJECTS 3

A message has a bundle of information, consisting of the operation’s name and any
arguments it needs. For example, to withdraw $50 from the account object, you'd

send a message (or telegram)—withdraw: 50—to it.

withdraw: 50

message
(or telegram)

The account object, which has been dormant, awakens and promptly starts executing

its withdraw: operation. All kinds of interesting things could now happen, producing

all kinds of effects. For instance, the account object could in turn send messages to

other objects, perhaps with the effect of appending to a report for the bank’s auditors.

Or, maybe nothing much interesting happens, other than that the $150 concealed
within the account object drops to $100. Eventually, though, the account object fin-

ishes executing withdraw:, and returns an object to you. Maybe it’s a receipt object.

Whatever it is, its what you've been waiting for. You sent the message, and you

expected some result, and now that you've got it, you're ready to do something else.
To reiterate: in Smalltalk, the normal result of your firing a message is always that

® some object is returned to you. The returned object may even be uninteresting to you,

but you always get one, whether you need it or not. You should think of the conse-

es of any message as twofold: first, something happens—the operation has an

effect SP ein at the end of execution, some object is returned. Remember, an

effect plus a.vetur

Here are some pretty straightforward candidates for programming objects:

¢ A bank account, as we've just seen, with operations for depositing, withdrawing,
and querying the balance.

¢ A dictionary, with operations to add or remove entries, or update them.

¢ A window in a user interface, with operations for displaying, resizing, moving, and

so on.

(Some languages from the early 1980s have special syntaxes for defining programming
objects like these. For example, one could use a package in Ada or module in Modula-2.)

A more unusual prospect for a programming object is an integer, like 7. Smalltalk

embraces a principle: “Everything is an object.” So Smalltalk, unlike other object-oriented
languages, insists that integers are objects, too. This statement may sound harmless

enough, but it will challenge our customary understanding of arithmetic.

4 OBsects | CHAPTER 1

Consider an expression like:

ap tl

We expect a result of 11, and we expect that reversing the order thus:

Al ae if

produces the same result. We've been trained since elementary school to expect this

expression to behave in this symmetric fashion. Some of us recited slogans like “addi-

tion is commutative” to describe this symmetry. We were studying addition, and we

concentrated on the plus sign.

The object point of view has a different emphasis. That is, if the integer 7 is to be

an object, then the focus is going to shift; 7 will be much more interesting and the plus

sign much less so. Here’s what happens:

7 11

The message, + 4, strikes the 7 object, whereupon the plus operation executes and

eventually returns 11, another integer object. Note that the symmetrical feeling you
had in elementary school is absent. Instead, the 7 object plays a leading role. It’s a

homunculus that’s clever enough to respond to messages, such as the one labeled + 4.

It recognizes + as one of its operations, and it also expects the + to be accompanied by

an argument, which in this case is 4. It executes the operation, and eventually returns

the object 11 to whomever sent the message. Fortunately, this is the same answer we

got in elementary school. But the line of reasoning we used to get it is unlike anything

we learned in elementary school. The symmetry is gone, and the center of attention
has shifted from the operation (+) to the object (7).

A lot of people find this model of arithmetic distasteful. One of my outspoken
friends, who isn’t a Smalltalk programmer, denounces schemes like this as conspiracies

from the “lunatic fringe” (a label Smalltalk’s critics in the early 1970s also used). The
only redeeming virtue seems to be consistency: integers, along with bank accounts and
dictonaries, are just another kind of object, activated by messages just like the rest. As
you hear more about Smalltalk, you'll recognize that Smalltalk is one of the most stub-
bornly consistent software systems around, whether one likes it or not. Everything will
be an object.

1.2 EXAMPLES OF SMALLTALK MESSAGES (TELEGRAMS) 5

Before leaving this lunatic- dain discussion, what about the argument 4? I men-

tioned that the 11 that’s ssemurned is also an (integer) object;_is the-argument also an

object? Yes, absolutely. ‘Arguments as well as return values’ are, objects i in Smalltalk.
rebine is an object.

Now, there is one conceptual distinction between an object like an integer and an

object like a bank account. Think about the inside of the 7 object. Should it change

after the telegram + 4, as the balance inside a bank account changes after the telegram

withdraw: 50? For that matter, what 7s inside an integer object? Well, think of the

inside as a special 7-ness quality—the precise bits and bytes don’t matter. This quality

is what makes 7 respond to + 4 with 11 rather than, say, 13. No one else has such a

quality. This 7-ness never changes;-latefon if we 7 the telegrara

that it will respond with 26. Objects like integers’ are émmutableshey never

1.2 Examples of Smalltalk messages (telegrams)

In Smalltalk, the usual rule of thumb is to parse expressions from left to right. Consider:

9 talk

This syntax differs from that of most programming languages. It means that I’m firing

a message named talk to the object 9. Parsing from left to right, the object comes first,

followed by the message that it receives. What happens next depends entirely on

whether and how integers have been programmed to respond to requests to talk. For

example, in my demonstration Smalltalk system, the result of executing 9 talk is the
following text on my screen: Hello, I am one more than 8. Another example with the

same syntax Is:

4 factorial

From left to right, ’m asking the 4 object to calculate its factorial, that is, 4*3*2*1. If

Task Smalltalk to display the result, I'll get 24. (I'll discuss the distinction between exe-

cuting and displaying in the next section.)

This example should be familiar from the discussion of the preceding section:

G47

From left to right, 6 receives the message * 7. If I ask Smalltalk to display the result, we

will see 42. This left-to-right rule can cause surprises; about half of Smalltalk novices

guess the wrong answer to:

Br Gz

6 OBJECTS | CHAPTER 1

The correct answer is 22, not 17. Why? Proceed from left to right. The 5 object

receives a request for its + operation, namely the + 6 message. The result, which is the

11 object, in its turn (left-to-right), receives a request for its * operation, namely the *

message. And it (the 11 object) responds with the final result, the 22 object. For the
first time we have an example of something in Smalltalk that differs plainly from what

we learned in school. Like it or not, that’s how Smalltalk works. Of course, if I really

want to get the answer 17, I can use parentheses to change the precedence of Small-

talk’s parse:

Swain (6o* 22)

The next example requires a little guesswork:

‘turnip’ reversed

Proceeding from left to right, the first element, ‘turnip’, is the object that receives the

message. Because of the single quotes, it is reasonable to surmise that it is a character

string. The message apparently asks it to reverse itself. If we ask Smalltalk to display the
result, Smalltalk will display the characters of the original string spelled out in reverse
order: 'pinrut',

This one has_a different form than the others:

HomeBudget/spend: 229 on: 'VCR'

The object on the left appears to be something that manages home accounting and

inventory. The message is less obvious. A colon, fp recall, signals the presence of an

argument. But two colons? Smalltalk’s 'S parsing rul e fort this situation is to treat all ¢ all the

colons and tt their arguments together as a single message. Thus, spend: 229 on: “VCR'

is a complex bundle of information packaged i in one telegram aimed at HomeBudget.

Evidently, the telegram (message) informs the object of a purchase of a new VCR for

$229, In my system, if I ask Smalltalk to execute this expression, Smalltalk responds
with: You bought a VCR and you are poorer by 229 dollars.

1.3 Pitfall: the effect versus the return

Notice the distinction between what an operation does—its effect—and the object it
chooses to return to its invoker. Depending on the situation, you may care more about
one than the other. Sometimes the name of an operation suggests that it’s the effect
that matters:

7 storeOn: someFile

This expression looks like it has the effect of placing the 7 object out on a disk, ina file
the argument someFile refers to. This effect is apparently the purpose of the message;

1.4 WHY OBJECTS MATTER 7

what the object returns to the sender is irrelevant. Sometimes, part of the effect is to

explicitly display feedback to the screen, as in the example, 9 talk, in the previous sec-

tion. We don’t care what object 9 talk returns; whatever object it is is irrelevant.

On the other hand, the opposite may be true. In:

7 sae eor ya

we aan care about the effects that occur while le factorial does its calculation) We're

much more interested in the object it flings back at us when it’s done, which happens

to be 5040. In this case we want to see the return, not the effect.

You can specify whether you want Smalltalk to display the return or not. That's the
finicky distinction between displaying and executing in the preceding section. If you
display an expression, the effect occurs and Smalltalk displays the returned object on

the screen. If you just execute the expression, the effect occurs but Smalltalk ignores the
returned object. For the examples so far, you have to trust my choices of displaying or

executing because you haven't seen the code that implements each operation. The
names of operations may suggest what their effects and returns are, but the only way
to be sure is to read their code. In Chapter 4, you'll work through exercises that will

help keep the distinction straight.

1.4 Why objects matter

When all the rhetoric is set aside—the rhetoric about reusability and productivity and
so on—the salient characteristic of objects is that they reduce translation. That is,
objects promote a common vocabulary: everyone, whether a software professional or
not, has some intuitive understanding of what an object is. Thus we can understand

one another more easily when we use objects to describe our thinking. Objects, then,

promote mutual understanding—between users, analysts, executives, designers, pro-
grammers, testers.... They reduce the effort of translating one person's thoughts to
another’s, and therefore reduce misunderstandings as an idea passes from one person

to the next.
As for reuse and productivity, they are nothing more than side effects of better

understanding. It is more important to concentrate on clear objects than on the side
effects; unless the objects are-clearly.understood, they will be neither productive nor,
reusable. Concentrate on clear objects)and you will eventually produce reusable ones;
concentrate on reusable objects-and you will produce muddled ones. In this light, ‘the

goal of this book is to clarify and deepen your understanding of objects, which in the
end will deepen your ability to understand and be understood by site people in the
software enterprise. And that is the source of the economic value of objects.

8 OsBJects | CHAPTER 1

1.5 Recap: objects

Programming objects appeal to different people for quite different reasons. Right

brain, intuitive individuals appreciate their metaphorical power. For example, the

object-oriented customer-information system at Brooklyn Union Gas Company! has

gas meter and bill objects, exactly analogous to gas meters and bills in the company’s

real problem domain. To design gas meter software, developers imagine real gas

meters. This expedient helps them reason about programming objects in ways they are
already familiar with from their everyday experience; it reduces the gap between the

problem (billing for gas service) and the solution (programming). This cognitive

economy—breaching the gap between two domains—is the essence of metaphor.

Meanwhile, left-brain, analytic individuals are drawn to the software engineering

benefits of-ebje tS. If software. consists..of objects, which are by. defi encapsu-

then their insides can be im mproved without affecting their eee there-

ithout affecting the rest of the system. Problems are more easily isolated to

specific objects and fixed;-and the system is generally more tolerant of change, more
malleable. In short, ‘modularity’ in software is desirable, and objects provide a level of
modularity beyond traditional structuring techniques.

One other inherent characteristic of objects deserves mention. Traditional software

structuring techniques concentrate first on function—the function of a program, its

sub-functions, ther sub-sub-functions.... But human cognition often works the other

way, recognizing things first, and the functions that connect them afterward. For

example, upon heating that the neighbor's dog bit the mail carrier, | conjure up a pic-

ture of the two antagonists first, then a moment later, the dog’s jaws closing on the vic-

tim’s leg. I don’t conjure up an abstract bite first. Since our minds are naturally

practiced at thinking about things in the everyday world, why not parlay that practice

into the software world? This is what objects do for us programmers.

fore

To summarize the machinery available so far: if

I have programming objects, I can build software ©)

out of them, as shown in the diagram on the right.

Unfortunately, this software doesn’t have much S \

structure—it'’s just a chaotic bunch of communi- =
cating objects. In the next chapter we'll enrich the

erate of structuring principles—€lassed))

and/inheritance

' This landmark project, deployed in 1990 under the leadership of Tom Morgan, is noteworthy for
being the first large-scale object-oriented mainframe application. See [Davis and Morgan 1993].

1.7 COMMENTARY: PERSPECTIVES ON OBJECTS 2

Generally, He imagd) Hs the file that contains all the aa a use and create, as well

as other criti ltalk objects By Starting-Smalitatk you activate the image, and all

these objects, of which there are tens or hundreds of thousands, spring to life, ready to

work when asked. In IBM Smalltalk, the default name for the image file is simply

image.

L) Once you have installed Smalltalk, make some provision for disaster recovery. The
minimal provision is to copy your image file to a backup file of your choosing.

L) Start Smalltalk by double-clicking on the icon for Smalltalk or VisualAge. If you've

never used a cut-and-paste editor, take a few minutes to practice with Smalltalk’s.

Type a line of text in the System Transcript window and figure out how to:

¢ Split it and rejoin it. (Hint: try the <enter> and <backspace> keys.)

* Copy a portion of it to another place in the same window.

¢ Move a portion and delete a portion.

Q) In the transcript, type the following lines, highlight them one at a time, and display

the resulting object:

4 factorial

On!

ha le ed

5 + (6 * 2)

'turnip' reverse

You are now operating with objects in the image.

1.7. Commentary: perspectives on objects

The metaphorical character of a programming object (page 2) dates back at least to

the pioneering work of Alan Kay at Xerox PARC (Palo Alto Research Center) in the

early 1970s. Not everyone agrees that metaphor is valuable in programming. In a

1989 paper, the eminent computer scientist Edsger Dijkstra, father of structured pro-

gramming (or at the very least, executioner of the GOTO statement), ridiculed the use

of analogy and metaphor and advocated purely formal thinking in their stead. His

paper set off a firestorm of impassioned rejoinders [Dijkstra et al. 1989].

Research on invention and creativity suggests that imagery, not formal reasoning,

fuels the creative process. The study by mathematician Jacques Hadamard includes a

response from Albert Einstein that makes this point clearly [Hadamard 1954].

10 OBJECTS | CHAPTER 1
BT i ge ee eee

Having found an apt metaphor, one must take care not to let it limit the imagina-

tion, either: although the spreadsheet was inspired by an accountant’s ledger sheet, it

transcended the capabilities of a real ledger sheet. Alan Kay calls this step the “magic”

of going beyond a metaphor [Kay 1990]. For the use of metaphor and magic in user

interfaces, see Chapter 13.

A complementary property of objects, even a corollary of the anthropomorphic

view, is their autonomy [de Champeaux et al. 1993; Collins 1995]. Autonomy implies

that objects are likely to-act-independently, which in turn Hee that they may act

concurrently! Concurrently..executing obje also a natural’Consequence of the

biological metaphor iF cells acting concurrently by the billion’ Kay 1988]. Although
some languages mix concurrency and objectsyno consensus exis

for the two. In practice one usually builds concurrent objects on top of the same facil-
ities that non-object systems use—semaphores or other low-level operating system ser-
vices. For samplings of research approaches to the problem, see [Yonezawa and Tokoro

1987; Agha et al. 1989; Agha et al. 1991; Briot 1992; CACM 1993].

The contrast between function on the one hand and data on the other leads to two

polar approaches to software design, namely, traditional functional decomposition (dat-
ing from the 1960s) and data-driven or entity-relationship decomposition (dating from

the 1970s). Objects occupy a middle ground; they have the tangibility and data content

of an entity, but their outsides are defined by their function or behavior. This synthesis

of data and function is what differentiates object-driven approaches from the others.

CHAPTER 2

Classes and inheritance

The previous chapter hinted at the cognitive and programming potential of objects.

To fulfill this potential, we need to organize them in our minds. We need two structur-

ing principles: classes and inheritance.

2.1 Classes

How do you create objects? In some languages you have to build them one at a time,
but it’s more convenient to have a mechanism that produces them for you. This mech-
anism is called a class. te

You can think of a class as a factory that can produce programming objects. Each
factory makes just one kind of object, or product. For example, we could have a

BankAccount class, from which we produce bank accounts, a Menu class, from which

we produce menus for a user interface, or a Dictionary class, from which we produce

objects that behave like real dictionaries.
In Smalltalk, here’s how you might use a Dictionary class:

Dictionary new

Left to right, Dictionary receives the message named new. Because Dictionary is a

class\or factory, it responds to new by creating a brand-new dictionary object. What

appens to this object from now on is up to you. Being a dictionary, it may have oper-

ations like add: that would permit you to add a new entry to it. You could gradually

add to it and make it into any kind of dictionary you liked.
Realistically, if we want to continue to use this dictionary object, we should establish

a handle by which we could refer to it. That is, we would use a variable name, like X:

X := Dictionary new

aor

|Z CLASSES AND INHERITANCE | CHAPTER 2

The := is Smalltalk’s assignment. Jt means that we want to assign the result of Dictio-
. . . . 7 - 5 Se egg nary new into the variable XJ Assignment 1s an exception to the left-to-right rule-)

[7 ri RMI MHIP! SREUBT TRI e

First, Smalltalk does what’s to the right of the assignment (Dictionary new), then it
assigns that result into the variable to the left (X).

We can now add things to the dictionary by referring to it as X:

X add: ...an entry...

and

X add: ...another entry...

If we need another dictionary, we can just execute:

Y := Dictionary new

X and Y refer to two distinct dictionary objects, but they come from the same class,
namely Dictionary. And having come from the same class, or factory, they behave sim-
ilarly. They both support operations appropriate for dictionaries, like adding, looking

up, or removing entries. We can use these operations to grow them in much different

ways—X into a Danish dictionary,.perhaps;a

“dictionary objec

of information with another. Many

d'YintoaPortugueseone.

nre widely used to associate one kind }
1 dictionaries are present in ‘Smalltalk (that is, in

Smalltalk’s image—page 9) before you even begin to use it; you won't even be aware of
most of them. One of them, the system dictionary, is Smalltalk’s central object. It

records associations between variables and the objects they refer to. For instance, after
Smalltalk executes:

X := Whale new

the system dictionary contains an entry for X associating it to the actual whale object.

There are hundreds of other dictionaries in a live Smalltalk image; they hold all sorts
of associations—character names to their numeric values (like "XKunderscore' to 95),
EET ws ' .

mouse events to window system event numbers) (like 'WmButtonldown' to 113),

and so on. [These dictionaries até crucial to running Smalltalk, but mostly operate

unbeknownst to you.

In a language like Smalltalk that has classes, objects

5

are not individualistic. Those from the same class have

the same operations—their behavior is the same. We can

indicate that objects are from the same class by enclosing
them in a box. This representation is less chaotic than

our picture of objects at the end of Chapter 1 (page 8); ()
the software is more organized. We will soon give it even

more organization, when we discuss inheritance.

2.3. INHERITANCE 43

2.2 The word “class”

“Class” is a misleaning word because it has meanings that predate object-oriented pro-

gramming. Schoolchildren are commonly taught to use “class” as a synonym for “set.”

Mathematicians, on the other hand, use “class” to refer to collections that were found

nearly a century ago to be too large to be treated as sets. (An example of such a collec-
tion is the “class of all sets.”)

Of course, both the schoolchild and the mathematician have at the back of their

mind some notion of a collection of entities. For object-oriented developers, however,

the better conceptual model for a “class” is a factory rather than a collection. (Not that

it's a crime to lapse into convenient expressions like “this object belongs to that class,”

so long as you remain aware that you really mean that “this object was created by that

class.”) Inexperienced designers who think of class Onion as the collection of all

onions run into trouble when they have to partition onions into those on the grocer’s

shelf versus those in a shopping basket; they attempt to invent_more classes (Shelf-

Onion, BasketOnion,...) when what they really need are containers (shelves, shop-

ping baskets, ...) to hold their onions. More on containers in Chapter 6°
Another word that is often confused with “class” is “type.” To casual object-

oriented programmers, they are synonymous. Indeed, for many discussions, there is

no harm in using the words interchangeably. But in fact types are not classes, and we

will see later (Chapter 17) why it is perilous to assume they are. Until then, it would
be pedantic to fuss over the distinction, and we will suffer little harm by occasionally

saying Onion is a “type” instead of a “class.” (The terms abstract data type or data type
also occur in software-engineering discussions. They are synonyms or near-synonyms

of “type,” but they and their nuances won't concern us at all in this book.)

2.3 Inheritance

Inheritance, our second structuring principle, means

that you may specify in your programming language
Animal

that a class is a special kind of another class. It’s a a a

notion that we all studied in school. The picture at Insect Mammal

the right meant that an insect is a special kind (“spe- a wae
Ae Ale bes P : : Butterfl Cockroach

cialization”) of animal, that a butterfly is a special y

kind of insect, and so on. We called the study of hier-

archical pictures like this taxonomy. Object-oriented programmers say that the picture

depicts a hierarchy of classes in which Butterfly is a subclass of Insect, or equivalently,

Insect a superclass of Butterfly. They also commonly say that Butterfly inherits from

14 CLASSES AND INHERITANCE | CHAPTER 2

Insect. People who work in artificial intelligence sometimes call this relationship

AKO—A-Kind-Of. Butterfly is AKO Insect. Whatever the terminology, the underly-

ing idea is the one we learned in school, that of classifying things by increasing degrees

of specialization.

The botanist Carl von Linné, better known as Linnaeus, popularized this way of

thinking about plants (as well as animals) in the eighteenth century. Nowadays, chil-

dren take the idea for granted; they think the taxonomy of plants and animals is just a
tedious academic exercise. But back then, the idea extended the very way in which

people could think about the world. For example, if I connect butterflies with insects,

I establish a mental crutch that helps me reuse knowledge | already have about insects.

Everything I know to be true of insects automatically applies to butterflies—six legs,

egg-laying, metamorphose, breathe through holes in their bodies.... All I had to do

was stipulate that a butterfly is a kind of insect (or say “inherits from” or “is a subclass
of’). That’s a lot of cognition to get free, or for the small price of stipulating an AKO

relationship.

Now let’s apply this idea to Smalltalk. Part of Smalltalk’s inheritance hierarchy

looks like this:

Object Class Float (floating point numbers) is a special

pepe kind of Number. So too is class Integer. Everything

Magnitude Menu that’s true of a Number object (we can add them,

odd ala multiply them, and so on) is also true of a Float or
Date Time ~— Number Integer object. It’s the same idea as the Linnaean

integer Float biological taxonomy, only this is a taxonomy of

classes in Smalltalk.

Class Object, the highest class in the diagram, is analogous to class Animal. Just as

everything in the Linnaean picture is a kind of Animal, everything in Smalltalk is a

kind of Object. This diagram legitimizes the expression, “In Smalltalk, everything is

an object.” And just as Animal is quite abstract, with few specific qualities, Object is

similarly abstract.

The other classes in the diagram all have intuitive meanings, with one exception.

What role does class Magnitude have? Start by thinking about its subclasses. What-
ever is true of Magnitude objects must also be true of Date, Number, and Time
objects. In other words, to imagine what Magnitude objects do, you should look for
whatever behavior dates, numbers, and times have in common. Try not to think about
the insides of these objects. Think about behavior—the outside of the object—rather
than the internal, private way in which the object’s data happen to be stored. Remem-
ber that behavior, the outside, is what matters to users of an object. What behavior do
dates, numbers, and times all have?

2.3. INHERITANCE 15

Here are some bad guesses: multiplication and addition. Although it’s reasonable

to multiply two numbers together, it’s unreasonable to try to multiply two dates, like

July 4, 1776 and October 14, 1066. Similarly, addition makes sense for numbers, but

we arent interested in adding 3 o'clock and 2 o’clock, or July 4 and October 14.
Nevertheless, something about dates, numbers, and times is similar. What? Not

arithmetic, as we've just determined. What about the sense of order? Dates are

ordered, as are numbers and times. But we would have to express this idea in terms of

behavior, or operations. How? Why not comparison operations, like > (greater than)

or <= (less than or equal to)? A date may be greater than another date, a number

greater than another number, or a time greater than another time. These comparisons

then are the operations that the subclasses have in common. We'll simply place them

in the Magnitude class, instead of replicating them in all three subclasses. The sub-

classes then inherit them. Instant code savings.

It’s a great, Linnaean idea, but in real object-oriented systems, there’s sometimes a

catch. The subclasses might still have to have their own version of some of the opera-

tions, because the code for the operations is likely to depend on how the data inside

the object are represented, and this representation could well be different for different

subclasses. For example, because the bit conventions used to store floating point num-

bers are different from those for dates, the code that compares them must be different

too. We will deal later with this situation. For now, staying at a conceptual level, let’s

just celebrate having factored the concept of comparison out of the three subclasses

and into their Magnitude superclass.
This discussion illustrates a simple guideline about taxonomy, hence about object-

oriented design. Whenever you sense commonalities between classes of objects, con-

sider defining a superclass and “factoring” the commonality out of the subclasses and
into the superclass. That’s what the Smalltalk-80 designers did late in the 1970s to

Date, Number, and Time, and their decision has proved so durable that the design

occurs today in all commercial Smalltalk systems.
The little hierarchy under Object and Magnitude is just a part of Smalltalk’s class

hierarchy. The full class hierarchy includes classes for windowing, the compiler, graph-
ics, text, operating system services, and much more. All told, a fresh VisualSmalltalk

(formerly Smalltalk/V) image arrives with about 700 classes, a fresh VisualWorks

(Smalltalk-80) image arrives with about 1400, and a fresh VisualAge (IBM Smalltalk)

image arrives with about 2000. Here's a view of some IBM Smalltalk classes, with help

from a tool known as a browser:

16 CLASSES AND INHERITANCE | CHAPTER 2

lea Loaded Classes - TrailBlazer

» Magnitude
AbtTimestamp
Association

Character

Date

‘Magnitude subclass: #Number

instanceVariableNames: "

classVariableNames: "

poolDictionaries: "

The upper-left windowpane focuses on subclasses of class Magnitude; it can be

scrolled to reveal many more classes. Since class Number is highlighted, the list of

operations you see in the middle windowpane, namely *, +, —, and so on, are the ones
that numbers understand. In other words, these operations correspond to the tele-

grams that you can send to Number objects. You can see that numbers understand the

usual arithmetic operations. And you could see many more by scrolling the window-

pane. Don't forget that because of inheritance, you can also use operations that are
defined in any superclasses of Number. By highlighting Magnitude:

Association

Character

Date

EmTimeStamp
Number

Float

Fraction

Integer...

Time

| Object subclass: #Magnitude
| instanceVariableNames: "

classVariableNames: "

poolDictionaries: "
i:
3

2.3. INHERITANCE VW,

you can see operations that Number inherits from Magnitude, and they're exactly the
comparison operations we suspected earlier, plus a few others. I’ve elongated the win-

dow to show more of Magnitude’s subclasses. Compare the hierarchy implied by this
screen shot with the diagram of Smalltalk’s hierarchy on page 14. (The three dots fol-

lowing Integer mean that there are subclasses of Integer, presently concealed by the

browser. To toggle between revealing and concealing these classes, one double-clicks

the mouse over Integer.)

It is also worth glancing at the lower windowpane. Dont get distracted by syntactic
peculiarities or the last three lines; the first line is the most significant. It is the Smalltalk

code that makes class Magnitude a subclass of class Object. Similarly, in the preceding

screen shot you can see the code that makes class Number a subclass of class Magnitude.

Class browsers are standard tools in all Smalltalk products, although their form

varies from product to product. Even within one product, there are alternate browsers.

The browser above is particularly adept at suppressing superfluous information; other

browsers show more information, sometimes more than you care to see. Browsers are

the most common way for a programmer to navigate through Smalltalk’s code librar-

ies. As you'll see, you can also use browsers to write or change and compile code. (Sim-

ilar tools, often less nimble, are available in good C++ environments as well.)

One use of inheritance is incremental programming. If you can find a class that

comes close to fulfilling your need, but doesn’t quite do it, you can create a subclass
from it and simply write the relatively small amount of code that distinguishes what

you need from what the class already provides. Before you plunge pell-mell into this

style of programming, understand that, when practiced imprudently, it can produce

obscure and arbitrary designs. In later chapters we'll discuss the challenges of crafting

high-quality inheritance hierarchies. For now, think of inheritance as Pandora’ box,

releasing prospects for hope as well as disaster.

We can picture the inheritance relation

between two classes by nesting the rectangles of

our earlier schematic (page 12). In Smalltalk, the

outermost rectangle represents class Object.

Since this rectangle contains all the objects,

“everything is an object.” The nested rectangles

on the right could indicate that SavingsAccount

and CheckingAccount are two subclasses of

BankAccount, or that Integer and Float are two

subclasses of class Number. Keep in mind that this schematic notation is just that—a

notation. Remember to resist the temptation to think of objects as /iterally being

inside their class. It is better to think of objects as being created from their class—the

class is a factory for producing new objects.

18 CLASSES AND INHERITANCE | CHAPTER 2

One fundamental point. You should implant in your mind an intuition that
objects of a subclass have more qualities than objects of its superclass. A butterfly has
all the qualities of an insect, and then some. A savings account object has all the qual-
ities of a bank account, plus more. The same goes for a date object and a magnitude
object. When you subclass, you enrich your objects. This is an essential intuition, even
though the time will come later on when we must challenge it.

2.4 Terminology

It’s time to deal with terminology—the technical jargon that you need to communi-

cate clearly with other object programmers. The following terms arise from the Small-

talk community, but they are accepted by the broader community of C++ and other
object programmers too.

¢ Objects are also called instances.

¢ The data inside an object are

described by instance variables.
In other words, these are the

variables that belong to an instance.

message

¢ An object’s operations are called

methods.

* instance variables

instance (object)
¢ Invocations of methods are called

messages, as you already know.

A message arrives at an object, where it activates a method. The message is like a

telegram, and the method represents whatever the object does in response to the tele-
gram. Some simple examples:

Class Instance Message Effect or Return

Account MySavings MySavings withdraw: 230 Processes a withdrawal

Integer 134 134 - 95 Returns 39

String ‘hello! "hello' size Returns 5

Set MySet MySet add: 'hello' Puts one more object,

namely the string ‘hello’,

into MySet

2.4 TERMINOLOGY 19

You will sometimes encounter alternative terms. An object’s outside, consisting of

the “names” of all the methods that a user of the object can see, is known as its:

° protocol al

¢ behavior x

° interface

© services

° public member functions (a C++ term)

Instance variables, an object’s inside, are also sometimes called the object's:

* attributes

© characteristics

° memory

SSLALE

° private member data (a C++ term)

To be historically precise, MySet add: ‘hello’, not just add: ‘hello’, is a message. In
other words, messages include their receiver object. Nevertheless, the term “message”

is commonly used in both ways, with or without the receiver object. The distinction
rarely matters in conversation.

Technical aside: Because “everything is an object,” Smalltalk messages are themselves
first-class objects, too. In other words, telegrams have behavior in their own right.

(We'll exploit this feature in the ghost design pattern on page 226.) IBM Smalltalk

goes even further, by explicitly observing the distinction above: a “message” without a
receiver object is an instance of class Message, and a “message” with a receiver object

is an instance of class DirectedMessage.

Many readers will have correctly noticed a jarring similarity between messages and

function (or procedure) calls in conventional languages. Both are invocations of oper-

ations. Moreover, although the term “message” may conjure images of simultaneous
events, messages are no more simultaneous than calls; rather, both calls and messages

are synchronous: while the method or procedure executes, nothing else happens; the

sender or caller blocks. In other words, a telegram’s sender waits for a response.
There is a key distinction between messages and function calls, however. A mes-

sage always has a distinguished “argument,” namely the receiver object, who is respon-

sible for responding to the call; a conventional call treats all its arguments as peers.

Method usually means the operation, including all the code that goes into its imple-

mentation. But sometimes we want to refer to a method without also referring to all

this code; we want to refer only to its “name.” The Smalltalk term for a method’s name

20 CLASSES AND INHERITANCE | CHAPTER 2

is selector (or message selector). In the following picture, the method, shown only in

part, is a substantial body of code that you are probably not prepared to read yet, but

the selector is simply add:.

» message
selector

add: ’hello

add: anObject
"Answer anObject. Add anObject to
the receiver if the receiver does
not already contain it."

| index |
anObject isNil

ifTrue: [/AanObject].
self adjustSize.
(contents at:

(CG

method

To make matters worse, you'll hear C++ programmers say signature instead of selec-

tor, and function instead of method. In casual conversation, most object programmers

arent too careful about all these distinctions. They say method when they mean selec-
tor, or message when they mean method. Don’t let terminology discourage you. Just

retain a firm grasp on the imagery: a telegram (message) arrives at an object (instance),

the object recognizes it (the selector) and executes the appropriate body of code

(method).

Some data-driven development methodologies, not customarily favored by Small-

talk developers, reserve the word attribute for only the most primitive kinds of things

inside objects—things like integers and characters—but not for complex objects

within objects. Thus some people would say that my bicycle’s color is an attribute, but

its rear wheel is too complicated to be an attribute. But a Smalltalk philosopher insists

on evenhandedness to the extreme, and so treats both color and wheel in the same

way. They are peer instance variables, one of which happens to be more complicated

than the other. ~

Finally, a really substantive distinction:

lly distingui (you must carefu y distinguish between a wars

variable and the object that is its value. In

Smalltalk, it’s a good idea to think of a vari- variable object (instance)

able as a pointer to an object. For example,

in this diagram MySet is a variable that points to an actual set object (instance). All
variables, including instance variables, should be thought of as pointers to objects.
Thus, a wheel or color instance variable inside a bicycle object points to an actual
instance of a class like Wheel or Color.

2.6 SOLUTION AND DISCUSSION: AGGREGATION HIERARCHIES 21

2.5 Exercise: hierarchies

Here are four hierarchies to practice with. For each one, decide whether it may reason-

ably represent inheritance.

Auto Auto

Dashboard Engine Sports Wagon Sedan

Fuel Gauge Speedometer Hatchback 2-door 4-door

fies
Needle Display

./ Hierarchy 1 ~~ Hierarchy 2
/

Queen Elizabeth Poker

Andrew Anne Charles Deck Pot Player

Harry William i oe « rie

_ Cards

» Hierarchy 3 Hierarchy 4

2.6 Solution and discussion: Aggregation hierarchies

Hierarchy 1 is definitely not inheritance. Engines are not special kinds of cars. Never-

theless, this kind of hierarchy is important. It describes a hierarchy of parts, and goes

by various names: part-of, aggregation, assembly, whole- -part, ‘composite, « or Aas-a (an auto

“has-a” dashboard)..In fact, aggregation hierarchies are even more fundamental than
inheritance ones. Children realize thar-things-are made up of other thin

b—long before they think about specialization of classes, Aggregatio

i¢rarchies have been essential in programming, long before the popularization of

inheritance. Some authorities elevate them to one of their defining object-oriented

principles [Booch 1994; Collins 1995]. There isn’t much hope for your software if you

can't do a good job of putting little things together to make big ones.

Hierarchy 2 is a fine example of inheritance. It’s reasonable to think of Hatchback

as a special kind of Station Wagon, or Sedan as a special kind of Automobile.

2) CLASSES AND INHERITANCE | CHAPTER 2

If you think hierarchy 3 is inheritance, you are saying that Charles is a special kind

of Queen Elizabeth. That’s an odd statement. Moreover, an inheritance tree should

always depict classes, not individual instances of a class. In what way can we interpret

Charles as a class (a factory for producing objects)? We are more likely to think of him

as an individual instance of some class, perhaps the class Person, or perhaps Royalty.

Interpreting hierarchy 3 as inheritance therefore gets us into trouble.

Nevertheless, one could argue that “inheritance” is applicable to hierarchy 3. After
all, Charles inherits hair color, blood type, even money from the Queen. The problem

is that the vernacular usage of “inheritance” isn’t the same as the object-oriented pro-

grammer’s usage. It’s just a case of one word taking on different meanings in different

contexts. If we wanted terminology for this kind of hierarchy, we might call it genea-

logical, family-tree, or genetic. (The vernacular meaning aligns neatly with a language

called SELF. SELF is an alternative approach to object-oriented programming, in
i ‘rely on other instances (E izabeth) for behavior, rather than

RET oe at Pie ETN SR ner eet

on classes.

Hierarchy 4 is also not a likely inheritance hierarchy. It again exemplifies aggrega-

tion—important but not the same as inheritance. It also demonstrates something

common in aggregations, namely that a node may appear more than once in the hier-
archy. Both Chips and Cards appear twice here. You will never see that in an inherit-
ance hierarchy. We will revisit this whole matter of aggregation versus inheritance plus

some notable connections between them in Chapter 9.

When dealing with aggregation, watch for some subtle distinctions: the automo-

bile aggregation, consisting of its engine and so on, differs qualitatively from the rela-

tionship between a pot and its chips. An engine is more tightly coupled to its car than

chips are to the pot. Object-oriented designers sometimes call thetoose relationship

_--between a pot and its chips a container) instead of an aggregation. Pots contain chips

“and (an earlier example) baskets contain onions..We'll discuss container classes more

fully in Chapter 6. Another distinction is faring)

or may not be shareable. My arm is mine alone, but a word-processing document has

sub-objects (like graphics or spreadsheets) that are sometimes shared by other docu-
ment objects.

sub-object in an aggregation may

2.7 Example: aggregation plus inheritance

You may remember from our snapshots of a class hierarchy browser that defining a
subclass in Smalltalk has this unwieldy form:

le ‘ “ ae
For a lengthier treatment of these nuances, see [Civello 1993].

2.8 SYNTAXES FOR INHERITANCE 23

Number subclass: #Fraction

instanceVariableNames: ‘numerator denominator'

This code specifies an inheritance relationship between

fractions and numbers and also defines instance variables

to represent the numerator and denominator of a fraction.

On the right is a pictorial representation of the fraction

object 3/4, where I’ve embellished the sketch with some of

the methods that a fraction ought to have. The instance

variables are, in effect, parts of the fraction. Since they

should represent the integer objects 3 and 4, respectively,

[ll add those objects to the sketch below.

Again, I’ve embellished the inte- RROer

gers with some of the methods they Fraction

ought to have. This final sketch dem-

onstrates the interplay between aggre-

Number

Fraction

gation and inheritance: 3 and 4 are

parts of 3/4 (aggregation) and at the

same time both Fraction and Integer

are subclasses of Number (inherit-

ance). In object-oriented software,

you dont get far without both aggregation and inheritance.

2.8 Syntaxes for inheritance

Here is the syntax for specifying inheritance in seven object-oriented languages.

The first is the Smalltalk syntax you just saw:

Inheritance Syntax Language

Insect subclass: #Butterfly ... Smalltalk

Insect Class Butterfly (... Simula-67

class BUTTERFLY inherit INSECT ... Eiffel

@implementation Butterfly : Insect {... Objective-C

class Butterfly extends Insect { ... Java

type Butterfly = object(Insect) ... Object Pascal

class Butterfly : public Insect { ... (Cun

24 CLASSES AND INHERITANCE | CHAPTER 2

For sheer clarity of expression, it’s hard to beat Eiffel or Java. But the real point of the

table is that every object-oriented language has a direct way to express inheritance.

2.9 Example: inheritance in Smalltalk

Suppose I ask Smalltalk to execute:

Whale new talk

Left to right, Whale is a class, new creates a new instance of the class, in other words

a whale object, and this instance then receives the talk message. In my demonstration

system, Smalltalk would respond with: J am pretty quiet. In which class is the talk

method that executed?

One begins of course by looking in class Whale. If we don’t find talk there, we'll

keep looking up the class hierarchy until we do. Here are two browsers with class
Whale and its superclass Mammal highlighted:

Animal

Bird
Parrot

Penguin
Mammal
Dog

l|ammal subclass: #Whale

instanceVariableNames: "
classVariableNames: "

- TrailBlazer

Animal.
Bird
Parrot

al subc'! : #Mammal
4 instanceVariableNames: "

| ClassVariableNames: "
' poolDictionaries: "'

2.9 EXAMPLE: INHERITANCE IN SMALLTALK 25

Neither browser shows any instance methods at all defined in these two classes. We
surmise that the talk method must be inherited from still higher in the hierarchy, and

sO we examine class Animal:

wey rey pcre vente ee te oh ot

Bird
- Parrot
~ Penguin
~ Mammal

Dog
Whale

: alk

self display: 'l am pretty quiet’

This time we see not only the talk selector, but its code in the lower pane. Moreover,

this code contains the string of characters we sought—'I am pretty quiet’. Evidently
this is the method that executed.

Now suppose I want whale instances to talk in a way that is appropriate for whales,

but I don’t want to affect the way in which other animals talk. I had better not modify

the talk method in the animal class. Instead, [ll write another talk method, in the

whale class. In this method I'll replace 'I am pretty quiet’ with a string more suitable

for whales:

loaded Classes TrailBlazer

? Bird
Parrot

Penguin
2 Mammal

self answer: ‘| spout and sing!'

26 CLASSES AND INHERITANCE | CHAPTER 2

Now if I again execute:

Whale new talk

Smalltalk will display: I spout and sing!. I’ve altered the behavior of only the intended

objects, whales, without perturbing the rest of the system. If I execute:

Animal new talk

Smalltalk will still display: J am pretty quiet.
Inheritance lets us reuse default behavior from superclasses when we want it (J am

pretty quiet), but also lets us override and alter the behavior when we want that

(I spout and sing!).

Summary: Whenever two or more methods with the same selector (talk) could

respond, Smalltalk executes the first one it finds as it goes up the class hierarchy. In

other words, same-named methods lower in the hierarchy override or eclipse those

above them. (We'll discuss a small exception (page 54), when we talk about the special

variable super.)

2.10 Exercise: building a class hierarchy

In IBM Smalltalk or VisualAge, any code you write must belong to an Application. An
application generally contains several classes and their methods.”

Q) Create an application:

1 From the transcript, drop down the Smalltalk tools menu, and pick Manage

Applications.

2 From the Application Manager, pick Applications > Create > Application. (For

prerequisites, the defaults will do.)

3 Select your new application, then pick Applications > Browse Application.

Q) Build the class hierarchy shown on the right, ‘Aninal

popularized by Digitalk in its Smalltalk/V
tutorials. Start by making Animal a new sub- Mammal Bird
class of Object. To define a new class, select its well

proposed superclass and pick the Add Subclass Dog Whale Parrot Penguin

2 . . . + > . . There are situations in which some of a class's methods may belong to one application, and some to
others, but we won't worry about them in this book.

3

This sequence of menu selections is just a guide; the actual sequence you need will vary between
versions of the product.

2.11 COMMENTARY: WHAT IS OBJECT-ORIENTED PROGRAMMING? Af

menu option. (In the dialogue box that pops up, select subclass.) When you finish
this step, you should have an application browser that resembles this one:

Parrot
Penguin
Mammal _

‘Object subclass: #Animal
\ instanceVariableNames: ‘name '

classVariableNames: "'

poolDictionaries: "

U) Finally, give all your animals the ability to have a name, by defining an instance

variable name in class Animal. Do so by editing the text for Animal, as the browser

above shows, and picking the Save menu option.

2.11 Commentary: what is object-oriented programming?

In the mid-1980s, there wasn't much consensus on what constituted “object-oriented
programming.” Although everyone agreed that Smalltalk and C++ were object-
oriented, some also said Ada and Modula-2 were object-oriented, and a few people

said they had been doing object-oriented programming in C and Pascal. In those
days, a lot of unproductive disputes were incited by people who were naturally reluc-
tant to acknowledge that their favorite programming style or language was deficient

in some way.

To move beyond these disputes, the community needed a stake in the ground.
Happily, in 1987, Peter Wegner proposed a definition for object-oriented languages

[Wegner 1987]. Definitions act like benchmarks; they are arbitrary points of refer-

ence, and hence nothing is intrinsically right or wrong about them. We gauge them by
their usefulness—how they help us understand the world around us. Wegner’s defini-

tion was deemed useful; people embraced it as a plausible benchmark, and in so doing
got back to the business of discussing substantive software matters instead of defend-
ing their prejudices about their favorite programming languages.

28 CLASSES AND INHERITANCE | CHAPTER 2

Wegner’s definition had three elements, essentially the three principles we have

discussed. For a programming language to be object-oriented, he r ired that it:

* Be object-based, meaning that you can easily make

objects in it.

° Be’

* Support

hierarchy.

eaning that every object belongs to (is manufactured from) a class.

eaning that classes may be arranged in a subclass—superclass

He depicted his definition this way:

object-based object-oriented

+ classes + inheritance

The three principles—objects, classes, and inheritance—are a starting point for

discussing object-oriented development. Most authorities add late or dynamic binding

to their definitions, something we'll discuss in the chapter on polymorphism, Chapter

14. Whether there should be still other defining characteristics of the object-oriented

paradigm depends on the authority. As we discussed earlier, some add aggregation to

the definition. [Meyer 1988] insists on garbage collection and multiple inheritance,

important topics that we'll discuss in Chapters 9 and 16. Again, there is no such thing
as a “correct” definition. It is more important to understand what the ideas are and

how they affect software development than to lapse into disputing what ought to be

part of the definition.

By the way, there are also languages that everyone agrees are object-oriented, but
that dont comply with the Wegner requirements. The most significant of these is the
research language SELE, which displaces classes and inheritance with delegation. Dele-

gation lets one object delegate to another object whatever behavior the first cannot

handle. Instead of a chain of superclasses, each object relies on a chain of delegates. See
[Chambers 1989] for SELF, and [Lieberman 1986; Lalonde 1986] for other discus-

sions of delegation.

Wegner'’s three object-oriented programming principles are already part of every-
one’s experience. When you adjust your refrigerator or drive a car, you're using encap-

sulated objects; you needn't be aware of their inner workings. When you think of the
notion of a dog, you think of the features shared among normal dogs—the dog class.
And when you think of successive levels of specialization, like furniture then sofas,
youre subclassing or inheriting. None of these ideas is new; we are just transporting
them into the realm of progamming.

2.12 COMMENTARY: OTHER LANGUAGES 29

2.12 Commentary: other languages

Here's a lineup of languages against the three principles:

Whether a language has one of the characteristics (objects, classes, or inheritance) can
be a matter of opinion; you could reasonably challenge some entries in the table. For
example, in both Ada and Modula-2, it’s not too much of a stretch to define classes as
well as objects.* Also, variants of many standard non—object-oriented languages are

object-oriented. Examples include Borland’s Pascal products and Apple’s Object Pascal,
as well as Ada95 (known earlier as Ada9X) and versions of COBOL and FORTRAN.

There are also some unreasonable challenges: one could argue that a language like
C is object-based, because it is possible, with work, to build objects in C. One could

4 Nevertheless, Wegner classified them only as object-based. That's because Ada and Modula-2

objects do not necessarily come from classes; indeed, they generally don't, and so software built from
those languages often lacks the structural coherence of the drawing on page 12.

30 CLASSES AND INHERITANCE | CHAPTER 2

even argue that all languages are object-oriented! After all, they are all computationally

complete, which is a technical way to say that any task that can be done by any one of

them can be done by all of them. For example, you could theoretically use any of them

to write a C++ compiler. Therefore, they can all support objects, classes, and inherit-
ance. This generous interpretation of what it means to support objects (or classes or

inheritance) is plainly unproductive. We want to know that a language has constructs

that make it effortless to use objects, not that objects may be used through some cir-

cuitous route.

2.13 Commentary: history

Plato postulated a theory of “forms,” wherein an ideal form of a bed is the basis for all

the ordinary beds in the world [Plato 375 B.c.]. His forms prefigured Smalltalk’s

classes, a historical debt that was explicitly acknowledged in an article on Smalltalk-72
[Shoch 1979]. However, Plato’s emphasis is the opposite of an object-oriented pro-

grammer’: Plato argues that the ordinary beds are less significant than the ideal bed.
Linnaeus’s classification of plants [Linnaeus 1753] became an international stan-

dard. Although he was first to apply inheritance systematically on a wide scale, the

intellectual roots of inheritance go all the way back to Plato's successor Aristotle, who

wrote, “If we do speak of the animals severally, it is plain that we shall often be saying
the same things about many of them” [Aristotle 330 B.c.]. Thus if two classes have
common features, Aristotle suggests that we can save our breath by ascribing those fea-
tures instead to what we could today call a superclass.

Inheritance and object-oriented programming have been around since the mid-

1960s. Smalltalk itself evolved at Xerox PARC during the 1970s. That work culmi-

nated with Smalltalk-80, the first commercial Smalltalk. See [Kay 1993] for the fullest
account of its history. Smalltalk-80 later evolved into ParcPlace’s Objectworks\Small-

talk and VisualWorks (which includes visual-programming tools) but is still com-

monly called Smalltalk-80. The Digitalk Smalltalk/V family originated in the mid-

1980s and is now known as VisualSmalltalk, and IBM Smalltalk (often bundled in

VisualAge) appeared in 1994. In 1995, ParcPlace and Digitalk joined into one com-
pany, ParcPlace-Digitalk, which is now combining the two families of products (Visual-
Smalltalk and VisualWorks) into one dialect. Other less-prominent Smalltalks are also
available commercially today.

An ANSI committee is defining a Smalltalk standard that will consist of a core
body of classes and methods. However, because this core will be only a small propor-
tion of any one dialect, the standard will not be able to ensure portability of whole
Smalltalk applications.

2.13. COMMENTARY: HISTORY 31

The following family tree shows some of the milestones in the history of object-

oriented languages. (Object-oriented languages are in boldface type.)

FORTRAN

1960 LISP \

ve

i 67
Ww

1970 /|
We 72

1980 ae -80 ww |\ oR Modula-2

flowering ed iw C++ Eiffel Object Pascal

of
1990 Swetani oe

dialects _/

Two early landmarks were Sketchpad and Simula-67. Sketchpad, a direct manipula-
tion graphics system developed at MIT by Ivan Sutherland, evinced the principles
we've discussed but was not a programming language. Thus, people regard Simula-67

as the first object-oriented programming language. Between Smalltalk-72 and Small-

talk-80 were Smalltalks -74, -76, and -78; inheritance first appeared in Smalltalk-76.

CLOS (Common Lisp Object System) is part of the Common Lisp standard.

CHAPTER 3

Smalltalk introduction

Smalltalk’s danguage is tiny. You will learn almost all of it from this chapter alone. And

much of the chapter reviews what you've already seen in the first two chapters. Not
that Smalltalk itself is tiny. A typical Smalltalk system out of the box includes a library
of thousands of classes. And in Smalltalk you can’t do anything without classes, even,

as youll soon see, something as ordinary as a conditional or a loop. Though it is a

quick matter to learn the language, learning “Smalltalk” is a heftier challenge. To

become effective you will have to learn many (but by no means all) of the classes.
Moreover, using them wisely really amounts to doing good object-oriented design.
This mastery takes months of practice—getting in there with your own fingers and

snooping through the system and writing and stumbling through your own applica-

tions. A modicum of curiosity and daring helps.

3.1. Elementary objects

A few elementary Smalltalk objects merit their own special notations. Here are some
examples:

Sample Instance Its Class

37 Integer (really the subclass SmallInteger)

"To be or not to be' String

2.71828 Float

$p (the character p) Character

true Boolean (really the subclass True)

false Boolean (really the subclass False)

32

3.2 MESSAGES AND THEIR PRECEDENCES 63

One of the by-products of these notations is that you do not issue the customary mes-
sages Float new or Integer new to produce a number object. Instead, the expression

2.71828 by itself produces a reference to a floating point object. In fact, executing or
displaying Float new or Integer new results in an error or walkback window.’ Small-

talk disables the new message for numeric classes. =

3.2 Messages and their precedences

Smalltalk has exactly three kinds of messages: unary, binary, and keyword. Keyword

messages are Messages that contain colons. The message:

HomeBudget spend: 229 on: 'VCR'

is an example. It’s the keyword message whose selector is spend:on:)

Note that this selector consists of two keywords that are smashed together. Each of

them expects an argument. Hence this message includes two argument objects,

namely 229 and 'VCR'. A keyword message can have any number of keywords (i.e.,
colons), and it must have one argument following each colon.

Now, another way to mentally parse the message above is:

(HomeBudget spend: 229) on: 'VCR'

that is, in the form of one message following another, for a grand total of two mes-

sages. This is an alternative, but it is not the way Smalltalk works. The original expres-
sion had no parentheses, so Smalltalk interprets it in just one way, as a single message
that happens to have two arguments riding on it. If you want instead to indicate two
separate messages, you must explicitly use the parentheses.

Binary messages are the simplest to recognize. They're denoted by special symbols,

such as +-* | <<=> >=.

17 <= 14

is a binary message. Its selector is <= and the object it returns is the false object.
The comma is a surprising example of a binary message. You use it most often to

concatenate two String objects:

‘Let them eat ' , ‘cake.’

If you ask Smalltalk to display the result, Smalltalk displays: ‘Let them eat cake. 'Com-
mas and comparisons and arithmetic symbols aren't the only binary selectors. You can
define a binary message using any one or two of the symbols + - */\~ >< = @ %| &?,

! These windows are known as walkbacks in Smalltalk, because, as you will see in Chapter 4, they let
you “walk back” through the code that executed just before the error.

34 SMALLTALK INTRODUCTION | CHAPTER 3

as a selector. Not that you should. The selector @\ is perfectly valid, but it is hard to

imagine a good use for it.
All other messages—those whose selectors neither are special symbols nor have

colons—must be unary messages. The selector for a unary message consists of a single

word. Examples are:

"smart' reversed

whose selector is reversed, and:

4 factorial

whose selector is factorial.

When faced with a more complicated expression, comprising more than one kind

of message, Smalltalk’s precedence rule is unary, then binary, then keyword. For example,

12 between: 7 and: 9 + 2

contains a keyword message and a binary message. Since binary has higher precedence
than keyword, 9 + 2 executes first, resulting in 11. Next, 12 between: 7 and: 11 exe-

cutes, which is a keyword message (with two arguments) asking 12, “Are you between

7 and 112” to which 12 finally responds with the false object.
What happens if we alter the expression by inserting parentheses?

(12 between: 7 and: 9) + 2

The parentheses change the precedence; in this case the result will be an error window

(walkback). Here’s why. The parenthesized expression executes first, resulting in the

false object. Then false + 2 executes, which asks the false object to add 2. Because the

Smalltalk false object doesn’t understand addition, it pops up the walkback window,

announcing an error. As in any other language, parentheses make a big difference.

3.3 Pitfalls: basic Smalltalk gotchas

The first simple pitfall is that Smalltalk is case-sensitive, which means that you can’t

write whale instead of Whale and expect your code to work the same. We'll discuss
Smalltalk’s capitalization conventions in the upcoming section on variables (page 39).

Another pitfall is that Smalltalk assignments are not messages.” Assignment is an
exception to the left-to-right rule. Smalltalk processes the right-hand side of the :=
first, then puts the resulting object in the variable on the left-hand side. For example,

* Ina twisted sort of way, you can think of an assignment as a peculiar kind of message, of lower pre-
cedence than the other kinds, and where the receiver is the object that “owns” the variable being
assigned to. For example, an assignment to an instance variable can be interpreted as a message to
the instance of the form instVarAt:put:. But it is neither customary nor linguistically illuminating
to view assignments in this way.

3.3 PITFALLS: BASIC SMALLTALK GOTCHAS 35

X := 12 between: 7 and: 9 + 2

doesn’t mean that X refers to the 12 object. It means that the entire expression on the
right of the assignment executes, resulting in the false object, only after which does

assignment occur. In the end, X refers to the false object, not the integer 12.

More insidious pitfalls surround the differences between instances of Character,

String, Symbol, and Array. But before telling you about the differences, I want to
highlight a similarity. Along with numbers such as 19 or 2.71828, these objects are

often called /iterals. In IBM Smalltalk, literals are immutable—they are read-only

objects and cannot be modified. (Literal strings and literal arrays are mutable in other
dialects.) Here is how you indicate literal objects:

Smalltalk Meaning

19 and 2.71828 Numbers (aSmallInteger and aFloat)

$b The single character b

‘rosebud’ aString

#rosebud aSymbol (explained below)

#(5 ‘rosebud’ 7) anArray

(It’s a Smalltalk tradition to ram words together and use just an uppercase letter to

mark the boundary, as in aString.)

An instance of Symbol is a sequence of 1 or more characters beginning with a

number sign (#). Aside from cosmetic differences between symbols and strings, they

differ in one profound respect: Two strings may have the same character sequence, but

no two symbols may have the same character sequence. Even if the symbol #rosebud

occurs more than once, Smalltalk construes all occurrences as referring to one and the

same underlying object. As a by-product, copying a symbol results in ... the same

symbol! This behavior of symbols plays a role in matters of object identity, which we

will discuss in Chapter 6.

An instance of String is a sequence of 0 or more characters delimited by single

quotation marks. Note that although " has no characters and 'b' has one character,

both denote legitimate instances of String. And don’t confuse the string 'b' with the

character $b; they are instances of entirely different classes. As in many other lan-
guages, a quote within a string must be doubled: ‘Alice's Restaurant’.

Again, a Smalltalk system may contain many instances of the string 'rosebud', but
at most one instance of the symbol #rosebud. In Smalltalk, it so happens that Symbol

is a subclass of String. Thus, you can think of a symbol as a special kind of string in
which the meaning of “sameness” or identity differs.

36 SMALLTALK INTRODUCTION | CHAPTER 3

Notice that by putting parentheses after #, instead of characters, you no longer get

a symbol. Instead, you get an array. The array #(5 'rosebud' 7) has three elements: first

the integer 5, then the string ‘rosebud’, and finally the integer 7. You can nest literals

inside a literal array. As examples, #(5 #rosebud 7) has three elements, the second of

which is a symbol, and #(5 #(2 11 13) 7) also has three elements, the second of which

is another array. (In these last two examples, odd as it may seem, the inner # is optional

in IBM Smalltalk.)

Finally, quotation marks delimit comments, and are ignored by Smalltalk. Thus,

"rosebud" is a comment. You can use comments freely anywhere white space occurs

in your code.

3.4 Examples

What do you expect will be returned from each of these expressions?

S) a by 72

Integer superclass

#(me you they) at: 2

The answers should be -4, Number, and #you. The first consists of two consecutive

binary messages, processed left to right. The second is a unary message sent to Integer,
asking this class to tell us its superclass. The last is a keyword message with a single
argument, 2, asking the array object to reply with its second element; this second ele-

ment is the symbol #you.

What do you expect to be the effect of each of these messages? Don’t think about

the return, just the effect.

#zero at: 1 put: $h

'zero' at: 1 put: $h

'zero' copy at: 1 put: $h

#zero copy at: 1 put: $h

The first two messages should fail (!) because literals are immutable. The third one

works fine; copying the literal string produces another string, which is not a literal.

This copy’s first letter is replaced, so that the copied string becomes ‘hero’. The final
message again fails. That’s because the copy has the same sequence of characters as the
original symbol, and for symbols the copy must then de the same as the original,
which we know to be immutable.

3.5 EXERCISE: A HYPOTHETICAL METHOD By7/

3.5 Exercise: a hypothetical method

The code below is an entire, hypothetical Smalltalk method named replaceLastBy:. It

introduces several elements of the language. Look it over and try to answer these two

questions:

L) What does the method do?

() What is a class for which it would make sense?

Here is the code:

replaceLastBy: anObject

|last|

last = Gel size

Gelfjat: ast put: anObject.

You will need explanations for several things you are seeing for the first time:

* The first line just has the selector—the keyword replaceLastBy:—plus a dummy

name the method will use for the argument. I’ve chosen anObject for this name,

which represents a healthy, orthodox Smalltalk coding style, but in theory any name
is equally legal.

The next line (after the comment) declares a local variable between the vertical bars;

its name is last, although again it could be anything we like. You can use local vari-
ables throughout the method to refer to objects. And you can declare any number
of them between the bars, separating them by blanks.

* To understand self, which appears in the final two lines, it helps to think anthropo-

morphically. Imagine that am the object for which the method is executing. self is
a special Smalltalk variable that refers to me. (But you may not know who Jam yet

because that’s the second question in this exercise.)

¢ Finally, notice the periods at the ends of lines; they separate Smalltalk statements.

Because periods are separators, the final period is optional.

As a final hint before attacking the two questions above, imagine a concrete situa-
tion. Imagine that some object has several elements within it and receives the message

replaceLastBy: $e.

38 SMALLTALK INTRODUCTION | CHAPTER 3

3.6 Solution and discussion

What does the method do? Imagine that / have, say, 4 elements. In other words, imag-
ine that I am some sort of collection. Then self size calculates my size, which is 4. And

self at: 4 put: anObject substitutes anObject for whatever my 4th element is. For

instance, suppose that I am a string containing the characters b, |, u, and r, and a vari-

able Me refers to me. If I receive the message (or telegram):

Me replaceLastBy: $e

then I am being asked to replace my last element with the character e. The method

thus transforms me into a string with characters b, |, u, and e. In general, no matter

what object Me refers to, the method will attempt to replace that object's last element.

As for the second question, what is a likely class for Me? An obvious candidate is

String, because ‘blur’ is a string. Others? Perhaps Array, or any class whose instances

have an indexed ordering on them. String and Array are the two most obvious, but
you will encounter others as you learn more about Smalltalk.

Another language element that appears often in methods is the caret, “. xyz

means that the method should return xyz to whoever invoked it and stop executing. If
there’s a complicated expression to the right of the “, the whole expression executes,

then the method returns to the invoker whatever the expression produced and stops

executing. Thus, the statement:

Gyre (oy 72

in a method would terminate the method and return 22 to its invoker. Or,

“self

would terminate the method and return “me” to the invoker.

Now, if a method, like the one in this exercise, contains no carets, Smalltalk still

insists that the method return something—Smalltalk methods always return some

object. This default return object is always self. Therefore the method could have been

written equivalently as follows:

replaceLastBy: anObject

|last|

last := self size.

self at: last put: anObject.

“self

3.7. KINDS OF VARIABLES 39

3.7. Kinds of variables

Variables may be spelled with any letters. Whether the first letter of the variable is
uppercase or lowercase is a matter of preference in some Smalltalks (IBM Smalltalk

and VisualWorks), but is strictly enforced in others (Smalltalk/V). Although IBM

Smalltalk offers consderable latitude in this regard, I recommend you use the common
conventions (which are the same as the Smalltalk/V rules). Your Smalltalk code will

then resemble other Smalltalk code, which fosters mutual readability. Here are the

conventions:

Begin variables like anObject or last, which are visible to only one object, with a

lowercase letter. The most common kinds of these variables are:

° formal arguments like anObject, declared along with the selector at the top of the

method.

* local or temporary variables \ike last, declared within vertical bars.

* instance variables like numerator, declared along with its class Fraction (page 23).

We'll come to another kind of variable when discussing blocks on page 55.

Although all these variables are visible to just one object, the first two kinds (anObject

and last) are even less visible; they are usable only within the single method that

defines them. By contrast, instance variables like numerator are usable by any of the

object’s methods.

Begin variables that are shareable among many objects with an uppercase letter.

The most common kind of uppercased variable is a global variable. Global variables

are universally visible; any object in Smalltalk can see and use them. You're already

familiar with one variety of global variable—classes. More precisely, names like Frac-
tion and Whale are global variables (that happen to point to the actual classes for frac-

tions and whales). The other common variety of global variable consists of the ones

you invent so that you can refer to an object at a later time. An example is the global

variable X in the expression X := Whale new. X provides a handle by which you can

refer to the whale instance. (Recommendation: Experienced object programmers limit

their use of global variables, because globals are the antithesis of encapsulation. Your

goal is to hide as much as possible, and global variables have the opposite effect. But

you can’t shun global variables entirely: for example, you can’t do much in Smalltalk

without classes.)

Another kind of shareable (uppercase) variable, a class variable, is not quite global.

These are variables that may be shared among all the instances of one class and its

subclasses. For example, a graphical icon might be a class variable, because every

40 SMALLTALK INTRODUCTION | CHAPTER 3

instance of a class does not need to have its own private copy of the icon. Or, if we

want to copy and paste text among several text windows, it might be convenient for

all text window instances to share a TextBuffer. Class variables, being visible to more

than one but not all objects, occupy a middle ground between global variables and the

variables that a single object enjoys.
Another kind of shareable (uppercase) variable is known as a class instance variable.

Class instance variables are handy for implementing so/itaires (page 230); I will save

their explanation until then.

Summary: To conform to the preponderance of Smalltalk code in the industry, begin
global, class, and class instance variables with an uppercase letter, and begin any vari-

able that makes sense to only one object with a lowercase letter.

3.8 Pitfall: variables + objects

It bears repeating that a variable is not an object (page 20). Rather, a variable refers to

or “points to” an object. At one moment the variable X could refer to the integer 92,

at another moment, merely by reassigning it, X could refer to the string 'Call me Ish-
mael’. Smalltalk permits X to refer to any type of object at all. That’s why you will hear

people say, “Smalltalk is an untyped language.” (Remember that, until Chapter 17, it

is safe to think of “type” as just another word for “class.”)
Although the type of a variable can vary from moment to moment, the type of an

object is never ambiguous. 92 is and always will be an instance of class Integer (actu-

ally SmallInteger, the subclass of Integer consisting of the 31-bit positive and negative

integers) and "To be or not to be’ is always an instance of class String. Thus one can

say, “In Smalltalk, variables are untyped, but objects are strongly typed.” The only
exception is a powerful Smalltalk method, become:, which can actually alter the class

of an object. (See the discussion on proxies and ghosts in Chapter 18.)

3.9 Classes are objects

In the spirit of “everything is an object,” Smalltalk classes (factories) are themselves

special kinds of objects. Like other objects, they can receive messages, new being the
most frequent. This is no mean feat—classes are decidely not objects in most other
object-oriented languages. That's why you hear the expression: “Smalltalk classes are
first-class objects.”

3.9 CLASSES ARE OBJECTS 44

The methods that apply to classes are called class methods and those that apply to
instances are called instance methods. Both kinds of messages occur in the expression:

Whale new talk

The object that receives the new message is class Whale; thus new is a class method.

The object that receives the talk message is the whale instance that comes out the fac-
tory door; thus talk is an instance method.

Smalltalk browsers present instance and class methods to us separately. This
browser:

_Semap'

Processors a

Rectangle
ReturnParag |

|

Default: Kerne

“Signal the receiver. Resume in FIFO any process which has
been waiting."

shows three instance methods at the upper right. We know they are instance methods

because the pushbutton near the middle of the window says instance. Toggling this

button gives us:

File Edit Classes. ‘Applications Categories

ProcessorS|#;

“Answer aSemaphore which has one signal operation on it. The first
semaphore will not block."

“super new initialize

Class Semaphore defines only one class method, namely new. This reflects the general
situation: Smalltalk has many more instance methods than class methods. That
shouldn't be a surprise, for it’s the instances themselves which you want to do most of

your useful computing.

42 SMALLTALK INTRODUCTION | CHAPTER 3

3.10 Control flow

One of the earliest facts you learn about programming is that programs need to be able
to branch conditionally (if-then) and loop, as well as sequence statements one after

the other. Yet Smalltalk has language statements for neither conditionals nor loops.

Smalltalk accomplishes these in the only way it knows how to do anything, via mes-

sages. We need one additional language element first.

A block is a special kind of object, delimited by brackets [...]. A block acts like a

chunk of code without a name. Here’s a simple block:

[Whale new talk]

Since it’s an object, you treat it like an object, assigning it, passing it as an argument,

and sending messages to it. For example, I can assign it to a variable by executing.

MyBlock := [Whale new talk].

Smalltalk obliges, but nothing appears on the screen. That’s because all I’ve done is

assign the block to MyBlock. I haven't done anything to execute the block. To do so,

I send the block a special message named value:

MyBlock value

And now Smalltalk finally responds with '7 spout and sing!' Blocks, in effect, are a way

to defer the execution of code until it is appropriate.

Now, conditionals and loops. Here’s an example of a conditional branch:

MyValue < 17

iffrue: [Whale new talk].

Because binary messages (<) precede keyword messages (ifTrue:), Smalltalk first deter-
mines whether MyValue is less than 17, resulting in either the true object or the false

object. If the answer is the true object, the ifTrue: method evaluates the block. Con-

trol then passes to any subsequent statements. If the answer is the false object, the

ifIrue: method does nothing; it doesn’t bother to evaluate the block of code, and con-

trol still passes to any subsequent statements. The result then is as you would hope:

depending on the outcome of MyValue < 17, either the block executes or not.

There are several methods for looping. Here is a simple message that invokes such

a method:

6 timesRepeat: [K := K + 1]

This message causes 6 repetitions of the block of code. Notice that the receiving object
is 6, a lowly integer. In other words, class Integer has behavior so rich that all its
instances can control loops; they all understand the keyword message timesRepeat:.
This example illustrates how extreme the Smalltalk object model is. Nothing stands in
the way of giving rich behavior to innocuous objects like integers.

3.11 COMMENTARY: METACLASSES 43

3.11 Commentary: metaclasses

This section takes an entirely optional glimpse at an advanced topic that I treat fully
in Chapter 20. One of the consequences of admitting classes as first-class objects is
that classes themselves must then be instances of some other class. In effect, a factory

must come from some sort of higher-level factory. Thus every class, like Whale, is

itself an instance of some class, which happens to be called its metaclass. Moreover,

class Whale happens to be the one and only instance of its metaclass. As a matter of

fact, every class is the one and only instance of its own metaclass.
Now, if every class has an associated metaclass, and the class is the only instance of

this metaclass, that doubles the number of class-like objects running around the sys-

tem. You're probably fearing the worst—that this goes on forever, with meta-meta-
classes and so on. Fortunately not. The next level is much simpler. All the metaclasses

are instances of one and the same class, whose name is, naturally enough, Metaclass.

The explosion of class-like objects stops cold with this one class. You can even count

them all up. If your system has 2000 ordinary classes—mind you, that’s really 1999
plus one called Metaclass—then it also has 2000 metaclasses. And all 2000 of these

metaclasses are instances of Metaclass. That’s just 4000 class-like objects in all.

Now, 4000 is 2000 more than a class browser really needs to make you aware of.
The class browser is a practical tool and was designed to conceal those 2000 meta-

classes. How? By giving you the convenient toggle you saw that lets you look at “class

methods.” The so-called class methods of Whale are actually the instance methods of

Whale’s metaclass! By this sleight-of-hand, the Smalltalk browser conceals Whale’s

metaclass, and portrays its methods to us as an artificial breed of method called “class

methods.”

You can program for a long time in Smalltalk without knowing as much as I've

already said about metaclasses. The noteworthy theme is that metaclasses preserve the

conceptual consistency of Smalltalk. (“Everything is an object, and everything is there-
fore also an instance of some class.”) This consistency is unlike what you'll find in
most other object-oriented languages. C++ classes are not objects; they aren’ eligible

to receive messages, for example. C++ classes are limited to the role of describing the

system rather than participating in it.

Again, the details of the metaclass story appear in Chapter 20. Meanwhile, the

next step is to begin programming in Smalltalk.

CHAPTER 4

Exercises — Foundations

Smalltalk is so compact that almost all its essentials can be practiced in one sitting.

This chapter covers these essentials—the language elements in Chapter 3, plus tools

for maneuvering through Smalltalk. It consists entirely of hands-on exercises. Only by

experiencing Smalltalk firsthand will you understand what is unique about object-

oriented programming in Smalltalk. Reading this or any other book without doing

Smalltalk will get you nowhere. Do the exercises, look around, try experiments, be

curious. Set aside at least half a day for this effort.

Warning

Do not get distracted by the myriad menus and options present in the Smalltalk envi-

ronment, nor by the code version and management tools that are available. These

exercises emphasize the nature of objects in Smalltalk, and only enough menu options

and tools to survive. You will acquire the rest gradually, through experience and self-

discovery. Confronting fundamental conceptual matters is more valuable now than

becoming proficient in mechanical skills.

4.1 Precautions

I mentioned in Chapter 1 that each Smalltalk workstation has a crucial file known as

the “image.” The image contains executing objects, and it therefore grows and shrinks.
The name of this file varies among Smalltalk dialects, but in IBM Smalltalk and Visual-
Age, the default name is simply mage. You should imagine it as consisting of objects
and their methods, but not their source code. Although source code may be present in

44

4.1 PRECAUTIONS 45

the images of some dialects, this is an artifact of the dialect rather than an inherent

characteristic of Smalltalk. Source code is needed to describe objects and their behav-
ior, but it is not part of the objects themselves; hence it is not an essential ingredient
of an image.

Of course, developers need access to a reliable copy of their source code. Smalltalk

stores code that you write either in a text file or in a special library or repository. The

standard versions of IBM Smalltalk or VisualAge use a text file called changes. log, local

to each workstation:

1X methods !

anXMethod

“some code"!

changes.log
(text file)

Standalone

(You may notice exclamation points peppering files like changes.log that contain

Smalltalk source. They delineate methods and other chunks of code, and they are read

and inserted automatically by the tools that handle source code.)

The team and professional versions of these products use a shared library with a

qualifier of dat, such as manager.dat or abtmgr30.dat:

shareable
archive of

source code

for all classes

and methods

manager.dat
(library)

Team or Professional

Notice that the image contains instances of class X as well as class X itself. This is

a reminder that in Smalltalk, classes are first-class objects. The class X wouldn't be a

live object in C++, nor is the idea of an image relevant.

46 EXERCISES—-FOUNDATIONS | CHAPTER 4

The point of this discussion is that you need two things—a sound backup image

and a reliable repository of your source code—in the event that your image becomes
corrupt, as it inevitably does sometime in every complex development project. Then

you can always reconstruct an up-to- date image by merging your work into the

backup image. The bottom line is that you should conscientiously back up changes. log

or manager.dat, plus at least one trustworthy image.'

4.2 Finding things in Smalltalk

Finding things is a basic survival skill.

find classes and methods.

Classes

() One workhorse tool is the browser

Smalltalk developers most frequently need to

on all the classes in the system. To open one,

pick Smalltalk tools > Browse Classes from the menu bar of the system transcript
window. Familiarize yourself with this browser by clicking, double-clicking, and

scrolling around; dont try to read any code yet, though. Spend a few minutes (no
more) trying to find class Set; if you fail, read on.

Ee
Hooking up the image to f:AVIS

een Hrecactigt sig

owse Applica
WSS SSN

=
is | Visual tools

Manage Applications

Browse Configuration Maps

Browse Application Configs

tions

Browse Senders...

Browse Implementors...

Browse Variable Refs...

Browse Class...

Browse Hierarchy...

Browse Application...

Browse Category... Y yr

l . . .

In the standard environment, you might as well back up both smage and changes.log at the same
time. This precaution ensures that the live objects and the source code are in step with one another.

4.2 FINDING THINGS IN SMALLTALK 47

U This browser's alphabetical listing doesn’t help much if you're looking for a class

that’s nested deeply in the hierarchy. For example, because Set isn’t a direct descen-
dant of Object, it doesn’t appear in the browser's initial alphabetical listing. To find
it, pick Classes > Find Class from the browser’s menu bar. Type Set in the dialogue

box, and click OK.

Methods

U) Suppose you want to find all the implementations of the at:put: method. Pick the

Smalltalk tools menu from the transcript again, but this time pick Browse Imple-

mentors. Type at:put: in the dialogue box and click OK. A list of the many imple-
mentations of at:put: that exist in Smalltalk appears. Select one for a glimpse at the

source code; don’t try too hard to understand the source code yet, though.

UW) Anything that happens in Smalltalk happens, ultimately, by way of a message. In

particular, the effect of the Smalltalk tools > Browse Implementors menu sequence

above is to execute this message:

System implementors

Instead of using the menu, type this message in the transcript, highlight it, and exe-

cute it, then produce a list of all the implementations of the + message.

By the way, the transcript is an obvious place to type and experiment with mes-
sages, but you can actually type them and try them in any textual window in Small-

talk. In general, if you can type somewhere you can also execute there. Regardless of

which window you happen to have typed and executed messages in, you are making
Smalltalk use live objects in the image.

Q) Similarly, you can find every method that sends a message by executing:

System senders

or by picking Smalltalk tools > Browse Senders. Use either technique to produce a

list of all senders of the message at:put:. Use the other technique to produce a list

of all senders of the (recursive) message factorial.

Q) To understand a method, say remove:, we often need to understand the methods

it invokes in turn. Let’s investigate class Collection's remove:. Since there are

remove: methods in many classes, Smalltalk developers use the notation Collec-
tion>>remove: to distinguish Collection’s method from the others. Select Collec-

tion>>remove: from the list, then pull down the Methods menu (or pop it up with

a right mouse click), pick the Browse Messages menu item, then its /mplementors

sub-item. Smalltalk brings up a list of the messages that remove: sends. There are

48 EXERCISES—FOUNDATIONS | CHAPTER 4

only two in this case. Selecting either one produces a list of all its implementors.

We could repeat this procedure indefinitely. That is, we can drill as deeply as we

wish into the implementation of any method by repeatedly picking Browse Mes-

sages > Implementors.

Q Apply this technique to the method that tests whether a date occurs between two
others. In other words, by alternately selecting Browse Messages and Implementors,

: ‘ : : 2
trace the implementations of this chain of methods: between:and:, <=, <, and year.

4.3. Elements of Smalltalk

Establishing global variables

Q) Add the global variable T to your image:

Smalltalk declareVariable: #T.

This message establishes an entry for T in the so-called system dictionary.

Global variables should generally be avoided. Professional developers use them
sparingly because they conflict with the object-oriented spirit of limiting the visibility
of information, and there is almost always a way around using them. But they can help

illustrate ideas and facilitate experimentation, and in this opening chapter we use a few
of them.

Global versus temporary variables

Q) In the transcript window, display this entire chunk of code (remember that periods

separate statements, and the final period is optional):

T := 'dig' copy.

Ttatene puteeso:

di

Q) Repeat the experiment with this chunk:

| t |
t := 'dig' copy.

tate 1 puts Sp.

ts

? In older versions of IBM Smalltalk an additional > method occurs in this chain.

4.3. ELEMENTS OF SMALLTALK 49

U) Now display the global variable T. Then try displaying the temporary variable t.

The latter is no longer defined; it was valid only when it was highlighted together

with its declaration |t].

The * (caret)

U Smalltalk methods always return some object. The ‘ specifies the object. Use the

classes browser to refamiliarize yourself with the hierarchy under class Magnitude

that we examined on page 14. Locate the method whose selector is max: and read

through its code. Notice that the “ precedes the object that the method returns.

The “ also terminates execution of the method.

Many methods contain no “ at all. Nevertheless, the method must return an

object. In this default situation, that object is self, the receiver of the message. Notice

that unless you look into a method’s code, you cannot be sure of what it returns
because you cant know if and where there are any “’s. Sometimes, as you will see

shortly, the returned object isn’t what you expect.

Execute versus Display

Execute and Display both compile and execute the highlighted code. The only differ-
ence is their treatment of the returned object. Execute ignores it. Display prints it on

the screen.

Q) Declare a new global variable W. Then execute:

Wes=03, J4-925% 2.

Next execute:

W

Nothing should appear on the screen. But you can verify that the code has com-

piled and executed by displaying:

W

Q) Similarly, merely executing:

Array with: 'Tolstoy' with: W

produces nothing on the screen, but displaying.

Array with: 'Tolstoy' with: W

displays the resulting array instance on the screen. (The with:with: class method is

an easy way to produce an array instance.)

50 EXERCISES—FOUNDATIONS | CHAPTER 4

Q) As a final example, execute:

Transcript show: 'War and Peace’

In this case, the effect of the execution is to echo back the string to the transcript

window. But don’t confuse this effect with the return. What is the returned object?

Short of reading source code, you can find out by displaying.

Transcript show: 'War and Peace'

The same effect will occur, and Smalltalk will print the returned object—an

EtTranscript—which is Smalltalk’s description of an instance of class EtTran-

script. As a matter of fact, that’s what Transcript is—a global variable pointing to

an instance of EtTranscript.°

The next exercise illustrates several returns, one of which astonishes nearly everybody.

Messages

Q) Display the returns from each of these messages:

4 factorial

8 max: 5

8 between: 5 and: 7

#(vanilla ice cream) at: 2

#(vanilla 'ice' cream) at: 2

"milk and ' , 'honey'

'salt' at: 1 put: $m "Remember that literals are immutable"

'salt' copy at: 1 put: $m

The return from the last message surprises most people. They expect at:put: to
return the (modified) string that received the message; instead it returns the argu-

ment $m! This experience emphasizes that you cannot always guess the return.
You must either read the method's code or experiment by sending a message.

Q) Finally, either displaying or executing:

#salt copy at: 1 put: $m

brings up a walkback window. The error occurs because symbols are unique, so

that the copy message is ineffectual; it returns the original literal symbol, which is

immutable.

3

In other dialects of Smalltalk, Transcript points instead to an instance of class TextWindow or
TranscriptWindow or TextCollector.

4.3. ELEMENTS OF SMALLTALK Dil

Parsing precedence

Remember that unless overridden by parentheses, unary messages precede binary mes-
sages, which precede keyword messages.

U) Apply this rule to predict and confirm the returns for:

FO S45 35242) fatise * 3

and:

‘oat bran' size * 4 between: 6 negated and: 3 factorial * 5

Classes and instances

() Examine the hierarchy of Animal classes you built on page 26. Predict and con-

firm the returns from these messages:

‘oat bran' class

Penguin new class superclass

(2/7) class superclass superclass

String allInstances size

Penguin allInstances size

C) Create a new global variable, P, then execute P := Penguin new. Display the returns

from:

P isKindOf: Animal

P isMemberOf: Animal

Q) Finally, count the number of penguins in the system again by displaying:

Penguin allInstances size

Inspectors

Q) Examine the penguin object by executing P inspect. This window is called an inspec-

tor, by clicking on its entries, you'll see the values of the penguin’s instance variables,

including any it inherits from its superclasses. You can also inspect an object by

highlighting it and using the /nspect menu option. Try this technique too.

Q) You can use inspectors to plunge through several layers of complex object struc-

ture. For example, inspect this object:

Array with: P with: ‘ice cold' with: -273

and double-click on the array’s three instance variables to examine the underlying

objects.

52 EXERCISES—-FOUNDATIONS | CHAPTER 4

Cascading messages

Smalltalk offers an economical syntax for repeatedly sending messages to the same
object. Instead of writing:

SomeObject msgl.

SomeObject msg2.

SomeObject msg3.

you can cascade the messages by writing:

SomeObject msgl;

msg2;

msg3.

A cascaded message—one following a semicolon—is delivered to the same object that

the previous message was delivered to. Here’s another way to think about it: figure out
the last message before the first semicolon; whatever object received that message also

receives all the other cascaded messages.

Q) Execute:

Transcript cr;

show: 'If I had a';

Crs

show: ‘hammer’.

(The message cr just instructs the window to do a carriage return.)

Q) What is the return from:

by ar a. 2 SP

ae 7/2

+9),

Verify your answer by displaying this code.

Q) The simple but handy message yourself returns whatever object it is sent to. Put-
ting yourself together with a cascade gives us a convenient way to see the effect

(instead of the return) of at:put:. Try displaying:

‘salt’ copy at: 1 put: $m;

yourself

Writing methods

UW Bring up an application browser on the animal application you prepared earlier.
(Just as before, first Manage Applications, then select your application, then finally
Browse Application.)

4.3. ELEMENTS OF SMALLTALK 53

) Select class Animal, check that the instance/class button is toggled to instance, pull

down the Methods menu and pick New Method Template. Write a display: method
that looks like:

display: aString

"Display aString in the transcript"

Transcript cr;

show: aString;

cre

Compile the method by picking the Save menu option.

U) Now write a talk method in Animal so that animals say 7 have nothing to say’.

This method uses the method you just wrote, and is simply:

talk

"Speak tersely"

self display: 'I have nothing to say'.

Q) Test your work by executing:

P talk

Assuming that P is still your penguin, the response should be T have nothing to
say’.

Q) As in the Smalltalk/V animal hierarchy, we are going to make parrots behave a little
differently. Parrots should have vocabularies. Define an instance variable vocabu-

lary in class Parrot. Also write and compile a method setVocabulary: that assigns a

string to this instance variable. Last, write a talk method for parrots with this code:

talk

"Repeat my vocabulary"

self display: vocabulary.

Q) Assign a new parrot to a new global variable P2. Ask this parrot to talk. Do you

understand this response? Now give P2 a vocabulary (‘I want a cracker’) by send-

ing it the setVocabulary: message. Ask P2 to talk again.

Q) In class Animal, write and compile a setName: method that assigns a string to the

name instance variable.

QO) Create a Human subclass of Mammal. Assign a new human to a global variable H.

Does H have a name? (Inspect H to confirm your answer.) Give H a name (‘Claude

Monet’) by sending it the setName: message. Finally, write a talk method so that
all humans will say ‘My name is '. Verify that H says his name properly.

54 EXERCISES—FOUNDATIONS | CHAPTER 4

Special variables self and super

Q) Write a new instance method blab for humans. The method’s body should simply be:

self talk.

Predict and confirm the result of executing H blab. Replace the variable self with

the variable super and recompile blab. What is the result of executing H blab now?

Here’s the explanation. Changing self to super alters Smalltalk’s rule for search-

ing for methods. Instead of beginning the search in the class of the object—

Human in this example—super causes Smalltalk to begin searching in the super-

class of the method containing super. In this example, Smalltalk bypasses the talk
method in class Human and begins its search in class Mammal. Thus, super is a

way to access a superclass method that would ordinarily be eclipsed by an overrid-

ing subclass method. Notice that super and self both refer to the same object; they
differ only in how they affect the starting point for method lookup.

() Make a small addition to your talk method in class Human so that humans say
t

both 'T have nothing to say'and 'My name is ,

Now that you've developed some code of your own, you should save your work by
saving the image. It’s prudent to get into this habit, because a recently saved image
simplifies recovery if and when the system crashes.‘

Accessing variables

Consider a class hierarchy like this:

Suppose Up defines an instance variable named u and a class variable named U and

Down defines an instance variable d and class variable D.

U) Sketch an instance of Up and an instance of Down. Can instance methods of
Down use u? Can instance methods of Up use d?

“ In Professional IBM Smalltalk, VisualAge, or any Smalltalk dialect with the Envy library control
system add-on, you can also create a version of your code. A version is a permanent snapshot of your
code.

4.3. ELEMENTS OF SMALLTALK 55

LL) Can instance methods of Down use U? Can instance methods of Up use D?

(J Can class methods of Down use u or U? Can class methods of Up use d or D?

If you are uncertain about your answers, create a brand-new application and per-

form the experiments. (To create a new application, use your Application Manager.
Pop up a menu and pick Applications > Create.)

Blocks [...]

Like everything else in Smalltalk, a block (sometimes also called a context) is an object.

It is defined by placing code between brackets [...]. But it is stranger than most

objects, because the code it represents might never execute. Meanwhile, you can assign

it to a variable, pass it around as an argument of a message, and send it messages—in

short, you can treat it like any other Smalltalk object. The code will execute only if the
block receives an explicit request for it to do so. Here’s an example.

Q) If you execute:

Kee He talk’]

the assignment to the variable X occurs, but the code for talking does vot execute.

Only by sending the message:

X value

does the code actually execute.

Q) Blocks occur regularly in conditional messages. Execute this:

(H isKindOf: Mammal)

ifTfrue: X

and:

(H isKindOf: Mammal)

ifTrue: [P2 talk]

ifFalse: [H talk]

Q) They also occur in loops. Execute:

6 timesRepeat: [P2 talk]

QO With a little syntactic twist, blocks can also have arguments. For example, to mul-

tiply all the elements in a set, display (don't forget to declare global variables):

MyProduct := 1.

S := Set with: 5 with: 3 with: 4.

S do: [:number | MyProduct := MyProduct * number].

MyProduct

56 EXERCISES—FOUNDATIONS | CHAPTER 4

The do: method is one of the most common ways to loop. It iterates over all the
elements of S, substituting them one at a time for the variable number in the

block. The name of this variable is arbitrary; it could just as well have been called

:element or :n as :number.”

Class Date

Date objects occur frequently in applications. Class Date is unusual because it has
many more class methods for creating instances than other classes do. For example,

knowing a day from 1 to 366 and a year, the newDay:year: class method can create a

date instance for this date. Or, from a day and a month and year, the newDay:-

month:year: class method can create a date instance for that date.

Q) Display the object returned from sending the message today to Date.

QC) Use the newDay:year: method to create December 31, 1999; assign it to a global
variable X.

Q) Use the newDay:month:year: class method to create your birthday; assign it to a
global variable Y. Read the comment in the method first to determine the form
that it expects for its arguments.

Q) Verify that X > Y returns a sensible object.

Rendering any Smalltalk object into text

The printString message attempts to return a string from any object at all, although
the string may not be very informative. Some examples:

U To see how useful it is to be able to render an object as a string, contrast displaying:

The Diva iso" 4...)P2

with displaying:

'The bird is ' , P2 printString

> IBM Smalltalk also supports an infrequently used feature known as block temporary variables. These
are variables that are declared inside a block for use only within that block. For example, in the
block [|x| ...] the variable x has been declared and may be used freely within the block. If the block
also has an argument, the form is [:number | |x| ...].

4.4 SMALLTALK'S DEBUGGER 57

U Similarly, contrast displaying:

Y , ' is my birthday'

with displaying:

Y printString , ' is my birthday'

Many Smalltalk implementations have a single printString method, located in
class Object. IBM Smalltalk has a few, but not many, more implementations of print-

String. (How many?) How then is printString rich enough to render practically every
kind of object into a meaningful text string? In fact, it is not at all rich enough.

Instead, it invokes another method that is implemented individually in many classes;

it is this method and not printString that does the brunt of the work of rendering

objects into strings.

U) Find this method. How many implementations of it are there? (Hundreds!)

4.4 Smalltalk’s debugger

Debugging

() Create a new application (or use one of yours), then a subclass AAA of Object,

with an instance variable iv and an instance method m whose body is:

iv := 4.

self badMessage.

Transcript show: 'Done'.

Execute:

AAA new m

The debugger window that appears is called a walkback because the list in the upper

left windowpane lets you scroll, or “walk back,” through the method invocations lead-

ing to the error. Each line represents a class and method. The order is that in which

the methods called each other, with the caller beneath the callee. In all, they depict the

frozen stack of method invocations at the time of the error.

58 EXERCISES—FOUNDATIONS | CHAPTER 4

The line AAA>>#m indicates the method you wrote. Selecting this line displays your
own code in the large windowpane, as you can see above. (The notation
AAA(XXX)>>#mmm, means that although the object is an instance of AAA, the

mmm method is inherited from the superclass XXX. Depending on the whim of the
tool, the # may or may not be part of the notation.)

() Examine the present object (an instance of AAA) by double-clicking on self in the
middle windowpane. An inspector opens on the object, from which you can deter-

mine the current value of the instance variable iv.

Q) You can fix the problem directly in the debugger, without having to use a browser:

remove the erroneous message in the large windowpane, then save (recompile).

Close the walkback window and verify that:

AAA new m

runs correctly.

Controlling execution step by step

Once the debugger freezes the execution stack, you can often continue executing with
the mto button (which stops immediately after plunging down into the current,
highlighted message), the over button (which stops after completely executing the high-
lighted message), the return button (which stops after completing the current method,

4.5 PROVOCATIONS 3h)

just before returning to its calling method), or the resume button (which executes as

far as possible).

Q) Replace self badMessage with self halt in the preceding exercise, and again execute

AAA new m. This time, experiment with the buttons.

4.5 Provocations

Aliasing

QC) Display or inspect.

Ir p|
r := Rectangle origin: 20@20 extent: 10@10.

p := r corner.

DexXse Ose View 5 Ome

Now remove the quotation marks, and display or inspect again. Did you expect r to

change? p refers to r’s corner—p is an alias for the corner point. Thus, by changing

p, r itself changes. In Smalltalk, aliasing occurs because variables are pointers, even

though there is no syntactic cue that they are.

Q) Replace the third line with p := r corner copy and display or inspect again. This
time, r is unaffected. That’s because p is no longer an alias for the corner point

itself, but a separate object that is a copy of the corner point.

Smalltalk shields programmers from the pointer bugs that afflict programs in lan-
guages with explicit pointers, but at the cost of making aliasing less apparent than in

conventional languages.

Concise reuse

QO) Write a method foobar in class AAA with this body:

eee LOUSROTe COUC mir.

Transcript show: 'To be or not to be'.

Er LOLS More. Code) 7.5)

QO) Create a subclass BBB of AAA. Make instances of BBB behave the same as

instances of AAA, except that they respond to foobar messages with ‘My kingdom
for a horse’ instead of 'To be or not to be’. The ground rules are not to copy code—

60 EXERCISES—FOUNDATIONS | CHAPTER 4

for example, copying "... Lots of code ..." to another method would not be a con-
cise form of reuse. Instead, consider modifying the foobar method in AAA and
defining brand-new methods in AAA and BBB.

Because no one can anticipate in general how code will be used, or reused—we did
not know of the requirement for BBB>> foobar until after AAA>> foobar was work-
ing—no one can expect to produce reusable designs without considerable trial and
error. “Not until you try to reuse do you discover what’s wrong” [Sarkela 1989].

CHAPTER 5

Abstract classes

This chapter and the next introduce essential object-oriented concepts that build on
and go beyond the elemental principles of objects, classes, and inheritance.

Abstract classes are a simple idea that profoundly influences software design. The

definition sounds paradoxical: an abstract class is a class that never has any instances.

Why bother to build a class that won't have any instances? We'll spend this chapter
answering this question, going so far as to argue that such classes are indispensable in

good object-oriented design. We begin with some examples.

Class Magnitude is abstract. (See the drawing on page 14.) No one has any use for
something as abstruse as an instance of Magnitude. Nevertheless, class Magnitude has

subclasses like Date and Time, whose instances are quite useful. An abstract class can

act as a center for gathering behavior and expectations common to its subclasses. In

this case, as we saw on page 15, the behavior common to Magnitude’s subclasses is

comparability. For example, two instances of the subclass Date can be compared via

messages like <=. Although Magnitude has no instances to enjoy this behavior, its sub-

classes evidently do.

Animal is another abstract class. We have little interest in an instance of class Ani-

mal—it’s instances of Whale and Dog that we care about. This idea is not just a pro-

gramming nicety; it’s a cognitive distinction in the everyday world. The concrete
objects we visualize are whales and dogs, not animals. What after all would something

as abstract as an animal look like?

In Smalltalk, the most abstract of all abstract classes is class Object. An instance of

class Object is too nebulous to be useful to a programmer. Yet class Object is an
invaluable center for gathering expectations we have about all Smalltalk objects: all

objects should be copyable, displayable, testable for equality with other objects, and so
on. The idea sounds tidy, but there’s a rub. Copying or displaying an object depends

61

62 ABSTRACT CLASSES | CHAPTER 5

a lot on the particularities of the object. It would be naive to hope that we could write
code in class Object for copying or displaying and have it work meaningfully for all
subclasses. That’s why an abstract class is a repository for expectations. We expect
objects to be displayable and we expect animals to move, but how they do it depends
on the kind of object or animal. The actual code to display and copy is likely to reside

in concrete subclasses, not the abstract class.

5.1 Exercise in object-oriented design

Consider this fictitious hierarchy of class Table and its

subclasses. An instance of ArrayTable is organized as Table

an array; that is, its elements are stored at consecutive Ye Ny

offsets in memory, the first at the first offset, the sec- guerillas
ond at the second, and so on. An instance of Link- VEE

Table is organized by a chain of pointers; its elements ArrayTable — LinkTable

are scattered through memory, the first pointing to the
second, the second to the third.... We are going to examine the object-oriented impli-

cations of searching these tables.

Here’s some plausible pseudo-code for a search method:

search for an <item>

start

loop while (not end and next * <item>)

end loop

if end then return not_found

else return found

Underlines indicate methods. Thus the search method calls three other methods,

namely start, end, and next.

Q) In which classes should each of these four methods be coded?

5.2 Solution and discussion

We begin with next. The way in which a table advances to its next element depends
on the kind of table. An ArrayTable adds 1 to its current index (index := index + 1)
while a LinkTable updates a pointer (current := next). Since the logic is different, the
two subclasses will need their own separate versions of the next method.

5.2 SOLUTION AND DISCUSSION 63

The situation for the start method is similar. An ArrayTable starts by initializing
the index to the first element (index := 1) while a LinkTable initializes the pointer to

the head of the chain (current := head). Again, separate versions of start must occur
in the two subclasses. There also must be two versions of the end method: an Array-
Table must test for the upper limit of the array (index > upper) while a LinkTable tests
for a null pointer (current = nil).

So far, then, we're forced to write separate versions of the start, next, and end
methods in the two classes ArrayTable and LinkTable:

SequentialTable

VARS
ArrayTable —_LinkTable

Start start

next next

end end

Do we also need two versions of the search method? That would be foolhardy, for
the code in both versions would be identical; both would simply be based on the
pseudo-code illustrated above. Instead, we will write it once, in class SequentialTable,

and let the subclasses inherit it:

Table

SequentialTable

Va eerste

ArrayTable —_LinkTable

start Start

next next

end end

Now, why not move search still higher, into class Table? Because our search

method has a strongly sequential flavor, and some kinds of tables behave in non-
sequential ways. Consider a hash table, for example. A hash table searches directly

instead of sequentially. Given a search item, the table uses the item itself to calculate
(“hash”) a position where the item may reside. This kind of table doesn’t iterate through

its items one by one. Hashing calculations don’t resemble the sequential pseudo-code
above at all. Therefore a hash table needs its own version of search, so we end up with

our methods distributed through the hierarchy like so:

64 ABSTRACT CLASSES | CHAPTER 5

Table

ve
SequentialTable | HashTable
/ Nei search

ArrayTable LinkTable

Start Start

next next

end end

5.3 Pure virtual (subclassResponsibility) methods

So far, Table has no behavior at all. We dared not write search there, because its sub-

classes required their own versions. On the other hand, one could argue that a class

with a name like Table ought to be searchable; we expect any table to be searchable.

Object designers settle this quandary by boldly writing a search method in Table
anyway, but one that does nothing. This disembodied method is variously called a
pure virtual function (C++), implementedBySubclass or subclassResponsibility method

(Smalltalk), a deferred routine (Eiffel), or an abstract method (Java). I will use these

terms interchangeably, even the C++ term pure virtual, because it is so evocative.

(What could do less than something that is purely virtual?)

Why bother with a method like Table>>search that does nothing? There are two
reasons: it announces to potential consumers of Table’s subclasses that they ought to

be able to find things in any table by using a method named search. And it announces

to the programmers who will write any Table subclasses that they are obligated to sup-
ply a search method. At the very least, then, a pure virtual method is effective docu-

mentation. In Smalltalk, it’s little more than this; the pure virtual search amounts to

an informal contract between Table consumers and Table developers. Nothing

enforces this contract. But in a language like C++ where the compiler can settle con-

tract disputes, once the designer specifies a pure virtual function, the subclasses must

provide a concrete (“do-something”) implemetation of the function, or the code will

fail to compile. That is, a pure virtual function in C++ enforces the contract between

consumers and developers.

Notice one logical consequence of pure virtual methods: a class that has such a

method is necessarily an abstract class. An instance of Table is nonsensical, since it has
no working code for its search method.

5.6 ENSURING NO INSTANCES 65

5.4 Exercise: discovering pure virtuals

C) Returning to our example, the hierarchy contains, in addition to Table, one other
abstract class. Which class is this, and does it present another opportunity for pure
virtual methods?

5.5 Solution and discussion

Do any other classes in the hierarchy have no instances? SequentialTable is such a

class. Its subclasses can have instances because they support a full complement of

behavior, namely start, next, end, plus an inherited search, but any instances of

Sequential Table itself would be worthless. Hence SequentialTable is an abstract class.
Now an abstract class is rather hollow unless we have a sense of what can be

expected of it. The mechanism for recording these expectations is to declare pure vir-

tual methods. What should these methods be for SequentialTable? The suspects are,

of course, start, next, and end. Not only are these natural qualities of sequential-ness,

the search pseudo-code actually demands their presence. What better way to remind
the Array Table and LinkTable developers to implement them than to declare them as

pure virtual, subclassResponsibility methods? The final hierarchy, then, looks like this:

Table

Pas search* ae

SequentialTable | HashTable
search search

a | start*

ArrayTable LinkTable Xt”
end*

start start
next next * deferred, pure virtual,
end end subclassResponsibility

5.6 Ensuring no instances

We have determined that Table is an abstract class; an instance of it would be worth-

less because it would not have sufficient executable behavior. It would be nice if

object-oriented languages could protect programmers from mistakenly creating such

an instance. Smalltalk can’t quite. The best it can do, if a wayward instance of Table

has been created, is to alert the programmer at the time the instance receives a search

message. If Table>>search is absent, the message triggers the familiar doesNotUnder-

stand: walkback that occurs whenever an object receives a message that it can’t resolve.

66 ABSTRACT CLASSES | CHAPTER 5

The walkback duly alerts the programmer, but the preferred technique is not to omit

search, but to write the method as follows:

search: anItem

self subclassResponsibility

Then any attempt to send the search message to an instance of Table will invoke the

subclassResponsibility method. This method too produces a walkback, but one that

specifically describes its cause as the absence of a proper implementation of search. As

we discussed earlier, writing search in this way also delivers the most important service

of pure virtual methods—documentation of the abstract class.

Compiled object-oriented languages like C++ can do even better. By specifying
even one pure virtual function in a class, the compiler rejects any code that declares an

object of that class. Thus, the mere presence of a pure virtual function guarantees that

the class will have no instances and will really be abstract. '

In either case, Smalltalk or C++, the goal is the same: we don’t want programmers

to use instances of the abstract class because the abstract class lacks a full complement

of behavior. It presents expectations but doesn’t have the assets to back them up.

Technical aside: Sometimes a shrewd designer will write a benign method in an abstract

class with no code at all, not even the message self subclassResponsibility. Here’s an

example:

customInitialize

"This method does nothing, not even cause a walkback!

It executes harmlessly, but if you wish to provide

some subclass-specific initialization code, feel free to

override it in your subclass."

Let’s say that some method in the abstract class (perhaps its initialize method) executes

some standard code, but along the way also executes self customInitialize. The pro-

grammer of a subclass can optionally override customInitialize to do something spe-

cial, but if she does not, the inherited customInitialize method executes harmlessly.

The designer has therefore opened an optional back door for custom code, analogous

to what was called a wser exit in the heyday of mainframe system software. Today these
back doors are sometimes referred to as hook methods.

1 ; ;
The C++ jargon for an abstract class isan ABC, or abstract base class.

5.7 CONCRETE BEHAVIOR IN ABSTRACT CLASSES 67

5.7 Concrete behavior in abstract classes

Lest you write off abstract classes as devoid of substance, you should know that it’s

possible and often beneficial to imbue them with concrete behavior too. In other

words, not all methods in an abstract class need be pure virtual. The class may still

have lots of code that is shareable among its subclasses. For example, Smalltalk’s Col-

lection class is an abstract class with plenty of behavior its concrete subclasses—Array,

Set, SortedCollection, and many others—gratefully inherit.
A concrete method in an abstract class will sometimes appear to invoke one or

more pure virtual methods. This is not as odd as it sounds. In the table example we
just studied, the search method in class SequentialTable is a concrete method that

appears to invoke Sequential Table’s pure virtual methods next, start, and end. These

pure virtual versions actually never execute. Instead, because we use only instances of

the subclasses of SequentialTable, the concrete, overriding versions execute. This is

such a typical characteristic of sound object-oriented designs, and so often misunder-

stood by newcomers, that I want to belabor the point by examining another example.
Consider a method max: that returns the maximum of two magnitude objects.

Nothing deters us from implementing max: concretely in the abstract class Magnitude:

max: anotherMag

self < anotherMag

ifTrue: [“anotherMag]

ifFalse: [“self]

The odd aspect of this code is that although it is in class Magnitude, it uses a method,

<, that cannot be implemented in class Magnitude. (That's because comparisons like <

depend on the internal representation of an object, and these representations differ

from subclass to subclass. For instance, the representation for objects of the Time sub-

class differs from that for the Float subclass. That’s the “catch” we discussed on page 15.

With this background—that max: uses a method that must be defined in sub-

classes—what kinds of objects in the Magnitude hierarchy can execute max:’s code?
Clearly not instances of Magnitude itself, since Magnitude is abstract and should have

no instances. Hence, only instances of subclasses qualify. Consider 13.7, an instance

of Float, and the message:

Be Wey Ise

The relevant portion of the class hierarchy is:

Magnitude

PIS
Number

68 ABSTRACT CLASSES | CHAPTER 5

Now 13.7’s class, Float, doesn’t implement max:. Thus 13.7 searches up its inherit-

ance tree until it finds a superclass that does implement max:—in this case Magni-

tude. The max: code above then executes. The first line sends the binary message <

back to self (13.7). This time 13.7 recognizes < as a method that its own class Float

implements, and hence executes it without recourse to inheritance. The result is true

(because anotherMag is 17.3), and so the code executes the branch that returns 17.3

(anotherMag) as the final result.

To recap, the code for max: was written in Magnitude with the full understanding

that it depends on pure virtual methods that can’t possibly be written correctly in
Magnitude. No instances of Magnitude, only instances of its subclasses, can success-

fully execute max:. And finally, because the code in max: refers to self, execution can
flow from the superclass method (max:) down to the subclass method (<).

This example is typical of sound object-oriented design. It maximizes reuse because

there is just one max: method and as many versions of < as necessary, but no more than

are necessary. More important, subclass implementors can direct their attention to sub-

class-specific methods like <; they enjoy the benefit of max: without thinking about it.
You should seek opportunities to write reusable methods like max: in your own

applications. Unfortunately on larger projects, where different subclasses are written
by different developers, opportunities for unifying common function aren’ often rec-

ognized. In effect, each developer writes a slightly different version of max:. The price

is redundant thinking, design, code, and especially maintenance. The redundancy can
cost hours and days when the methods in question are more complex than max:

5.8 Summary: methods in abstract classes

The methods in an abstract class have three primary forms. Some are pure virtual (sub-
classResponsibility, deferred, abstract, implementedBySubclass); subclass developers

must override them with concrete implementations. Some are concrete and self-con-

tained; subclass developers inherit them without any obligations. And some are like max:

(or SequentialTable>>search) above; subclass developers are obligated to provide some

concrete behavior that the method needs, but they do not override the whole method.
There is no consensus on terminology for distinguishing the three forms, but

[Wirfs-Brock et al. 1990] and [Johnson and Russo 1991] call them abstract methods
(the Java term), base methods, and template methods, respectively. [Gamma et al. 1995]
also call the last kind template methods. | think of them as yo-yo methods because exe-
cution bounces up and down with respect to a subclass, and framework designer Kirk
Wolf refers to the phenomenon as an apparent down-call.

You will see in Chapter 19 that abstract classes and these three kinds of methods
are at the heart of object-oriented frameworks.

CHAPTER 6

Containers and other

indispensable ideas

In the everyday world, containers—things that contain other things—are everywhere.

Pots, spoons, baskets, buses, countertops, books, CD-ROMs, and pea pods are all

containers. Containers commonly even contain other containers. My kitchen contains

a pantry, which in turn contains shelves, which in their turn contain boxes and cans,

which contain cereals and soups. My kitchen also contains a refrigerator, which con-

tains shelves and a door, both of which are also containers.

Containers are such indispensable everyday objects that we should expect them to
also be indispensable software objects. The patterns that occur among software objects

should reflect the ones that we observe among everyday objects.

For a programmer, important containers include queues, stacks, arrays, sets, and

the like. Object-oriented programmers, and especially Smalltalk programmers, some-
times call containers collections. That’s because the container classes in Smalltalk are all

subclasses of an abstract class named Collection:

Collection
ee bret igs

Dictionary | SequenceableCollection Set

uz rs

wee a
Array OrderedCollection

For our purposes, collection and container are interchangeable.

69

70 CONTAINERS AND OTHER INDISPENSABLE IDEAS | CHAPTER 6

The hierarchy above shows just a few of IBM Smalltalk’s container classes. Here are

the most commonly used Smalltalk containers, and some of their distinguishing char-

acteristics.

Class Characteristics

Dictionary Like a real dictionary, it organizes information by a

lookup key.

Array Its elements are arranged in consecutive slots. Also,

its size is fixed.

OrderedCollection Like an array, but its size may increase or decrease.

Set Its elements are not arranged in any order. Also,

an object can occur in it at most once.

String It contains 0 or more characters.

ByteArray Like an array, but its elements are bytes.

SortedCollection Smarter than an ordered collection, it maintains its

elements in an ordering determined by some sorting
criterion.

IdentityDictionary A special, efficient dictionary, suitable mainly if the

keys are Symbol or SmallInteger objects.

Stream (nota collection, Smarter than a collection, it remembers where it

but similar) was last accessed.

A final word of introduction to the study of containers: practically every object-
oriented design you do will require one or more containers, including your first sizable

design exercise in the next chapter. Learning to recognize the need for containers in
your designs is a major step toward becoming a good object-oriented designer.

6.1 Heterogeneity and homogeneity

In the everyday world, some containers, such as drawers, hold many kinds of things
and others, such as three-ring binders, hold just one kind of thing, such as pages.
Smalltalk’s containers are like the drawers. That is, a typical Smalltalk container won't
verify that its contents are all of the same type; it can hold integers, or whales, or even
a mixture of integers and whales. This drawer-like property, the ability to hold hetero-
geneous elements, is attractive but potentially dangerous. Its attraction is evident: you

6.2 EXERCISE: HETEROGENEITY AND HOMOGENEITY 7]

can pick up and use a container without worrying about whether it will work for the

kinds of objects you want to hold—ir'll hold any Smalltalk object. On the other hand,
if your container is one that maintains elements in sorted order (see the exercise in the

next section), what good would it be to hold a mixture of integers and whales, or for

that matter, whales alone? Or, suppose you have a set that presently holds integers, but
youve accidentally deposited a whale into it. If you double all the elements, the whale

will protest, via a walkback, that it doesn’t understand multiplication by two.

6.2 Exercise: heterogeneity and homogeneity

QL) Ordered collections are like arrays, except that their size is not fixed. Define a class

Whale, then explore heterogeneity by displaying the following. (Don’t forget to
declare global variables like OC.)

OC := OrderedCollection new.

OCragdsmadu:

adds

"OC add: Whale new."

oc.

Remove the quotation marks and try again. This exercise demonstrates that the

ordered collection is able to accommodate any kind of object. However, if you
want to do something meaningful to OC, its heterogeneous contents are a prob-

lem. Why does executing the following code produce a walkback?

Pet s= "tl.

OC do: [:elem | Pet := elem, Pet].

Pet

But if you now re-comment the whale line by replacing the quotation marks,
and display the whole sequence of statements, from beginning to end, the errors

vanish and Smalltalk displays ‘cat’.

QO) Another subclass of class Collection is SortedCollection. An instance of class Sorted-

Collection is a collection whose objects are always in sorted order. Display:

X := SortedCollection new.

 aecle SS AGale Ze Goltle ,

X

What defines the order? The answer is that every SortedCollection object has a
sort block that defines the ordering operation. The default operation is <=. Reverse

the order by displaying:

72 CONTAINERS AND OTHER INDISPENSABLE IDEAS | CHAPTER 6

XSsortBlocksalcarbalmat==)bilx

X

QO How heterogeneous is a sorted collection? Unlike a set, which accepts any object

you add to it, a sorted collection starts sending comparison messages as soon as you

add more than one object. If an object you add isn’t comparable, the sorted collec-

tion will protest with a walkback. For example, execute:

X add: Whale new.

Thus the first object you add to a sorted collection can be of any class, but all

subsequent ones had better be comparable to the first.

6.3. Exercise: dictionaries

Q) Looking things up—in dictionaries, phonebooks, software help files, relational

database tables, and so on—is an elemental activity for both humans and comput-

ers. Smalltalk’s container class for this activity is Dictionary. Dictionaries are

among the most widespread containers in a typical Smalltalk application. (Arrays,

however, are even more prevalent.) To see the relative occurrence of these objects

in your current image, display these lines, one by one:

Set allInstances size.

Dictionary allInstances size.

Array allInstances size.

String allInstances size.

Q) A Smalltalk dictionary consists of entries that Smalltalk calls associations. Each
association has a key and a value. Executing:

X := Dictionary new.

X at: 'Kilauea' put: 'Most active volcano';

at: 'Denali' put: 'Formerly Mt. McKinley'.

constructs a new dictionary with two associations whose keys are geographic
names and whose values are descriptions of the associated places. You can look up
an association by displaying:

X at: 'Denali'

or you can examine the entire dictionary by executing:

X inspect.

6.4 PREPARATORY EXERCISE: IDENTITY VERSUS EQUALITY 5}

6.4 Preparatory exercise: identity versus equality

Like any object system, Smalltalk maintains a critical distinction between identity and
equality. You will need to grasp this distinction to understand identity dictionaries in
the next section.

To say that “two” objects are identical is to say that they are actually the same

object. The message selector that tests for this condition is ==. As an example, X == X
results in the true object, no matter what object the variable X may refer to.

U) The == message can be used to resolve some fundamental questions in Smalltalk.

For one, do different occurrences of an integer refer to different objects or the same

object? To answer this question, execute the first two lines below, one at a time, then

display the last line:

X = 3%

Vitet=t 53's

X == Y,

Since the result is the true object, we conclude that there is only one 3 object in all

of Smalltalk. (The same is true for any “small” integer, which means technically any

instance of the class SmallInteger. Each dialect of Smalltalk has a range, beyond which

an integer is no longer an instance of SmallInteger but LargeInteger. For IBM Small-

talk, this range is from —2*° to +2°°-1, or -1073741824 to +1073741823.)

Q) Symbols are like integers: there can be at most one symbol with a given spelling, as

you can verify by executing these lines, one at a time, and displaying the last one:

X := #Hobbes.

Y := #Hobbes.

X == Y,

On the other hand, repeat the experiment, again line by line,’ with:

X := 'Hobbes'.

Y := 'Hobbes'.

X == Y,

' In some Smalltalk dialects, including IBM’s, the behavior of examples like these depends on

whether the code is compiled all at once, or piece by piece. When compiled all at once, the compiler
can perform optimizations that camouflage the striking results we want to see.

74 CONTAINERS AND OTHER INDISPENSABLE IDEAS | CHAPTER 6

The result, false, forces us to conclude that the two instances of the string 'Hob-

bes' are distinct from each other. In other words, strings are not identical, even if they

consist of exactly the same characters! Picture it in this way:

#Hobbes *Hobbes’ *Hobbes’

Just one Possibly many

The other test, equality, uses the message selector =. This is a weaker test than iden-

tity. In rough terms, equality merely measures whether two objects are “indistinguish-

able.” The precise meaning of “indistinguishability” depends on how the programmer

defines it for a given class; that is, on how the programmer overrides the = method.

QO) Execute the first two lines, one at a time, and display the last:

X := 'Hobbes'.

Y := 'Hobbes'.

X = Y.

The result, true, tells us that the two strings are equal to each other, even though

we have just seen that they are not the same, identical string object. Thus, objects may
be equal—indistinguishable—without being identically the same object. On the other
hand, identical objects are necessarily equal.

Identity is such a fundamental Smalltalk notion that if you override the == method

Smalltalk ignores your override.” By contrast, you can override the = method at will.
Therefore, in your own classes, the definition of equality—“indistinguishability”—is
entirely up to you. As a case in point, Smalltalk’s designers decided on their own defi-
nition of equality for strings, namely that two strings are equal if they contain the
same characters in the same order. But before you override equality in your classes,
read the upcoming section “Overriding equality.”

6.5 Identity dictionaries

Class Dictionary has a famous subclass named IdentityDictionary. These two kinds
of dictionaries use different tests to determine whether two keys are the “same.” Ordi-
nary dictionaries use the equality test, and identity dictionaries use the identity test.

») : ® Actually, there is an uncommon way to force your own == method to execute. See the technical
aside on page 197.

6.7 OVERRIDING EQUALITY 75

What's more, in many Smalltalk products, the implementations of at:put: and at: in

class IdentityDictionary execute faster than in class Dictionary. And identity dictio-
naries occupy less storage than ordinary dictionaries. When performance matters,
identity dictionaries may be preferable. But you can use them only if equal keys are
also identical. For example, using strings as keys in identity dictionaries is inadvisable.
That's because most programmers who write code like:

someDictionary at: 'Hobbes' put: 'l7th century philosopher'.

someDictionary at: 'Hobbes' put: ‘stuffed tiger'.

expect the second at:put: to replace the value '17th century philosopher’ by ‘stuffed
tiger’ at the (sole) dictionary entry for 'Hobbes'. Ordinary dictionaries indeed behave

this way. If, however, the dictionary is an identity dictionary, we know that the two

strings are distinct objects, so that, contrary to expectation, a separate second entry

will be created.
To summarize, almost all identity dictionaries in practical use have keys that are

either small integers or symbols. These make suitable keys for identity dictionaries
because for these kinds of objects, equality implies identity. For most applications,
ordinary dictionaries suffice, and they have the advantage of operating reliably for any
kind of key at all.

6.6 Exercise: identity dictionaries

Q) Explain why this code, executed line by line, produces a walkback:

X := IdentityDictionary new.

X at: 'Heidegger' put: ‘Difficult existentialist’.

X at: ‘Heidegger’.

6.7. Overriding equality

We've seen that developers have the prerogative of overriding the = method as they

please in their own classes (page 74). Those who do, however, risk introducing a subtle

bug into their programs. They will find, for instance, that objects they add to a set

may appear not to be there later on. I call this the “anomaly of the disappearing ele-

ment,” and you will experiment with it in the exercise in the next section.

Here’s how the anomaly occurs: sets use hashing to determine where to insert an

added object, and the default hashing algorithm produces different hash values for
two distinct (non-identical) objects. The set therefore tends to place non-identical

objects in different positions, which is ordinarily desirable and harmless. But if the

76 CONTAINERS AND OTHER INDISPENSABLE IDEAS | CHAPTER 6

developer overrides the = method so that the two distinct objects are equal, adds the

first one to the set, then searches the set to see if the second, equal one is present,

expecting that it is, he will find that it isn’t. That’s because the set will begin its search

at a different position, determined by the different hash value of the second object.
The developer’s error was to expect the second object to behave as though it were iden-

tical to the first, when in fact it is only equal to the first.

This scenario may seem unlikely, but it arises in client/server systems, which com-
monly use a proxy for an object to stand in for the object itself. To determine which
proxy stands for which object, the system uses an overridden equality test that com-

pares a problem-specific datum (like a social security number or other unique identi-

fier) in the proxy and the object. Although the proxy and its object aren't identical,
they are equal because they have the same identifying datum. The system then treats
the proxy and its object as though they are the same, which was the purpose for over-

riding equality. But it also exposes the system to the “anomaly of the disappearing ele-
ment.” The different hash results of the proxy and the proxied object specify different
positions for the two objects:

_ Slots
© in aSet

Trouble!

To prevent this anomaly, whenever you override the = method for a class, also over-

ride the hash method. Whatever the = method compares, write the hash method so

that it hashes the same thing. In the client/server example above, if the = method com-

pares a social security number, write the hash method so that it too hashes the social

security number. This ensures that when a set hashes to determine the position of an

object, it will compute the same position for both the proxy and its object.

6.8 Exercise: anomaly of the disappearing element

Q) Write a subclass Book of Object with an instance variable isbn and methods set-
Isbn: and getIsbn that simply set and answer the instance variable. Override the =
method so that it compares ISBN numbers:

= anotherBook

“self getIsbn = anotherBook getIsbn

6.9 EXERCISE: EXCURSION INTO STREAMS Wp

The following code will construct a library with an initial capacity of 100 hold-
ings, add a holding, then test the library for the holding. Execute the first two lines,

one at a time, then display the last line:

Library := Set new: 100.

Library add: (Book new setIsbn: '0-671-20158-1').

Library includes: (Book new setIsbn: '0-671-20158-1').

The result, false, demonstrates the anomaly of the disappearing element. (The set
is large enough that it is statistically unlikely for the result to be true, but if it is,

adjust the size of the set.) Now amend class Book so that the anomaly does not occur.

L) Once you've solved the preceding exercise, here is an additional wrinkle. An

object's identity may occasionally change. Perhaps the book has been re-assigned a
different ISBN number. This change affects future searches through the library:
the book will again not be found. Why not?

6.9 Exercise: excursion into Streams

Stream classes are not officially under Smalltalk’s Collection hierarchy, but streams are
so closely allied with collections that this chapter is a sensible place in which to intro-

duce them. Streams do something that collections cannot: a Stream remembers where

it was. You can work somewhere in the middle of one, go away for a while, and then
continue working on it at the same place you were before. For example, a stream over

a string can remember where you last accessed one of its characters, so that at any time

you can ask the stream for its mext character. Collections cannot remember where

something last happened to them.

Q Predict the result of displaying this code:

|stream|

stream := ReadStream on: 'Van Gogh'.

stream next; next; next; next; next; next.

Notice that the stream remembers its position between next messages.

Q) One of the most common everyday programming problems is having to construct

a string from various sources of information, then passing it off as an argument to

some distant object. Complete this code sequence:

|string|

string := "You write a few lines".

Transcript show: string.

78 CONTAINERS AND OTHER INDISPENSABLE IDEAS | CHAPTER 6

in such a way that executing the sequence will produce this text in the transcript:

Sunflowers

Irises

Starry Night

Hint: When you want your string to advance to the next line, you have little
choice but to physically advance using the <enter> key on the keyboard. Unfortu-
nately, the resulting code is awkward to read and maintain.

It is more elegant to create a stream and incrementally add chunks to it until it is
complete. For incremental processing, streams excel and strings founder. It is contrary

to a string’s nature to grow, since a string has a fixed length.

Q) To illustrate this approach, reproduce the result above by completing this code
sequence:

|stream|

stream := ReadWriteStream on: ''.

stream ips

nextPutAll: 'Sunflowers';

"You write a few messages".

Transcript show: stream contents.

stream close.

To summarize, if you need to access or add consecutive elements of a collection,

you will have to write code that keeps track of the positional information. Better to use

a stream, which relieves you of this obligation by absorbing the responsibility into its
own behavior.

6.10 Containers versus aggregations

Aggregations and containers share a main characteristic: a bigger thing holding smaller
things. They differ in that an aggregation is, by convention, a rigid relationship
between an object and its parts. The makeup of a container, by contrast, is expected
to evolve, with elements taking up residence and departing over time. A telephone,
comprising a handset, a dial, and so on, is an aggregation. So too is a compiler, com-
prising a lexical analyzer, a parser, and a code generator. On the other hand, a set or a
queue is a container, one of whose principal responsibilities is the comings and goings
of objects within it. Containers should therefore respond to add and remove requests.

6.11 SHALLOW AND DEEP COPYING 79

You can verify this property by browsing through Smalltalk’s Collection hierarchy and
noticing all the add: and remove: methods.’ An object like a telephone for which
pickup and dial, rather than add and remove, are the more apparent behaviors, should

not be designed as a container.

The trouble is that this apparent distinction is sometimes not so crisp. Whether an

object has the rigidity of an aggregation or the plasticity of a container is a distinction
in degree only. Consider the leaves on a branch. They are rigidly located at fixed loca-

tions on the branch, yet they come and go from year to year. One could argue that a

branch is an aggregation or a container.

In many situations an object is predominantly an aggregation but also has contain-

ment properties. A human body is an aggregation of limbs and organs, yet it also con-

tains blood cells that are continually replenished. That doesn’t make the body a

container—you wouldnt’ define it as a subclass of Collection. It is an aggregation, but

one of the components of the aggregation happens itself to be a container, namely, the

circulatorySystem, which is a container of blood cells. The component of the body,
rather than the body itself, is the container.

Similarly, a class browser, though principally an aggregation of user interface wid-

gets, also contains the collection of methods for the class it browses. Again, the

browser itself is not a container, but one of its constituents—its methods instance

variable—is an instance of SortedCollection that contains methods.

Designs that resemble these decompositions are plentiful. A body and its circula-

tory system, a browser and its methods, or a refrigerator and its vegetable drawer are

all objects with many sub-objects, one or more of which is a container object. You will

see several of these designs in this book; they represent a design pattern, the smart con-

tainer, in Chapter 18.

6.11 Shallow and deep copying

Copying an object sounds straightforward. In fact, it’s one of the

subtlest and most trouble-prone areas in object-oriented pro- (@)

gramming. The essential question arises when an object refers to

other objects. Consider a container. If we copy the container,

what should happen to the elements in it? For an even simpler

example, suppose one object has an instance variable v that

points to a second object and we copy the first. What should
Before copying

happen to the second?

3 In some dialects, add: and remove: are pure virtual (subclassResponsibility) methods in Collection,

reminding us that the subclasses are obligated to support adding and removing.

80 CONTAINERS AND OTHER INDISPENSABLE IDEAS | CHAPTER 6
eee

The question has two possible answers. If the element or referenced object is also

copied, the copy is deep; if it isn’t copied but instead shared, the copy is shallow.

Deep copy Shallow copy

As the drawing illustrates, shallow copying is appropriate when you intend to share
the referenced objects. Container objects are usually shallow copied because we intend
to share their contents. In fact, shallow copying is the prevalent (and default) copy in

Smalltalk. A realtor, for example, would prefer a shallow copy of the county’s collec-

tion of real estate listings because he can then be sure that he and everyone else is mod-
ifying the same, shared entries. (He'd be even happier to have access to the master

collection itself rather than any kind of copy at all, for then he could also keep up with

deletions and new listings.)

Deep copying is appropriate in some situations. A Xerox copy is a deep copy

because the copy and the original don’t share anything. The copy is a complete clone
of the original. Deep copying is also often appropriate for aggregations—a house and

its garage, for example, or a bicycle and all its parts and, recursively, all their subparts.
Two houses shouldn't share one garage, nor should two bicycles share one seat. Aggre-
gations generally retain rigid associations with their components.

There is, however, a gray area between deep and shallow copying. Suppose the

house has an instance variable for its builder and we intend for copies of the house to
share the same builder. Then copies of the house should have both shallow and deep
characteristics. They must be shallow, to share the builder, and deep, to replicate the
garage, as well as the kitchen and other rooms. This example illustrates that the devel-

oper of any class whose objects are likely to be copied must design its copy method in

accordance with the sharing requirements of the object’s instance variables.

6.12 Commentary: value and reference semantics

Smalltalk is based on reference semantics. Its programming model relies on pointers

that refer one object (or variable) to another. In Smalltalk, though you may think of a
bicycle object having a seat object embedded in it, the bicycle object merely has a
pointer to the seat object. Thus, when a message passes argument objects, it is really

6.13. COMMENTARY: CONTAINERS IN C++ 81

passing pointers to those objects. (At a machine level, little objects like characters and

small integers are passed around bodily and indeed embedded in bigger objects rather
than pointed to by those bigger objects. But a Smalltalk programmer’s conceptual

view is pointer-based; that is, reference semantics.)

By contrast, C++ supports value semantics as well as reference semantics. A C++

programmer may optionally embed a seat solidly into a bicycle. Also, messages fre-
quently pass an object around by passing a copy of the object instead of a pointer to
the object. Because of this tendency for C++ code to copy objects, C++ programmers

discipline themselves to think rigorously about whether their copies should be deep or

shallow. Copying demands so much attention in C++ that each class has a special fea-

ture (a copy constructor) with which the programmer defines just how copying of its

instances should work. Smalltalk programmers tend to be less disciplined in thinking

about copy behavior, and get away with it because copying occurs so much less fre-
quently in Smalltalk.

6.13 Commentary: containers in C++

C++ containers are like three-ring binders: they generally hold objects from a single

class (or subclasses of that class). These containers are less flexible than Smalltalk’s, but

safer, for any code that attempts to add an object of the wrong class to a C++ container

fails to compile. This safety comes at a price, though, because you need to develop a
class of container specialized for each kind of object you intend to hold—a SetOf-
Whale as well as a SetOflnteger. A C++ language feature (templates) simplifies the def-

inition of such container classes, but container libraries in C++ still tend to be

unwieldy, complex, and difficult to write. The need for fast, robust containers has

spawned a cottage industry for container libraries. Sometimes these libraries are called

foundation \ibraries, to acknowledge their essential place in object programming.

Sadly, foundation libraries are sometimes not interchangeable,‘ because they are often
integrated into larger libraries or frameworks that provide other services like window-

ing or communications or persistence. By contrast, every Smalltalk dialect includes an
integrated foundation library—the subclasses of Collection. This library cannot be

decoupled from Smalltalk because so much of Smalltalk itself is built using collection

classes.

4 Standardization will help. The ANSI C++ standard now specifies a Standard Template Library.

CHAPTER /

CRC cards

We now shift from the essential concepts of containers and object identity to a con-
crete design problem, and some techniques to help solve it. After working through the

design here you will, in Chapter 8, write the Smalltalk code to implement it.

Probably no object-oriented subject fuels as much debate as object-oriented design
methods.' The question of what contributes to a good design method is large and inter-
esting, but not our focus in this book. Rather, I present a simple technique that helps

with one inescapable step in designing an application—discovering classes. This tech-

nique is a simplification of CRC cards, an idea published in 1989 by Kent Beck and

Ward Cunningham. Since then CRC cards, or Class-Responsibility-Collaboration cards,

have been widely used and imitated. (See the commentary at the end of this chapter.)
Start with a pile of index

rds ees inches Gee” Cee eee eee
inches, as you wish. (Their paper 9°eS here ars s OY SOSS:
stipulated 4 x 6 inches, but Kent Responsibilities

and Ward themselves don't gohere

agree.) If you don't have index
cards, tearing up several full

sheets of paper into quarters is

almost as good. On each card,

sketch an instance of an object: RRNA

]

Also known as methodologies. Methods is the trendier, more precise term, but suffers from already
meaning something else to object-oriented programmers. I’ll use the terms interchangeably, except
where there is risk of confusion.

82

7.1 DESIGN EXERCISE 83

Record as responsibilities whatever you think instances of the class ought to be able to
do, the “know-how” that instances should have. Record them at a level of detail you
find helpful. For example, you may first want to describe the responsibilities of a traffic-
light object broadly: “Mediate orderly flow of vehicles through an intersection.” Later,

if youre almost to the point of writing code, you might describe responsibilities more
concretely: “advanceColor,” “initializeGreenDuration:,” and so on. Whatever you do,

don't use the cards dogmatically. They are an informal tool, and they should stimulate
your creativity rather than limit it.

If you feel unhappy about something youve written, throw away the card and start
again. Cards are inexpensive, and disposability is one of their happiest virtues. In this
early phase, the price one pays for stupidity ought to be low; the more dumb ideas you
can discard early, the better your final design will be. This is an eternal human truth,

even for the most successful thinkers. Francis Crick, who shared a Nobel prize for dis-

covering the double-helix structure of DNA, said, “If we deserve any credit at all, it is

for...the willingness to discard ideas when they become untenable” [Crick 1988].

The software designer who doesn’t explore some dead ends won't learn much.

Another virtue of CRC cards is tangibility. Designers wave them around for
emphasis, move them as arguments of a message, or arrange them on the table to illus-

trate relationships. This tangibility explains why attempts to represent CRC cards in

computerized tools have been disappointing. Entombing them in a computer, no

matter how advanced the user interface may be, constrains your thinking at a time
when you need to excite your imagination and brainstorm as much as possible. The
time for methodical thought comes later.

7.1 Design exercise

Q) Use CRC cards to design a simple personal-computer application that could keep
track of a checking account. Transactions should be retained in a log or register,

and ordered by date.
Remember to explore competing alternatives and throw away cards that are

least promising. In the next chapter you will write the code for this exercise, so

keep the design simple—don’t get bogged down in all the detailed kinds of data
that a full-blown application needs, and don’t go overboard into extensions like

on-line checking. Aim for a range of two to five cards. Finally, remember the lesson
in Chapter 6: containers are essential participants in almost every object-oriented

design.

84 CRC CARDS | CHAPTER 7

7.2. Solution and discussion

If you have trouble getting started, try looking for nouns and verbs in the problem

description. Nouns are candidates for objects, and verbs are candidates for responsibil-

ities or methods. This is a suggestion, not a general rule. (For example, in Chapter 15,

verbs will aso be excellent candidates for objects. Design always depends on the prob-

lem at hand.)

From the problem statement, these nouns are promising: account, log, transaction,

and date. We know from our earliest glimpses of Smalltalk that class Date is already

available in Smalltalk. Let’s concentrate then on the other three classes, beginning with

some plausible responsibilities for them:

_ Transaction

Knows date

& amount

© Handle

transactions

Keeps Gs)

alog Knows
balance

Maintain

sort order

oe)
Accept & contain

transactions

Although account balances and transaction amounts are not explicit in the prob-

lem statement, they seem like unavoidable elements. On the other hand, I’ve chosen

to omit a host of ancillary elements—account number and description, check num-

ber, payee, memo—on the grounds that they would contribute little to understanding

the essential object interactions that we are after. Adding such information would be

straightforward and accurate but distracting. Note that I’ve overlain the edge of the

Log card on the Account card to emphasize the close collaboration implied by the

responsibility, “The account keeps a log.”

So far, the transaction objects are bland. This is about to change. The log’s chief
responsibility—sorting—recalls a class we worked with in Chapter 6 with exactly this
responsibility. That class was SortedCollection (page 71). Thus, rather than defining
a new Log class, we will reuse the SortedCollection class. Remember that a sorted col-
lection object sorts the objects added to it, provided that its sortBlock makes sense for

7.2 SOLUTION AND DISCUSSION 85

the objects. The default sortBlock assumes that the objects understand the <=

method. That’s why integers and their kin are all automatically sortable. To ensure
that transactions are sortable via the default sortBlock, they too must be comparable
via <=. Therefore an additional responsibility for the transaction card above is, “Com-
parable to one another.”

With an eye toward eventual implementation, we can summarize our observations
with a more detailed, Smalltalk-biased version of the cards:7

Transaction

getAmount

etDate
aes
initialAmount:date:

Account

getBalance

initialBalance:

handleTrans:

SortedCollection

So
remove:

The dashed lines around SortedCollection indicate that it doesn’t warrant a new card

or class because, like Date, it is already present in Smalltalk. That leaves just two

classes to write, Account and Transaction. The kinds of objects the methods expect as
arguments, omitted from the drawing to reduce visual clutter, are:

¢ handleTransaction: a Transaction

* initialBalance: anlnteger

¢ initialAmount: an/nteger date: aDate

° <= another Transaction

¢ add: aTransaction

* remove: a4 /ransaction

where anJ/nteger represents a monetary amount, such as dollars.

* Spelling out actual method selectors departs from the responsibility-based spirit of pure CRC cards.
We are slanting the design toward Smalltalk, and also blurring the distinction between “what” a
class does and “how” it does it. But a little help with method names now will help you write the
code in the next chapter.

86 CRC CarDs | CHAPTER 7

Now we turn to relationships like inheritance and aggregation. Inheritance is irrel-

evant for the classes in this design, but aggregation matters. The usual way to imple-
ment “knowing” and “keeping” responsibilities of a CRC design is to define instance

variables. Thus, for the responsibility, “An account knows its balance,” define an

instance variable in Account named balance to hold the account's current balance.

And for an account to “keep a log,” define an instance variable log, which will refer to

a sorted collection. Similarly, because transactions “know” their amounts and dates,

they ought to have instance variables amount and date.

What about the log’s responsibility for “containing transactions”? Since we intend

to reuse class SortedCollection, which Smalltalk has already implemented for us, we

don’t really have to worry about the details for discharging this responsibility. (Here,
nevertheless, is an aside about the internals of containers like sorted collections. A con-

tainer cannot practically describe each object in it by an instance variable with a name.
A Smalltalk container therefore has an unspecified number of unnamed instance vari-

ables, and the number of such variables appears to increase or decrease as one adds or

removes objects to or from the container.)

If we enlarge the insides of our objects to emphasize instance variables (and the

“knowing,” “keeping,” and “containing” relationships they imply), our cards suggest

this arrangement of objects:

_ Transaction

Account

amount

date
balance

log < ay
ae

» SortedCollection

aninteger

:
aninteger

Although I have said little about the “collaboration” part of CRC cards, you can see
that instance variables impart collaborative relationships to a design.

The progression in this section is more orderly than you should expect from real,
large-scale problems. Experienced designers working together on large problems will,

7.3. COMMON QUESTIONS AND ANSWERS 87

at times, shuffle dozens of cards as fast as they can scribble notes on them; between the

frantic scribblings will be lulls consisting of hard thinking and discussion. The crude

product of all this effort eventually needs to be rewritten with more thoughtful and
lucid wordings, to communicate the ideas to developers who weren't present for the

session.

7.3 Common questions and answers

There is little chance that everyone who tries the problem above will arrive at exactly
the same conclusion along exactly the same path. Some of the common deviations are:

1 Why not use plural names for classes, like Accounts and Transactions? The short,
irrefutable answer is that it is a convention among object-oriented designers to use

singular names for classes. But another answer, subtle but important, is that using

a plural name suggests a collection, and we wouldn't want to mislead anyone into

thinking of a class as a collection. The preferred way to think of a class is as a fac-

tory (Chapter 2).

2 Why not subclass Account (Checking, Savings,...) and Transaction (Check,

Deposit,...)? These extensions would make the design more realistic. It is never-

theless almost always better to master the simplest form of a design first, and save
the embellishments for later. One danger in enriching a design too early is in

making it so rich that developers never implement it. This is a frequent cause of

failed projects. Better to have accomplished something simple than nothing at all.

(Our solution is so simple that our mechanism for distinguishing deposits from

checks is to use a positive transaction amount to denote a deposit and a negative

one to denote a check or debit. It is simple enough that you will be able write the

code for it in one sitting.)

3. Why not make transactions responsible for “processing themselves”? This is an ac-

ceptable alternate design, consistent with the term “transaction,” which computer

professionals define as a “unit of work.” On the other hand, home users of this

kind of application feel that a typical transaction like a check is relatively inert,

and that accounts are the center of activity. I’ve deferred to the user’s viewpoint
rather than the professional's.

4 Where should you record class responsibilities or methods on a CRC card? Good

question. Methods like new don't belong in the picture of an instance because an

instance doesn’t understand them. Only the class understands them. If they are
worth capturing, I generally scribble them in the upper-right corner of the card.

88 CRC CarRpDs | CHAPTER 7

In addition, you can prefix them with a special symbol, like a $ as in some nota-

tions [Rumbaugh et al. 1991].

5 Can we shift the responsibility for comparison from the transactions to the log?

Yes, this is an attractive alternative. In the present design, the log does not know it

contains transaction objects; it assumes only that the objects it contains respond

to <= messages. Removing the <= from Transaction implies that the log (a sorted

collection) must assume more knowledge of its contents. The log’s sortBlock

must now retrieve and compare the dates from the transactions. To specify such a
sortBlock, send the message:

log sortBlock: [:tl :t2| tl getDate <= t2 getDate].

This log doesn’t entrust comparison to the transactions; instead it compares their

dates itself. The same idea can be used to sort the transactions by other criteria, like

amounts. Just update the sortBlock by sending the message:

log sortBlock: [:tl :t2| tl getAmount <= t2 getAmount].

7.4 Commentary: analysis, design, and implementation

Methodologists often partition software development into three phases: analysis (fully

expressing the application’s requirements in a vocabulary comprehensible to users),
design (determining software structures to solve the problem), and implementation

(rendering the design in a specific operating environment and computer language(s)).

Each phase is, in effect, the “how” of the preceding phase’s “what.”

Unfortunately, one person's “what” is another's “how,” and so the phase boundaries

blur unavoidably. Is deciding how to make “an account have a log” the act of designing

or the act of implementing? (You could define a log instance variable in class Account,

as we've done, or you could add a single entry to a dictionary whose keys are account

objects and whose values are logs. The dictionary is overkill for the small personal sys-
tem we studied, but it may be more attractive in a distributed computing environment

where account information—like name, number, PIN—and transaction histories may

reside on different computers. As you weigh these two alternatives, are you designing
or implementing?)

Even the level of abstraction—design or analysis—you ascribe to the relationship,
“an account has a log,” is inconclusive. Nothing precludes a relationship from appear-
ing at two levels of abstraction. Indeed, in object-oriented methodologies, objects and
their relationships generally endure from one phase to the next. Despite the inherent
ambiguities, it is still customary to try to distinguish among analysis, design, and
implementation phases. Thus one usually ascribes the responsibility cards in the

7.4 COMMENTARY: ANALYSIS, DESIGN, AND IMPLEMENTATION 89

diagram on page 84 to the design phase, and the prescription of Smalltalk-style
method names in the diagram on page 85 to the implementation phase.

Rigid progressions from analysis to design to implementation, historically known
as “waterfall” models of development, are out of vogue. Problems can rarely be fully
understood until after users have examined a prototype. Nothing will expose more

misunderstandings or fuzzy analysis or elicit more feedback than a working mock-up
or prototype. For this reason, current design or analysis methods almost always
emphasize “spiral” or “iterative” development, which explicitly acknowledge that what

you learn from downstream phases induces rework of upstream phases.

The greatest shortcoming of CRC cards is also their greatest strength, namely, their

disconnection from the biases and constraints of actual computer systems. They pro-
voke discussions, but they leave little trace of these discussions. The cards fall out of date

and are eventually lost, along with the ideas and associations they once engendered. Of
course, a project is obligated to preserve as much of value as possible from those early
CRC discussions. The prevailing schools of thought for solving this documentation

problem are to: (1) produce computerized diagrams that illustrate the analysis or design,

supplemented by text, (2) write thoughtful comments embedded in the code, or (3)

combine these. There has never been a completely satisfactory solution, even before

objects or CRC cards, and each project must set and enforce a suitable policy.
Any policy must rely heavily on the names and comments of methods. That’s

because these are practically the only development artifacts (along with class names)
that are relevant and meaningful to everyone on the project—analysts, developers,
testers. Everyone can understand them, and if anyone changes them, everyone else can

understand the changes. Class and method names therefore constitute a common lan-

guage for sharing the conceptual model (page 144) of the problem. A conceptual

model that people do not have to translate for one another is a side-effect of a success-

ful object-oriented project.

Good analyses and designs also treat the dynamic behavior of a system—that is,
sequences of messages among several interacting objects. CRC cards promote rudi-

mentary forms of dynamic design because the cards can be waved about and at one

another while enacting scenarios, but one must again turn elsewhere to document the

knowledge so acquired. More on this subject in Chapter 10.

The original CRC cards [Beck and Cunningham 1989] had two columns of text,

the first listing responsibilities and the second collaborators; that is, classes on which

the current class depends to fulfill its responsibilities. Variants abound, however. The

simplification in this chapter, underplaying the collaborators, is among the least

orthodox. Whether as part of using CRC cards or another method or at a later stage in

design, the developer must think through collaborating classes. Rebecca Wirfs-Brock’s

90 CRC CARDS | CHAPTER 7

“responsibility-driven design” methodology follows the original card format, but also
documents superclass and subclasses on the card, and suggests that collaborators be

grouped with the responsibility they support. Her use of cards does not emphasize
their physical manipulation, however. Her book [Wirfs-Brock et al. 1990] is a good
source of larger CRC examples than this chapter's, and is also one of the standard text-
books on object-oriented design and analysis. Others include those by [Rumbaugh
et al. 1991; Booch 1994; Jacobson et al. 1992; and Coad and Yourdon 1991].

Last but not least, failure as a necessary element of good design is the theme of

[Petroski 1985]. He examines engineering failures, but the underlying principle is uni-

versal.

CHAPTER 8

Exercises—Implementing a design

You now have the basic skills to begin developing Smalltalk applications. Your first
application will be a prototype of the application we designed in the preceeding chap-
ter. Rather than spell out every detail of the implementation, I'll just guide you
through the mileposts and encourage you to think through the details. As you know
by now, Smalltalk programmers explore a lot as they develop applications, so you
should expect to explore and experiment as you proceed. Allow about three hours for
this chapter.

8.1 Create the classes

Q) First create a new application for the work you are about to do.

Q) Then create both classes Account and Transaction.

Q) Define the instance variables for these classes. To review the appropriate instance

variables, look at the figure on page 86, and to review how to create classes and

instance variables, review your work in Chapter 4.

8.2 Atest case

A good way to stay honest is to write a method you can use as a test case.

OQ) Create a class method named example for the class Account. It won't make sense to
execute it yet, since none of the methods it invokes exist.

91

92 EXERCISES—IMPLEMENTING A DESIGN | CHAPTER 8

example

"Test by executing:

Account example inspect

|account transaction|

account := Account newBalance: 2500.

transaction := Transaction newAmount: -300 date: Date today.

account handleTransaction: transaction.

“account

This test uses class (factory) methods to create an account and a transaction, pro-

cesses the transaction, and returns the account. The reason for so much white space in

the comment is to make Account example inspect an easy target for highlighting with
the mouse and executing. You can execute the method while you are browsing it,

instead of having to move over to the Transcript every time you want to run a test.
Not essential, but a convenient trick. Also notice that unlike most other new methods

youve seen, the methods for creating new instances of Account and Transaction above

expect arguments.

8.3 Write “new” methods

U Because you will be creating new instances of both classes in the application, write

a “new” method for Account and Transaction. Remember that these are class

methods, not instance methods. Here’s an example of the method for class

Account:

newBalance: anInteger

"Answer a new instance of the receiver with balance anInteger"

“self new initialBalance: anInteger

Notice that you will also need an instance method named initialBalance:.
By the way, you don’t have to use names with “new” in them, like newBalance:,

although it is common to do so for class methods that create new instances of the class.

8.4 Write instance methods

() Prepare instance methods for the classes Account and Transaction, according to
our design. Refer to the CRC cards on page 85.

8.5 TEST YOUR SOLUTION 93

The <= method often puzzles beginners. Remember that the design assumes that

transactions are smart enough to compare themselves with other transactions, for

which they need the binary method <= in class Transaction, like so:

<= anotherTransaction

"Answer true if my date is before anotherTransaction's date,

false otherwise"

eee

But how? The code must explicitly compare my (the receiving transaction’s) date with

the date of the other transaction. How do J access the inside of another object? That’s

the basic prohibition of encapsulation: I can't. I can obtain the information only if the

other object has a method that obliges. Thus transactions must also support a method
of the form:

getDate

“date

8.5 Test your solution

Now run the test case by executing Account example inspect (or equivalently, inspect-

ing Account example). An inspector window should open on an account, but if some-

thing goes wrong, like getting a walkback, use it as an opportunity to practice your

debugging skills. (Review the exercise on page 57 if necessary.) Once you have an

inspector window on an account, verify that it holds your transaction. You can do so

by double-clicking on the entries in the inspector; this action opens another inspector
on whatever you double-clicked. By repeatedly double-clicking, you can drill down
and examine the account's log, any transactions inside the log, and dates and amounts
inside the transactions.

This first test was too simple to thoroughly test your code—one transaction

doesn’t make for an interesting sort. Write another test case, example2, similar to the

first, but that handles at least two additional transactions with different dates. You can

produce different dates in several ways: look through the class methods of Date or

review your work with dates on page 56. Run example2, and double-click through

inspector levels to verify that the log contains all your transactions, and that they occur

in chronological order.

94 EXERCISES—IMPLEMENTING A DESIGN | CHAPTER 8

8.6 Engineering discipline

The Smalltalk environment, dynamic as it is, encourages programmers to try changes

quickly, sometimes at the expense of sound engineering practices. For example, unless
cautioned otherwise, many students modify example directly instead of writing an
additional example2 and keeping the original example for regression testing. Make it
a practice to think twice before discarding any test case. Old test cases are one of the
best ways to ensure that you haven't introduced unwanted changes to your code. Lest
you fear having to retype or copy-and-paste test methods, notice that by merely over-

typing the first line of a method and saving (compiling), you create a new method—
different name, same code. Using this technique, you can effortlessly create a clone of
the original and then proceed to modify the clone as much as you wish. Thus, you can
retain the original until you consciously want to purge it.

8.7. A minor variation

Some people prefer a solution in which the account object itself builds new transac-
tions and processes them, so that a test method contains expressions like:

account transactionAmount: -300 date: Date today.

Q) Prepare a test method in this spirit, then implement the variation by writing the

instance method transactionAmount:date: for class Account. This method will

contain just one Smalltalk expression, and you need not write or modify any other
methods.

8.8 “Private” methods

In Smalltalk’s early days, a method was deemed private if it was to be invoked only by

other methods in its same class (or subclasses); a method was public if it could be

invoked by methods from other classes. Private methods were for use only by the pro-
grammer who was developing the class in question. Programmers working on other
classes were not to invoke them. With this understanding, the owner of a class could
rewrite it, revamping the class's private methods at will, as long as the public methods
retained their names and functions.

In the last few years, many Smalltalk programmers have relaxed the interpretation
of a private method. They now sanction invocations of a private method not only
from the same class but also from closely cooperating classes. Privacy has evolved into
an understanding within a subsystem or framework of classes rather than within an
individual class.

8.9 COMMENTARY: GETTERS AND SETTERS 95

In some Smalltalks you indicate that a method is private simply by adding the
word “private” to the method’s comment. Other Smalltalks have enhanced browsers

that let you earmark a method as private, either by placing it in a special category or

by means of a button that toggles between a list of all private selectors or all public
selectors.

In all cases, though, designating a method private is only informational. Unlike a

C++ compiler, the Smalltalk compiler has no way to determine whether a method

your code invokes even exists, let alone whether it happens to be private. Therefore
your code can freely invoke any method you like, private or not, even though the

author of the method may have intended otherwise. In short, Smalltalk privacy is a
recommendation only; it is not enforced.

() Browse through some Smalltalk classes and find some private methods.

) Which methods in your checking account solution ought to be marked private?
Make them private by pulling down or popping up the Methods menu and select-

ing Change public/private.

8.9 Commentary: getters and setters

Simple methods like getDate, which merely return an instance variable, are called

“getter” methods. Smalltalk stylists usually write getters more economically like this:

date

“date

This style is not ambiguous, in spite of how it may appear: the first date is the method

selector and the second is the instance variable in the transaction object.

The opposite of a getter is a “setter,” with a selector like setDate: or simply date:.

The method would be written:

date: aDate

date := aDate

Getters and setters (together called accessor methods) are common, pedestrian

methods in object-oriented programming, but take care not to overuse them. Writing

a public getter and setter for every instance variable violates the spirit of encapsulation,

because it announces that any other object may access the instance variables.
On the other hand, one stylistic school of thought recommends that you write pri-

vate getters and setters for every instance variable. The object itself should access its

own instance variables only by invoking the getter and setter methods, never directly.

This convention makes the design less brittle. For example, imagine that you decide

96 EXERCISES—IMPLEMENTING A DESIGN | CHAPTER 8

later to move information that is now in an instance variable to an entirely different

object. Without a getter and setter, every method that touches the instance variable
breaks. With a getter and setter, only the getter and setter methods must be rewritten.

For a discussion of this and other Smalltalk coding conventions and their ration-

ales, see [Skublics et al. 1996].

8.10 Summary

In the exercises of this chapter you produced a complete working application, however

small or artificial. By this I mean that all the application logic is there, and it executes

correctly. But you have probably noticed that the windows and buttons and scrollbars

that people have come to expect of Smalltalk applications are absent. Your application

has no user interface to speak of.

This absence is no accident. As you will see in Chapters 11-13, serious object-ori-
ented developers work hard to separate their user interface code from their application

logic. When we designed the checking account application in Chapter 7, we concen-

trated solely on the application objects, not a user interface. Windows come later.

CHAPTER 9

When (not) to inherit

Now that you have worked through serious Smalltalk code, we return to conceptual

challenges. In Chapter 2 I suggested that aggregation and inheritance are indepen-

dent, separable ideas. In fact, they are not so independent, and for some problems it is
difficult to decide which of the two to apply. This chapter exposes the tension between
them. (Further discussion appears in Chapter 14, on polymorphism, and in the com-

mentary on page 255.)

9.1 Historical background

In recent years, inheritance has received much more attention than aggregation,

mostly as a matter of fashion. Aggregation is the older facet of programming life. Pro-

grammers have used it for decades, so unwittingly that they never bothered to give it
a glamorous name. In Pascal, an aggregation looks like this:

type Flight = record

gate: integer;

terminal: char;

onTime: boolean

END;

and in C, like this:

struct Flight {

int gate;

char terminal;

int onTime;

97

98 WHEN (NOT) TO INHERIT | CHAPTER 9

Both samples express the idea of composing an airline flight from three constitu-
ents. Of course, nowadays the flight and its constituents are all likely to be objects, but
the underlying idea is still aggregation. In Smalltalk, one would have:

Object subclass: #Flight

instanceVariableNames: 'gate terminal onTime'

Notice the disappearance of type information in the Smalltalk code fragment. This
absence is not a characteristic of object-oriented programming in general, but of

Smalltalk in particular. The C++ version looks much like the C version, including the

type information, with the principal difference being the word class instead of the

word struct.

9.2 Inverting hierarchies

With inheritance as well as aggregation in our vocabulary, the potential complexity of
a design doubles. When a language gains power, it also presents opportunities for con-

fusion. Consider this innocuous aggregation:

Face

|
Mouth

Tongue

I suggest that by inverting this aggregation, I can produce a legitimate inheritance

hierarchy:

Tongue

|
Mouth

Face

Here's my argument. According to the discussion of inheritance in Chapter 2, we
agreed to the rule of thumb that instances of a subclass have more properties than
instances of their superclass. Mouth, then, should be a subclass or special kind of
Tongue, because a mouth is a tongue embellished with teeth, gums, and lips. Even
more striking, Face should be a subclass or special kind of Mouth because a face is a
mouth plus lots of additional properties like eyes, nose, ears, and cheeks. A face even
does everything a mouth does (it eats), and also sees and smells and hears. This analysis,
preposterous as it sounds, is completely consistent with the definition of inheritance.
Nothing in Smalltalk or C++ prevents you from designing and implementing a class
hierarchy in this way.

9.3. BUY OR INHERIT? 99

Hence the dilemma: should these classes be designed using aggregation or inherit-

ance? In this case, trust your intuition. Although it’s entirely possible to use inherit-
ance, thinking of Face as a special kind of Mouth just isn’t intuitive. And what isn’t

intuitive to the designer is unlikely to be intuitive to other programmers who will use
the design. The essence of programming objects is the cognitive economy they prom-
ise; a good design reduces mental translations. This observation alone justifies design-

ing a tongue as part of a mouth and a mouth as part of a face.

But we are not ready to dismiss the example yet. The decision may not be so clear

in other languages. Smalltalk supports single inheritance—each class has exactly one

immediate superclass. Other languages, like C++, support multiple inheritance, where

a class can inherit from several immediate superclasses. Designers using these lan-

guages sometimes employ a technique called mix-ins. Mix-ins are simple classes like

Mouth and Nose that are used as superclasses for creating more complicated sub-

classes like Face. The subclass gets its properties and behavior by inheriting from as

many mix-in superclasses as it needs. Thus, Face could inherit from doth Mouth and
Nose. Notice that although mix-ins clearly rely on the inheritance mechanism, the
designer is thinking of composition or aggregation—building an aggregate object like

a face from components like a mouth and nose.

9.3 Buy or inherit?

The problem in the previous section illustrates one of the most characteristic object-

oriented design quandaries, that of buying versus inheriting. To buy an object is simply

to acquire one for use, often by aggregation. Buy is a simple, evocative word, to my

knowledge first used in the context of programming objects by Bertrand Meyer

[Meyer 1988]. (You can also use the stuffier synonym, compose.)

In the preferred design above, class Face buys class Mouth. We implement this

design in Smalltalk by defining an instance variable in the Face class that will refer to

a Mouth object:

Object subclass: #Face

instanceVariableNames: ‘mouth ...

The method that initializes Face will include a statement like:

mouth := Mouth new.

If, instead of buying a mouth we wish to inherit it, as in the less desirable design, we

would have:

Mouth subclass: #Face

100 WHEN (NOT) TO INHERIT | CHAPTER 9

These two designs represent the full range of options open to the designer. There

are two techniques an object-oriented designer can use to access a classs behavior or proper-

ties: buy or inherit. If you like what you see in class Y and want to incorporate it into

class X you must either buy from Y or inherit from Y; these are the only ways to give
X direct access to Y. (Indirect relationships are another matter: see the discussions on

many-to-many relationships on page 217 and lawyer objects on page 233.)
This is a bold claim, but it is entirely consistent with your experience. Every direct

relationship you've designed or seen so far either buys or inherits. For example, in the
checking account exercise in Chapters 7 and 8, the Account class bought a SortedCol-

lection to use as its log.

9.4 Exercise

Remember that in Smalltalk, class Collection is an abstract class that is a superclass of

many subclasses with container-like properties. One of these subclasses is Ordered-
Collection. An instance of OrderedCollection maintains its elements in relative posi-

tions: it has a first, second, ... and last element. It has methods that remove or add to

either end of it. Thus, it resembles an array whose size may grow or shrink. For this
exercise, we care most about the methods that stretch or contract from the far end,

namely addLast: and removeLast.

Q) Design a Stack class. Because class OrderedCollection already offers stack-like

properties, you will want to exploit OrderedCollection directly. Sketch a solution

that buys, then a solution that inherits from OrderedCollection.

9.5 Solution and discussion

Here’s a design for buying an ordered collection:

r Stack OrderedCollection

initialize

push:

Pop

addLast:

removeLast

9.5 SOLUTION AND DISCUSSION 101

The instance variable oc enables the stack to access the ordered collection it is buying.

The essential methods for a stack are push: and pop. Their code buys an appropriate

method from the ordered collection, simply by forwarding the request across the

instance variable. Thus for pushing:

push: anObject

oc addLast: anObject

And for popping:

pop

oc isEmpty

aftirues [Anite

oc removeLast

(The first statement prevents a walkback in case someone tries to pop from an empty

stack.) Initialization sets up the instance variable to point to a valid ordered collection:

initialize

oc := OrderedCollection new

Contrast this with a design for inheriting instead of buying from class Ordered-
Collection:

OrderedCollection

Stack

* inherited

Because we're not buying, there’s no instance variable to forward requests across. And

because we are inheriting, the stack inherits the addLast: and removeLast methods

from its superclass. The stack zs an ordered collection; that’s what inheritance means.

That’s why the drawing shows only one object. The code for push: is therefore:

push: anObject

self addLast: anObject

The only difference from buying is that self receives the message instead of oc. In fact,

self is the one and only object available for receiving messages.

The code for pop changes in the same small way. And the initialize method disap-
pears, because there is no instance variable to set up.

102 WHEN (NOT) TO INHERIT | CHAPTER 9

9.6 Conclusions

Either technique, buying or inheriting, works. Inheritance generally yields a smaller
solution. In the example, inheritance lets us dispense with the initialize method, as
well as the oc instance variable. The net saving in this small example is only about two

lines of code, but it still illustrates the general rule that inheritance saves code.

Another consequence of inheritance is tight coupling. inheritance couples the sub-

class to its superclass so tightly that absolutely everything that applies to the superclass
also applies to the subclass. Whether this coupling is desirable or not depends on the

situation.

In our example, tight coupling would be undesirable. It would imply that any of

the dozens of messages that make sense for an ordered collection would also make

sense for a stack. That’s much more than we bargained for; it is treacherous for a stack

to respond to OrderedCollection messages like at:put: or removeFirst. A trustworthy

stack ought to respond only to messages push: and pop. Thus, to prevent subversive

messages in Smalltalk, the designer must buy instead of inherit. That is what the first

solution showed: buying safeguarded the stack from responding to OrderedCollec-

tion messages.

Inheriting, thereby tightly coupling two classes, is a long-term commitment,
because as the software ages and undergoes maintenance and enhancements, any

changes to the superclass will automatically reflect into the subclass. Again, whether
this commitment is desirable or not depends on the situation. The designer must con-

sider not only the economies of coupling the classes, but whether users of the classes

expect them to evolve in tandem. Do they expect public methods added later in the

superclass to be relevant for the subclass too?

In our example, it is unlikely that enhancements to the public protocol of

OrderedCollection will ever matter for stacks. Stacks should not do much besides

push and pop. Thus, subclassing Stack from OrderedCollection confers no mainte-

nance benefit and may even deceive users of stacks into expecting more similarities
with ordered collections than they should.

For this exercise on stacks, then, software engineering considerations militate in

favor of buying. The modest code savings from inheriting Stack from OrderedCollec-
tion aren't worth the reliability and maintenance implications.

The buy versus inherit decision is a fundamental activity in object-oriented design.
Initial intuition is often valid, but you should weigh the trade-offs—(1) code reduc-
tion, (2) subversive superclass messages, and (3) maintenance—summarized in this
table:

9.7 COMMENTARY: MULTIPLE INHERITANCE 103

Buying Inheriting

(Selectively access (Access all methods
methods of and instance variables
another class) of another class)

Code bulk More Less (good!)

Subversive superclass Preventable (good!) Possible

messages

Maintenance Evolve independently Evolve together

(loose coupling) (tight coupling)

Familiarity with Less More
the superclass’ internals

The last row in the table indicates the degree to which the developer will have to

study a class before buying or inheriting from it. Buying requires less familiarity with
the internals than inheriting does. For this reason, buying is sometimes known as

black-box reuse and inhteriting is sometimes known as white-box reuse.

The table is not the last word on the buy versus inherit dilemma. We will discuss
a powerful reason to inherit—polymorphism—in Chapter 14. Also, the commentary
on page 255 summarizes buy or inherit decisions in the context of object-oriented
frameworks.

The situation in other object-oriented languages is not as clear as the table sug-

gests. C++ designers use inheritance more than Smalltalk designers do, partly because

it is their only means of expressing polymorphism, but also because the C++ language

has facilities that can limit the wholesale inheritance of superclass features. Because

Smalltalk has no such facilities, Smalltalk designers must heed the cautions above.

If in doubt, consider buying. Novice designers tend to overuse inheritance; experi-

enced ones make an effort to buy. Asa rule of thumb, buying is less brittle than inheriting.

9.7. Commentary: multiple inheritance

Multiple inheritance (page 99) is a powerful facility of some object-oriented lan-
guages. What do you do if your language (Smalltalk) doesn’t support it? According to

the principle spelled out in this chapter, only one choice remains: buy. If X and Y are
two classes from which you would like a class C to multiply inherit, and Smalltalk lim-
its you to singly inheriting from just one of them, then you will have to buy from the

other.

104 WHEN (NOT) TO INHERIT | CHAPTER 9

The difficulty is that you may really want to inherit from both X and Y. That is,

you may really want C to behave as though it were both an X and a Y, which means

that C should respond automatically to all the same messages that X and Y do. Inher-

itance has this automatic property. But buying doesn’t. In this situation buying is

therefore a poor substitute. Smalltalk is not adept at simulating multiple inheritance

to the degree that would satisfy a C++ programmer.’

The argument over multiple inheritance isn’t completely one-sided. Its detractors

argue that it leads to problems that require complicated linguistic rules to resolve, and

these unfortunate problems occur so commonly as to counterbalance its benefit. Here

is a simple illustration of a problem known as repeated inheritance, so called because a

class will inherit more than once from another class.

Certain television programs mix dramatizations of TVShow

historical matter with archival documentary footage to ee

produce docudramas. A multiple inheritance hierarchy Drama Documentary

for this situation is shown on the right. EE al

Consider an instance variable defined in class oS

TVShow for the show’s director. Classes Drama and

Documentary evidently inherit this instance variable. Class DocuDrama thus stands to

inherit two directors, one from each of its superclasses, which would be an artistic night-
mare. We would prefer that DocuDrama inherit just one director instance variable.

On the other hand, consider another TVShow instance variable, duration. Classes

Drama and Documentary again inherit this instance variable, but now we may prefer

that DocuDrama inherit two copies of the instance variable, so that it can separately

capture the minutes of dramatic material and the minutes of documentary material.

To attempt to accommodate either possibility—sharing some multiply inherited

instance variables and replicating others—languages that support multiple inheritance

introduce additional, complicating facilities. For the details, see C++’s virtual base

classes [Stroustrup 1991] and Eiffel’s renaming [Meyer 1992]. In short, multiple inher-

itance adds power to a programming language, but at a cost of complexity.

Here is a closing historical curiosity: multiple inheritance appeared briefly in
Smalltalk-80, but was withdrawn because the benefits were deemed insufficient to

compensate for the ensuing complications.

' Buying may not substitute for inheritance, but what about the converse: can inheritance substitute
for buying? Rarely in Smalltalk, because of the reasons discussed in Section 9.6, It turns out though
that C++ supports a form of inheritance called private inheritance that resembles buying much more
than Smalltalk’s inheritance does.

CHAPTER 10

Use cases and dynamic

relationships

Until now, we've concentrated on the static relationships in an object-oriented appli-

cation—aggregation, inheritance, the methods and instance variables of an object,

and the like. The dynamic relationships—the order in which methods execute, the

births and deaths of objects and their interactions during their lives—are just as cru-

cial for understanding a design. These are the relationships that weave the objects

together to actually do something. Without them, an object model (or object analysis

or object design) is as empty as a ghost town.

Long before the dawn of objects, software engineers knew that dynamic relation-

ships were important. They used diagrams they called “flowcharts” to represent the

idea. Two decades of object-oriented programming passed before anyone thought to

introduce the same idea into an object-oriented design method. (See the historical

commentary on page 114.) Nowadays, finally, dynamic relationships are a standard
feature of all the major object-oriented design methods.

10.1 Interaction diagrams

A use case, as coined by Ivar Jacobson, is a scenario involving a user and an application.

In his words, it’s “a behaviorally related sequence of transactions in a dialogue with the

system” [Jacobson et al. 1992]. Now, this definition may make sense to a computer
scientist, but it’s a little esoteric for non-technical people. And non-technical end users

are usually the people who are supposed to help us understand new problems by

describing their use cases. Therefore I like to use a more accessible definition, like “an

105

106 USE CASES AND DYNAMIC RELATIONSHIPS | CHAPTER 10

activity or task that the computer can help the user perform.” This wording is simple

enough that it won't stand in the way of a meaningful dialogue between computer

professionals and computer users.
An example of a use case is, “Ask an Automated Teller Machine for the balance in an

account.” A detailed rendition of this use case might be, “The customer inserts his card,
the machine prompts him for a PIN....” Textual descriptions like these can be cumber-
some or vague, so the designer may choose to sketch an interaction diagram like this:

user application
sonunsennnssioe eo

userlnterfaceControl account verifier custome

insert card

SS PIN valid for dard?

time

query balance
$n

‘balance = $836’

Each vertical line represents an object (labeled at the top of the line). Horizontal

solid arrows represent messages and dashed arrows depict the object that a method

returns. The vertical boxes illustrate the duration of each method. Notice the time

dimension. That is what differentiates these interaction diagrams from pictures of

class hierarchies and aggregation relationships.

Interaction diagrams illuminate dynamic behavior better than any static picture can

hope to do, just as flowcharts and dataflow diagrams did for earlier, pre—object-oriented

methodologies. As a rule, whenever a design seems fuzzy in your mind, pause (don’t
write code) and examine its dynamic structure with use cases and interaction diagrams.

Concurrency warning: Nothing is concurrent about these interaction diagrams, nor
is object-orientation inherently concurrent. In particular, nothing in the Smalltalk and
C++ languages has anything to do with concurrency. This news comes as a surprise to
many newcomers, because the terminology of objects emphasizes messages, a word that
conjures up numerous senders and receivers communicating simultaneously. Concur-
rency 1s possible in Smalltalk and C++ as well as most other languages, but not because

10.1 INTERACTION DIAGRAMS 107

the languages support it directly. Instead, you have to go outside the language by call-
ing operating system services. For example, you can use UNIX forks and semaphores
or create OS/2 threads from either C++ or Smalltalk.!

In interaction diagrams like the one above, what may appear to be concurrently

executing threads or processes (like the vertical bars for query balance and get balance)

only indicate ordinary call-return semantics. The sending operation (query balance)

blocks (does not proceed) until the message it sends (get balance) returns, just as a call-

ing procedure in a conventional programming language blocks until a subprocedure it

calls returns.

Sometimes an activity of the system under study is at such a low level and so far from
the user that you would be hard pressed to describe the activity as a use case. But inter-
action diagrams can still be illuminating. The following example emphasizes low-level

Smalltalk message flows; the user’s role is only a mouse click. The diagram tracks what
happens from the time Smalltalk starts looking for an event, through converting this raw

Operating system information into an actual Smalltalk message, and finally scheduling
this message for subsequent execution by placing it in the CurrentEvents container.

© Smalitalk Notifier PMEvents CurrentEvents
_ (theSystem (aNotification (anArray) (anOrdered
Dictionary) | Manager) CirrentEvent Collection)

een ees (aninputEvent) (aWindow)
J sg notifyRecursive

a primitiveGetEvent

. event 14,5)
notify:event

selectorFor:114

gwmButton 1up:with:
me sendinputEvent:

#b1Up:with:aPt
eee]
add:msg
(w b1Up:aPt)
>

2 |
wmButton1up:aPt with: }..

signal a
nil Pe ine peg bes ego | Poe semaphore
— — — iis

' Although Smalltalk has classes for processes and semaphores, their instances simulate concurrency
and are not necessarily related to concurrent behavior in the underlying operating system. Future
releases from Smalltalk vendors may associate Smalltalk’s concurrent objects with actual operating
system threads. Java and Ada95 are commercial object-oriented languages that have built-in concur-
rency features.

108 Use CASES AND DYNAMIC RELATIONSHIPS | CHAPTER 10

Messages to self are depicted by solid arrows that hook back to the object they come

from. Dashed, hooked arrows depict the objects returned from such methods. When

successive return values are the same, the returned object isn’t repeated each time: for

example, the last four return values are all the nil object, even though the two hooked

arrows arent labeled. Sometimes a return value—frequently the default return value of

self—is unused and uninteresting; then the dashed arrow is omitted entirely, as you
can see for the add: method that finally schedules the Smalltalk message w b1 Up: aPt.

There’s no standard notation for these diagrams; I often use the conventions above,

but use whatever works for you.
This scenario applies to a specific Smalltalk (Smalltalk/V) and a specific operating

system (OS/2) and window manager (Presentation Manager, or PM). Several of us

who were concerned with event handling in that environment used this diagram off

and on for years as a reference.” The diagram is most likely not relevant for your prob-
lems, so you should not study its details. But other use cases and interaction diagrams
of complex scenarios specific to your own problem domain will be valuable to your
development team. Even a rough hand-drawn sketch is worth the effort. (See the

examples in the analysis and design discussion that begins on page 110.) Try to retain
some form of your sketches, no matter how rudimentary. Not only will other develop-
ers appreciate them, but you will discover that testers find use cases and interaction

diagrams more useful than inheritance and aggregation diagrams. Testers test what

software does, not the static relationships between classes and objects.

10.2 Exercise

In Chapters 7 and 8, you added transactions to a log (an instance of class Sorted-

Collection), and with no more support than a <= method for class Transaction, the

log sorted the transactions chronologically. For many students, this is a mysterious

happening.

U Work through a simple scenario until you are comfortable with the object interac-

tions. You can sketch an interaction diagram for the scenario, but you may find that
anthropomorphizing the objects—representing them as people or pencils or coins—
is just as effective. If you sketch an interaction diagram, keep in mind that the value
of the exercise is in thinking it through, more than in producing a pretty picture.

* The event happens to be number 114, which the operating system has defined as an up-click of the
left mouse button, and the resulting Smalltalk message (w b1 Up: aPoint) is a message to the win-
dow telling it that the click occurred at a specific point in the window. Another scenario, not illus-
trated here, iterates through the CurrentEvents container and executes each of the messages therein.

10.3. SOLUTION AND DISCUSSION 109

10.3 Solution and discussion

Before you examine the interaction diagram below, it’s important to develop a sound
intuition for the objects and their static relationships. That’s because interaction dia-

grams, sadly, contain nothing to help you reconstruct that static information. Let’s
review this static information. Refer to the drawings on pages 85 and 86 for this

review.

The log, being an instance of SortedCollection, by default uses the comparison <=

to sort. When we add a new transaction to it, it will ask the transaction to compare

itself (using <=) to the transactions already present, one at a time, until it finds the

right position in which to insert the new transaction. What does this new transaction

use to compare itself with the other transactions? It uses its own date, comparing it

with the other transaction’s date. This is a key piece of static information—that the
dates are encapsulated within the transactions. Keep in mind that the log contains

transactions, that each transaction encapsulates its own date, and that transactions

have a getDate getter (often named simply date) to access this encapsulated date. All

this information is static. The interaction diagram that weaves this information

together is:

log

trans1 date1 (aSorted _trans2
Collection)

account

add:trans1

<=trans2

getDate

Continue comparing -- with trans3,
trans4, ... -- until true for transx.

Then insert trans1 before transx.

YW |

Note that two instances of Transaction appear in the diagram. We need at least that

many to illustrate a comparison. Also note that although trans2’s date date2 partici-

pates critically in the interaction, at this level of detail we cannot see it receive or ini-

tiate any messages.

110 Use CASES AND DYNAMIC RELATIONSHIPS | CHAPTER 10

10.4 Use cases and interaction diagrams in analysis
and design

Use cases are valuable in the early stages of analyzing a new problem. Here are two

examples.

1 To build a subsystem for a new pharmacy application, we asked users of the old

application to think about the tasks they wanted the computer to help them with.
They first listed about four tasks, such as “enter a drug order” and “dispense

drugs.” These are both use cases. Because they had already used CRC cards to

identify a number of objects, we began next to work through interaction dia-

grams. Not unexpectedly, they observed that there were some important varia-

tions to the initial use cases. We identified those as additional use cases. When we

had completed this preliminary inquiry, they had found about eight use cases for
the subsystem in question, and we all had a good idea of the main objects and
their interactions. Together with the CRC cards, we had the information we

needed to develop a crude mockup of the subsystem.

2 Inthe requirements analysis for a banking application, although we had iteratively

developed important CRC cards and use cases, not until we worked through an

interaction diagram for a use case did the software developers and bankers reach a

real understanding. The bankers recognized for the first time how objects they
conceptualized could really do work for them by sending messages to one another,
and the developers saw both what the bankers were really thinking and how we
had to design the software to solve their problem. For both parties, this was a ca-

thartic moment.

These experiences illustrate one technique for object-oriented analysis. The first

two steps (their order is not critical) are to elicit CRC cards and use cases from the

users. Then, by working through message flows, the developers and users together can
refine both the CRC cards and the use cases to produce an initial round of object-ori-

ented requirements. The entire discussion can occur without introducing any techni-

cal complications—no one has to use words such as class, inheritance, or

polymorphism. Everyone can communicate using cards (objects), activities (use cases),

and telegrams or messages (interaction diagrams).

A general aside about analysis: Good analysts are flexible, spontaneous people.
They need to be able to switch gears when they sense that users are getting frustrated.
The larger the group of users, the worse the problem. Different people think in differ-
ent modes, and get frustrated for different reasons. Adapting to this variability in
human cognition is at the heart of successful analysis. A technique that inspires one
person stifles another. And a technique that works on one aspect of a problem won't

10.4 USE CASES AND INTERACTION DIAGRAMS IN ANALYSIS AND DESIGN dial

on another. In the banking application above, after many successful sessions with

objects and scenarios, one murky area remained. The banker charged with helping us
developers understand it was as frustrated as we were. So we stopped talking about

objects entirely, and started to sketch window layouts and how they might relate to
one another. This shift produced such responses as, “No, not that way.... Yes, yes,

good!” that got the whole effort moving again. Of course, developers imagine objects

under windows, and we were therefore subconsciously gathering object-oriented

requirements, but the conversation had been unshackled from any object baggage,

much to everyone's benefit.
I dont mean to suggest that drawing windows is a universal remedy for analysis

gridlock. It happened to work for those people on that aspect of that problem. That is

the point. Different approaches will work for different people and problems. The suc-

cessful analyst needs the creativity and optimism to keep trying approaches until one

works for the situation at hand. Methodologies won’ help.
It is worth repeating that it is possible to spend too much time documenting mes-

sage flows with interaction diagrams. Not every message flow deserves the time it takes

to make it pretty on a computer:

User LCDoeser Agenda Particpant Mail Accounting

Agent Agent

1: Remind that payment haen't arrived ,

PE Send reminder

3: Cancel current entry and post new reminder

4: OK to send

Real analysis sessions are so harried that we must capture message flows by hand—

computers are too slow for the dynamics of creative human interaction. Sometimes we
do not even have the luxury of thinking through the objects that send and receive mes-

sages. We may be pleased to walk out of a session with precious scribblings from a

whiteboard that resemble:

di2 Use CASES AND DYNAMIC RELATIONSHIPS | CHAPTER 10

Hastily hand-drawn flows like this are not very readable or shareable. On the other

hand, transcribing diagrams to a computer can take more time than your schedules

allow. Moreover, for many diagrams the chief benefit comes through the human

exchange in which they were created, rather than from the appearance of the final art-

work. You will have to decide, after considering the usual factors—shareability, project

standards, available staffing, management expectations—just how many sketches are

worth the considerable expense of transcribing into attractive computerized form.

10.5 Limitations

Interaction diagrams have limitations which may frustrate or disappoint you if you
expect too much from them.

¢ Interaction diagrams cannot represent loops and conditionals. You must either limit

your diagram to a scenario having a single path or annotate the diagram informally

with text. The single-path assumption is often acceptable because it is mainline pro-

cessing that you're often trying to illuminate. Another way to produce non-branch-

ing diagrams is to decompose a highly branching diagram into many small non-

branching ones; these small diagrams turn out to be reusable units for reassembling

other complicated diagrams.

* Not everything is a message. For a Smalltalk designer, assignment is the main cul-
prit. Interaction diagrams represent messages between objects nicely, but that’s all.
An assignment isn't a message to an object, and thus doesn’t lend itself to interaction

10.6 SUMMARY iiss

diagramming. (Iry diagramming balance := 2500.) For a C++ designer, the situa-

tion is even worse: ordinary function calls, which lack a preferred receiver object,
arent messages either. You can’t express them in interaction diagrams, which require

well-defined sending and receiving objects.

* Interaction diagrams are graphical, but they aren’t memorable. Because they con-
strain the objects to appear in just one dimension across the top edge, they lose the

spatial benefit of placing objects above, below, or near or far from each other, with

connecting lines indicating, say, aggregation relationships. In other words, interac-

tion diagrams express time wonderfully, but are virtually devoid of static information.

The first two limitations are troublesome mostly in lower-level interaction dia-

grams. If you stay at a high enough level, like the first example in this chapter, the
account balance query, you can often avoid these limitations.

10.6 Summary

I think of the design of a complex application as a misshapen multidimensional blob.

There is no simple formula for describing or understanding the blob; all one can do is

slice it in different ways and examine the cross-sections to get an idea of its structure.
The most familiar slices are static; they are usually class diagrams that show responsi-
bilities, plus inheritance and aggregation and other relationships.

But a static slice tells you nothing about what the application is supposed to do for

its users. For that you need dynamic slices. The simplest dynamic slice is a one-sen-
tence use case, then comes an expansion of the use case into a sequence of statements,

and finally we have interaction diagrams with their objects and messages. These slices

describe the functionality of the application.

Early in analysis and design, the dynamic slices clarify the static slices. That’s
because as you work through dynamic slices you realize that your CRC cards or class
diagrams are missing various objects and responsibilities. Later, when the blob has set-

tled down a bit, the dynamic slices become test cases for system testers: if a use case or

interaction diagram doesn’t work as documented, the tester knows something has

gone wrong. (Static diagrams are almost useless for system or integration testers, again

because they say nothing about what the application ought to be tested for.)

When you think about something from a different perspective you usually learn

something worthwhile. Thinking through the dynamic dimension usually illuminates

murky areas of the blob. Ifa design problem stumps you, try outlining a use case or an
interaction diagram; at the very least this tactic will give you a fresh outlook on the

problem. Often, it will propel you into a clarification of a murky area.

114 Use CASES AND DYNAMIC RELATIONSHIPS | CHAPTER 10

Unfortunately, for a lot of blobs not a scrap of documentation exists, yet they have

somehow gotten themselves realized into Smalltalk. Sooner or later you will need to

understand one of these blobs. The only surviving artifact is code, so you have no
choice but to slice through it. You can slice statically, by drilling down through

method invocations with browsers (using Browse Messages > Implementors, again and

again). Eventually, you will also have to slice dynamically, setting up experimental

conditions and stepping through execution paths with the debugger. This procedure

is like skillfully examining specimens with a microscope: instead of selecting tissue

slices and preparing them with appropriate dyes, you scaffold appropriate objects
together and set up conditions for a good debugger session. In effect you are recon-

structing what interaction diagrams would have told you had there been any.

10.7 Commentary: historical note

The value of understanding the dynamic aspect of a problem was appreciated long

before objects became popular. Software engineers used flowcharts and hardware engi-

neers used timing diagrams. What is surprising, or embarrassing, is how long it took

for an object-based variation to appear. Jacobson first alluded to use cases in [Jacobson

1987]. By now, every mainstream object-oriented design method advocates some

technique for representing an application’s dynamics. These techniques go by assorted

names: interaction diagrams, message flow diagrams, event traces [Rumbaugh et al.

1991], timing diagrams [Booch 1994], scenarios [Reenskaug 1996], or scripts [Gibson

1990; Rubin and Goldberg 1992].

For a different, higher-level look at application dynamics, see timethreads in [Buhr
and Casselman 1992].

CHAPTER I 1

The venerable model-view-controller

An application’s or system's user interface (UI) consists of everything the user interacts
with—the screens and sounds, menus, keyboard and mouse, and so on. This chapter

begins the discussion of user interfaces; the discussion concludes with Chapter 13,

which addresses the substantial challenges in actually designing a satisfactory user

interface.

We are going to set a goal: to separate UI from non-UI software elements as prac-

tically as we can. The idea of this separation, known as the model-view-controller

(MVC), dates back to the late 1970s and is the most important milestone in the his-

tory of object-oriented user interface design.

11.1 Model-view-controller example

Imagine that someone needs a computerized counting tool. Here are two applications

that would do the trick:

fim Counter Window | >} |f— Counter Window

Increment

Decrement

Ne

116 THE VENERABLE MODEL-VIEW-CONTROLLER | CHAPTER 11

These two applications evidently display their values differently, one digitally and the

other like an analog clock. The two kinds of displays are known as two kinds of views.

Strictly speaking, a view is just a way of displaying information. At this moment, the

digital view displays 9 and the analog one displays 3.
There are no connections between the two applications, even though they appear

side by side on the screen. You can increment either independently of the other, by

means of their respective menus. The applications therefore each rely on their own
underlying counter object—an object with an increment and decrement method and
an instance variable representing the current value:

Counter

These two instances of counter, known as model objects, operate independently of

each other, just as the views above operate independently. A model is responsible for

changing and maintaining the state of the underlying application—in this case, the

underlying counter. Models are ignorant of how their information is displayed; that is,

they are ignorant of their views. Models aren't visible on the computer's display.
We'll discuss the mechanism that connects views to their models shortly, but first

consider another possible configuration: both views could share one model object.

The two views would then operate in lockstep: if you increment either, the other also

increments because it is merely another view of one and the same model object. Here
are the two views:

Counter Window Counter Window
Counting Counting

11.1. MODEL-VIEW-CONTROLLER EXAMPLE NZ

And here is the model object both share:

Counter

decrement ,

So far, all the counters we've considered still operate in the same way, by means of

menu selections. The next step is to introduce an entirely different input mechanism,

like the buttons here:

unter Window

This application has the same kind of digital view we've already seen, and also the

same kind of model as before, but a different kind of controller—the technical term for

the input mechanism. This kind of controller also could have been associated with the

analog view, producing this counter application:

Window

In theory then, we can decompose the design of an application into independent

elements—models, views, and controllers. In practice, such a decomposition may be

more or less feasible depending on the framework of classes in which you are com-

pelled to work. For example, we shall see later that a full three-way decomposition is

more likely to occur in VisualWorks than in other Smalltalk environments.

118 THE VENERABLE MODEL-VIEW-CONTROLLER | CHAPTER 11

You can think of a controller as an object that handles input events and a view as

an object that handles output events. More precisely, a controller handles events that

the user generates, like pressing a mouse button, and a view handles events that the
model generates, like increasing the value of a counter. A view provides a look and a

controller provides a feel. The model underlies the views and controllers, and as we

will see in the next section, the ideal model is independent of views or controllers. The

model neither knows nor cares about any of them.

11.2 Exercise

The screen below displays several counter applications. The top two counters are sim- Play, Pp p
ple ones that operate by mouse clicks: a left click increments the count and a right

click decrements it.

=| Dial/Mouse Counter eee
q File

SSS.
VS Mouse Counter ial

ile

lily Yj z
mm

Uddddddddddddddddddddddddd yg Zz
pol Men Counter ASIST §
| File Satan

™ Increment :

Y

MMMM

/ fi
N Button Counter ah YS) TON

\

NS
Ss

WD MUL
x

ez

LU) How many kinds of models are there?

LY How many kinds of views?

LU) How many kinds of controllers?

L) How many instances of models?

11.3. How MVC works 14g)

11.3. How MVC works

Here is how the user interacts with an application based on an MVC decomposition:

view objects

model objects

controller objects

The view objects render information to the user and the controller objects accept the

user's input. The user has no direct contact with model objects; she imagines their

presence and characteristics only from her interactions with the views and controllers.

(How and what she imagines are the subjects of Chapter 13.)

In classical MVC, the relations among these three kinds of objects are indicated here:

aModel

You can see that views and controllers have instance variables that refer to their model
as well as each other. They know their model. But the converse is false. The model does
not have explicit instance variables pointing to its views or controllers. This is a crucial

omission. The underlying application should function without knowledge of how the

user interface happens to display information or interpret input. The application

should not know or care what kind of view or controller happens to be attached to it,

120 THE VENERABLE MODEL-VIEW-CONTROLLER | CHAPTER 11

nor even whether several views and controllers may be attached, or different ones as

time passes. The essence of MVC is this radical decoupling of the model from the user

interface components.

If the model has no instance variables referring to its views and controllers, how

does it inform them of changes in its state? In other words, how can the model pro-

claim ignorance of views and controllers, yet still inform them of changes? The answer

is that it informs them indirectly, via a concealed relationship known as dependency:

the model’s dependents are indicated above by dashed arrows. Whenever the model

sustains a change that it wants to convey to its dependents, it sends a message to

itself—self broadcast '—which eventually causes a message to be sent to each of its
dependents—dependent update. The dependents decide what they want to do, if

anything, to update themselves; that is the function of the update methods above. In

the counter example, the view’s update method would send a message to its model to

fetch the current value of the counter, with which the view could refresh its display.

Roughly speaking, there are two mechanisms for implementing dependency rela-

tionships. One uses a global dictionary, where the keys are models, and the value asso-
ciated with each key (model) is a collection of the model’s dependents. The broadcast
method searches the dictionary for the model in question, then sends the update mes-
sage to each of the objects associated with the model. The upcoming exercise illus-

trates this mechanism.

The second mechanism gives each model object its own dependents instance vari-

able that refers to an ordered collection of its dependent objects. The broadcast

method then sends the update message to each object in this collection. You don’t

want to write code for dependency and broadcasting every time you construct a new
class of models, so if you adopt this second mechanism you should write the code you
need once in an abstract class called Model, and subclass all your model classes from

it. This technique conceals the relationship just as we wanted; application program-

mers who build model objects don’t have to know that the dependents instance vari-

able is present.

A refinement of the second mechanism offers a sharper form of broadcast, in which

a cluster of messages is broadcast in response to a given event. This form is now avail-

able in all the major Smalltalk dialects (see the table on page 125). For example, in

VisualAge the class AbtObservableObject does entirely away with the simple depen-
dents instance variable; instead it has an instance variable called eventDependents that
is a dictionary-like object whose keys are events and whose values are clusters of
messages. Therefore, instead of a fixed broadcast resulting in the same update message

1 . . . aa . .

This message is self changed instead of self broadcast in some dialects.

11.4 EXERCISE: THE ORIGINAL DEPENDENCY MECHANISM 121

being sent to every object, an AbtObservableObject can selectively broadcast the clus-
ter of messages associated with any one of its events. And these messages may have any
names or receivers at all. In effect, broadcasting can be surgically precise.

This sharper form of broadcast is sometimes called event notification. Event notifi-

cation is increasingly popular and may eventually displace the older, more basic forms

of broadcast.

11.4 Exercise: the original dependency mechanism

Q) All major Smalltalk dialects support a general dependency mechanism that lets any
object depend on any other. In most Smalltalks, this mechanism uses a class vari-

able of Object named Dependents. Inspect Dependents. What kind of object is it,

and what does it currently contain?

Q) Execute:

X := Penguin new. "Any object will do!"

X addDependent: 17.

X addDependent: 12.

Dependents inspect.

What does Dependents contain now?

Q) Next execute:

X broadcast: #update.

Smalltalk broadcasts an update, but you should see nothing. That’s because inte-

gers don't respond to update. Now write an update in Integer whose body is:

Transcript cr;

show: 'I am ', self printString.

(The Professional version of IBM Smalltalk may require you to put the method
into a new application edition. Any edition, including a “scratch” edition, suf-
fices.) Again try:

X broadcast: #update.

This general dependency mechanism is serviceable, but by object-oriented stan-
dards it is not well encapsulated. After all, any object can access the class variable

Dependents in class Object. If you want to use a dependency mechanism, con-
sider building or reusing one in which an object encapsulates its own dependents.
The major Smalltalk dialects all come with such a mechanism. (See the table on

page 125.)

{| 22 THE VENERABLE MODEL-VIEW-CONTROLLER | CHAPTER 11

11.5 MVC: benefits and difficulties

A clean MVC decomposition keeps the designer honest. It forces him to separate con-

cerns, which is a basic goal of software engineering. He can focus on the coherence of

the underlying model (more on this subject in Chapter 13) without worrying about

presenting it on the screen. Conversely, he can invent new ways of presenting the

model without having to reprogram the model objects. In short, development of the

user interface and the model can proceed separately. The objects will then be smaller

and less complicated and the prospects for reusing them will be better.

MVC also provides a pathway for porting an application from one platform to

another: model objects should port with little or no trouble—good models are not

cluttered with platform-specific code. The porting problem therefore reduces to

rewriting only the UI code. The benefit depends on the relative proportions of UI and

model code in the application. For the counter example above, with its simple model,

the benefit is almost negligible. But for an application like a network simulation with

rich algorithmic content, the benefit is considerable. In any case, ideally, the program-

mer responsible for the port will not need to know or learn anything about the under-

lying application or problem.

Desirable though it may be, a pure MVC separation is a lofty goal. Here are some
difficulties.

* Simple rendering. In MVC, we strive to keep model objects ignorant of anything hav-

ing to do with their presentation. Strictly speaking, it would be unfaithul to MVC to

taint a circle object with a method that paints a circular arrangement of pixels on a
graphical window, or even a method that spells out the characters ‘Circle’. Similarly,

a purist may challenge a method (such as we will see in the next chapter) for a check-

ing account transaction object that returns a string detailing its date and amount.

Such methods have to do with views, not models, the argument goes. If you insist on
not tainting model objects with these rendering methods, however, you will have to

pay the price for another layer of objects that are responsible for rendering. That can
be an overblown response to relatively minor MVC infractions.

Validity and constraint checking. In a screen in which the user enters, say, a telephone
number, the UI has an opportunity to validate that the number's structure—country
code, area or city code, number, and extension—is acceptable. The UI could even
refresh another field, perhaps the name of the country. The more business-specific
knowledge the UI brings to bear on such checking—which countries are acceptable,
whether to allow letters as well as numbers for the phone number, and the like—the
less pure the MVC decomposition becomes. The penalty for making the UI more
powerful in these ways is that as the business evolves, UI logic as well as model code
must be rewritten.

11.5 MVC: BENEFITS AND DIFFICULTIES 123

* Partial refresh. In classic MVC, the UI informs the model of specific changes, and the

model then broadcasts a generic update back to the UI. For a drawing application,
the UI would update by fetching a// picture elements from the model, blanking the

canvas, then refreshing the whole canvas. But if the specific changes affect only a
small portion of the canvas, blanking and refreshing the whole canvas would be both

slow and distracting. Classic MVC is not flexible enough to refresh just the small,

affected portion; this localized refresh requires closer cooperation between view and

model. The view still informs the model of the changes, but it must selectively fetch
just those elements it needs from the model, and refresh just the altered portion of the

canvas. This optimization does not relieve the model from having to broadcast—

there may be other views, after all—but the current, active view should ignore the
broadcast, lest it respond by blanking and completely refreshing itself, which is what

we've been trying to avoid.

Drag and drop. When the user drags an icon across the screen, the icon may change

its appearance as it moves over different targets. For example, when a drop would be

illegal many UIs change the icon to a “Do not enter” symbol. The legality of a drop

commonly depends on a simple consideration, like whether the graphical element

being dragged lies over a particular window. But the legality could conceivably
depend on more complex considerations, such as the states of the underlying objects.

A prescription icon may not be dropped on a patient icon if the patient is allergic to

that drug; a letter may not be dropped on a mailbox if the letter has no addressee; an

insurance policy may not be dropped on a client if the client is an assigned risk; and
so on. In these situations the underlying model objects must participate in the nego-

tiation, because only they know the relevant state information. Icon objects, which

are merely visual artifacts, aren't smart enough to help; they do not even know what
questions they ought to ask the model objects. MVC, with its broadcast metaphor,

has no bearing on this fine-grained, real-time problem. A solution to this problem is

to use lawyer objects (page 233). A lawyer knows both an icon and an underlying

model object, and it negotiates with other lawyers that represent other icon and

model object pairs. The UI maintains a collection of lawyers, one for each icon, and

the lawyers decide whether one icon may be dropped on another, by negotiating

between the model objects they represent.

The last three difficulties underscore the lesson that broadcasting is sometimes too

slow and heavyweight. Users of today’s computing systems expect immediate feed-

back; they cannot wait for the model to issue a generalized broadcast to the view

objects. Instead, the view objects must become more intimately involved with model
objects than they would be in an ideal MVC partitioning. MVC is not sufficient for

every situation.

124 THE VENERABLE MODEL-VIEW-CONTROLLER | CHAPTER 11

11.6 What's become of MVC?

The MVC idea originated in 1978-1979 during Trygve Reenskaug’s visit to the Xerox

PARC Smalltalk team, which formalized it in the Smalltalk-80 product, later to

become VisualWorks.” Digitalk carried essentially the same ideas into its early DOS

Smalltalk/V products, where it was renamed to MPD (model-pane-dispatcher).

Nowadays, controller objects are commonly absorbed into view objects, so that the

classical MVC threesome reduces to a twosome. To see the rationale, think about the

pushbutton controllers in the counter applications above. These controllers have

view-like characteristics: the buttons are visible and they appear to bounce down and
up when the mouse is clicked over them. A button controller is, in effect, already

bound to a view-like object, and messages flow back and forth between the controller

half and the view half to coordinate their behavior. Because controllers often have

both view and controller characteristics, object-oriented UI classes usually coalesce
views and controllers into one kind of object, which relieves the programmer of the

burden of managing communication between two different objects.

Another reason for coalescing views and controllers is that unified view-controllers

are a natural match for the built-in user interface “objects” (scrollbars, buttons,

menus, and so on) found in native windowing environments such as X-Windows,

OS/2 Presentation Manager, Windows, and Macintosh. It is simpler for a layer of pro-

gramming objects above the windowing environment to mirror the underlying archi-

tecture than to dismantle it into separate view and controller constituents that aren't

there to begin with.

These modern view-controller objects still go by the name view, or occasionaily

interactor. Instead of a classic three-way MVC decomposition, we decompose applica-

tions into this simpler MV form:

aModel aView

* Trygve's account of the early history appears in [Reenskaug 1996].

11.6 WHAT'S BECOME OF MVC? 125

In short, coalescing views and controllers simplifies the programmer’s task, at the

cost of some loss of flexibility in mixing and matching looks and feels. Today, almost
all UI frameworks, whether based on Smalltalk or C++, coalesce controllers and views.

Examples include MacApp, Smalltalk/V, Interviews, and the X/Motif widgets used in

IBM Smalltalk. VisualWorks is the most notable product that sustains full MVC sep-

aration.

From now on we will focus on MV separations instead of MVC separations. Thus

the primary software engineering obligation of UI developers is to separate models

and views. You should strive to avoid excess seepage of model behavior into views.

Powerful GUI (graphical user interface) builders increase the temptation, because

developers sometimes become so enamored of GUI building that they overlook the

design of a coherent layer of model objects.

As I implied on page 120, several broadcast or dependency mechanisms are suit-
able for achieving MV or MVC separations. This table illustrates the variety available
in the major Smalltalk dialects:

VisualAge Visual Smalltalk Visual Works

(IBM Smalltalk) (Smalltalk/V) (Smalltalk-80)

Abstract View and

Controller classes No No Yes

(supports full MVC)

Dependency supported EventHandlers

by a class variable Dependents (Dependents in Dependents

in Object older versions)

AbtObservableObject EventManager Model broadcasts
Dependency supported

: broadcasts message broadcasts message — message(s) like
by an instance variable 2

clusters* (aka event clusters (aka event update to all
in an abstract class : ‘ : b

notification) notification) dependents

2 As of version 3.0, instances of subclasses other than AbtObservableObject can also broadcast message

clusters. The protocol is the same as the one in AbtObservableObject, but the methods are reimple-

mented in Object, using the auxiliary class AbtCLDTAdditions.

2 ParcPlace-Digitalk intends to make EventManager the foundation for its instance-based broadcast

protocol in its combined VisualSmalltalk/Visual Works offering.

The class variable in Object is convenient for quick and dirty broadcasts but should
generally be avoided, because it is accessible from any object. It is therefore tantamount
to a global variable, which we know to be generally undesirable. This mechanism also

126 THE VENERABLE MODEL-VIEW-CONTROLLER | CHAPTER 11

involves more message sends, which could degrade performance in designs with many
(probably too many) broadcasts. Thus you should try to use the built-in instance-based
support (from the last row of the table), or build an abstract class of your Own once,
and subclass from it.

Because of the many workable approaches to broadcasting, it is unlikely that the
ANSI standardization committee will specify a broadcast or dependency protocol as
part of the forthcoming Smalltalk standard.

CHAPTER 12

Building windows

This chapter deals with building windows in the IBM Smalltalk environment. You are
going to build windows from scratch—almost—with only a little help from a simple

abstract class. This will be an excursion into the heart of user interface programming.

The specific classes and methods in this chapter apply only to IBM Smalltalk, not
other dialects. Windowing frameworks differ so widely between Smalltalk dialects that
you will have little hope of reinterpreting this material for other dialects.

Using the techniques in this chapter to handcraft complicated windows would be

inefficient. For constructing lots of intricate windows, programmers nowadays mostly

use a GUI (graphical user interface) builder such as VisualAge or WindowBuilder Pro

(for IBM Smalltalk) or VisualWorks (for Smalltalk-80). These have the advantage of

simplifying the tedious aspects of window construction, although some also obscure

the layer of window components where the programmer may want to fine-tune the
behavior of the user interface. This layer is the subject of this chapter and, GUI
builder or not, it is desirable to know a little about it.

Before you can build a first, simple window in IBM Smalltalk, you must learn a
little about Motif: Motif is a standard programming interface for building GUIs. It

was developed by the Open Software Foundation (OSF), a consortium of large com-
puting companies. Motif is not an object-oriented programming system; it consists

instead of many conventional functions.

IBM Smalltalk’s user interface components include a layer of classes and methods

whose names and arguments mimic Motif reasonably well. These classes therefore

have a strong affinity with systems that support Motif, which happen to include many

UNIX systems. But OS/2 and Windows don’t support Motif; instead they have their
own window managers. Nevertheless, by incorporating a common Motif-like layer on
these platforms as well as UNIX, IBM Smalltalk ensures that applications built on this

127

128 BUILDING WINDOWS | CHAPTER 12

layer will be highly portable among the three platforms—UNIX, Windows, and OS/
2. Moreover, because this Motif layer ultimately translates to the underlying platform's
windowing system, the look and feel of user interfaces conform to the platform's

native look and feel.

12.1 What you need to know about Motif

Conventional Motif is itself built atop another stan-

dard, X-Windows. The X-Windows interface consists

of a collection of function calls called X/ib, or the

X/Library. Motif is an example of an X toolkit; X tool-

kits are built on an interface called the Xt /ntrinsics (X Xlib

toolkit Intrinsics), which in turn is built from the Xlib.

Thus, the conventional Motif layering looks like this:

IBM Smalltalk presents a layer of Smalltalk classes and methods that look like

Motif! services, but are built atop the operating system’s GUI services. In other words,
the IBM Smalltalk Motif layer is built on whatever the underlying platform offers, be

it raw OS/2 or Windows GUI

services, or a real Motif toolkit application’s windows

Motif-like layer in IBM Smalltalk and Motif window manager

like the picture above.
(EOE NG ns at Windows or OS/2 or Motif window manager
The picture for IBM Smalltalk is:

Two other abbreviations—Cw and Cg—occur commonly in IBM Smalltalk’s UI

classes. “Cw” stands for common widgets. Widget? is the term that X programmers use

for any UI component—be it a button, a scrollbar, a textual field, a label.... The

counterparts in IBM Smalltalk of Motif’s widgets are known as common widgets, and

their class names are prefixed by “Cw.” Similarly, functions in the Xlib for graphics—

drawing, bitmaps, fonts, color palettes—have been structured into Smalltalk classes

that are prefixed by “Cg,” for common graphics.

The first window you build will contain a textual widget that displays ‘Hello San
Francisco’. Although this window, labeled myWindow below, is about as simple as they
come, it relies on several Motif widgets, intertwined by instance variable relationships:

Motif ("an X toolkit")

Xt Intrinsics

1 “TT. . . . a .

By the way, Motif is sometimes abbreviated to xm, which stands for X/Motif
; ; ; “ Non-UNIX programmers often use the word control instead of widget. For our purposes UI widgets
and UI controls are synonymous.

12.1 WHAT YOU NEED TO KNOW ABOUT MOTIF 129

aCwTopLevelShell

aCwMainWindow

aCwForm or... myWindow

RY

callbacks aCwrText or ...

You can see where a textual widget would be, at the bottom of the sketch. Note that it

is a child of a CwForm. Forms are container widgets; a form typically will contain sev-

eral other widgets, although in your first application it will contain only one text wid-
get, a Cwlext, for presenting the string ‘Hello San Francisco’. The highest level in the
sketch is a CwTopLevelShell. As its name implies, it is the Motif widget that forms a

“shell” over all the other widgets. A main window (CwMainWindow) is also a con-

tainer; in addition to its forms it can contain a menu bar, should an application

require one.

Notice also the callback objects at the lower left. Callbacks or, more precisely, call-

back handlers, are methods that are triggered by events like resizing or exposing a win-

dow. Widgets can respond to events like these by executing an appropriate callback

handler. I will say more about callbacks later on.

The sketch above is schematic. The actual instance variable names are somewhat

less readable. They have names like cwChild, cwParent, and xmNChildren.

Each of the Motif-like common widgets in the sketch above encapsulates a similar

but more primitive object, which in turn encapsulates a really primitive operating sys-

tem object known as a window handle:

130 BUILDING WINDOWS | CHAPTER 12

anOS-

aCwTop- ~
LevelShell

anOS-
Hwnd

aCwMain-

Window

anOS-
Hwnd

anOS-

aCwForm Composite
OF aes

anOS-
Hwnd

aCwText
ae *h = handle LargeText

These primitive objects tie the common widgets to the real operating system. Fortu-

nately, though, you can write all the code you need at the common widget level, and

trust that the rest has been correctly encapsulated to do your bidding.

12.2 Widget resources

Widgets must be customized for each application. Customization covers everything

from where the widget should be positioned to how it responds to events like button

presses. To customize a widget, you send it appropriate customization messages. Cus-

tomization is also known as setting the widget’s resources. Here are some examples of

setting resources for a widget w:

w topAttachment: XmATTACHFORM Attach the top of w to the top of
its form

w bottomAttachment: XmATTACHPOSITION; © Attach the bottom of w 1/10 of the

bottomPosition: 10 "percent" way down from the top of its form

w topAttachment: XmATTACH WIDGET; Attach the top of w to the (bottom)

top Widget: anotherWidget of another widget referred to as

another Widget

12.3. EXCURSION: POOL DICTIONARIES 131

w editMode: XmMULTILINEEDIT Assuming w is an instance of

CwText, let it handle multiple lines

of text, instead of just one line

w value: self myMethod Assuming w is an instance of

CwrText, set the text it contains to a

string that myMethod returns

w items: self yourMethod Assuming w is an instance of CwList,

set the items in the list to a collection

of strings that yourMethod returns

w addEventHandler: ButtonPressMask Assuming w is an instance of

receiver: self CwPushButton, let its response to a

selector: #pushMe:clientData:callData: button press be defined by a method

clientData: nil; named pushMe:clientData:callData:

The peculiar-looking constants XmATTACHFORM, ButtonPressMask, and so on

are defined in pool dictionaries, which [’ll explain in the next section.

12.3 Excursion: pool dictionaries

Any software that talks to an external system must use the same low-level indicators
(typically flags or masks that are bits or integers) that the external system uses. For

example, on OS/2 the color dark blue is indicated by 9, and red by 2; any software

running on OS/2 must use these same numbers for the same colors. We would like to

think about the numbers as little as possible, of course, and instead refer to them by

names like ClrDarkblue and ClrRed. Similarly, Motif resource values like XmAT-
TACHWIDGET are easier to remember than arbitrary integers. (WmATTACH-

WIDGET happens to be 3 in Motif.)

Smalltalk pool dictionaries are handy objects for bundling constants like these.
Pool dictionaries are dictionaries that have strings such as 'ClrDarkblue’ for keys and

values such as 9. (In IBM Smalltalk, pool dictionaries are instances of the special class

EsPoolDictionary, which accepts only strings as keys.) For example, the global vari-

able PlatformConstants refers to a pool dictionary that contains color constants as
well as many other constants. And the global variable CwConstants refers to a pool

dictionary that contains the resource values for Motif widgets.

So far in this discussion, we haven't used pool dictionaries in any unusual way. If

you were to access one of its entries, you would have to write something like:

widget topAttachment: (CwConstants at: 'XmATTACHWIDGET ')

le2 BUILDING WINDOWS | CHAPTER 12

just as you would refer to an entry in any other dictionary. The effect would be to pass

3 as an argument, but of course we don’t want to write a 3 in our code.

The attraction of a pool dictionary appears when you specify one as part of the def-

inition of a class:

Object subclass: #MyClass

instanceVariableNames:

classVariableNames: ''

poolDictionaries: 'CwConstants

Now if you want to access an entry in a method, you can simply write:

widget topAttachment: XmATTACHWIDGET

No need to specify the dictionary or use the at: message! The Smalltalk compiler

searches through the class’s pool dictionaries for a key that matches the string 'Xm-
ATTACHWIDGET". When it finds the key in CwConstants it compiles the associ-

ation into the compiled method.

In short, pool dictionaries make code more succinct by saving you the trouble of

typing the name of a dictionary every time you want to refer to an entry.

Here are some characteristics of pool dictionaries:

¢ The keys are strings.

¢ The values are often integers. (But not always. Try inspecting the pool dictionary

PlatformFunctions, then double-clicking on one of its entries.)

* A global variable refers to it. (Otherwise there is no name by which to specify it

when defining a class.)

¢ The dictionary should be fully populated beforehand. (If a key is absent, a method
that uses it cannot compile.)

To solidify your understanding of pool dictionaries, try these simple exercises:

L) What is the underlying value of ButtonPressMask? ClrYellow?

L) Construct a pool dictionary as follows:

Smalltalk declarePoolDictionary: #MyPool.

MyPool at: 'ABC' put: 55.

Now build a subclass of Object called MyClass, being careful to specify MyPool as
a pool dictionary. Write this instance method:

Gest

"Test by displaying:

MyClass new test

“ABC

12.4 EXERCISE: A FIRST WINDOW 11335)

Predict the result and run the experiment to confirm your prediction. What happens

if you write another test method that returns XYZ instead of ABC?

Technical curiosity: A pool dictionary can begin life as an ordinary dictionary, that is,
as an instance of Dictionary. As soon as you use it as a pool dictionary though, IBM
Smalltalk automatically converts it to an instance of EsPoolDictionary.

12.4 Exercise: a first window

The goal for your first window is something like:

Hello San Francisco

() Create a new application, or add to one of your old ones. Change the prerequisite

applications to include EtBaseTools so that you can access class EtWindow. Add a

subclass HelloWindow to EtWindow.

() Write an example class method for testing:

example

HelloWindow example

“HelloWindow new open

QO) Write an instance method that answers any string you like:

myHel lo

“' Hello San Francisco’

QO) Remember that abstract classes come with expectations that their subclasses fulfill

certain obligations. For the abstract class EtWindow, its subclasses must implement

the method createWorkRegion. Write this method in your HelloWindow class.

createWorkRegion

| textWidget |

textWidget := workRegion

createText: 'My text widget’

134 BUILDING WINDOWS | CHAPTER 12

argBlock:

[:w | w

editMode: XmMULTILINEEDIT;

value: self myHello;

leftAttachment: XmATTACHFORM;

rightAttachment: XmATTACHFORM;

topAttachment: XmATTACHFORM;

bottomAttachment: XmATTACHFORM] .

textWidget manageChild

This method looks more formidable than it is. The important messages are the

resource-setting messages inside the block. You should recognize their purposes from

the last section.

Q) Finally, test your HelloWindow class by executing your example method.

12.5 Exercise: a window for the account balance

You are about to add a simple user interface to the bank account you developed in

Chapter 8. You want to end up with a window representing the account, with separate

widgets to contain the transaction log and the current balance. We'll proceed in three

steps: first a window that displays only the balance, then one that displays only the
transaction log, and finally one window that displays both the balance and the log,

using two widgets.

U Begin by choosing a suitable application, like the one in which you wrote your ear-
lier account exercise, and change the prerequisites so that they include EtBaseTools.

Add a subclass, BalanceWindow, to EtWindow. The fundamental difference

between this exercise and the preceding “Hello” exercise is the need for the window

to know about an account object. Create an instance variable named account in Bal-

ance Window for this purpose.

Q) Prepare a test case by writing this class method in BalanceWindow:

example

BalanceWindow example

“BalanceWindow new openOn: Account example.

This test case reuses Account’s class method example, which you developed on
page 91.

12.6 EXERCISE: A WINDOW FOR THE TRANSACTION LOG 135

Q) Note that you will need an openOn: instance method that takes an account as an
argument. Write this method. It should do just two things: set the instance vari-
able and open the window (by saying self open).

Q) Instead of myHello, write an appropriate method to return the account's balance.

Don’t forget that the returned object should be a string. In other words, don’t for-

get to convert the integer balance to a string.

U) Finally, write a createWorkRegion method and test by executing your example
method.

12.6 Exercise: a window for the transaction log

In this exercise, you will need to transform one collection into a different, brand-new

one. One way would be to write a loop. However, object-oriented developers rarely

write loops to process collections. Mature class libraries have powerful methods (or

even objects, called iterators) that process a collection’s contents. In Smalltalk, the

method Collection>>collect: processes each element in a collection and puts the

resulting objects into a new collection.

L) Display each of these lines:

(OrderedCollection with: 3 with: 2 with: 1) collect: [:x | x squared].

(SortedCollection with: 3 with: 2 with: 1) collect: [:x | x squared].

() Mimic the steps in the previous exercise: start with a class called LogWindow,

write an example class method, and an openOn: instance method.

Q) Your createWorkRegion method should be similar to the one for displaying the

account's balance. That one built a text widget, however, and this one should build

a list widget. Thus, part of it should look like:

listWidget := workRegion

createList: 'My log widget'

argBlock:

[:w |
W

items: self myLog;

leftAttachment: XmATTACHFORM;

le

Write the createWorkRegion method.

136 BUILDING WINDOWS | CHAPTER 12

UL) To complete the code, you must write the myLog instance method specified in

your createWorkRegion method. myLog should use collect: to transform the

transaction log into an OrderedCollection of strings.

Q) Execute your example method to test that your window displays the transactions

in chronological order.

12.7 Exercise: a window containing both widgets

Q) Build a class called AccountWindow. This window should combine ideas from the

preceding exercises so that it displays both the balance and the transactions.

12.8 Assessment: building windows

You've now seen what it takes to build simple windows using Motif. In general, one

subclasses from a suitable abstract window class. EtWindow is one example, because

it is the abstract window class for all the everyday browsers and tools you use in IBM
Smalltalk. Theoretically EtWindow is not the best choice of superclass for a product
that will be delivered to a customer. That's because it was designed as the basis for the
development-time windows, and a product’s code shouldn't depend on development-

time code. In fact, Et stands for “Envy Tools,” where Envy is a suite of team program-
ming facilities that is also available in other Smalltalk environments.

Another starting point could have been the abstract class WidgetWindow, best

found by loading the application CwExamples and its prerequisites. To use Wid-

get Window as a superclass, you would write a createWindow method instead of the
createWorkRegion you wrote in the exercise.

Another prospective starting point is the class named WbApplication (part of the

public-domain application WbApplicationFramework), which is the abstract window

class of the third-party product WindowBuilder Pro; you override the method add-

Widgets instead of createWorkRegion. WbApplication can thus serve as the super-

class of handcrafted windows as well as of windows generated by the WindowBuilder

Pro GUI builder.

Or, you could start by writing your own simple abstract class, including code to

create the top-level shell, a main window, and any other standard fixtures you want
your windows to enjoy.

These are all legitimate approaches to handcrafting windows. They are valid even

for building elaborate windows consisting of numerous, carefully positioned widgets.
But as I said earlier, you are most likely to use a GUI building tool to lay out such

12.9 CALLBACKS AND EVENTS 137

windows. For IBM Smalltalk, that is likely to be VisualAge or WindowBuilder Pro.

VisualAge offers the attraction of visual programming, which means that you can con-

nect user interface and model components together to produce working logic, without

even writing Smalltalk code. WindowBuilder Pro uses fewer layers of objects and so
offers efficiency plus the virtue of making Motif widgets accessible should you need to
work with them.

Good sources of additional details about Motif programming in IBM Smalltalk are

the product manuals [IBM 1995] and [Objectshare 1995].

12.9 Callbacks and events

Your windows so far don’t respond to any inputs and therefore aren't too practical.

Practical windows respond to mouse actions and other events (or X events) from the

operating system. These include typing on the keyboard, moving the mouse, resizing

or exposing a window, giving a window the focus, and so on. You can think of events

as stimuli that the operating system detects from physical devices and passes on to
your widgets. (In X-Windows, the component of the system responsible for this ser-
vice is known as the X server.)

A widget wont respond to an event unless it has been sensitized to the event. To

sensitize a widget to an event, you must establish an event handler. You will write event

handlers in the upcoming exercise.

Sometimes it may be convenient to think of higher-level, or “artificial” events. For

example, it would be reasonable to want to sensitize a button widget to a “click,”

which consists of two events, namely a button press followed by a button release, both
of which must occur over the widget. A click lifts the programmer’s level of abstraction

above the raw hardware concerns of a mouse press and release occurring in just the

right sequence and place. In Motif and other windowing systems, these artificial
events are known as callbacks. (The callback for clicking on a CwPushButton widget

is known as an activateCallback or XmNactivateCallback.)

The programmer writes event handlers for events, and callback handlers for call-

backs. Both event handlers and callback handlers are special methods that execute

whenever the expected stimuli occur. The reason for the name “callback” is that when

the stimulus occurs, the operating system “calls your widget back” and gives it the

opportunity to execute its handler. A callback is similar to arranging for someone to

call you back later on the telephone: you expect the callback to occur and you will be

ready for it, but you're not sure when it will happen.
Events and callbacks are similar. The programmer sensitizes the widget to either

one by establishing handlers, and the operating system calls back when the stimulus

138 BUILDING WINDOWS | CHAPTER 12

occurs. The distinction between them—events being low level and callbacks being

higher level—is a Motif convention. In other object-oriented environments, the word

“callback” applies to all stimuli, whether they are low or high level. In fact, Smalltalk

programmers frequently use the term “callback” for any call of a Smalltalk method

that originates from outside of Smalltalk.

How does a callback (or event) differ from a conventional call? The distinction is

partly one of degree. For one thing, most callbacks represent primitive stimuli and

therefore carry less information (fewer and simpler arguments) than conventional calls

can. But the principal conceptual distinction has to do with concurrency. After a view

establishes a callback handler it continues to execute other code; it does not block and

await the callback. Instead, the callback occurs asynchronously, at some unforeseeable
future time, when the view could be doing anything at all. From the view’s perspec-

tive, the callback has an event-driven flavor rather than a procedural one.

12.10 Preparation

A CgDrawable (and its subclass CgWindow) can display graphics that are “drawn” on
it by a graphics context, an instance of CgGC. You can think of a graphics context as a

drawing tool like a pen or brush. Here are examples of CgDrawable drawing methods:

CgDrawable>>drawPoint:x:y:

CgDrawable>>drawLine:xl:yl:x2:y2:

CgDrawable>>drawRectangle:x:y:width:height:

Q) What kind of object do you expect the first keyword argument in each of these meth-
ods to be? If you are uncertain, verify your answer by browsing class CgDrawable.

12.11 Exercise: mouse event handling

The result of this exercise will be a window in which you can “doodle” with the mouse.

UW Load the CgExamples application into your image, if it is not already present. (To
install it in the standard environment, start from your System Transcript and pick
menu options Smalltalk tools > Load Features... then select Smalltalk Programming
Examples. To load it in the Professional environment, start from an Application
Manager window and pick menu options Applications > Available > Application.)
You can now access the abstract class CgSingleDrawingAreaApplication. This
abstract class has both a drawable widget (CgWindow) and a graphics context
built into it; therefore its concrete subclasses can “draw.”

12.12 CHALLENGING EXERCISE: DYNAMIC UPDATES 139

O)

QO)

Which instance variable in the abstract class refers to the graphics context? Which

refers to the drawable widget?

From your Application Manager, create a new application in which to write your

code. Change the application’s prerequisites to include CgExamples.

Add a subclass DoodleWindow to CgSingleDrawingAreaApplication. Add two

instance variables, oldX and oldY. You will use these instance variables to retain the

previous position of the mouse as the mouse moves.

Write a class method to test your application:

example

DoodleWindow example
"

“DoodleWindow new open

Look at the inherited buttonMotion: and buttonPress: event handlers. Note that

the argument they expect is an event, actually an instance of CwMotionEvent or

CwButtonEvent. What methods can you use to get the x and y coordinates of the
point at which the event occurred?

Finally, override the event handlers buttonMotion: and buttonPress:, and test

your window.

12.12 Challenging exercise: dynamic updates

Q The account window displays both a balance and a list of transactions, but it is still

relatively inert because it provides no way to add new transactions. Extend the
window so that the user can create and handle new transactions. You can consider

either of two UI designs:

e Add a button to the window. When the user clicks the button, another window

or dialogue box should open and let the user fill in a date and amount for the

new transaction. When the user completes this dialogue, the original window

should refresh with an updated balance and transaction log.

e Add a date field, an amount field, and a button to the window. When the user

completes the date and amount, then clicks the button, the balance and trans-

action log should refresh.

140 BUILDING WINDOWS | CHAPTER 12

This is not an easy exercise. Without a GUI builder, it requires a healthy dose of

exploration and experimentation. It is a good idea to have an experienced Smalltalk

programmer around in case you get stuck.

12.13 Summary

Object-oriented user interface programming has an event-driven flavor. The program-

mer establishes handlers for system events or callbacks, and the specified handlers exe-

cute when the events occur. Typically, these events occur at a time and place

determined by overt user actions, like clicking a mouse at a point on the screen. Thus

the event-driven programming mode! tends to liberate users, letting them perform

whatever actions they want whenever they want to. User interfaces that fulfill this

promise, so that the user is rarely forced to deal with a fixed situation before proceed-

ing, are called non-modal user interfaces. (Not every user interface programmed with

objects is non-modal. For example, a user interface in which button clicks or menu

picks present dialogue boxes that the user must complete before proceeding may look
as if it has been programmed with objects, but it won't feel that way.)

Now consider a procedural or function-oriented programming model, in which

the application decomposes into a tree of sub-functions. In the classic user interface
for this model, interaction occurs mostly through a formidable hierarchy of menus.

This kind of user interface puts the application squarely in control of the user, who
feels psychologically straitjacketed by it. Such user interfaces, in which users must act
in rigidly prescribed ways to proceed or extricate themselves from a situation, are an

extreme form of modal user interface.

Events and callbacks originated in Smalltalk-80, where widgets were known as

views. By supporting different handlers for an event, a view could be customized for

different problems. They were therefore called pluggable views: if you needed a view
with specialized behavior, it was enough to plug one of these views into the overall

application window and establish specialized handlers for it. Without pluggable views,

you would have had to add a whole new view class to get the behavior you wanted. In

other words, you could either “buy” a pluggable view and customize it, or “inherit”

from another view and customize that. Nowadays, the variety of widgets and their
pluggability is rich enough that you don’t need to create new widget classes for most
ordinary applications.

So far, I have discussed only events or callbacks that pass through the operating sys-
tem—that is, stimuli that arise from outside Smalltalk. A similar logical flow can occur
strictly within the confines of Smalltalk. For instance, an MVC or MV broadcast is
like a callback. The view establishes a handler, namely its update method, written

12.13. SUMMARY 141

according to the problem or model at hand, and this handler executes whenever the
model calls the view back with a broadcast. Some broadcast mechanisms allow you to

call back clusters of messages with arguments, instead of just update. The VisualAge

and VisualSmalltalk products support such mechanisms. (Cf. the table on page 125.)

Programmers and frameworks sometimes also use these mechanisms for model-to-

model broadcasting. (But approach such usage warily, because excessive broadcasting

can measurably degrade performance.)
Finally, today’s GUI builders relieve you of having to build the UI, but you still

have to design it. Good UI design is much more than assembling widgets into a win-

dow, and is the subject of the next chapter. Users of powerful GUI builders sometimes
backslide from good model-view separations. Carried away by power and speed, they

connect user interface widgets directly to low-level components like database ele-

ments, without thinking about appropriate model objects.

We can suffer the same lapse even without a GUI builder. In our rush to build

HelloWindow, we didn’t stop to think about a model class. We adopted a style of user
interface programming in which we subclassed from an abstract superclass that pro-

vided standard view capabilities. We thought of the application as a kind of window. No

model class encapsulated the application's logic. Such a fall from grace is pardonable

for a simple example like HelloWindow, which has no interesting application logic. It

is a benign step in the wrong direction; it is perilous only if we begin to build applica-

tions where a monolithic window class is suffused with application logic. We avoided

this misstep with the account windows by using a separate model class (Account) that

encapsulated the application’s behavior.

CHAPTER 13

Designing the UT: a brief tour

The preceding two chapters covered the principle of separating models from views and
the actual programming that goes into constructing windows. You should now have a

solid grasp on the mechanics of a user interface. We next approach the hardest, most

ineffable aspect of user interfaces—designing them.

13.1 User interfaces

The user interface (UI) is the sole point of contact between a user and the computer.
As far as the user knows, the user interface is the computer. But even though the user

interacts with nothing else, a lot happens in her mind. The appearance of the UI

evokes images, just as a novel evokes mental images in the reader’s mind. And the more

the user interacts with the UI, the further she refines these images, imbuing them with

their own imagined behavior, as a child imbues a talking doll with imagined behavior.

Unfortunately, the UI’s evocations are rarely as effective as the novel’s or the doll’s. The
quality of that evocation is precisely what distinguishes bad user interfaces from good
ones, hence bad computer software from good.

The premise in this chapter is that it is worth investing in the design of your appli-

cation’ user interface. An application’s acceptability in the marketplace can pivot on

the difference between a good user interface and a mediocre one. Although this chap-

ter is not a complete treatise on designing user interfaces, I present some simple, gen-

erally overlooked principles that are at the heart of designing respectable UIs. Along
the way, we will again meet the principles of object-orientation.

142

13.2 ELEMENTARY EXAMPLES 143

13.2 Elementary examples

Consider two user interfaces for a chess program, one in which the user interacts by
typing commands of the form “Nd5,” the other in which she uses a mouse to drag an

icon depicting a pawn to a square on an image of a board. The game is the same, but

the user interfaces create very different impressions on the user.

Or imagine an interactive video game, rendered not with images of protagonists in

fast-breaking life-and-death situations and real-time feedback between a control stick

and the images on the screen, but sentences on the screen describing the action and a

keyboard for typing moves. Again, same game, different user interfaces. One works;

the other elicits, at best, indifference. The quality of the user interface foretells a prod-

uct’s acceptability.
Designing a user interface for a game is not a hard problem. (Implementing it may

be another matter.) The reason goes to the heart of this chapter: a computer user inter-

face for a game should be a metaphor for the real game. No other user interface makes

sense. If the game involves chess pieces, the user interface should represent chess

pieces; if the game involves militant people or rocket ships, the user interface should

represent militant people or rocket ships. The elements of these games are tangible,

recognizable objects, and end users wont settle for less than faithful representations of
these objects on their computers.

Contrast this situation with other applications: it is much harder to design a good

user interface for a typical software application than it is for a game. A word processor

deals with intangible, uncommon entities—styles, paragraphs, fonts, tables, frames,
layouts, footnotes. It is altogether more complex than a game; devoid of blatant met-

aphors. What’s more, a game has well-defined rules and actions, so the actions that its

user interface should accommodate must be equally well defined. Not so for a word

processor. Contemporary WYSIWYG! word processors confront users with a daunt-

ing array of icons and menus, offering much richer and less constrained capabilities

than any sensible game does. No wonder it takes so long to become proficient at pow-

erful software applications; users just cannot get much metaphorical guidance from

their user interfaces.

The essence of the difficulty is the absence of a simple, underlying model. When
such a model exists, as for a game, the UI can be designed to portray the model. With-
out a simple model, user interface designers facing an inherently complex problem like

word processing have little to guide them.

! “What You See Is What You Get”

144 DESIGNING THE UI: A BRIEF TOUR | CHAPTER 13

13.3 Coherent conceptual models

The models discussed in the last paragraph are conceptual models. By a conceptual

model I mean words, metaphors, pictures, rules, or anything that you use to explain

how you think something fits together. A superior conceptual model sharpens your
understanding of the subject. Here are some examples from my own experience:

* Many people automatically call a tree with needles a pine. Some do so uneasily,

because they know that other trees such as firs and spruces have needles too. But

they still call them all pines. Their conceptual model for a pine is “a tree with nee-
dles.” A better (and correct) conceptual model for a pine is “a tree with needles bun-

dled in a sheath at their base”:

Sheath

With this conceptual model, it is hard to mistake a spruce for a pine.

¢ My conceptual model for a printer driver used to be “a piece of software that comes

with a printer and allows the computer to send output to the printer.” But every

FAX program I’ve seen comes with a printer driver too. Why do I need a FAX

printer driver? (I didn’t know.) If I needed to print a FAX, wouldn't I simply have
used my printer's driver? (Yes.) I eventually realized that a FAX printer driver was the

means by which I could send FAXes through the modem in my computer, instead
of printing them. To make sense of this revelation, I had to adjust my conceptual

model of a printer driver to “a piece of software that handles an application’s print

commands.” This improved conceptual model neatly implies that anything that is
printable is also FAX-able.

es sik

river aoa et Printer
Application} ———>

Printer ek

Driver Y

Old conceptual model New conceptual model

Print

commands

* A teacher of new computer users told me that when she asked them to “move the
mouse to the top of the display,” some of them lifted their mice into the air and

13.3. COHERENT CONCEPTUAL MODELS 145

placed them on top of their monitors. They were unfamiliar with the direct manip-

ulation conceptual model, in which the mouse 7s, in effect, something on the screen.

Users are not to blame; if computing is to be attractive and helpful, the computer

industry had better clearly convey conceptual models to its users.

If conceptual models are the means

by which we understand a subject, it
follows that they had better be coher-
ent—their parts must fit together in a

natural, easily understood manner.

Only then will users find them memo-
rable and meaningful. On the right is

an attempt to portray a conceptual

model for a face. A face designer

would be satisfied that it contains all

the right elements—eyes, nose,

mouth, and so on. ~~

Now consider an upside-down version of the same face. Study it carefully, without
turning the page upside down. This lets you analyze it without being influenced by

your usual intuitions about faces.
Aside from the irrelevant fact that

it is upside down, is this model equally

coherent? Can you discern any inco-

herent elements? It should take a few

moments before you notice them: the

mouth and eyes are oriented right side

up. Thus, a face designer would even-

tually concede that the elements are

not assembled coherently, even though

all the right elements are present.

Users, on the other hand, do not

have the designers’ patience for analyz-

ing a model’s coherence. To appreciate

146 DESIGNING THE UI: A BRIEF TOUR | CHAPTER 13

their perspective, turn the page upside down now. This conceptual model of a face is

immediately and unmistakably incoherent. Users arrive at the same conclusion as the
designer eventually ought to, but more quickly, and by a different cognitive process.”

The analogy here for user interface design is that to achieve a successful user inter-

face the designer must describe not only a conceptual model, but one that is coherent.

If the designer has no conceptual model at all, the user will never make sense of the

user interface. A little better than having none at all is having one that is incoherent.

This is the most common situation, where the designer settles for a conceptual model

that nevertheless baffles the user. Best and rarest, and the only hope for comfortable,

intuitive user interfaces, are coherent conceptual models.

In practice, conceptual models function at more than one level. In the word-

processing example, one elemental conceptual model is that a word processor behaves

something like a typewriter. Another is that the result can be stored indefinitely and
recalled and changed at will. Another is spell-checking. Another is paragraph styles.

The overall conceptual model of a word processor consists of how these hundreds of

lesser models fit together. (Note that assembling them coherently is a herculean task.)

At another level, many word processors employ scrollbars, a toolbar with iconic

buttons, menus, and dialogue boxes. For each of these widgets, users have developed

expectations for their behavior: “dragging a scrollbar moves a window over the docu-

ment,” “clicking a menu title drops down a list of menu selections,” and so on. These

expectations are conceptual models for each kind of widget. Failure to recognize any

one of these conceptual models at either level will be a major obstacle in using the

word processor.

Because conceptual models are the means by which we understand the world, it
behooves us to find effective ways to describe them. There is no one answer, but the

next section brings one of humankind’s most powerful cognitive tools to bear on the

problem.

13.4 Metaphor

Metaphor is the use of one idea in place of another to suggest some likeness. If I tell
you that my office is a pigsty, I am using a metaphor. I don’t mean that pigs actually

* The brain has wiring for face (or landscape) recognition. Turning the image upside down disables
this wiring. That's why we are unaware of how seriously amiss things are in the upside-down image.
Some people lose this wiring completely, even for right-side-up images. They develop visual agnosia,
a right-brain disorder in which they can no longer recognize faces, or assemble visual wholes from
parts. See [Sacks 1985].

13.4 METAPHOR 147

inhabit the place; rather I mean to suggest the disarray of a pigsty. A good metaphor is
a powerful cognitive tool because it is a form of reuse. The mind applies its knowledge

of something it already knows to something it doesn’t.
Most people claim that it is difficult for them to think metaphorically. But in fact

they use metaphors all the time without realizing it. “That sofa weighs a ton.” “He

reminds me of a politician.” “She is dancing on air.” When taken far enough, practi-

cally everything we say has a metaphorical root. Consider:

[The dog] flashed and darted hither and thither as if fairly demented,

screaming and shouting, swirling round and round in giddy loops and circles

like a leaf in a whirlwind. [Muir ca. 1880]

How many metaphors do you count? Two are conspicuous: likening the dog to a
lunatic and also to a leaf caught in a whirlwind.

But probe a little deeper. Where do words come from? Someone had to invent

them. The word flash came about by onomatopoeia—it sounds like the idea it repre-

sents. Just hearing the word evokes the image of something that swiftly comes and

goes. Someone made it up for this reason. Darts were originally pointed weapons

thrown by hand (surviving today in the form of a game); here they are a metaphor for
the dog’s abrupt movements. Whoever first used the word circle was connecting it to

the Greek word for ring, kirkos. For that individual, a ring was a metaphor for a circle,

and we now accept the invention without reflecting on its metaphorical origin. The

word shout goes back to an Old Norse word for a taunt, skita. Demented derives from

the Latin de, meaning out of, and mens, meaning mind. And so on.

In short, every word comes about because somebody connected it to an idea, and
so a metaphor lies somewhere behind every word we use. Instead of insisting that it is

hard for us to think metaphorically, we should concede that it is hard for us to think
in any other way. Everything’s meaning is based on the meaning of something else.

Metaphorical thinking is part of our cognitive core, whether we consciously acknowl-

edge it or not.
What metaphors could describe the conceptual models for the word-processing

example? It is like a typewriter, but it can do more. It can remember documents. Text

can be rearranged like building blocks. It works with a dictionary to check spelling. To

someone who has never experienced word processing, or even a computer, metaphors

like these may convey conceptual models more concisely and vividly than a literal

description of the software's capabilities.

Just as conceptual models apply at different levels, so do metaphors. Here are some

application-level metaphors that have profoundly influenced the computer industry:

148 DESIGNING THE UI: A BRIEF TOUR | CHAPTER 13

Application Metaphor

VisiCalc (first spreadsheet, Bookkeeper’s ledger sheet

precursor of Lotus 1-2-3)

Pong (first video game) Ping pong

Xerox Star (first office GUI, precursor Desktop

of Apple Lisa and Macintosh)

SQL Predicate logic

Word processor Typewriter + dictionary + style guide + ---

And here are some metaphors at the level of user interface components:

User Interface Function or Widget Metaphor

Menu Restaurant menu

Scrollbar Sliding window

Dragging hand Sliding paper

Drag and drop Moving

Folder icon Container

Radio button group Radio presets

In Chapter 1, I emphasized the value of metaphors in thinking about program-

ming objects. In this chapter we've extended their reach from programming objects to

conceptual models. As before, I’m not interested in the fine distinctions among meta-

phor, simile, analogy, and imagery. Their important common characteristic is that

they use one idea to suggest something about another idea.

13.5 Magic

The remaining consideration for designing good user interfaces is magic. If a computer
application does neither more nor less than the metaphor it is based on, there’s no point
to it. A word processor that exactly duplicates a typewriter’s function is no better than a
typewriter. Magic is the term that user interface designers use to describe the ways in
which a computer application goes beyond what the original metaphor suggests.

A spreadsheet program goes beyond a bookkeeper’s ledger sheet in two stunning
ways. First, it permits the user to enter formulas where the bookkeeper would have
had to calculate a cell’s value by hand, and second, it can automatically recalculate

13.5 MAcic 149

these formulas when the cells on which the formulas depend change. We take for

granted these capabilities that VisiCalc first introduced in 1978. But VisiCalc, graced

with this magic, became the first major commercial personal computer application

and was an early driving force in the personal computer revolution.
Many people form minor addictions to the simple solitaire card game in Microsoft

Windows. Its conceptual model (and metaphor) is the real card game, Klondike soli-

taire. The software provides exactly the same functions as the player with a card deck
does. Its magic consists of the ways in which it is faster and less troublesome to play
than the real version. Starting a new game requires only a menu pick, not a physical

and time-consuming shuffle and deal; this magic overcomes the chief obstacle to play-

ing “just one more game.” Moving a run of cards by dragging and dropping is lazier

and tidier than moving real cards. Turning over cards by pointing and clicking takes

less energy than grasping and flipping a real card. Overall, the software version affords

the same intellectual challenge as the real version, but requires markedly less physical

effort to play, on account of its magic.”

Magic fosters good software, but magic gone awry is treacherous. Getting the right

balance of magic is part of the challenge in user interface design. Consider the Macin-

tosh trash can. To delete an item, the user drags and drops it into the trash can. The

metaphor is so faithful to a real trash can that you can recover items by opening up the
can and examining its contents. To permanently delete its contents, you must explic-

itly “empty the trash.”

But the trash can has another magical property: if you want to eject a diskette from
the diskette drive, you drag and drop the diskette icon into the trash, too. Every new

Macintosh user I’ve observed, including me, has been puzzled by this behavior, and at

least momentarily concerned that they might be erasing all the files from their dis-
kette. They adjust soon enough, but not before the initial scare.

Another example: The OS/2 shredder is based on the metaphor of a paper shred-

der. This metaphor works nicely for documents: drag a document's icon and drop it

on the shredder and the shredder disposes of the document. Sometimes, though, icons

represent programs instead of documents. And often, two icons representing the same

program are tucked away in different places on a desktop. As a new user, I worried

whenever I wanted to delete an extra icon. In my conceptual model, the icon zs its

underlying object (the program). Hence, if I shred the icon, the program must go with

it, which is different from my intent.

3 Some critics believe this convenience is a bad thing. They argue that software games are detrimental
because they distance their users from tangible reality. Essentially the same objections apply to tele-
vision, breadmaking machines, digital images of art, even books.

150 DESIGNING THE UI: A BRIEF TOUR | CHAPTER 13

Fortunately in this situation, the shredder deletes only the icon and not the under-

lying program. This behavior isn’t consistent with my innocent conceptual model, but

at least it provides a way to do what I want to do. But the story doesn’t end there. After

I adjusted to this behavior, I stumbled on situations where shredding the icon also
deletes the program! On these occasions, the innocent conceptual model is correct: the

icon identifies with the underlying program file. (Icons found by starting with the
“drives” icon behave in this way.) Unhappily, this kind of icon and the kind of icon
that doesn’t identify with the underlying program are visually indistinguishable. Same
icons, different behaviors. The magic of shredding was designed to present an irrecon-

cilable obstacle to consistent use of the user interface.* (By the way, Windows and

Windows95 suffer from the same ambiguity. In my experience, only the Macintosh is

unambiguous about icon identity.)

A final illustration: in everyday life we often wish we could undo something that

turned out badly. Examples range from staining the side of the house the wrong color,

to disassembling a camera lens, to sewing an extra flap of fabric into a seam, to saying

the wrong thing to someone. This wish occurs as often when working with computers

as it does in real life. But in computer applications, it is theoretically possible to fulfill

the wish. Some applications—the Microsoft Word and DeScribe word processors, the

WindowBuilder Pro and VisualAge GUI builders come to mind—let their users undo

an unlimited number of past actions. Users develop complete confidence that they can

retrace their steps, and therefore are not reluctant to try bold new directions. Such

undo magic is as good as it can get.

Unfortunately, most undo facilities are more limited. Some let you undo perhaps

four actions, or warn you that specified actions are not undoable. This undo magic has

gone awry. Users are burdened with remembering an arbitrary detail, like whether the

state to which they wish to return is within the four-action limit. They stop using

undo because they regard it as untrustworthy. The effect can be debilitating: they hes-

itate to risk actions whose results they are not sure of. One sees this hesitation in the

use of photo-editing software, where they are inhibited from trying special effects

because of the fear that they will not easily be able to return to an acceptable image.
Limited undo functions remind me of a timeless piece of wisdom, known as the

“zero, one, infinity” rule: if you are going to design undo, make it support zero, one,

“ Computer scientists call these kinds of problems aliasing problems. This is an example of aliasing
on the user interface. But aliasing problems pervade software, and object-oriented programming is
no exception. In C++, every pointer is an opportunity for an aliasing bug. Smalltalk is a little better,
because it has no explicit pointers. But implicit pointers are everywhere, so you can still encounter
aliasing surprises. Refer to the aliasing exercise on page 59.

13.6 EXERCISE: DESIGN A USER INTERFACE 151

or infinitely many undos. These are the only numbers that people can remember. We
will revisit undo in Chapter 15, where we will discover an object-oriented design for

infinite undo.

Magic is hard to get right. All of these examples—the Macintosh trash can, the

OS/2 shredder, and undo facilities—are based on reasonable metaphors, but present

disruptive magic. The resulting conceptual models aren’t coherent.

Let’s summarize the characteristics of good user interfaces: they are based on coher-
ent conceptual models that are understood through carefully chosen metaphors. And

they improve on these metaphors by just the right kind of magic—magic that adds

power to users without disrupting their understanding of the user interface.

13.6 Exercise: design a user interface

Design the user interface for an application for managing addresses and phone num-

bers of friends, family, and associates. This is the “contact-management” component
of products called P/Ms, or Personal Information Managers. Be as imaginative and

unconstrained as you like, but consider all these:

() Brainstorm until you have at least two metaphors for the user interface. (“It’s like
2 aay

LO) Develop some high-level use cases. Brief descriptions of some of the user’s tasks

will suffice.

) Choose one of your metaphors and outline your ideas for a user interface based on

it. Use your use cases to evaluate (a) ease of learning, (b) ease of use, and (c) magic.

Q) As a responsible user interface designer, try to articulate one or more underlying

conceptual models to a prospective end user. A good test for coherence of your

conceptual model(s) is to limit how much you say. (Twenty seconds? Three sen-

tences? One picture?) Imagine just one brief opportunity to convey the spirit of the

application. The conceptual model(s) can be the same as your user interface met-

aphor, but it need not be.

This exercise produces the most interesting results if you can do it in a group of up

to four people.

b2 DESIGNING THE UI: A BRIEF TOUR | CHAPTER 13

13.7 Discussion of your results

People who do this exercise invent all kinds of ingenious interaction techniques. Most

are variations on the fine details in their chosen user interface metaphor. As for the

metaphors themselves, the list of candidates seems short—three that I can distinguish.

And no matter what the metaphor, the same conceptual model always emerges. Let's

begin with the metaphors.

The two most popular user interface metaphors for contact management are the

address book and the Rolodex. A real address book has some obvious limitations: you

can't add pages if you need more space, and you can't order the entries. For instance,

all names beginning with “S” are together, but not in any logical order. These limita-

tions present obvious opportunities for magic—unlimited names and automatic

alphabetic sorting. The result is a more gratifying address book than a real one. Notice
that although unlimited pages and sorting are magical extensions for the address-book

metaphor, they are already part of the Rolodex metaphor.

One interesting feature of real address books is the index tab. Imagine the use case

of searching for a name, say, “Segovia.” I pick the tab for the letter “S” first, then scan

that page for “Segovia.” Not bad. Those tabs on manual address books and Rolodexes

were an inspired way to cope with large numbers of names. Far better than, say, a tele-

phone book. But that was before computers. A computerized contact manager that

makes me select an index tab to get to the vicinity of the name I want feels, well, inef-
ficient. Computerized Rolodexes and address books both give users this feeling.

To overcome this problem, contact managers often provide a fast-path facility in
which the user can type letters like “S-E-G” and immediately reach the first name that

begins with “Seg.” This technique is an appealing form of magic, but it doesn’t quite

fit with address books and Rolodexes. The user looking at an address book sees an

alphabetic tab for the letter “S” that entices him to pick that tab to find “Segovia.” The

user may not guess that typing two or three characters will lead progressively to a

matching entry. The technique is ingenious, but it differs sufficiently from the base

metaphor that it runs the risk of appearing to be inconsistent.

Perhaps a computerized contact manager should do away with index tabs. Does

such a design depart too radically from the world of real contact managers? Or is there
a real-world contact manager that has no index tabs, on which we could model the
computerized version?

Absolutely, The simplest real-world metaphor is one that people carry on a sheet or
two of paper—a /ist of names and contact information. If a list of names on a sheet of
paper is too dreadfully mundane a metaphor, you may consider a fancier version of the
metaphor—your local telephone book. Either way, the designer can spruce up the user
interface with a little magic: the user can scroll a window over the list (continuously,

13.7 DISCUSSION OF YOUR RESULTS dips

and without artificial markers like the twenty-six letters of the alphabet); the user can

search by typing “S-E-G” and the window will scroll farther as the user enters each let-
ter; and selecting one name from the list can open a view of that individual’s detailed

contact information:

lotes: Gets so wrapped
5 up in phone calls that

nce the other person fel
32 Goldberg Way asleep and woke up to

i Ontario ear him still talking

This user interface is unencumbered by superfluous index tabs that set expectations

more appropriate for physical contact managers than computerized ones.
We have concentrated so far on the use case of searching for a name. Other essen-

tial use cases are adding a new entry, deleting an obsolete one, or altering an existing

one. You may also have considered use cases like dialing a phone number, sending e-

mail, or printing an envelope, or variations of the essential use cases such as copying

or sharing contact information from another contact. Sooner or later, in a real design

effort, you would have to walk through detailed versions of each of these use cases. You

would find the challenge to be in balancing faithfulness to the metaphor you've chosen

with the magic you need to make the computerized version more usable than its real

counterpart.

Finally, can you as a UI designer articulate a coherent conceptual model to the pro-

spective end user? This is a serious challenge. For example, the designer who wants to

say that the conceptual model is a Rolodex or address book, and then adds multiletter,

progressive searching, will have a tough time arguing for coherence. First, you must

succeed in articulating a coherent conceptual model to yourself. Thinking back to

model-view architectures (Chapter 11), a good place to begin is to imagine the model

objects you would need.

Regardless of the UI metaphor you started with, it doesn’t take long to concede

that a Person or Contact class, and a suitable container to hold them, like a Sorted-

Collection, are unavoidable. Rolodex and address-book UI designers also need a

154 DESIGNING THE UI: A BRIEF TOUR | CHAPTER 13

ee EE

Rolodex or AddressBook class, respectively. List or telephone-book UI designers

quickly recognize that they will need a class that supplies the magical behavior for their

views too. They might name this class PaperList or TelephoneBook. The striking

result of all three approaches is that, regardless of the user interface metaphor, the

model objects end up configured something like this:

Rolodex/AddressBook/ Contact
PaperList

These model objects can service any of the three user interfaces—the three views.
Any behavior beyond what a container like a SortedCollection can manage resides

mainly in the Rolodex/AddressBook/PaperList class.

You have actually used this configuration of objects before, in the checking
account exercise in Chapter 7. Compare the sketch here with the CRC cards illus-

trated on page 86. The resemblance is not coincidental; this configuration of objects

solves many design problems. Recurring configurations like this are known as design

patterns (Chapter 18).

Notice that this common conceptual model resembles address books and Rolo-

dexes least. In fact, it’s not very different from the paper-list metaphor. For one thing,
the index tabs that are an artifact of the other metaphors and so strongly predispose

users to search for and add names by tabbing to a specific letter, are absent. Because

tabs don’t intrude on a paper list, both it and the conceptual model are free of the

biases with which magic multiletter progressive searching might clash. That the paper-

list metaphor aligns so well with the conceptual model (they are isomorphic—see the
next section) suggests that computerized lists may be desirable user interfaces for

contact-management applications. The irony is that so many contact-manager user

interfaces today look like address books and Rolodexes, in spite of the dissonance with

the underlying conceptual model.

13.8 ISOMORPHISM 155

The sketch above is a satisfactory way for the user interface designer who knows
about object-oriented programming to picture how the application fits together. It
constitutes a coherent conceptual model. The same sketch can conjure up a coherent

conceptual model for the user: the user can imagine a sophisticated main object that

has a container of contacts. A conceptual model shared between user and designer—

even one as simple as this sketch—is the essence of successful user interface design.

13.8 Isomorphism

The sharing of a conceptual model by user and designer is an example of isomorphism
(from the Greek, iso = same, morphism = form). In a successful user interface, the user’s

and designer’s conceputal models have the same form. Ifa user can learn the user inter-

face quickly, this shared conceptual model is probably coherent too. This isomor-
phism is illustrated in the following picture, with the designer’s thoughts at the left

and the user’s on the right:

Once the product is out the door, the only way for the designer to convey the con-
ceptual model to a user is through the user interface itself, represented by the monitor

and mouse in the figure. (Manuals may be available, too, but they are getting smaller

and becoming less of a factor.) Hence, the user interface had better also be isomorphic

to the conceptual models of the designer and user.

Just as an isomorphism between user interface designer and user reduces mental

translations, all other isomorphisms reduce mental translations. Thus, programmers

benefit from an isomorphism (A in the picture) between the user interface and the

156 DESIGNING THE UI: A BRIEF TOUR | CHAPTER 13

programming language, and database designers benefit from an isomorphism (B in

the picture) between the programming language and the database. Isomorphism A

comes from an object-oriented language into which the programmer can translate the

objects from the conceptual model. Isomorphism B comes from an object database

system, into which the programming objects may be directly stored.
At least that is the theoretical ideal. Nowadays, all these isomorphisms are feasible—

and desirable—except for the database isomorphism. The database solution for a prob-

lem is sometimes an object database, but the decision depends on a host of practical con-

siderations: scalability, performance, distribution, transaction size and frequency, and

the presence of legacy data. For example, in large-scale business problems, the database

solution often necessarily involves an existing relational database management system.

Isomorphism brings us full circle, back to objects. Isomorphism means that the

conceptual models of the user and designer have the same form; the user interface

evokes this shared model; and the programming model and wistfully, the database

model, are faithful to it. Metaphors help us impart our conceptual models to each

other, but we cannot program in metaphors. So we use the universal language of objects

to express our metaphors in a form that object-oriented programming can handle.

13.9 Summary

Designing a first-class user interface is orders of magnitude more difficult than most

people think. If we had a prescription for success, many more of us would be great user
interface designers, and many more great user interfaces would be on the market.

Unfortunately, great user interfaces are rare. In particular, we have seen that they can

appear only in conjunction with great overall designs. No user interface can compen-

sate for a poorly designed application.

Although we have no prescription for success, we know of some considerations

without which failure is certain. The user interface designer must:

* Construct coherent conceptual models.

* Identify and develop use cases.

* Apply metaphors wherever practical—to facilitate learning and use of the user inter-

face or to describe conceptual models.

* Use magic judiciously, to go beyond the metaphors in ways that do not clash with
them.

There is no special order to these steps. We have to do them all repeatedly before they
converge to a product.

13.9 SUMMARY 17

You practiced these steps in the exercise on page 151. Given enough time, you

would study usability too: observing users at work; presenting crude early mockups of
windows to them for their feedback; and, once working prototypes are available, mea-

suring the time for them to complete tasks.

In real projects, the difficulty of user interface design, indeed application design, is

compounded by the often conflicting requirements placed on the application by dif-
ferent groups of users. Each group does things in its own way, or deals with its own

cross-section of the objects, or sees the business from its own standpoint. Conflicting

conceptual models are all around. This cacophony of demands makes it even harder

to produce a coherent overall conceptual model and a first-rate user interface.

For a comprehensive treatment of the problem of designing user interfaces, see the

book by Dave Collins [Collins 1995], which amplifies the theme only touched upon

here, namely that a good user interface design is inseparable from a good system
design. For the pervasiveness of metaphor in human cognition, see [Lakoff and

Johnson 1980]. For several excellent essays on metaphor in user interfaces, see [Laurel

1990]. Two essays in that volume that challenge the value of metaphor are [Nelson

1990] and [Kay 1990]. The former is a diatribe against excessive use of metaphor and

the latter emphasizes magic in overcoming the limitations of metaphor.
We have seen conceptual models that are metaphors, or definitions, or pictures.

Here is one final example, from Nobel physicist Richard Feynman’s perspective on
physical laws: “A philosophy, which is sometimes called an understanding of the law,

is simply a way that a person holds the laws in his mind in order to guess quickly at

consequences” [Feynman 1967]. His “philosophies” help physicists anticipate experi-

mental outcomes in precisely the same sense that coherent conceptual models help

computer users anticipate the behavior of applications. Feynman's “philosophies” are

yet another kind of conceptual model.
This chapter concludes our three-chapter tour of user interfaces. We turn next to

the essential subject of polymorphism.

CHAPTER 14

Polymorphism

One of object-orientation’s most vital properties is polymorphism. Polymorphism
increases the extensibility and clarity of object-oriented code. It influences object-
oriented design so much that many authorities treat it as a fundamental object-oriented
principle, alongside the objects, classes, and inheritance we discussed in Chapters 1 and 2.

Polymorphism relates to several other ideas, including subtyping (Chapter 17),

type-checking, and dynamic binding. We begin with dynamic binding, which is an idea

that makes sense in either object-oriented or non—object-oriented contexts.

14.1 Dynamic binding

Alan Kay observes that postponing a decision until the last possible moment is one of

the most fruitful and characteristic trends in the evolution of computing [Kay 1993].

Examples of postponement in computing history include linkers, relocatable pro-
grams, and virtual memory. Another is dynamic binding, which postpones selection of

an operation until execution time.

Most traditional languages, like Pascal and FORTRAN, don’t support dynamic

binding: if you write foo(x) in those languages, the compiler (or linker) determines the

exact function foo to be executed, then compiles the directions to find that function. If

the program has more than one function foo, the compiler uses the rules of the lan-

guage to pick one. When the program eventually executes, that one runs.!

' The special situation in languages like C or Ada where the compiler can pick among functions with
the same name but different argument types, such as foo(3) for integers and foo("hi") for strings, is
known as overloading. This is not an example of postponement because the compiler distinguishes
the two functions by examining the argument types, long before the function executes. Overloading
is emphatically not dynamic binding.

158

14.2 DYNAMIC BINDING ENABLES...POLYMORPHISM 159

Dynamically bound languages don’t preordain the function that executes. Instead,
the function is selected while the program is already running, from possibly many
functions named foo. It is often impossible to select the function or method any ear-
lier, as this example in Smalltalk, which is dynamically bound, illustrates.

aCondition

iffrue: [y := 3]

ifFalse: [y := #(5 7 eleven)].

y printOn: someStream.

Smalltalk has numerous printOn: methods—classes often define their own
printOn: method to customize the way in which instances print or display themselves

in textual form. (Recall the exercise on rendering any object into text, on page 56.) If

it happens that the “true” path executes, the printOn: that executes should be the one
appropriate for 3; that is, for class Integer. If the “false” path executes, it should be the

one for #(5 7 eleven); that is, for class Array.

The Smalltalk compiler cannot preordain the choice, for it can’t predict which

branch will actually occur at execution time. This is dynamic binding—the ability to
postpone selection of the specific printOn: method until execution time. The more

interactive an application is, the more situations arise in which the compiler can’t

know the function in advance, and the more unavoidable such postponements are.

14.2 Dynamic binding enables... polymorphism

Newcomers commonly assume that dynamic binding must work by way of condi-
tional code that selects among the candidate methods, and is necessarily slow. Not

always. The presence of conditional code and the speed of method selection depend
on how a particular language system—the compiler plus the runtime environment—
implements dynamic binding. Today's Smalltalk implementations are fast, and the
different technique that C++ employs is even faster. (We'll see in Chapter 16 how C++
gets this speed by foregoing conditional code entirely.)

Here is one way to do dynamic binding. This technique is sometimes used in non—

object-oriented languages, but we will see that it is unsatisfactory for object-oriented

ones. Suppose your application has a user interface that will show each item in a mail-
box. The items or “objects” could be memos, spreadsheets, or documents. You could
use a conditional statement like CASE, SELECT, or SWITCH, depending on your

language:

case y.type of

m : showMemo(y) |

160 POLYMORPHISM | CHAPTER 14

s : showSpread(y) |

d : showDocum(y)

end;

This is Pascal, but the same style works in any language, as long as the “type” infor-

mation is available along with the “object” at the time the program executes. In this

example, the programmer would have to build and maintain the extra “type” field.

Now, if you can do it in non—object-oriented languages, you can also do it in object-
oriented ones. Moreover, in Smalltalk the type or class of y is readily available just by

sending the message y class. Nonetheless, Smalltalk or not, this is an awful way to do

dynamic binding, for the following reasons.
First, performance. On many computers, conditional branches, especially those

with many cases, are slower than straight line code. (Branches are less of a drawback
nowadays on most RISC computers, because they can pre-execute code ahead of a

branch while they evaluate the branch condition.)

Second, and more serious, is an engineering drawback. Sooner or later you'll want

to extend the application to accommodate other kinds of objects—changing and

enhancing software is inevitable. Let’s say graphics could now show up in the mailbox,
too. You would have to alter the case statement to accommodate another case (g :

showGraphic); that much is unavoidable. Furthermore, if the same case statement

occurs elsewhere, for example to show the items in a file folder, each such occurrence

must be repaired, too. But the case statement is much more insidious than that. Not

only do you show items, but you are also likely to mail them, or print them, or save

them, or execute or read them. These operations involve nearly the same case state-

ment, each of which must be altered, too. Searching for and altering all those state-

ments is tedious and error-prone.

We would like to avoid having to repair client code—the code that uses our

spreadsheet and memo objects—every time we add a new kind of object to our library
of reusable components. We are willing to concede that adding graphics objects neces-

sitates new library code, namely the Graphics class, but we hope that client code can
benefit from these new objects without incurring widespread alterations.

The solution to this problem in Smalltalk looks like this:

y showIt

That's all. If you now add a class of graphic objects to your application, this line of
code doesn't change. If the line occurs at several points in the client code, none of
those occurrences changes, either. And if a similar line of code occurs to mail, print,
save, execute, or read objects, those occurrences don’t change, either. We have liberated
client code from conditionals and in so doing immunized it against a whole category
of invasive alterations.

14.3. A WORD ON TERMINOLOGY 161

Does the conditional really disappear? You may suspect me of merely factoring the

noxious conditionals out of the client code and into just one conditional hidden inside

a single showlt method. That approach is indeed possible. But it makes for a complex

showlt method and is still one error-prone conditional too many. It is unnecessary and

undesirable.

Here's how the object-oriented design works without any conditional at all. There

are really several methods, all with the same name, showIt, one for each class of objects

we're interested in: spreadsheets, documents, graphics, and so on. By asking the vari-
able y to showlt, we are really asking the object that happens to lurk under y to
showlt:

Client code y showlt

aSpreadsheet aDocument aGraphic

One of these objects lurks under y

Whatever kind of object that is, it responds directly with its own showlt method.

There is no type testing and no branching. The running program doesn't even know

what kind of object is there, and it doesn’t care. It just trusts that the object under-
stands showIt.

The fashionable name for this conditional-free style of programming is polymor-
phism. “Poly+ morphism” is of Greek origin and means, “multiple+ form.” The vari-

able y assumes “multiple forms,” depending on the kind of object it happens to point
to. Each kind of object administers its own showIt method, and so the response to the

message y showIt effectively also assumes “multiple forms.” Polymorphism—multiple

forms—is a way to replace conditionals by classes, resulting in code that is easier to
read and easier to modify.

14.3. A word on terminology

The concept of dynamic binding in object-oriented systems has two aspects: deter-
mining the object (and its type) and, having done so, looking up its chain of super-

classes for the method. The latter often also goes, aptly and unambiguously, by the
name method lookup. | use “dynamic binding” in the broadest and loosest sense, to

162 POLYMORPHISM | CHAPTER 14

cover both aspects. Many authors limit “dynamic binding” to one or the other; that is,

either to type selection [Booch 1991] or method lookup [Meyer 1988; de Champeaux

et al. 1993].

You can think of dynamic binding as a mechanism for postponing method selec-

tion, implemented in different ways by different object-oriented languages. Polymor-
phism, although it requires a dynamically bound language, is not a mechanism but a
design technique for improving the clarity of our software. The relationship between

polymorphism and dynamic binding is a striking example of the inseparability of
design from implementation. You can’t design polymorphically unless your language

supports dynamic binding.

14.4 Exercise: polymorphism

Q) Suppose an importer wants to calculate the tariff on the motor vehicles she

imports. Suppose her software must apply different calculations, depending on

whether the vehicle is a truck or passenger car. What should the high-level design

look like? Think of two designs.

14.5 Solutions and discussion

Solution I. Define an abstract class Vehicle, and two concrete subclasses, Truck and

Car. Define a method Vehicle>>tariff that does nothing. We called such a method

“pure virtual” or or “subclassResponsibility” on page 64. Then define methods

Truck>>tariff and Car>>tariff that apply the respective calculations for the two kinds
of vehicles.

Vehicle

nas
Truck Car

Solution 2. Define a class Vehicle with an instance variable named type. The method
Vehicle>>tariff has the form:

type = 'truck'

ifTrue: ["truck calculation"]

ifFalse: ["car calculation"]

14.7 SOLUTION 163

Object-oriented developers invariably think of the first solution first. People with-
out object-oriented training, however, have recourse only to the second, which is actu-
ally not object-oriented. By now you know the drawback of solution 2: it is harder to
maintain if and when other kinds of vehicles like motorcycles with different tariff cal-
culations appear on the scene.

To summarize: The polymorphic, object-oriented design is extensible because the
client code consists solely of:

v tariff

This line of code doesn't change, even if motorcycles are imported. Polymorphism uses
classes instead of conditionals to solve the problem.

14.6 Exercise: Smalltalk’s if-less-ness

Consider any code that sends the ifTrue:ifFalse: message, such as this sample:

Kase is

X iffrue: ["true path"]

ifFalse: ["false path"].

Think about the following questions without looking at any Smalltalk browsers.
Then use a Smalltalk browser to verify your answers.

Q) In what class should the method ifTrue:ifFalse: be?

Q) What should the method ifTrue:ifFalse: do? In particular, should its code be con-

ditional? And how many ifTrue:ifFalse: methods are there?

14.7. Solution

A plausible first guess for a class that implements ifTrue:ifFalse: is class Boolean. But

the browser shows no such method:

164 POLYMORPHISM | CHAPTER 14

Applications Categories Methods Info

abtAsNumber
asAddress

eqv:
} CfsDirecto isBoolean

: CfsError

‘Object subclass: #Boolean
instanceVariableNames:
classVariableNames:

poolDictionaries: "

A closer look at class Boolean, however, reveals two subclasses named True and

False. Examining class True first, we find among its methods an ifTrue:ifFalse:. Now,

one might well expect to see some conditional code in the body of this method. But
there is none:

Applications Categories Methods Info

ifFalse:
Boolean ifFalse:ifTrue:
False if True:

< A SENN

ifTrue: trueAlternativeBlock ifFalse: falseAlternativeBlock

“Since the receiver is true, answer the value of
trueAlternativeBlock."

“trueAlternativeBlock value

The evaluation of the “trueAlternativeBlock” is unconditional. That’s because the
receiver of the message, knowing itself to be the true object, has no need for the mes-
sage’s “falseAlternativeBlock.” A true object ignores the false alternative and simply
executes the true alternative.

Now, class False has a totally different method, albeit also named ifTrue:ifFalse:.
The logic within that method unconditionally executes the “falseAlternativeBlock.”
After all, the false object knows full well that it has no need for the true alternative and
summarily ignores it.

14.9 COMMENTARY: PERFORMANCE 165

This situation seems paradoxical, at least on a superficial first glance. How can

something as ostensibly conditional as a method named ifTrue:ifFalse: in fact execute

no conditional code? The answer is exactly the same principle the tariff methods illus-

trated in the earlier exercise: subclasses can replace conditionals, as long as each sub-

class supports its own version of the method. Smalltalk just takes the principle

radically far, down to the level of boolean objects.

14.8 Summary tip

As a rule of thumb, think twice about conditional statements in your code. Many of

them may be opportunities for subclassing and polymorphism. “IF” statements dis-
quiet object-oriented programmers. Unless you are certain never to expand them with

additional cases, you should be as suspicious of them as as you are of the “GOTO” in

conventional programming.

14.9 Commentary: performance

Performance is a peculiar topic. The things that people dispute heatedly and at great

length are often the ones that matter least. Usually they are the things that are easy to

measure—how many conditionals, how many levels of address indirection, a highly
specialized benchmark, and so on.

What really matters—when static SQL can be an order of magnitude faster than

dynamic SQL, or when searching a queue from the rear instead of the front can halve

CPU time, or when a working set size exceeds virtual memory—isn't so easy to mea-

sure. Instead, these are matters for savvy design. The savvy designer grasps the prob-

lem at hand and has a mental arsenal of alternatives to apply to it, plus an intuition
born of experience to weigh their trade-offs and anticipate which is best and by how

much.

Keeping these caveats in mind, what are the performance implications of polymor-

phism in object-oriented languages? Its measurable effect reduces to the net of two

opposing forces:

1 Fast: replacing conditionals by defining new subclasses.

2 Slow: method lookup. Looking up an inheritance hierarchy for the class that im-
plements a method, no matter how fast, is still slower than calling a function

whose location is known at compile time. The techniques that language imple-

mentors use to achieve acceptably fast lookup are covered in Chapter 16.

166 POLYMORPHISM | CHAPTER 14

The danger with cold calculations of these forces is that they are likely to distract us

from the main event. Polymorphism above all contributes to cleaner systems that are
more mentally tractable. And designers can understand tractable systems and hypoth-
esize ways to improve their performance. You can’t write faster code unless you can

understand it.
Benchmark experiments on early versions of the CHOICES operating system,

developed in C++ at the University of Illinois, showed that it performed unfavorably
against UNIX. A year later, benchmark results showed CHOICES to be consistently
superior to UNIX. The developers cited two reasons for the improvement. The first
was that performance bottlenecks were easy to fix because they were encapsulated—
hardly a surprise, for encapsulation is the most flaunted of object virtues. The second
was replacing conditionals by subclasses—polymorphism can improve performance.

14.10 Commentary: Smalltalk, C++, and type-checking

The expression type-checking means to try to detect occasions when an object is being
used in circumstances that are appropriate only for objects of other types or classes.
(Remember that we don't distinguish between the words class and type; that is, not

until Chapter 17.) Sending a message to an object that doesn’t understand it is a typi-

cal example of an error that object-oriented languages type-check:

Whale new + 2.71828

Because Whale instances do not understand arithmetic messages like + 2.71828,

Smalltalk will inform us of this type error with a walkback.

The type-checking rules in C++ and Smalltalk are quite different. Consider these
Smalltalk statements:

R := Rectangle new.

T := Triangle new.

Reseilic

Smalltalk variables like R and T point to objects. They have no allegiance to any spe-
cific type (class); they can point at one moment to an object of one type and at another
moment to an object of a completely different type.

14.10 COMMENTARY: SMALLTALK, C++, AND TYPE-CHECKING 167

i Saee ‘

aRectangle aRectangle

Q T—— (© | ——

aTriangle aTriangle

Before After

The assignment statement R := T just switches R so that it too points to the triangle

object. This is not a type error in Smalltalk.

Contrast this with the analogous situation in C++ (The assignment syntax in C++

is r = ts):

Rectangle *r;

Triangle *t;

ee

The C++ compiler, recognizing that variables r and t have been declared for different,

presumably incompatible classes, detects right away that the assignment is an error. In
effect, the type of object that a variable like r (or t) may point to is fixed once and for

all by the compiler. Hence, any code that tries to use the variable for another type of

object won't even compile.’
If you take this restriction literally—that C++ fixes the type of object that a vari-

able can hold or point to—then you may wonder whether the polymorphic mailbox
example illustrated on page 161 works in C++. In other words, you may worry that
the variable y in y showIt (or in C++ syntax, y->showIt();) is constrained to just one

kind of object. Fortunately not. In C++, if you declare y to be a pointer to objects of

? The C++ policy of detecting type mismatches early appeals to our instinct for safety. On the other
hand, safety comes at a price. A program written in a language like Smalltalk where variables are
untyped is quicker and easier to modify, and more flexible because its variables can accept more
types of values. The debate for and against early type-checking is exhausting, emotional, endless,
and rarely profitable to linger on. Suffice it to say that C++ and Smalltalk represent opposite poles
in the debate, both with good reasons. Safety is important, and so too is flexibility.

168 POLYMORPHISM | CHAPTER 14

type T, then the compiler will a/so allow y to point to objects of the subtypes of T! This

is a remarkable, but intuitive and natural feature of the language. It says that it makes

sense for a shape variable to refer to a rectangle object (or a triangle, or...). But the

converse would be silly: to expect that a rectangle variable could refer to an object of

any shape.
Similarly, an insect variable ought to be able to refer to any butterfly, but a butter-

fly variable ought not to be able to refer to an arbitrary insect. That's how object-ori-
ented languages like C++ and Eiffel and Java work: a variable can point to objects of

any of its subtypes, but it can’t point to an object of its supertype(s).
Here’s a concrete C++ example. First, declare rectangles and triangles to be sub-

types of shapes, and (details omitted) supply various methods that override do-noth-
ing methods in the shape superclass. These methods might calculate area or perimeter,

for example.

class Rectangle : public Shape { ...

class Triangle : public Shape { ...

Next, declare variables of each of these types, and (details again omitted) make r and
t point to a rectangle and triangle object:

Shape* s; Rectangle* r; Triangle®* t;

Either of the following assignments is legitimate—an insect can refer to a butterfly:

itr d(adc)) S.aies

else s = t;

On the other hand, an assignment like r = s; would be forbidden by the compiler—a

butterfly can’t refer to an arbitrary insect. Next, ask for the area of s with this message:

answer = s->area();

Which area method executes, the one for rectangles or the one for triangles? The

right one. That is, assuming certain C++ niceties are observed in declaring area(), the

area method for whatever s actually points to executes: if the conditional is true, then

Ss points to a rectangle, and Rectangle’s area() executes; if the conditional is false, s

points to a triangle, and Triangle’s area() executes.

That's how C++ supports polymorphism, as a compromise between the flexible
dynamism of Smalltalk and the rigid safety of traditional type-checked languages. The
same approach is used by other object-oriented languages—Eiffel, Java, Modula-3...
—that oblige the programmer to declare types for variables. Smalltalk differs from all
these because there is no way to declare a type for a Smalltalk variable; any variable can
refer to any kind of object.

14.11 COMMENTARY: THE TOMATO IN THE MAILBOX 169

14.11 Commentary: the tomato in the mailbox

Suppose you're handling your postal mail. You discard the bulk mail, but you open your
packages immediately. This is a fairly ordinary object-oriented problem. The polymor-
phic solution is to design a Mail supertype of both Package and BulkMail and write

appropriate handleMail methods for each kind of mail. As we know, this solution side-

steps the need for runtime type testing (“if the object’s type is BulkMail, then...”).

You can’t always sidestep runtime type testing, however. Suppose you find some-

thing in your mailbox that isn’t an instance of a subtype of Mail, say a garden-fresh
tomato from your neighbor. Does this problem have a polymorphic solution?

In C++, the answer is no. Polymorphism works only for types that share a super-
type. Other than inventing an artificial supertype of both Mail and Tomato, your only
recourse is for your program to ascertain at execution time that the object is a tomato

and not mail, then send it a valid Tomato message. This difficulty motivated the

ANSI C++ committee to add runtime type testing to the C++ standard. (See [Lea

1992] for practical uses of this feature.)

Contrast the situation with Smalltalk. Polymorphism works for tomatoes and

mail, even though they are in unrelated parts of the class hierarchy. In other words, if

you write a Tomato>>handleMail method that eats the tomato, client code like y
handleMail works fine, whether y points to a package or a tomato. The Smalltalk vari-

able y isn’t constrained to any specific type(s). The Smalltalk developer doesn’t need
runtime type testing to solve this problem.

We can describe the polymorphism that Smalltalk supports—and C++ doesn’t—

as implicit polymorphism. People also refer to it variously as ad hoc, signature-based, or

apparent polymorphism. This is a concept on which the terminologists have not yet

had their last word. Implicit polymorphism is polymorphism that works for types of
objects that may not share supertypes; explicit type relationships aren’t necessary. It’s
polymorphism across type hierarchies instead of within type hierarchies.

Ordinary polymorphism—polymorphism within explicit hierarchies—is some-
times called inclusion polymorphism. The rules for any variant of polymorphism

amount to the way in which a language determines whether it is okay to substitute

instances of one class for instances of another. These rules have to do with measuring

consistency between classes, a matter I’ll tell you more about in Chapter 17.

To sum up, C++ supports only inclusion polymorphism, while Smalltalk supports
both inclusion and implicit polymorphism. Where implicit polymorphism is necessary,
the C++ developer reverts to runtime type testing. Thus, the need for runtime type test-

ing is greater in C++ than in Smalltalk because of the absence of implicit polymorphism

in C++. Ironically, Smalltalk makes runtime type testing easy (send any object the mes-

sage class), but requires it less often. In any language, you should use runtime type tests

170 POLYMORPHISM | CHAPTER 14

sparingly. (Again, see [Lea 1992].) They are apt to introduce hard-to-maintain condi-

tionals and are antithetical to the object-oriented style of programming.

Q) To emphasize this point one final time, decide whether this sample use of runtime

type testing is desirable (Hint: it is not.) and what you would do to rectify it:

mailbox do: [:m |

m class = BulkMail

ifTrue: [m discard].

m class = Package

ifTrue: [m open].

m class = Tomato

iffrue: [m eat]

14.12 Commentary: multi-methods

Sometimes, the orthodox object model is not enough. For some problems, it is just

awkward to conceptualize the solution as a method on an object. Sometimes a behav-

ior involves two peer objects, and neither one particularly merits having sole responsi-

bility for the behavior. For example, why model a dancing couple by writing a method
on one favored partner that accepts the other partner as an argument? Wouldnt it be

more natural to write a multi-method on both partners? Of course, there is no such

thing as a multi-method in most object-oriented languages, including Smalltalk. The

only commercial language with multi-methods is CLOS. What then do you do

instead when confronted with this kind of problem?

The answer is a technique first published by Dan Ingalls [Ingalls 1986]. First, des-
ignate one of the dancers, say x, as a preferred target. Send it the message dance: y,

passing along the other object, y, as an argument. Now, x will need the help of behav-

ior on y, and so it redispatches a message danceX: x to y to invoke this behavior, pass-

ing itself as an argument, as illustrated here:

14.12 COMMENTARY: MULTI-METHODS WA

dancex: x

Note that we allow the two dancers to belong to different classes. Nothing prevents

two disparate dancers from dancing, for example if X is BalletDancer and Y is Swing-

Dancer. Also, don’t overlook the significance of passing self as an argument to y: not

only is y getting control, but y is getting full access to x. Thus, the objects x and y are
as intimate as object-orientation lets two objects be.

Now, none of this discussion so far has a very polymorphic feel; it only conveys a
strong sense of alternation of control, plus object-oriented intimacy. Polymorphism

happens when we let a variable range over objects of different types, and we haven't
considered that possibility yet. So let’s add some variability. We could let either x or y
vary, but to make things interesting, we'll let them both vary. We must then generalize

the preceding sketch:

x1

172 POLYMORPHISM | CHAPTER 14

The message flow is the same as before—it starts with x dance: y and proceeds with
a redispatch to y of a message of the form danceX: x. Only now we see four variations

in which this dance may play out. But the implementation uses zo conditional state-

ments! We have an example of multiple polymorphism, where both the receiving vari-

able x and the argument variable y are independently polymorphic, because either can

refer to an instance of two classes.

Because the alternation of control resembles what occurs in a classical pas de deux,

where the dancer and ballerina take turns upstaging each other, I call this object-

oriented arrangement a pas de deux or a duet. But the name that occurs most often in

the literature is double dispatch. By whatever name, this arrangement occurs widely in

object-oriented systems, and is discussed again as a pattern in Chapter 18.

As a final aside, let’s contrast multi-methods with the runtime type testing dis-

cussed earlier. Because C++ has traditional functions as well as methods, we could use

a function of the form dance(x, y), thereby more faithfully portraying the symmetry
between the two real-world dancers. And because the C++ standard supports runtime

type testing, this dance function can consist of if-statements like:

if ((BalletDancer*) (x) && (SwingDancer*) (y)) wild combo(x, y);

which means, “if x is a ballet dancer and y is a swing dancer, then have them dance a

wild combo.” We would add a similar if-statement for every combination of dancer

types that we cared about. This technique is an alternative to the double dispatch solu-

tion of dancing outlined above.

The symmetry of the function dance(x, y) in this approach is more attractive than
double dispatch, which depends strongly on arbitrarily favoring one partner or the
other. The runtime type tests, however, expose maintenance programmers to the

instabilities of conditional code, which we have sought to avoid throughout this chap-

ter. Moreover, the symmetric solution is not even possible in Smalltalk. Smalltalk has

methods only. Therefore we must designate one dancer or the other as the primary

object to carry the dance responsibility.

CHAPTER 15

Practicing polymorphism

Understanding polymorphism, which was our purpose in Chapter 14, is not as valu-

able as being good at applying it. This chapter is an opportunity for you to design an

object-oriented, polymorphic solution to a real problem. This is the problem of undo-

ing a user's actions. First, we need an application.

15.1 Design exercise |: a shape editor

Consider a simple application that lets the user create, move, or remove shapes. The

kinds of shapes won’ affect the overall design much, so let’s agree to limit them to cir-

cles and squares. This application is a foundation for many families of commercial

applications—graphical editors and simulators, network management tools, CASE

tools, and video games.

QO) Use CRC cards to brainstorm about the essential classes and their responsibilities.

Brainstorming works best as a social act, in a group of two to four peers. Hints:

* Stick to the model. In other words, don’t worry about the look and feel, or
“view,” of the application. This is largely an exercise in disciplining yourself to

prevent the user interface from influencing your design. Design only the essen-

tial underlying classes—those which will work with any view at all.

¢ Dont’ forget that container objects are ubiquitous in the everyday world, and

are therefore likely to insinuate themselves into even a small design like this one.

¢ Ifyou find fewer than three classes, you definitely don't have enough to describe
the application in an object-oriented way. If you can’t find enough classes, try

7s

174 PRACTICING POLYMORPHISM | CHAPTER 15

resorting to the trick of looking for nouns and verbs in the problem statement.

Nouns may signify objects and verbs may signify responsibilities.

¢ Finding too many classes is just as undesirable. If you find more than about six,
youre probably obscuring the essence of the design.

15.2 Solution and discussion

I will discuss the ideas that students typically try as they work toward a solution, fol-
lowing the same order in which they try them.

The most obvious CRC cards are ones for Circle and Square objects. It is also not
much of a stretch to anticipate that an abstract superclass named Shape might be
handy for gathering common expectations of circles and squares. For example, if we

expect both circles and squares to be capable of movement, we can record that respon-
sibility in the Shape class. Imagining further how we might eventually move a shape,
we might even allow for an instance variable that captures the position of each shape
instance. Our CRC cards would now resemble:

moving

LEELA LLL a VOL LLL:
LEZ

Instance variables specific to Circle and Square appear on their respective cards.!
Because the application is supposed to “create, move, or remove” shapes, it is tempting
to add “creating” and “removing” responsibilities to the Shape “doughnut” above;
almost everyone considers this. However, I advise against adding either one, for these
reasons:

LA, 5 Es Orthodox use of CRC cards does not plunge to the level of instance variables. I use them here to
indicate the way toward implementation a little further than is customary.

15.2 SOLUTION AND DISCUSSION 175

First, creating an object is not the object’s responsibility. An object that doesn’t
exist yet can hardly create itself. Rather, as we have seen, creation is a responsibility of
the object’s class, by means of something like a new method. It is fine to write down
this responsibility for creation, but not on the doughnut that represents an instance.

Write it somewhere else, like the upper-right corner of the card, or the reverse side.

Second, writing “removes itself on the Shape doughnut (or the Circle or Square

doughnut) is disagreeable for two reasons. First, you are metaphorically asking the object

to commit suicide, and programming objects don’t want to do that any more than real

objects do. Second, the expression “remove itself” implies a place from which the object
is to be removed—remove it from where? We need to put our finger on this place.

According to the second hint, we need a container object. If you remove flowers,

you remove them from a vase; if you remove books, you remove them from a library,

or a bookshelf. What shall we call the container that holds our shapes? A common but

undesirable answer is Window. A window suggests a user interface, and we do not

want our design to be biased by user interface or view considerations. We want to

emphasize the model aspects, so we need a more neutral word. I suggest ShapeRoom;

you can probably do better, but ShapeRoom is good enough for us to proceed.
This container for the shapes is a handy place

for recording several responsibilities: holding
3 : i aeons tees

shapes, removing them, adding them, even moving

them. The CRC card for this class now looks like

the one on the right. This class is a talented con-

tainer; it supports ordinary container-like responsi-

bilities, but also somewhat more, like moving

shapes within it. It does what we would expect of a

shape editor; ShapeEditor could well be another

name for it. An instance of this class—a model—will process messages from the user

hold shapes

remove a shape

move a shape
adding a shape

interface—a view.

Notice that the instance variable named contents suggests how ShapeRoom will

fulfill its container-like obligations: this instance variable should refer to an instance of

class OrderedCollection, or perhaps Set. In other words, a ShapeRoom buys an ordi-

nary Smalltalk collection to hold its shape objects.

Also notice that “moving” appears on the card for ShapeRoom as well as the card

for Shape. A ShapeRoom receives a message to move a specific shape to a specific

point. The method in ShapeRoom that performs this function in turn sends a

message to the specific shape to move itself to the specified point. This arrangement

isn’t unusual—a high-level move method on ShapeRoom collaborates with a lower-

level one on Shape to get its job done.

176 PRACTICING POLYMORPHISM | CHAPTER 15

Next, let’s take a moment to review the topic of the previous chapter, polymor-

phism. Consider the presentation of the shapes on the user interface. This is nomi-

nally a responsibility of the view classes that I said we would not design here.

Nevertheless, model classes must cooperate by making information about themselves

available to view classes. We can call this responsibility of shapes “rendering.” Each

kind of shape will render itself in a way appropriate for itself; hence we should expect

circles to render themselves differently than squares would. A view will not know or

care whether a shape is a square or circle; it will simply trust the shape to render itself

acceptably.

Thus, class Circle and Square will each have a method named, say, render, and
class Shape will have a subclassResponsibility method with the same name.

Shape>>render documents the obligation of each subclass to support rendering, but

itself does nothing. As the application evolves, and additional classes of shapes emerge,

each will require its own render method. In other words, shapes are polymorphic.
Here, as in the examples of the last chapter, client code, in this case a view, will not be

affected by introducing new classes of shapes.

15.3 Design exercise II: undo and redo

Now that we have an application, this simple shape editor, we want to make the user’s
actions undoable. Undo means reverting an interactive application to an earlier state.

An application with strong undo support motivates users to explore unfamiliar fea-
tures and provisional streams of thought because they know they can always revert to
their point of departure if things turn out badly. If an application also lets its users redo
what they've undone, so much the better. A few years ago it was unusual for interactive

applications to support undo, let alone redo. Today, the opposite is true: almost all
new applications support undo, albeit to varying degrees. But once you have been
spoiled by an application with unlimited undo-redo, anything less is an anachronism.

Q) Design an enhancement to the shape editor that lets the user undo any number of

his most recent actions. If possible, brainstorm with CRC cards and a small group

of peers. Hints:

* A good object-oriented solution will handle multiple undos as well as it handles

one undo. You might as well aim for unlimited undo. Don’t get sidetracked into
worrying about redo yet. After you solve unlimited undo, unlimited redo is a
small extension.

° As always, if you have trouble getting started, look for nouns and verbs. They

are especially telling in this problem.

15.4 SOLUTION AND DISCUSSION N77.

* Four to seven classes is a good range for describing the solution. The number

depends on the original application. It therefore pays to review the shape-editor

exercise.

¢ You will need another appropriate container class.

15.4 Solution and discussion

The solution is an object-oriented classic; it also works for other interactive applica-

tions. It appeared early in the 1980s in the MacApp framework for Object Pascal
developers, and proliferated thereafter. It has even achieved the status of a design pat-

tern (Chapter 18).

The key to discovering the solution is the clause,

“undo...actions” in the problem statement. Here,

“actions” is a noun (!), and nouns are always plausi-

ble aspirants for objects. The verb “undo” then looks

like a promising responsibility of an action object—
actions should know how to undo themselves. Once

you accept this much, unorthodox as it may at first

seem, you have little choice but to sketch a card like

the one on the right.

The trouble is that an action is a pretty nebulous idea, and so this card isn't very

satisfying. That’s where the original, concrete problem comes in. The shape editor had

exactly three functions: create, move, and remove. Each of these is an action that the

user may want to undo. That gives us three kinds of undoable actions or, in other

words, three subclasses of Action. This is a perfect setup for an abstract class and three

concrete subclasses:

* = pure virtual, subclassResponsibllity

info2 = information needed to undo myself (a move)

178 PRACTICING POLYMORPHISM | CHAPTER 15

Undoing is a subclassResponsibility of the superclass—it does nothing—but a con-

crete responsibility of the three subclasses, each of which carries it out in its own way.

They will retain any information (in the form of instance variables) they need to carry

out their mission. For example, the only way a Move object can have the wherewithal

to undo itself is if it knows the shape instance being moved and the position from which

it came. Thus the information inside the Move instance pictured above consists at least

of instance variables representing a shape and the shape’s original position. (Look for

these instance variables when you work with the code in the next section.)

To understand the life cycle of these action objects, imagine a sample scenario: move

a circle, then move it again, then undo both moves. Each move will result in a separate

instance of the Move class. These two instances must be stored in order, then recalled

and undone in reverse order. A container of some kind is evidently needed, and because

of the order reversal, a stack seems eminently suitable. Thus whenever the application

moves the circle, it instantiates a Move object and pushes it onto the stack. When the

user calls for one or more undo’s, the application pops the Move objects off the stack
one by one, and asks them to undo themselves. The Move objects are able to comply

because they know the circle and its previous position. Summing up the design:

undo pop my top

=
push an object

One loose end remains: how do you attach this design to the design of the original

editor? Not much changes. The implementation of the “move a shape” responsibility

of ShapeRoom must now instantiate a Move object and push it onto the stack. Simi-
larly, the “add” and “remove” responsibilities of ShapeRoom instantiate Create and
Remove objects, respectively, and push them onto the stack. ShapeRoom gets one
additional responsibility, “undo.” ShapeRoom carries out its “undo” responsibility by
popping the top action from the stack, whatever the action may be, and asking it to
undo itself.

Notice the implications of the clause, “whatever the action may be:” this is another
polymorphic design. The room doesn’t know and doesn’t care whether the popped
action is an instance of Create, Move, or Remove. For that matter, the room doesn’t
care what kinds of actions reside anywhere in the stack; it trusts only that they know

15.5 IMPLEMENTING UNDO Wg

how to respond to requests to undo themselves. Even if you should later extend the
application with additional kinds of actions, the room won't care—not one jot of its

code changes. This is an archetypal example of polymorphism’s value.

Inexperienced designers usually feel tricked that something so verb-like as “move”

turns out to be an object. Sometimes they feel that the solution is contrived. After all,

in the original shape editor, “move” was a responsibility—more akin to a method than

an object. That analysis remains correct and valid. It’s simply irrelevant for the present
problem—the undo problem has only a superficial relationship to the editor problem.
The editor problem was about manipulating shapes, and so we designed shape objects.

The undo problem is about manipulating actions, so we design action objects.

Because actions are at the heart of the problem, they become the leading candidates

for classes. The problem has shifted from shapes to actions, and the designer’s atten-

tion had better shift along with it.

Finally, remember that real designs proceed in fits and starts and rarely arrive
smoothly at a neat conclusion. Thus, a team of designers working on this problem for

the first time should have hit a few dead ends and scratched out and discarded quite a

few CRC cards along the way. Good design derives from failure.

15.5 Implementing undo

Q) Build a stack class named StackBuy by buying from class OrderedCollection. If
the stack is empty, make pop return the nil object. If necessary, review the stack

designs on page 100. Test StackBuy until you are confident that it works correctly.

Q) Build a stack class named StackInherit by inheriting from class OrderedCollec-
tion. Ideally, StackInherit and StackBuy should behave identically. That is,
although their internals differ, a user or client shouldn't know the difference. (But

remember the tradeoffs discussed on page 102. In Smalltalk, some behavioral dif-

ferences are unavoidable.) Test StackInherit also.

OQ) The code you are about to work with requires application CwExamples to be in

your image. IBM provides this application with either the Standard or Professional

product. (If you are using the Professional version and it does not appear in your

Application Manager, pick the menu options Applications > Available, then select

the CwExamples application. Load the most recent edition.)

QO) Obtain the file student.aps from http://www.browsebooks.com/Liu/files. This

code implements a working shape editor, except that the undo feature is broken.

File in the code by following these steps:

180 PRACTICING POLYMORPHISM | CHAPTER 15

¢ Start from an Application Manager.

¢ Select any application. It doesn’t matter which; any selection will activate the

menus you'll need.

¢ Pick menu option File In.

¢ In the dialogue box, locate and select the file student.aps, and push OK.

Q) Select the application ShapesApp, double-click on it to expose its subapplications,

and select and browse the subapplications ShapesModels, ShapesUndoSupport,
and ShapesViews. Answer these questions:

¢ What are the names of the two main methods in the action classes? Read their

code to reassure yourself that they are simple yet will do the job.

¢ What class and method instantiates a Move object? A Remove object? A Create

or Add object?

¢ Why does Move have a third instance variable representing the target position?

Q) Try the class method example in both TextualView and GraphicalView. What is

the problem? Fix it, using class Stack in the ShapesUndoSupport application.

Q) Verify that your own stacks, StackBuy and StackInherit, also fix the problem.

15.6 Summary

Most object-oriented solutions to this problem use the name Command instead of

Action. By either name, this is one of the most exquisite applications of polymor-

phism in object-oriented design.

The solution is recognized as a design pattern, also called Command (page 217).

Two noteworthy characteristics of the pattern:

1 Small size. The solution required dozens, not hundreds of lines of code.

2 Minimal memory. The application stores only the information indispensable for
undoing (or redoing) an action. In many cases, like moving, this information
amounts to just a few words of storage. By contrast, the non—object-oriented al-
ternative that some people consider—saving the entire state of the application
upon every action—consumes machine resources so rapidly as to render multi-
level undo impractical.

This chapter completes your study of the object-oriented essentials. The rest of the
book pushes into areas which beginners rarely see, but are part of the mental landscape
of experienced Smalltalk developers.

CHAPTER 16

How object-oriented languages work

This is the first chapter in which we venture past the essential object-oriented princi-

ples. We begin by dealing with how object-oriented languages actually work, deep

down inside. We will see that the look and feel of a language is shaped by these inner
workings.

At one end of the spectrum is Smalltalk, noted for its incremental development

style, its handling of memory concerns for the programmer, and its reflectiveness.

(Reflectiveness or reflection is a software system's ability to examine and modify itself on

the fly.) These are all consequences of a runtime engine, also called the Smalltalk vir-

tual machine, which controls execution of every message and monitors computing

resources.

At the other extreme, C++ relies on a conventional compile, link, and execute

cycle. It is faster at runtime than Smalltalk and it links readily to foreign languages, but

the price is a sluggish development feeling and memory bugs that sorely test a pro-
grammer’s mettle.

You don't need to know the content of this chapter to program in Smalltalk or

C++, but knowing it will go a long way toward explaining why your language and its
environment behave as they do.

16.1. Virtual machines

A virtual machine is a synthetic computer. It behaves as a real machine would, if only

there were such a machine. Because there isn’t, people use a virtual machine to emulate

the one they wish they really had. Virtual machines are interesting only because of
what they execute. For a Smalltalk virtual machine, that something is called the image.

181

182 How OBJECT-ORIENTED LANGUAGES WorRK | CHAPTER 16

The image consists of all the objects in your computer, both the ones you create and

the ones Smalltalk already provides.

Because “everything is an object,” the image contains unusual objects like compiled

methods. That is, whenever you write and compile a Smalltalk method, Smalltalk’s

compiler produces an instance of the class CompiledMethod. Each of these objects

consists of bytecodes, which are the machine instructions that the virtual machine

knows how to execute.

A running Smalltalk system therefore consists of these two pieces of software—a

virtual machine running on your underlying computer hardware plus an image run-

ning bytecodes on the virtual machine. This is really a familiar notion cloaked in a

fancy name. An interpreter—a BASIC interpreter, or a Pascal p-code interpreter—is

also a virtual machine. Instead of executing the bytecodes in a Smalltalk image, it exe-

cutes some other language, like BASIC or p-code. Sometimes people even refer to the

Smalltalk virtual machine as the Smalltalk interpreter.

The difference between Smalltalk’s virtual machine and other, simpler virtual

machines (or interpreters) is sophistication. The Smalltalk virtual machine does more

than merely execute one bytecode after another. It also manages processing and mem-

ory resources, much as a full-blown operating system does.

By the way, one side-effect of this arrangement, or of any arrangement based on a
virtual machine, is a technique for transporting applications between computer archi-

tectures. If Smalltalk runs on one computer architecture, we ought to be able to make

it run on another by rewriting only the virtual machine. The image should run as well

on one virtual machine as another. The industry's early learning experience with

Smalltalk came about in just this fashion. Early in the 1980s, Xerox PARC released the

Smalltalk-80 image, along with the specification for its virtual machine, so that any

computer manufacturer could run Smalltalk-80 on their own hardware, merely by

writing a virtual machine. In those days a basic virtual machine implementation could
be built in about one programmer-year.

The situation is a little more complicated today because many modern images con-

tain objects that are specific to the underlying operating system or windowing man-
ager. These objects exploit specific features of the platform, and their presence
guarantees that the image cannot simply be moved to other platforms. IBM Smalltalk

overcomes this difficulty by encapsulating these platform-specific objects under a layer
of objects that is standard across all its platforms. As we saw in Chapter 12, the layer
for user interface objects resembles the Motif standard. The layer for file-system
objects resembles another UNIX standard, known as POSIX.1. IBMSmalltalk code
that adheres to these standards is then portable from platform to platform.

16.2 METHOD LOOKUP 183

Smalltalk-80, now known as VisualWorks, preserves the old tradition best: its vir-

tual machine encapsulates all of the underlying platform; this arrangement decouples

the image from the platform. Smalltalk-80 images are therefore highly portable. But

because they are oblivious to platform-specific widgets, user interfaces don’t have the

look and feel of the platform they are running on. (ParcPlace-Digitalk has stated its

intent to base its combined Visual Works/VisualSmalltalk offering on the Smalltalk-80

virtual machine.)

16.2 Method lookup

Method lookup, also called method dispatch, selects the right method to execute among

all the methods in an object’s class and superclasses. Smalltalk’s virtual machine per-

forms this task by way of a component known as the message handler (or dispatcher).

At the moment of each message, and no sooner, the message handler decides which

method the virtual machine should execute. It cannot, as conventional compiled lan-

guages can, decide the method at compilation time. In fact, Smalltalk is such a

dynamic system that Smalltalk code could modify methods, or add or remove them,

at any time, even immediately prior to executing them. Thus, any message can poten-

tially affect the environment of classes and methods in which subsequent messages

execute. Conventional languages can’t do this; it would be akin to recompiling and

relinking changes to your program in the midst of executing it.

Now, one proposal for handling this last-minute lookup could be to store a dictio-

nary of method pointers for each object, as illustrated here for an object of class Point:

aPoint

dictionary” of
pointers to my
methods * the keys are method selectors

executable methods

This hypothetical dictionary must be constructed carefully: if method occurs in both

a superclass and subclass, the dictionary entry should point to the overriding one in

the subclass.

184 How OBJECT-ORIENTED LANGUAGES WoRK | CHAPTER 16

To resolve a message to this point instance, the message handler locates the mes-

sage’s selector among the dictionary’s keys and executes the associated method. This

proposal doesn’t solve the prickly matter of messages to the special variable super,

which breach the normal lookup and may access overridden methods.

Moreover, this proposal imposes unnecessary bloat on every object. It burdens an

object as lean as a point with pointers to all the methods of Point and its superclass

Object. That’s many dozens of pointers, and they are all repeated over and over for

each of possibly multitudinous point instances in an application. Clearly unacceptable.
To remedy this problem, Smalltalk arranges matters in the following uniform way.

(This is only a conceptual picture—the actual details vary between Smalltalk dialects.
IBM Smalltalk for example conforms to the spirit but not the letter of this picture.)

class Object

class Point

aPoint Bias,
O

pointers to
my methods

X

y dictionary of
pointers to
my methods

Gb executable methods

executable methods

Each instance has just a pointer to its class. The class (Point) carries a dictionary of

its (instance) methods, plus a pointer to its superclass (Object), which in turn carries

a dictionary of its own (instance) methods. If there are more layers of classes in the

hierarchy, the pattern repeats: each class object carries its own dictionary of methods,

plus a pointer to its superclass. The dispatcher merely chases through the chain of dic-
tionaries until it finds the method it seeks. If the method is absent from all the dictio-

naries, the familiar “does not understand” walkback appears. Notice the flexibility: the
methods and the dictionaries may be altered at any time; the dispatcher dutifully
chases through the current chain of dictionaries no matter how recently such alter-

ations have occurred.

This approach minimizes storage consumption—each point carries its own private

instance variables, plus one pointer to its class. But its performance is suspect—itera-

tive searches up the chain would be intolerably slow. Smalltalk therefore resorts to two
venerable performance tricks, caching and hashing. Hashing is a way to place each
entry in a table at a magic offset that can be computed (“hashed”) directly from the
entry. Because every entry then resides at a predictable offset, table lookups can

16.2 METHOD LOOKUP 185

proceed directly by computing the offset at which an entry ought to reside. If the entry
isn't at the offset, it isn’t in the table. (I’ve oversimplified a littl—hashing algorithms

also have to handle the potential for collisions when the magic offset computed for

two different entries is the same.) Because Smalltalk dictionary objects are designed

with hashed lookups, instead of more naive binary or sequential lookups, search times

are nothing like our worst fears.

Actually, searching through the method dictionaries is rarely necessary. Because a
message that occurs once tends to recur in the near future, Smalltalk maintains a cache

of recently sent messages, and the dispatcher looks in this cache first before beginning

the laborious search up the superclass chain. The effect of a method cache is sizable.

According to [Krasner 1984], an appropriate method cache can have hit ratios as high

as 95 percent, decrease method lookup time by a factor of 9, and improve overall sys-

tem speed by 37 percent.
Method lookup in C++ works without any kind of engine or dispatcher. It still

relies on a table, called a virtual function table or v-table, for each class. But these tables

are simply lists of pointers, not dictionaries with powerful lookup facilities as in Small-

talk. Imagine a music synthesizer application, where Piano and Oboe are concrete

subclasses of the abstract class Instrument, and all instruments support methods (vir-

tual functions in C++ parlance) to tune themselves (to some intonation and pitch) and

to play (a note). The v-table for Piano looks like this:

piano’s tune
function

v-table for class Piano

Aplay function

piano’s play
function

When the C++ compiler encounters a message to tune a piano (piano->tune() in

C++ notation), it generates code to execute the function found by the first pointer in

the y-table. If it encounters piano->play(), it generates code to execute the function

found by the second pointer. The v-table is stable; unlike in Smalltalk, there is no

prospect of introducing or removing methods at execution time. Thus, this generated

code is unconditional; the compiler determines once and for all the location of the

function to be executed. No dispatcher ever gets involved.

So far, this table is fairly unremarkable. The oboes, however, make life interesting.
For Oboe also has a v-table, and it has exactly the same structure as Piano's. That is,
its first pointer points to the tune function for oboe and the second points to the play

function for oboe. The compiler carefully builds all v-tables for subclasses of Instru-

ment in this parallel way.

186 How OBJECT-ORIENTED LANGUAGES WorRK | CHAPTER 16

Now consider a polymorphic variable instrument, which could point to either a

piano or an oboe.

instrument v-table anoretin
, for class Piano PIAS TAS

- aPiano - function

Aplay function
instance piano’s play
variables function

v-table
\, anOboe for class Oboe

~ abe!
my v-table Aplay function function

instance

variables
oboe’s play

unknown object lurks la
under "instrument" at

execution-time

tables prepared in

advance by the compiler

Which of the two play functions executes in response to a message of the form

instrument->play()? The right one. The C++ compiler, knowing that Oboe and Piano

are subclasses of Instrument, has crafted the two v-tables to have a parallel structure—

the function pointers are in the same order in both tables. When the compiler encoun-

ters the expression instrument->play(), it unconditionally generates code to execute

the method found by the second pointer in the table—even though it is quite unable to

anticipate what kind of object instrument will point to when the code eventually exe-

cutes. If the object turns out to be a piano, the second pointer points to piano playing;

if the object turns out to be an oboe, the second pointer points to oboe playing. Either

way, the second pointer is the right one, and the appropriate function will execute.

Let’s recapitulate the two salient points about method dispatch in C++: it works flaw-

lessly without a runtime engine, and the executing code is free of conditionals. All else

being equal, you should expect C++ programs to run much faster than Smalltalk pro-
grams. All else is rarely equal in the real world, though, and performance is never this

simple.

As one example, two of my friends—one partial to C++ and the other to Small-
talk—got into a dispute about speed and settled it by benchmarking a loop of method
dispatches. To the chagrin of my C++ friend, the Smalltalk code was just as fast. The
reason? They happened to be using a 16-bit operating system in which the v-tables
were in a different memory segment than the objects. As a result, segmentation faults
occurred on every function call, and this overhead swamped the speed benefit of the
v-table scheme. This is an unusual example, but it illustrates an important perfor-
mance principle, namely that astute programming almost always matters more than
the programming language does.

16.3. MEMORY MANAGEMENT: A BRIEF HISTORY OF GARBAGE COLLECTION 187

Performance aside, here are other by-products of the method lookup implementa-

tions we've been discussing. Reflection, Smalltalk’s ability to examine and fundamen-

tally alter its own semantics while it is executing, is impossible in the traditional
compile, link, and execute world of C++. Moreover, the instantaneous (re)compilation

of a Smalltalk method—Smalltalk’s exploratory development gestalt—is possible pre-

cisely because the runtime engine decouples the calling of methods from their compi-

lation. The Smalltalk programmer can compile messages at will, and not worry

whether methods exist to respond to them until the instant before they're called.
By contrast, adding or removing a C++ method requires recompilation of poten-

tially many v-tables to preserve their parallel structure. And although we know that

polymorphic client code does not need to be rewritten, it must still be recompiled to
account for new offsets to the pointers in the tables. This recompilation overhead dis-

courages exploratory programming. On the other hand, C++ cooperates readily with

foreign languages, while Smalltalk’s runtime engine gets in the way of calling into or

out of the Smalltalk image.

16.3 Memory management: a brief history of garbage
collection

A Smalltalk programmer doesn’t manage storage for her objects. In particular, when

she’s done with an object, she doesn’t worry about reclaiming the memory occupied by
the object. Instead, a component of the virtual machine known as the garbage collector

monitors memory and ascertains when it can safely reclaim the memory occupied by

an object.
Consider this question: how many point objects are present in your Smalltalk sys-

tem? The answer is easy to determine. I can count them by displaying:

Point allInstances size

The answer on my system at this moment is 3. If I allocate a new point:

X := Point new

and count again, I get one more, 14. If I now execute:

X := 'Casablanca'

the global variable X refers to a string instead of the point. The point has been

orphaned—although it was once accessible through the variable X, it is now com-

pletely inaccessible—and is therefore eligible for garbage collection. If I count again,

Smalltalk reports 13, the original number of points. The garbage collector has
reclaimed the memory occupied by the newest point. Here is the progression of events:

188 How OBJECT-ORIENTED LANGUAGES WORK | CHAPTER 16

x—_> @ x O x
aPoint ede —

O O
aString aString

After After After
assignment reassignment collection

Garbage collection in Smalltalk contrasts sharply with memory management in

C++ and many other compiled languages that permit a program to acquire chunks of

memory while it executes. Because C++ has no garbage collector, the programmer

must carefully and explicitly reclaim an object’s storage at the appropriate moment.
The dangers of entrusting this responsibility to the programmer are well known: free-

ing an object’s memory too soon invites another object into the space, corrupting the
original object’s data. And failing to free memory soon enough exposes the program to

running out of room for additional memory allocations. These are among program-

ming’s most nightmarish bugs; they often manifest themselves as catastrophic crashes
that occur well after the event, considerably complicating debugging.

On the other hand, a garbage collector is a program that runs continually, con-

sumes CPU cycles, and, being beyond the programmer's control, can become espe-
cially active at inopportune moments. Critics observe that an airplane's control system

or a nuclear power plant's monitoring system can ill-afford to pause while a garbage

collector decides to shift into high gear. The traditional debate goes like this:

* Pro: Only a garbage collector can safeguard against application crashes induced by

subtle and inevitable errors in memory design.

* Con: Only a programmer can fine-tune memory management for high-perfor-

mance applications. In particular, a garbage collector's sporadic intensification

makes it unacceptable for real-time software.

Next, by examining how garbage collectors work, we will gain insight into the lives

and deaths of objects. This is a useful study regardless of your position in the (endless)

debate on the merits of garbage collection.

Most early garbage collectors, prior to the mid-1980s, were variants of either mark-
and-sweep or reference-counting collectors. A mark-and-sweep collector makes two
passes through memory. The first pass begins at one or more anchor objects that the
virtual machine knows it needs (like the activation stack in Smalltalk, which contains
all executing methods and the objects they refer to).

16.3. MEMORY MANAGEMENT: A BRIEF HISTORY OF GARBAGE COLLECTION 189

u@—__ m U
soba ad u ooo" wo u

W@" @u n@- @m U@” @u
—_ ; ae :

orphan orphan

Before mark After mark After sweep
pass pass pass

The anchor object is “marked”—let’s say a bit is turned on—and then all objects

the anchor refers to are also marked, and then all objects these objects refer to are

marked, and so on recursively until no more objects are reachable. At the end of this

mark pass, objects that remain unmarked must be inaccessible and are therefore gar-

bage objects, eligible for reclamation. A second pass sweeps through all the objects,

reclaiming space from unmarked objects and turning off the mark bit on all others,

preparing them for further collections.

A major drawback of this scheme is its burstiness—the collector may not often go

into action, but when it does, the rest of the system freezes while it makes these two

exhaustive passes through memory. The user experiences a long pause during which

nothing seems to happen.

Reference counting isn’t bursty; a reference-counting collector does some book-

keeping every time a pointer is set or reset. The collector maintains a count of the

number of references to each object. If a count ever drops to 0, that object must be

inaccessible, and the collector immediately reclaims its storage:

2 oro 2 6 @2... ©—@2
i. ae assigned

] 0

Before Adjust count Reclaim
immediately immediately

Reference counters eliminate the distracting pauses of mark-and-sweep collectors.

On the other hand, reference counters never rest, so the overhead of maintaining the

counts degrades performance continuously. Reference counters also overlook dead

cycles. For instance, a pair of objects may refer to each other but still be isolated from

the rest of the system; their counts will each be 1, hence they are not reclaimable, even

190 How OBJECT-ORIENTED LANGUAGES WoRK | CHAPTER 16

though they are genuine garbage. Reference counting by itself is therefore insufficient

to collect all garbage correctly. Nevertheless, the earliest Smalltalks used reference

counting because it is straightforward to implement and it eliminates pauses.

Another famous older collector, sometimes called a Baker collector [Baker 1978],

addresses shortcomings of both preceding schemes. It suffers neither reference count-

ing’s susceptibility to dead cycles, nor mark-and-sweep’s two full passes through mem-
ory. A Baker collector partitions memory into two halves, known as semi-spaces. All

new objects are allocated in one of the semi-spaces, designated the active one. The col-

lector occasionally flips spaces, making the other one active. But before opening up
the new active space to additional object allocations, it makes one pass through the old

semi-space, starting from an anchor, just like a mark-and-sweep collector. And just as

in a mark pass, it recursively reaches only all the live objects. Instead of marking them,

however, it immediately evacuates each one by moving it into the new semi-space. In

the object’s original place, it leaves a tombstone with a forwarding address to the new

location, just in case other objects come looking for it later during the pass. At the end

of this single pass, all live objects have been evacuated into the new active space; the

detritus in the old semi-space is garbage and requires no further processing.

= pa OO OO
Active Move live Active
space objects only space

In due course another flip occurs, in the opposite direction. Notice that as a result,

each flip enjoys an entirely clean semi-space into which objects are moved and allo-
cated. I’ll say more about the benefit of this cleanliness in a few moments.

The Baker collector has a cunning wrinkle: with a little care, the flip can proceed

incrementally. That is, new object allocations can begin before the flip finishes; the col-

lector can make these allocations in the new active space while it continues to evacuate

live objects from the old space. The one danger is that one of the newly allocated objects
may point back to a (not yet evacuated) object in the old active space; such a pointer will
be incorrect at the end of the flip. To safeguard against this condition, the collector must
move the unevacuated object immediately, ahead of schedule. Once this precaution,
known as scavenging, has been taken, the Baker collector is truly incremental and, like
the reference counter, overcomes the burstiness of a mark-and-sweep collector.

One undesirable property shared with mark-and-sweep collectors remains—Baker
collectors process live objects over and over again. The profusion of live objects in
Smalltalk—from 15,000 in a small Smalltalk system to more than 278,000 in the

16.4 THE IRONY OF GARBAGE COLLECTION 191

image I'm using at this moment—makes this a considerable burden. If only we had a

way to overlook objects that are particularly durable, thereby sparing us the overhead

of repetitious reprocessing. This observation brings us to generation scavenging, which

late in the 1980s became the de facto standard for Smalltalk garbage collection.

Generation scavengers depend on the empirical observation that most objects per-

ish quickly. New objects—points, arrays, sets, rectangles, blocks...—are created like

mad in running Smalltalk systems, used briefly, then orphaned. The garbage collector
must process these objects, but we would like it to ignore as much as possible the other

tens or hundreds of thousands of longer-lived objects.

A scavenger begins just like the Baker collec-

tor, but every time it flips an object, it also incre-

ments the object's generation count. An object

that survives 7 flips will be ” generations old.

The scavenger deems objects that survive to some

threshold age, let us say three generations, vener-

third
generation
survivor

able enough to move to a privileged area, called rawanates
the tenured area.

Once tenured, objects are no longer subject to repetitive garbage processing. Thus,

short-lived objects are efficiently collected by Baker flips, and long-lived objects are
promoted eventually to the tenured area, where they are left quietly alone. The oppor-
tunities for varying the basic scavenger design are evidently multitudinous—how
many generations to allow before tenuring (63 in the original VAX implementation),

how to process a tenured object if it perishes, whether and when to age tenured objects

into successively more securely tenured areas.... A good generation scavenger con-

sumes as little as 3 percent of CPU time, compared to 9 to 20 percent for the older

techniques. For a sampling of scavenging schemes, see [Lieberman and Hewitt 1983;

Krasner 1984; Samples et al. 1986; Ungar and Jackson 1988]. In particular, [Krasner

1984] recaps the history of the early VAX Smalltalk-80 implementations through
more and more sophisticated garbage collectors—first mark-and-sweep, then Baker,

and finally a generation scavenger.

16.4 The irony of garbage collection

The remarkable irony about garbage collectors is that their reputation for consuming

processing cycles is half wrong. Some of them also save cycles. Curiously, these savings

have nothing to do with cleaning up objects; they occur at the other end of an object’s

life, when its memory is first allocated. The savings have to do with the clean spaces |

mentioned earlier.

192 How OBJECT-ORIENTED LANGUAGES WorRK | CHAPTER 16

A side-effect of schemes like the Baker collector and the generation scavenger 1s

that object allocations occur in one large, contiguous chunk of free memory. Memory

has no holes, no gaps that must be computed and accounted for. This absence of

“fragmentation” considerably simplifies allocation; finding space for a new object is a

mere matter of returning the location of the beginning of free memory and then

advancing this beginning by the size of the object. New objects simply go right after

the last object in memory.

By contrast, the heaps found in C, or Pascal, or C++ are full of holes and gaps.

Memory allocation schemes must rely on one or more chains of holes. Each object
allocation entails a search through these chains for space of adequate size, followed by

adjusting the chain to reflect the space relinquished to the new object. Searching and

managing these chains takes time, which is why fragmentation is the enemy of effi-

cient object allocation, and conversely why clean spaces enable fast object allocation.

Thus, garbage collection, which purports to worry about the end of an object's life,
can in fact expedite its birth. The effect is measurable: adding a garbage collection

scheme for a C++ application’s objects can sometimes improve the performance of the

application. Regardless of the performance implications, the main benefit of garbage

collectors stands: by automating storage reclamation they reduce the incidence of
memory design errors.

16.5 Commentary: why not garbage collect C++?

If garbage collection is so beneficial, why can’t it be retrofitted onto any language?

Garbage collection is possible in Smalltalk because all objects have a uniform structure

known to the virtual machine. Everything is an object, and every object’s memory lay-

out begins with a standard three-word header, consisting of a pointer to the object's
class, some flags, and the object’s size. (Each word is four bytes.) After these three

words come the object’s instance variables, one word per instance variable.

Knowing this regularity, the memory manager (i.e., the garbage collector) can fig-
ure out where an object begins and ends, and most critically, where the objects it

points to are. Any garbage-collection scheme needs this information. Unfortunately,
in a language like C++, the contents of an object are arbitrary. Within the memory of
an object is a jumble of information—data, pointers, even other objects directly
embedded inside. A memory manager cannot know where all the pointers are, and so
it cannot find the objects pointed to. That kind of information is in the semantics of
the program, where it is inaccessible to a hypothetical virtual machine. Hence, you
will find that all object-oriented languages with garbage collectors—Smalltalk, Eiffel,

16.6 SMALLTALK DEVIATES FROM UNIFORMITY 193

CLOS, Java...—adopt a uniform object structure. C++ is as flexible as can be, hence

lacks this uniformity; it therefore precludes garbage collection of arbitrary objects.
For the definitive discussion on the desirability of and prospects for garbage collec-

tion in C++, see [Stroustrup 1994].

16.6 Smalltalk deviates from uniformity

Even Smalltalk, insistent as it is on uniformity, has its limits. Methods, for instance,

are written in Smalltalk and call other Smalltalk methods. Carried on indefinitely, this

recursion would be hopelessly circular. Some Smalltalk methods must be expressed in

something other than Smalltalk. These methods are called primitives. They are typi-
cally written in a language like C, compiled, and packaged into a “dynamic link

library” (on Windows or OS/2), from which they may be called by a Smalltalk
method. An example is integer multiplication. The method SmallInteger>>* reads:

* aNumber

"Answer a...

<primitive: VMprSmallIntegerMultiply>

es = MOTE (COdG he. %

The very un-Smalltalk-like expression <primitive: ... > is the call to a special function

outside of Smalltalk. (The code following the primitive executes only if the primitive
call fails.)

Primitives need not be limited to low-level methods like multiplication. Because a

primitive is essentially a way to call a foreign language from Smalltalk, it can also be
used to access functions that Smalltalk doesn’t provide, or to replace a slow Smalltalk

method with a faster version coded in another language. Primitives are the means by

which Smalltalk issues calls to outside services like database managers or communica-

tion programs.

Another area in which Smalltalk is not uniform is its storage model. Most objects

conform to the standard structure I discussed in the preceding section; that is, three

header words followed by the object’s instance variables. But objects such as small inte-
gers—those which fit with room to spare in a 32-bit word (or 16 bits, in some imple-

mentations)—are created and used so commonly in Smalltalk that the overhead of the

standard structure would be grossly inefficient. Smalltalk therefore dispenses with the
header for these objects and stores the whole object in one word. This special treat-

ment for small integers and other small objects saves both time and space. But it intro-

duces an irregularity into the virtual machine.

194 How OBJECT-ORIENTED LANGUAGES WoRK | CHAPTER 16

Smalltalk goes further with its special treatment of small integers. Not only are

they stored in a different format, they are also stored “in-line.” Here’s what I mean:

ordinarily you would expect assignments like X := someWhale and Y := 149 to estab-

lish pointers to a whale and integer object, respectively. Indeed, the word in memory

specified by X does contain a pointer to a whale object. But the word specified by Y

contains the small integer 149 itself, not a pointer to 149. Thus the layout of memory

inside the image might look like this:

X 1

149
(no pointer)

aWhale

3 word header

1st word of data

Accessing small integers directly, rather than through a pointer, is much more efficient
for the virtual machine. But how does the virtual machine know whether a word is a
pointer to an object (X) or the object itself (Y)? It recognizes the difference by using a

flag bit, such as the first bit in the word. If the bit is turned on, the word represents a

small integer. Otherwise it represents a pointer to a conventional object. (Actually, sev-

eral other special small objects are distinguished by specific bit patterns too: charac-
ters, the true and false objects, and the nil object. They are known collectively as
immediate objects.)

You will never observe any of these storage conventions at the Smalltalk level.

These are strictly private conventions for use by the virtual machine. Smalltalk contin-
ues to deceive the developer into believing that, “Everything is an object, and all
objects are treated uniformly.”

While we're on the subject of economy, realize that even packing individual char-

acter objects into a word apiece squanders a lot of space, namely three bytes of every
four. This waste is particularly excessive when, as is the case more often than not, they
occur together, as in a String object. For strings too, the Smalltalk virtual machine

deviates from uniformity for the sake of efficiency. The characters in a string occur in
successive bytes, right inside the string object, illustrated in these alternative memory

layouts for the string ‘juice’:

16.7 EXERCISES 195

aString

- 38 word header. - ieee
Galea ered

. 38 word header. -

Not this ...

seams
eas

aString

Nor this ...
(32 bytes!) Siz rant Teach

aString
Cae

ee
Ls

i

Tsu] Si] $c | (20 bytes) Oa ae Be aa | $i
pe Sey a

Smalltalk offers other specialized formats for storing the instances of a class. Most

classes simply use the standard structure of three header words followed by a word per
instance variable. But you can specify the other formats to use at the time you define

your classes—you will see how in the coming exercises.

16.7 Exercises

Inspecting classes

Q) You know how to find the superclass of a class using Smalltalk’s browsers. Try it in

another way by using inspector(s) to find the superclass of Date.

Q) Use inspectors to find the bytecodes—numbers like 132, 36 ...—for the method

dayOfYear in the class Date. Begin by inspecting the class Date; in IBM Smalltalk,

inspect down through the instance variable methodsArray rather than method-

Dictionary.

Object memory layouts

UO Although the memory layout of objects is strictly the business of the virtual
machine, you can see intimations within Smalltalk that the instances of some

classes are treated differently than others. For example, the classes like String that

196 How OBJECT-ORIENTED LANGUAGES WORK | CHAPTER 16

store their data in consecutive byte-sized objects answer true to the message isBytes.

To see how many such classes there are, inspect this expression:

Object allSubclasses select: [:sc| sc isBytes].

Q How does Smalltalk know whether to lay out objects of a class in the usual way, or

in the compressed form that strings use? To answer this question, browse the defi-

nition of an ordinary class like Rectangle, and compare it to the definition of

String. Confirm that ordinary classes are created by the old standby:

subclass: instanceVariableNames:classVariableNames:poolDictionaries:

What method does class String employ? This is the method that informs the
virtual machine that it should use the compressed-memory layout for strings.

Q) How many other conventions does Smalltalk have for laying out objects? Hint:
Locate the class that implements the class definition messages above and look for

similar methods.

Counting instances

Q) To estimate the number of classes within your Smalltalk image, display:

“Object allSubclasses size.

For reasons that you will understand when we discuss metaclasses in Chapter 20,

this estimate is about twice as high as it should be.

U) You can count the number of objects in your Smalltalk image by displaying:

| count |

count := 0.

Object allSubclasses do: [:cl | count := count + cl allInstances size].

“count

But try this experiment overnight—it may take hours. That's because the all-
Instances method invokes a full-blown garbage collection, and we are invoking it

once for every class.!

: In IBM Smalltalk you can get a quicker but less precise count by using basicAllInstances, which
does not invoke garbage collection. You can sharpen this count by clearing the garbage once in the
beginning with the message System globalGarbageCollect. Nevertheless, be prepared to wait a
while.

16.8 SUMMARY 197

Non-uniformities in Smalltalk’s compiler

Not all messages are equal. That is, Smalltalk’s compiler recognizes a few special mes-

sages and generates optimized code for them. You can rewrite and recompile those

methods in any way you like, but your code, whatever you write, will be ignored.

U To demonstrate this curiosity, recompile the ifTrue: method in class True after

inserting self halt into its body. Then display:

i= /

ifTrue: ['Breezing through the halt'].

The same short circuit applies to all the other common boolean messages, like

if True:ifFalse:, ifFalse:, etc. Another noteworthy message that the compiler inter-

cepts in this fashion is ==.

Technical aside: The only way to circumvent the compiler’s optimization and force
your rewritten method to execute is to invoke it indirectly. The usual technique is to

use variants of the method perform: as in:

7 = 7 perform: #ifTrue: with: ['Hit my halt']

16.8 Summary

Every implementation choice in an object-oriented language is a tradeoff. If method

dispatch is fast, compilation will be slow. A garbage collector will reduce the number

and severity of bugs, but degrade performance. A compiler optimization speeds up a

corner of the language, but at a loss of consistency in the language. An image can be

portable, but it won't enjoy the platform's native widgets. Virtual machines make
interactive debugging a snap, but complicate life with foreign languages.

This interplay between a language’s definition and its underpinnings shapes the

whole texture of the programming system—its responsiveness, its reflectiveness, the

degree of its coupling to other languages and systems, even the design techniques that

are most suitable in it. Smalltalk—the product of one combination of all the

choices—is a respectable point in the space of object-oriented languages.

We now shift from the guts of object-oriented languages to a conceptual predica-

ment that awaits practicing object-oriented designers.

CHAPTER 17

Two kinds of inheritance

Next in our series of beyond-the-basics topics is the distinction between a type and a
class. Until now we've blurred this distinction: I’ve encouraged you to think that
inheritance is simply synonymous with the AKO (A-Kind-Of) concept. Seasoned
designers, however, cringe at this oversimplification.

17.1 Beauty and the beast

Consider two classes, Rectangle and Square, in any object-oriented environment.

Dont worry about Smalltalk; the first four sections in this chapter are independent of
the object-oriented language. Here are rectangle and square instances:

aRectangle aSquare

Each has a method for calculating its area and instance variables to identify its position
(let’s say the upper-left corner) and the length of its side(s). We won't worry about
rotation—all our squares and rectangles will have vertical and horizontal sides only.

Now, a design problem: should Rectangle be a superclass of Square? Or vice versa?
Two perfectly defensible opinions are:

198

17.1 BEAUTY AND THE BEAST 199

1 Squares are special kinds of rectangles, namely those which have sides of equal

length. Every schoolchild knows this fact. Therefore, Square should be a subclass
of Rectangle.

2 We expect a subclass to inherit everything from its superclass and, generally, to
add further traits. Butterflies have all insect traits, plus more. The picture above

clearly shows that a rectangle has the traits of a square, plus one additional in-

stance variable. Therefore, Rectangle should be a subclass of Square.

Before you get excited about one point of view or the other, let me tell you once
and for all that there is nothing wrong with either argument. The dispute is unavoid-

able: there are two reasons for subclassing, and they aren’t always compatible. (And if

one finds neither reason compelling, one can always design neither class to be a sub-

class of the other; this is a valid third alternative.)

Imagine two object-oriented programmers, one a consumer of a class hierarchy and

the other the hierarchy’s producer. The consumer wants to reach over and use (“buy”)
the classes in the hierarchy with minimal confusion. He doesn’t want surprises; he
expects the hierarchy to be an intuitive AKO hierarchy, and he definitely doesn’t want

to examine any underlying code or instance variables. Like the schoolchild, he expects

Square to be a subclass of Rectangle. The consumer values external consistency.

The producer or developer of the hierarchy, on the other hand, cares how well the

insides of objects work. She has two reasons for subclassing Rectangle from Square.
First, her job is simpler because she automatically inherits the instance variables posi-

tion and side, and just adds an instance variable for side2. (Of course, she must over-

ride the area method to calculate the product of side and side2.) Second, she worries
that if she subclasses in the other way, every square inherits an extra instance variable

(side2) it doesn’t need; if a graphics application uses thousands of squares, it will waste

a lot of memory. This developer values practicality.

The dilemma, then, is this conflict between consistency and practicality. You can-

not inherit at the same time for the sake of an attractive appearance on the outside and

for the sake of code reuse and machine constraints on the inside. A class hierarchy can-

not at once satisfy its consumer and its producer.

We need to sharpen our vocabulary. The term for the first kind of hierarchy, the

one that is externally attractive (“beauty”), is a type hierarchy. When that’s the focus,

we use the words type and subtype. AKO, which implies consistency, is really subtyping.

The second hierarchy, the one favoring internals (“the beast”), goes by the familiar

words class and subclass, and frequently the expression implementation inheritance. Of
course, in practice you often see the word “inheritance” by itself. Generally, when

experts draw fine lines and say just “inheritance” they mean implementation inherit-
ance. To minimize the risk of confusion in this chapter, I will avoid using “inheritance”

200 TWO KINDS OF INHERITANCE | CHAPTER 17

by itself unless the context is unambiguous—it will either be “subtype inheritance” or

“subclass (or implementation) inheritance,” or simply “subtyping” or “subclassing.”

The object community first recognized the troubling presence of these two distinct

forms of inheritance in 1986. (See [Snyder 1986; Lalonde et al. 1986].) Efforts to

wrestle with the trouble produced several evocative synonyms:

Subtype Inheritance (Beauty) Subclass Inheritance (Beast)

Subtyping Subclassing

Specification inheritance Implementation inheritance

Visible inheritance Invisible inheritance

Essential inheritance Incidental inheritance

For details, see [Snyder 1986; Sakkinen 1989; Wegner and Zdonik 1988]. By what-
ever names, it became clear that the subtype/subclass distinction was an inescapable

fact of object-oriented life.

17.2 Why types matter: polymorphism

The type (beauty) of an object is the means by which a consumer programmer recog-

nizes an object's applicability to some problem. For S to be a subtype of T (imagine
Butterfly and Insect, or Square and Rectangle), the external description of S ought to

be consistent with that of T. And if so, you would expect to be able to use an instance

of S anywhere in a program where the program expects something of type T. This

property is called substitutability: an instance of a subtype may be substituted wherever
something of the supertype is expected and the program will still work. Thus any-

where a rectangle works in an application, a square also works; the application musn’t

fail because someone has substituted a square for a rectangle. This is what we mean by

saying that Square is a subtype of Rectangle.

The converse, however, is false. If an application depends on a square, say to form

the faces on the dice for a game of craps, an arbitrary rectangle just won't do. Thus
Rectangle is not a subtype of Square.

This freedom to substitute instances of a subtype sounds suspiciously like poly-
morphism, and indeed that's just what it is. In polymorphism, the program is unaware
of the actual type of the object lurking under a variable—any subtype will do. The
subtype relationship specifies what is substitutable, hence the permissible range of
polymorphic objects. To put it bluntly, substitutability and polymorphism amount to
the same idea.

17.4 COMMENTARY: WHAT DOES “CONSISTENCY” MEAN? 201

Another way to think about substitutability is to think about variables s and t of
types S and T, respectively. Freedom to substitute an S$ instance wherever a T instance

is expected justifies assignments of the form t := s. This is the same rule we saw for

C++ (page 168). An insect variable may refer to a butterfly, but not conversely.

All the following terms, then, are allied: AKO, subtype, substitutable, consistent, and

polymorphic. All represent beauty, which is different from the notion of a subclass.

From now on we need to respect this distinction.

17.3 Commentary: an aside on subsets

A type generates a set. (Or at least something very much like a set. Mathematicians

and logicians would quibble about using the word “set” here. I alluded to this fussiness

on page 13.) For example, the type Butterfly generates the set consisting of all the but-

terfly objects that might ever be created.

Following this reasoning further, if S is a subtype of T, then the set generated by S
is a subset of the set generated by T. That’s because we have agreed that subtyping

means S is consistent (AKO) with T, which implies that S’s objects satisfy whatever T’s

objects satisfy. In other words, S’s objects constitute a subset of T’s objects. In everyday

language, butterflies constitute a subset of insects and squares constitute a subset of

rectangles.

Although subtypes generate subsets in a natural way, it would be reckless to assert
the converse, that by taking any arbitrary subset of the supertype’s objects, with meth-
ods defined to be the same as the supertype’s methods, we'd get a subtype. That’s
because methods that make sense on the superset might not make sense for the subset.

For example, suppose rectangles have a “squish” method that doubles their length and

halves their width. Squares, although forming a legitimate subset of the set of rectan-

gles, can't be squished. Squares then wouldn't understand the same messages that rect-

angles do, and so in the presence of squishing, they wouldn’t constitute a subtype.

Conclusion: Subtypes naturally generate subsets, but subsets do not necessarily

define natural subtypes.

17.4 Commentary: what does “consistency” mean?

Intuitively, we understand subtyping to mean preserving the hierarchy’s external con-

sistency. But so far we do not have a precise definition of “consistency.” For instance,

birds fly, but penguins don’t. Would we want to say that penguins form a subtype of
birds or not? Are penguins consistent enough with birds to warrant being a subtype?

202 TWO KINDS OF INHERITANCE | CHAPTER 17

What conditions should their fly method abide by to be consistent with the fly

method for birds?
More rigor is evidently desirable. We'd like an objective test for consistency. Unfor-

tunately, no one test exists. The candidates range from the weakest condition, where
it doesn’t take much to be consistent, to the strongest, most rigid condition, where it’s

extremely difficult to be consistent.
Here are four candidates, covering the spectrum from weakest to most rigid. In

order of increasing strength, we'll call them anarchy, conformance, behavioral consis-

tency, and rigidity:

¢ Anarchy. § has at least all the message selectors that T has, and possibly more, but

there are no limits on what the method bodies themselves do. For example, if Bird
has a fly method, then the subtype Penguin must too. But Penguin>>fly may
answer No! while Bird>>fly answers Yes! Yet more flagrant, Penguin>>fly might
answer a special error object or generate a walkback, informing you that you should
not have sent the message in the first place. The effect would be to cancel the
Bird>>fly. The possibilities for Penguin>>fly being unlimited, anarchy barely
deserves to be called subtyping. Yet it is what Smalltalk allows. Smalltalk imposes no
restrictions on what a subtype method does. This is such a weak form of consistency

that one could say in good conscience that it isn’t in the spirit of subtyping at all.
And it is often said that Smalltalk programmers don't really subtype; they subclass.

Conformance. We now depart from Smalltalk; conformance can be checked only by

a language whose variables have types and as we know, Smalltalk’s do not. Neverthe-

less, as an object designer, you can still think about conformance, and knowing

about it can improve your designs.

Conformance has to do with the consistency of the types of arguments and
return values of methods. I will discuss the most widely accepted definition. First

let’s adopt the convention that the word “subtype” includes the type itself. A type
then is always a subtype of itself, and also a supertype of itself.

S will conform to T if its methods follow certain rules. The gist of these rules is

to force each method to “deliver more” and “require less” than the corresponding

method in T. By delivering more and requiring less, S’s instances will be more

accommodating. Therefore S’s instances can be substituted wherever T’s instances

are called for.

That's the outline; now the specifics. We need to think about the return types
and argument types of a method. First, the return type.

Consider methods for laying eggs, Duck>>lay and Bird>>lay. Bird>>lay returns
an instance of Egg, and Duck>>lay returns an instance of DuckEgg. Thus Duck’s
method returns a more specific type of object than Bird’s method does—ducks

17.4 COMMENTARY: WHAT DOES “CONSISTENCY” MEAN? 203

deliver more than birds do when they lay. We say that the return type of Duck>>lay
conforms to the return type of Bird>>lay.

The official wording is: for the return types of a method m to conform, the type
of object returned by S>>m must be a subtype of the type returned by T>>m.
(Remember that the types of the returned objects may be equal, too.) The right-

hand side of this schematic illustrates the possible objects returned by T>>m

(Bird>>lay) and S>>m (Duck>>lay). (Ignore the left-hand side for now.)

Notice that fewer objects may be returned by S>>m than T>>m—only duck eggs,

not all eggs. That is the key. The objects returned by S>>m are more specific; they

represent a subtype or subset of the objects returned by T>>m.

That’s the rule for conformance of return types—it’s drearily straightforward.
The rule for argument types, however, has a twist. We will need a little extra nota-

tion: S>>m(P) means that the method m accepts an argument of type P. We are

going to define what it means for the types P and Q of the arguments of the method
S>>m(P) and method T>>m(Q) to conform.

Consider Piano>>play(Pianist); in other words, the play method for pianos

requires an argument, namely a pianist. Think about the ConcertGrand subtype of

Piano. Who can play a concert grand? In other words, what condition should we

impose on the argument type of ConcertGrand>>play(___)?

It is tempting to argue that the argument type ought to be the Virtuoso subtype
of Pianist. But this impulse turns out to be dead wrong, at least for this interpreta-

tion of conformance. That’s because we want our rules to guarantee substitutability,

and if we demand that only a virtuoso can play a concert grand, then the concert
grand will not be substitutable for the piano! (For example, imagine the piano in my

living room being played by a pianist. We want to roll in a concert grand to replace
it and for the living room to continue to operate normally. Well, it won't if we

204 TWO KINDS OF INHERITANCE | CHAPTER 17

suddenly require a virtuoso instead of a pianist. The only way for the substitution to

work is if the concert grand may also be played by a pianist, or even possibly a more

general type of individual, like Person.)
Paradoxically, to guarantee substitutability, I have to make my Concert-

Grand>>play(___) method accept a supertype of Pianist as an argument! This rule

makes the software consistent, although it may not do much for musicality. (A
design technique known as multi-methods preserves the musicality of this problem.

The idea is to treat Piano and Pianist as peer classes and to imagine a “method” that

operates on both objects at once. This outlook differs from our customary object-

centric perspective, where we always have a preferred object. For a discussion of

multi-methods, see the commentary on page 170.)

Thus conformance of argument types works in the opposite direction from con-
formance of return types. The official definition must be: for the argument types of
a method m to conform, the type of an argument of S>>m must be a supertype of
the respective argument of T>>m. (Again, the types may be equal, too.) Looking

back at the left half of the schematic above, you can see that S>>m (Concert-
Grand>>play) accommodates more possible arguments than T>>m (Piano>>play).

The arguments that S>>m accepts represent a supertype or superset of those that

T>>m does.

Putting everything together into a definition of subtype based on conformance,

we can say that for S to be a subtype of T, S must have all T’s methods and possibly

more, and for any method m in both S and T, S>>m’s return and argument types

must conform to T>>m’s. (Notice that this definition is recursive: the subtype rela-

tionship between S and T is cast in terms of the subtype relationships of arguments

and returns. Recursions need a condition to get them started or stopped, and we

started this one by declaring that any type is a subtype of itself.)

Here's another way to express this definition, using some jargon that has caught
on in the C++ community but which originated in the mathematical discipline

known as category theory. Return types follow a covariant rule—they vary in the

“same” direction as S and T. That is, if S is a subtype of T, then the return of S>>m

must also be a subtype of the return of T>>m. Argument types follow a contravari-
ant rule—they vary in the “contrary” direction from § and T. That is, if $ is a sub-
type of T, then an argument of S>>m must be a supertype of the respective argument

of T>>m. Briefly then, S is a subtype of T if S has all T’s methods and possibly more,
and any methods in common follow covariance in their returns and contravariance
in their arguments.

This subtyping rule—conformance—reflects a theoretical ideal whose essential
appeal is substitutability. Each language defines its subtyping rule in its own way,

17.4 COMMENTARY: WHAT DOES “CONSISTENCY” MEAN? 205

usually not in accordance with the ideal. In Smalltalk, conformance is irrelevant

because of the typelessness of Smalltalk’s variables. Even among languages whose

compilers check for the types of arguments and returns, few (see the upcoming

table) adopt the ideal.

For example, Eiffel’s rule for consistency of argument types is the opposite of

what we've discussed—covariance instead of contravariance. Eiffel’s rule has been

the subject of vigorous debate (see [Cook 1989]). Its rationale is that covariance of

argument types is in practice more useful than contravariance. Concert-

Grand>>play(Virtuoso) should conform to Piano>>play(Pianist) because practi-

cality (musicality) should prevail over any lofty desire for consistency
(substitutability). ConcertGrand>>play(Person) may be theoretically sound, goes

the Eiffel argument, but it has no practical value.

* Behavioral consistency. By behavior, | mean the semantics of methods; that is, what

they do rather than merely their names or selectors or signatures. The spirit is the

same as for conformance: for S to be a subtype of T, S>>m should require less
(behaviorally) and deliver more (behaviorally) than T>>m.

How can we specify a method’s behavior? The customary technique is to use pre-

conditions and postconditions. These mean just what they say: preconditions consist

of what the method expects prior to its execution (i.e., what it requires) and post-

conditions consist of what it guarantees when it finishes (ie., what it delivers).

Therefore, requiring less and delivering more simply mean weakening the precondi-

tions and strengthening the postconditions.

Thinking about of preconditions and postconditions for your methods is good
discipline, even though all you can do about it in Smalltalk is record the conditions

informally in comments. Computer scientists don’t have a practical way to formally

specify and validate preconditions and postconditions anyway. So there is nothing
shameful about documenting methods with informal preconditions and postcondi-

tions in their comments. Only Eiffel among the commercial object-oriented lan-

guages has even rudimentary support for checking this kind of consistency.

¢ Rigidity. The strongest possible form of consistency would be to categorically forbid
alternate implementations of a method. For an object-oriented developer, this is an

academic, useless notion. S could only add brand-new methods to T’s methods.
Penguins could add any number of methods to bird methods, but penguins could

not have their own fly method. Instead they could only reuse the fly method from
birds. Penguins must then fly like any other bird, an unsatisfactory condition. No
object-oriented language is this rigid. Prohibiting alternate implementations

entirely would produce an unacceptable object-oriented language.

206 TWO KINDS OF INHERITANCE | CHAPTER 17

Now let’s relate these theoretical ideas to the rules for consistency in actual object-

oriented languages. The table below describes these rules for several languages. Think

of them as the rules that determine when polymorphism or substitution works. The

first column indicates whether substitutability requires an explicit implementation

inheritance relationship between S and T; that is, a declaration of $ as a subclass of T.

The remaining columns describe how far each method S>>m may deviate from the

method T>>m.

When S is substitutable for T (polymorphism)

Must S For S>>m to be consistent with T>>m

subclass
hom (i? Argument Types _—_ Behavioral Conditions

fs
:

Covariant | May weaken preconditions or
strengthen postconditions

Must agree Must agree | May raise fewer exceptions

Contravariant | May have more “properties”

Theoretical Covariant Contravariant | May weaken preconditions or

ideal strengthen postconditions

Polymorphism in C++ was originally conservative: any change to the declared

types of arguments and returns waived polymorphism. But the ANSI C++ committee
took a small step toward conformance in 1993 by allowing covariance for return types,
as shown in the table.

Note that only the research languages Emerald and POOL-I support ideal con-

formance—covariance in return types and contravariance in argument types. For fur-
ther information on the type systems of the languages in the table, see: [Stroustrup
1991; Meyer 1992; Black et al. 1986; Sun 1995; Cardelli et al. 1992; America 1991;

Goldberg and Robson 1983].

17.5 CONSISTENCY AND SMALLTALK 207

17.5 Consistency and Smalltalk

What has this discussion of topics like conformance to do with Smalltalk, where vari-

ables don't have types in the first place? Well, just because the designer can’t express
these ideas in the Smalltalk language doesn’t mean she is incapable of thinking about

them. It would be a peculiar designer indeed who was oblivious to the concept of con-

sistency. And that is the nub of this chapter: to warn you that as a Smalltalk developer
you will have to reconcile your idealistic thoughts about consistency with the absence
of means to represent these thoughts in your software. You have just one inheritance

mechanism, and the path of least resistance is to use it for subclassing.

Beginners are mostly motivated by AKO (subtyping), but gradually, as they

become familiar with classes and their workings, they begin to inherit for the sake of

reusing the code they find—they subclass. In the end, expert Smalltalk programmers
use inheritance frequently for subclassing. The reason is simple. In Smalltalk, more

than other object-oriented languages, when you inherit, you inherit everything—all

the instance variables and all the methods. You get access to all the insides, whether

you want them or not. It’s a producer’s sandbox. !

The Smalltalk developer, hobbled by having to inherit all the insides, has no way

to define a type hierarchy. The limitation is grim, but not as grim as it sounds. Often,

class and type hierarchies are the same or nearly so, which explains why many Small-

talk developers survive without knowing the difference. Often, but not always. What
would we see if we masked Smalltalk’s class hierarchy and looked instead for subtype

relationships?

William Cook did this experiment for the collection classes in Smalltalk-80 and

found...an entirely different hierarchy! [Cook 1992] In the next exercise, you'll repli-
cate his experiment.

! Technical aside: By contrast, C++ offers more control over inheritance. Private members and private

inheritance in C++ limit what subclasses can access and what consumers of the subclass can access.
These features distinguish what a class inherits for the sake of its own implementation from what it
inherits for the sake of its appearance to the consumer—a step toward separating subtyping from
subclassing. Java goes further. It supports two distinct notions—conventional classes plus interfaces.
An interface specifies a set of method names. The programmer can develop separate class and inter-
face hierarchies, associating specific classes with specific interfaces at will. And as you may have
guessed, polymorphism (substitutability) in Java depends on an object’s interface, not its class.

208 TWO KINDS OF INHERITANCE | CHAPTER 17

17.6 Exercise: Smalltalk’s container “types”

Consider these container classes: Array, Bag, Collection, Dictionary, Set, and String.

(A bag is like a set, except that an element can occur more than once in a bag; you can-

not add an element twice to a set.) Our goal is to arrange them into a reasonable type
(AKO) hierarchy. To do so, we have to examine public selectors that are appropriate

for consumers of these classes. Here is a representative list—size, at:, at:put:,

includes:, <, indexOf:, remove:, removeKey:, add:withOccurrences:. This is a some-
what contrived subset of methods—a complete assessment would entail a// public

methods—but we want to keep the exercise manageable.

We also have to settle on some definition for consistency. Let’s use a simple one: S

is a subtype of T if S has all the selectors of T, and they all work. This is a little more

fastidious than the anarchic subtyping rule (page 202), because we are saying that we

don’t want to count methods that issue an error. A deliberate error in a method tells us

that the developer must want to invalidate the method. We called this condition a can-

cellation. Also, some methods aren't explicitly cancelled, but still don’t work right. One

example of a method that fails a lot is at:, which is defined in Object but fails in most

subclasses.

Q) For each class, tabulate its valid selectors. You should use browsers, but I encourage
you to supplement your browsing by executing experimental messages like Array

new size that will test whether the size method is supported by the Array class. It

should take some time to do a thoughtful analysis. After you determine which
classes support which selectors, arrange the classes into a plausible type hierarchy.

17.7. Solution and discussion

Here is what I found by snooping into these collection classes. Your results should be

the same. In fact, because these classes are all standard Smalltalk classes, you should

arrive at the same results no matter which dialect of Smalltalk you use. (The plus (+)

means that the method is valid for the class.)

remove | add:with
size| at: “put: . | Occurrences:

: [ie

eateee | >

17.7 SOLUTION AND DISCUSSION 209

remove | add:with

size| at:| at: ee includes:| <| indexOf:| remove: Key: | Occurrences: a Gn Pe
ioc oc

To analyze the first column, I found that in IBM Smalltalk, Array, Collection, and

String successfully inherit a size method from Object. But Bag, Dictionary, and Set
dont. Instead, each overrides Object>>size with its own size method. Nevertheless, by
one means or another, all six classes enjoy a working size method. Each class therefore

gets a + in the first column. (In other dialects of Smalltalk, the size method comes

from somewhere else in the class hierarchy, and different intermediate classes and can-

cellations and reimplementations occur along the way. No matter. You will still find

that all six classes enjoy a working size method.)
For the second and third columns I found that Array successfully inherits at: and

at:put: from Object, and that Dictionary and String provide their own overrides. The

other classes—Bag, Collection, and Set—inherit at: and at:put: from Object too, but

the methods actually produce walkbacks. Thus only Array, Dictionary, and String get
a + in the second and third column.

Continuing carefully in this way, I completed the rest of the table. Again, you
should arrive at the same results from any standard dialect of Smalltalk, even though
the details of your route may differ. From the table, we can propose a type hierarchy
like the diagram below.

Collection size

we BN dae?

Set “Locatable" ,..
ve remove: So ~ at-put:

Bag Array Dictionary
add:withOccurrences: | indexOf: removeKey:

String
<

Each type is labeled by the message selectors that pertain to it and its subtypes.

Notice the fictitious type Locatable. This is a convenient type into which we can factor
the selectors at: and at:put:, which service Array and Dictionary and their subtypes.

210 TWO KINDS OF INHERITANCE | CHAPTER 17

17.8 Exercise: Smalltalk’s container “classes”

Consumers appreciate the type hierarchy above because it is easy to locate the classes

they want to buy; it’s an intuitive AKO hierarchy. Unfortunately, the hierarchy you see

in Smalltalk is different. It’s a producer’s hierarchy—the beast—optimized for those

who built it, not for those who hope to find its classes in intuitive locations.

Q) Use a browser to sketch the actual class hierarchy in Smalltalk.

17.9 Solution and discussion

The IBM Smalltalk class hierarchy we derive directly from a browser is:

Collection

eke aes
"others" Set Bag "others"

a eS
Dictionary Array String

An innocent consumer, expecting an AKO hierarchy, is shaken by this one. Sets and bags

are unrelated and arrays and strings have lost their intuitive AKO relationship. Why?
Sadly for the consumer, these classes were built by producers in ways advantageous

to themselves. The consumer doesn’t know it, but bags are built with dictionary-like

objects inside them, so they don't need to inherit from sets. Strings are stored in a

unique, compact way (remember the figure on page 195), so they don’t inherit from

arrays. And so on.

These internal design decisions, which the consumer doesn’t want to know about,

nevertheless affect the structure of the class hierarchy. Class hierarchies set AKO
expectations for consumers, even if, as here, they are not AKO hierarchies. This is the
unfortunate by-product of this chapter's theme: Smalltalk has only one hierarchy,

which cannot serve two incompatible masters, subclassing and subtyping. The collec-

tion hierarchy you see through Smalltalk’s browsers is a subclass hierarchy, not the sub-

type hierarchy you would wish to see. The type hierarchy is conceptually present, but
for practical purposes it is invisible. We had to work hard to ferret it out.

Incidentally, the class hierarchy derived from a ParcPlace-Digitalk Smalltalk
browser doesn’t help, either:

17.10 SUMMARY PAA

Collection

on MAS
Set Bag "others"

a POX
Dictionary Array String

This hierarchy fails to capture the natural type relationships in an additional discon-

certing way—Dictionary inherits from Set. The producers chose this design for
implementation reasons: encapsulated within a set is an array, which dictionaries

inherit for their own private purposes.

An early exposé of the type versus class dilemma in Smalltalk appears in [LaLonde
et al. 1986]. For a thorough analysis of Smalltalk collection classes, see [Cook 1992].

17.10 Summary

Objects have outsides and insides. When we think that a square is well known to be a

special kind of rectangle, we are thinking of its customary behavior—its outside.
When we think that a square has just one side instance variable and a rectangle has

two, we are thinking about how they are constructed inside rather than how they

present themselves to their users. The sad truth about most object-oriented languages
today, including Smalltalk, is that they don’t make the same distinction that our minds

do; they muddle subtyping with subclassing.

It is subtyping, not subclassing, that determines polymorphism. We can accuse

Smalltalk, with its typeless variables, of having an unusually forgiving type system
(look back at the table on page 206). Smalltalk enforces no discipline on the forma-

tion of type hierarchies, whereas other object-oriented languages go to great pains to

check type relationships for consistency.
As compensation, according to the first column in the table, Smalltalk supports

what we called implicit polymorphism (page 169). This polymorphism doesn’t
depend on declared relationships between the classes. If two classes support the same

messages, they are consistent, even if they are in unrelated parts of the class hierarchy.
If Puddle and CarBattery both support jump and drain, Smalltalk regards them as

substitutable types, and so they may act polymorphically with respect to each other.
Looking back at our analysis of Smalltalk collections, Bag is a subtype of Set, so a bag

may be polymorphically substituted for a set, even though they are unrelated by inher-

itance.

Dae TWO KINDS OF INHERITANCE | CHAPTER 17

17.11 Commentary: standardizing Smalltalk

Our analysis of the collection classes in the exercises above raises an interesting ques-

tion: are the incompatible collection class hierarchies of the ParcPlace-Digitalk and

IBM dialects a roadblock for standardizing Smalltalk? The ANSI committee's answer

is a resounding “No.” Its current approach to the problem is to standardize Smalltalk’s

type hierarchy rather than its class hierarchy. This is a progressive departure from the
traditional Smalltalk mentality of subclass-based inheritance.

Notice how the ANSI approach fits with collection classes: I mentioned in the

solution to the exercise that the result of the type analysis for the dialects is the same.

That is, the collection type hierarchies from ParcPlace-Digitalk and IBM agree even

though the collection class hierarchies don’t. And it is the type hierarchy that matters

to consumers. The type hierarchy represents their intuitive understanding of the

behavior of objects, and it governs the objects they can use polymorphically in place
of other objects.

A major attraction of any standard is the prospect of portable code. If we want to
port our Smalltalk code from one ANSI standard dialect to another, we will have to

follow one essential guideline when we write the code: we should only buy, not inherit
from standard classes. By buying, we use only the standardized interfaces of the classes.
On the other hand inheriting, even from standard classes, is sure to cause trouble

because inheritance couples our subclasses to the nonstandard insides of classes (beast)

instead of their standard outsides (beauty).

Also keep in mind that only part of an application is likely to be portable. The
ANSI standard will focus on foundation classes—containers, magnitudes, streams,

and so on. These are the basic building blocks for any Smalltalk application, but a real

working application uses many other classes that are unlikely to be standardized. User

interface classes are the first obvious omission because, as we know, these differ dra-

matically among vendors. But they are followed by persistence and database classes,

communication classes, and so on. The best we can hope for is trouble-free portability

of model code between standard dialects; the rest of an application will take work.

CHAPTER 18

Design patterns

Having now thought quite a bit about objects and programmed with them in Small-

talk, you are in a position to tackle a higher level of abstraction—design patterns. Pat-

terns occur in every activity; software isn’t special. A good chess player doesn’t think

through all possible combinations of moves; that is mathematically beyond reach. !

Instead, he draws on his mental respository of positions or patterns to limit the num-

ber of combinations he explores. Having this personal repository of patterns distin-
guishes the expert from the novice, whether the subject is chess or software.

Just as the chess player’s patterns come from positions he has played plus ones
those he has studied in other games, the designer's patterns consist of those she has dis-

covered on her own plus ones she has seen in other people’s designs. My purpose in

this chapter is to give you an edge by priming your personal repository of design pat-
terns with proven patterns from other people’s designs.

Think of an object-oriented design pattern as a grouping of objects or classes that
recurs in good designs.’ These groupings are signs of a natural evolution toward larger-

scale reuse: in its early years, the object community focused on what made a good object

or class, and now it turns to the question of what makes a good grouping of objects or

classes. Our first example (page 215) is a pattern that has already occurred three times in

this book, in the form of the Account and its transaction log, the AddressBook and the

contacts in it, and the ShapeRoom and its shapes. This pattern is a smart container

' Even chess-playing supercomputers like Deep Blue, which won a game against world champion
Gary Kasparov, use “patterns” to augment their raw computational power. For example, a computer

might use a heuristic such as, “a castled king affords greater protection than an uncastled one.” Heu-
ristic is a fancy word for a rule of thumb, which is also not a bad way to think of a pattern.

* To some people, a pattern is or implies a great deal more. See the commentary at the end of this
chapter (page 240) for an indication of these more profound understandings.

als

214 DESIGN PATTERNS | CHAPTER 18

because, for example, an address book contains contacts, but it is also smart enough to

search by company or zipcode, to dial a contact’s phone number, and so on.
The patterns in this chapter are ones I particularly enjoy. All designers have their

own favorites, formed mostly of those that have helped them solve nasty problems.
Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides have organized

twenty-three patterns into a catalogue, now a standard reference book [Gamma et al.
1995]. You will eventually develop your own idiosyncratic catalogue, based on the

patterns that pertain to the problems you encounter.

Because these are design patterns, don’t expect the Smalltalk code in this chapter to

be entirely spelled out. A pattern is a reusable design, not reusable code. The descrip-

tions include enough details to imagine how each pattern can help solve a problem,

but to fully apply a pattern to your problem, you will still have to invest some of your
own energies. In so doing, you will probably uncover variations on the basic tech-

niques outlined here.

18.1 Notation

We need some notation to help convey the essence of a pattern. Here is an example of
what we'll use, based mostly on OMT [Rumbaugh et al. 1991].

Orchestra one many Instrument

+
tune* * = subclassResponsibility

play” (“pure virtual")

has ;

She Z__\ inheritance

Conductor | Violin

| strings method

| tune ee a

play strings bow

The three-part rectangular boxes are classes; the top part is the name of the class,
the bottom lists pertinent methods, and the middle contains pertinent instance vari-
ables. The triangle means inheritance and the diamond means aggregation. A dark
circle indicates a relationship or association that involves possibly many instances of a
class, such as the many instruments in an orchestra above. When we need to depict the
logic of a method, we'll use a rounded box, as for Violin>>play. And we continue to
mark subclassResponsibility methods with asterisks, as we have done since Chapter 5.

18.2 SMART CONTAINER (AKA COLLECTION-WORKER) PAB

These notations are a far cry from a full-bodied design methodology notation, but
they are enough to get us started.

I mentioned in Chapter 6 the gray area between aggregations and containers. A

similar gray area exists between aggregations and one-to-many or one-to-one associa-

tions. An aggregation is a particularly strong kind of association, one in which the

designer feels that “part-of” is an apt description. But what one designer calls an ordi-
nary association, like the one-to-many relationship between orchestra and instru-
ments illustrated above, another may choose to call an aggregation. This second

designer would have used the diamond notation to indicate that instruments are part-

ofan orchestra, or an orchestra Aas instruments.

Two designers could also quibble over the relationship between orchestra and con-

ductor. One could argue for an ordinary one-to-one association; the other for the

more special aggregation, as illustrated above. These are judgment calls. The decisions
are influenced by the problem you are solving (which doesn’t help here because I have
not yet presented any problems).

For example, a problem on simulat-

ing a conductors schedule and
| Conductor Orchestra

duties might warrant reversing the

relationship entirely and declaring
that a conductor Aas an orchestra:

These nuances remind us that design is an inexact craft, but they won't matter for

this chapter. We need notation only to illuminate concepts and avoid ambiguities.

18.2 Smart container (aka collection-worker)

Let’s begin on familiar ground, by reviewing the common design for a checking
account, an address book, and a shape editor. They all look like this:

Account or AddressBook or Transaction or Person or
smart

, ShapeRoom Shape
container

oe

“application specific behavior" "item specific behavior"

Collection (off-the-shelf)

|e a

add:

remove:

216 DESIGN PATTERNS | CHAPTER 18

Class Account is conceptually like a container, because it “contains” transactions, yet

it is smart in the sense that it processes transactions and adjusts its balance. The actual

container is a built-in container from Smalltalk, in that case an instance of Sorted-

Collection. Similarly, class AddressBook basically contains person objects, but it has

behavior (for managing contacts) that goes beyond what any of Smalltalk’s built-in

collection classes can do. And class ShapeRoom conceptually contains shapes, but it

can move them around and even undo the user’s actions.

In all three examples, the job of adding, removing, and holding on to the pertinent

items goes not to the smart container but to some built-in Smalltalk collection class.

The smart container only appears to contain its items. Peter Coad calls this “the fun-

damental pattern” or the collection-worker pattern; it is the base for most of the pat-

terns in the book [Coad et al. 1995].

18.3 Reification

Reification is a broad term that means to turn something that doesn’t seem to be an

object into an object. It is so broad that it is not quite fair to call it a design pattern. If

anything, it is a meta-pattern, out of which other design patterns emerge.

The most striking examples of reification occur when the designer treats a method

or verb-like idea as an object. You have seen a classic example in the undo exercise on

page 176, where commands or actions became classes of objects. We will revisit this
particular reification in the next section.

As a matter of fact, any time an activity or behavior starts out as a method, but over
time you sense that it has rather complicated variants, then that activity is a good

candidate for a class, and the variants are candidates for subclasses. That is what

happened in the undo situation. Specific kinds of actions—moving, creating, and

removing—became subclasses. We reified each operation into a class of its own.

Another common example is searching. At first blush, searching a repository of

objects is plainly a job for a method. But pretty soon one realizes that the act of
requesting a search can be a rich activity; there may be all manner of ways of specifying
a search. This discovery leads pretty quickly to reification: one defines a class called

Search with instance variables that represent the various arguments describing the cri-
teria for a search. A search object immediately becomes handy if you want to search
again, with slightly different criteria. And the next thing you know, you want to search
for different kinds of objects in different repositories, so you define separate subclasses
of Search for each such kind of object. The innocuous verb-like act of searching has
blossomed into several potential classes.

18.4 COMMAND Dav

You'll notice that once you reify something into a class, its principal public method

often turns out to have a really routine name, like undo for the Command class. In the

Search example, the name is likely to be execute or doIt. The method then gets reim-

plemented polymorphically in each concrete subclass so that every kind of Command
knows how to undo itself and every kind of Search knows how to execute itself. This

observation illustrates a rule of thumb: rezfication begets polymorphism. Whenever you

reify from a method to a class, you are likely to enjoy the benefits of polymorphism.

Although the most dramatic reifications start from a method, not all do. One com-

mon form starts from a relationship between two classes of objects: introducing a Stu-

dentCourse class to manage the intricacies of the many-to-many relationship between
Student and Course classes counts as a reification. For example, grades and attendance

are better encapsulated within an instance of StudentCourse than within either an

instance of Student or Course. This form of reification is known as an association class,

and information such as grades and attendance are known as link attributes [Rum-

baugh et al. 1991).

Reifications can also start from larger-scale activities than a method. For example,

[Jacobson et al. 1992] suggest that an entire use case can be an appropriate candidate

for an object. When they reify an activity, be it a whole use case or a more modest
activity, they call the resulting object a control object. In other words, a control object

is a reification of an activity. (These control objects should not be confused with the

controller objects of MVC.)

In general, reifications exhibit the evolution of a design from plain beginnings to

object-oriented respectability. A draw method eventually becomes a Drawing Tool class;

a conversion method for translating, say, an MM/DD/YY string format into a date

object eventually becomes a Converter class (AbtConverter in VisualAge); operations

for copying bitmaps eventually become the BitBlockTransfer class (BitBlt in Visual-

Works); and so on. The essential lesson of reifying is that when things start to get com-
plicated in a design, the experienced designer steps back and considers the possibility of

introducing a brand-new kind of object. One can almost say that reification is object-

oriented design. As you study the command pattern again, look at it in this spirit.

18.4 Command

You have solved the undo problem before; now let’s cast it into the form of a pattern—

the command pattern.

QO) How would you complete this design for undoing actions or commands?

218 DESIGN PATTERNS | CHAPTER 18
ee a

? Command

execute

unExecute

/\
Move Remove

all other command types ...

Solution: We review the earlier discussion (beginning on page 177), using now differ-

ent names. Both Command>>execute and Command>>unExecute are subclassRe-

sponsibility (pure virtual) methods in the Command class, and they have concrete

realizations in each of Command’s subclasses. To maintain a chronology of the com-

mand objects, we need a Stack class. A Stack’s LIFO (last-in-first-out) policy ensures

that the most recent command will be undone first. The result is:

Stack Command

@

push: execute*

pop unExecute*

if sf

| |
Move Remove all other command types ...

execute execute

unExecute unExecute

Not only does this illustrate the command pattern, but you should appreciate that
formulating a Command class in the first place is an archetypal example of reification.
The crucial discovery of the undo solution was to accept that so verb-like an idea as
move, or remove, or command is, for the undo problem, an object.

18.5 FACTORY METHOD 219

18.5 Factory method

It often happens that one class depends crucially on another for certain services. For
example, in a client/server system, the class that transfers customer data back and forth

between a database server and a Smalltalk client (typically called the CustomerBroker

class) needs the Customer class whenever it creates a new customer object. Or a Cal-

culator class in an office desktop application needs a standard CalculatorWindow

class when it presents itself on the screen.

Early in an application's life cycle, the designer inevitably realizes that other pairs

of classes have the same relationship: OrderBroker needs Order when it creates a new

order object, or Phonebook needs PhoneWindow when it presents itself. This situa-

tion often leads to code that looks like this:

DesktopObject

openWindow*

popenWindow 7 (openWindow net

| PhoneWindow new openWidget j CalculatorWindow new openWidget |

PhoneBook Calculator

Te ig a openWindow openWindow Sean

Notice the small but troubling redundancy: the messages ...new openWidget

appear twice, in exactly the same form.

Q) This redundancy calls for a simple but dramatic improvement. We should try to

factor the common ...new open Widget code out of the subclasses and elevate it to

the superclass DesktopObject. But how?

Solution: Just write the code for DesktopObject>>open Window in the only way that

makes sense: self windowClass new openWidget. Here the windowClass method

must be deferred to the subclasses. That is, each subclass must support a windowClass

method that returns its associated class. The result is:

220 DESIGN PATTERNS | CHAPTER 18

DesktopObject

windowClass* --rfopenWindow
openWindow i- { self windowClass new openWidget J

pee. »{windowClass windowClass i

l “PhoneWindow j *CalculatorWindow
N

PhoneBook Calculator

~ | windowClass windowClass

This pattern is known as a factory method, mainly because it frequently occurs

when an object manufactures an instance of an associated class. Note the pattern's
minimalism: each class and each method does only what it makes sense for it to do,

and no more.
This pattern is an excellent indicator of the quality of any design involving abstract

classes. It occurs in the life of a design only after the designer has spent some effort
architecting clean relationships between classes. Conversely, if you don't see the pat-
tern anywhere, it can be an indication that classes and their relationships have been
haphazardly laid out.

18.6 Objects from records

The objects from records pattern is more specialized and intricate than the others in this

chapter. It solves today’s most fundamental client/server problem, moving back and

forth between typical flat, relational databases on a server and objects at a client work-
station.

A record, as programmers have always understood it, is simply a string of bytes that

is subdivided into distinct fields. Historically, records were strips of data fitting end to
end ina file or a “dataset.” Today we commonly encounter records in the form of rows
of a relational database table. Sometimes, in complex client/server applications, the

bytes in a record may be assembled at the server from several database rows or other
sources. But no matter where the data comes from, the essence of a conventional
record is still just a string of bytes:

18.6 OBJECTS FROM RECORDS 224

1223334444 | Odysseus ‘10 Polyphemus Way ‘Ithaca Greece ie

id | name | address | city 1country |...

Although there is nothing novel about a record, it is so much an intrinsic part of a

typical server that it (or something like it) must play a leading role in any mechanism
for exchanging data between a server and an object-oriented client. Historically, pro-

grammers first solved this problem by translating each field in the record into a corre-

sponding instance variable:

anEmployee

t

1223334444) Odysseus 10 Polyphemus Way Ithaca Greece fe

id | name | address 1 city |country |...
' i) ' '

This translation generally occurred as soon as the record arrived from the server,

and it was performed sometimes by the Customer and sometimes by another object
(such as a CustomerBroker). The record had then served its purpose and became an

unwanted appendage.

2) DESIGN PATTERNS | CHAPTER 18

This approach had some drawbacks. It is always important in an object-oriented

design to distribute behavior into the classes for which the behavior makes most sense.

That a business object class like Customer is responsible for translating low-level byte

representations into objects exceeds our normal expectations of a “customer.” A “bro-

ker” is a somewhat better candidate, but a broker ought to focus on locating and

retrieving information from wherever it happens to reside, whether a local database or

a remote server, which is a different function than translating between byte represen-

tations and objects.

Moreover, the “record” object’s role is so passive that it hardly deserves to be called
an object. We like our objects to have interesting behavior, and the record above is

merely an inert data structure. All these drawbacks repeat in the opposite direction

when the application needs to send an updated customer object back to the server. As

an additional difficulty, users sometimes decide not to proceed with an update but

would rather restore the customer object back to its original state. Since an instance
variable can't hold two values at the same time, the original one and the updated one,

this design doesn’t maintain enough information to revert the customer object.

The pattern objects from records addresses these drawbacks by making the record an

integral part of the customer object and also giving the record the responsibility for

translation. The record objects will resemble a traditional record, but will be quite a
lot smarter. In its simplest form, the record object encapsulates the data, its layout

within the record, and the conversion or translation between bytes and objects. A cus-

tomer object doesn’t even need instance variables. Of course, it still needs getter and

setter methods, but these can communicate directly with the underlying record
instead of with instance variables. The design looks like this:

Employee Record

—————————
record byteArray

| “mapping info"

“conversion info"
address

eco *) address: at:

at:put:

36 raddress ; |

“record at: #address |
N

address: aString et)

record at: #address put: aString

18.6 OBJECTS FROM RECORDS 223

“Mapping information” consists of the bookkeeping needed to map names of fields
like #address to positions and lengths in the byte array. “Conversion information” is
the information needed to convert each field of the record to and from primitive

objects such as strings and integers.

That summarizes the basic pattern. For the reader who is interested in the details,

here is a closer look at class Record and its collaborators. In addition to a ByteArray
that contains its original raw data, we may as well cache the results of each field con-

version if and when a conversion occurs. The cache saves having to convert again if the
field is accessed a second time. It also provides a serendipitous slot in which an

updated value may be stored via Record>>at:put:. If the user commits the update, the
cached values are copied onto the original byte array, and if the user reverts or rolls

back, the cached values are simply cleared.
Thus, a more complete design is:

BusinessObject pec RecordMap

Pons o byteArray fieldMap Dictionary
recordMap offsetDictionary
cache lengthDictionary

ee ‘cms at: fieldMapAt:
wae at:put: aoe offsetAt:

applyChanges lengthAt:
H clearChanges :

or > update

| record applyChanges FieldMap pply' 9g | @

oe olrevert clearChanges le’ : Poneves

| record clearChanges cache ‘= Dictionary new. | fromObject:

v
jat: aSymbol

"cache is a dictionary of already converted objects"

“cache at: aSymbol ifAbsent:

[cache at: aSymbol put: ((recordMap fieldMapAt: aSymbol) fromBytes:...)].

=)

You should consider this pattern for any client/server application involving a non—

object-oriented server. It decouples problem domain objects from server data struc-

tures and minimizes the overhead of converting to and from objects. The basic form

may be embellished in several practical directions. For example, you can automate the

generation of getters and setters, or you can automatically generate record maps from

whatever defines the records—COBOL copybooks, C structures, or SQL statements.

And if you lament the absence of instance variables—which you shouldn't too deeply,

224 DESIGN PATTERNS | CHAPTER 18

since the essence of an object is its behavior rather than the particulars of how it stores

its data—you can resurrect them for use as a cache; conceptually this amounts to
transplanting the cache from the record object to the business object.

This pattern may become obsolete someday, if legacy relational databases vanish

and object-oriented distributed computing becomes common through facilities like

the Object Management Group’s specification for distribution (CORBA) or object

databases (such as GemStone, ObjectStore, Tensegrity, and Versant). In the meantime,

objects from records remains a fast, clean way to exchange information among comput-

ers across a network.

18.7 Proxies and ghosts, |

A proxy stands in the place of an actual thing. Proxies, like objects from records, occur

in client/server designs. That’s because an object, or even more to the point, a collec-

tion of objects, may be quite large, and it may be impractical to materialize the entire
object or collection from the server. Instead, the client manipulates proxies for the

objects, and only if the user needs the whole object does the application materialize it.

Now, when the object finally does materialize, its proxy may behave in one of two
ways. It can either forward messages to the object, so that in effect the proxy is trans-

parent, or it can transform (or “morph”) itself into the object, so that the proxy disap-
pears. We'll discuss the second kind of proxy in the next section.

The first kind, sometimes called a handle-body, looks like this:

AbstractCustomer |
|
|

|
|

of address |
i T

| 2 \

zal 7 ae
CustomerProxy | Customer

customer

id ————
(i —=— —— wat ———

_| address : | address

name / name

The “handle” is the proxy and the “body” is the customer. The hollow circle means
that the proxy has either zero or one customer object, depending on whether or not its
underlying customer object has been materialized.

18.7 PROXIES AND GHOSTS, | 225

U What should the code for the method CustomerProxy>>address do?

Solution: It should check to see if the Customer has been materialized, and if not, it

should materialize it. Then it should forward the address message on to the Customer,

like so:

address

"Answer my address"

customer isNil

iffrue: [customer := "materialize the customer"].

“customer address

This trick of initializing an instance variable only at the moment you discover you
need it is known as lazy initialization. One hopes that most customers will not be
needed by the client, and so the space and time for materialization will occur for rela-

tively few customers.

Finally, how does the proxy know the right customer to materialize? It must know
one more crucial tidbit, namely, some key that identifies the customer for which it is
the proxy. This key is generally a unique identification number stored with each cus-
tomer in the server database. The full design is then:

AbstractCustomer

address) aahond
name

customer isNil

ifTrue: [customer := "materialize from id").

“customer address

CustomerProxy Customer

customer

id

i Oor1

eh Se nS? 2 Se eae ee address address
name name

As a crowning touch, we have remembered to add subclassResponsibility methods

to the abstract class. Although not mandatory in Smalltalk, it is always a good practice
to use them to indicate that the programmer must provide a concrete overriding

method in each subclass (page 64).

226 DESIGN PATTERNS | CHAPTER 18
ee

18.8 Proxies and ghosts, Il

The second kind of proxy is called a ghost. Consider this diagram:

Object

doesNotUnderstand: | = ©

(doesNotUnderstand: aMsg le

| "Open a walkback window" |

CustomerGhost ! Customer

id

As for any proxy, the ghost must contain at least enough information in the instance

variable id to uniquely identify the object it represents. Object>>doesNotUnderstand:
is the familiar error message that executes whenever a message is not understood by an

object. The essence of the ghost pattern is for the ghost to override this error.

Q) Unlike the handle-body proxy in the previous section, the ghost does not support
an address getter. What then should it do if it receives the message address?

Solution: Normally, the inherited doesNotUnderstand: would execute, and a walk-
back would follow. To provide a more satisfactory response to the address message, we

override the usual doesNotUnderstand:. Instead of announcing an error, this version

of doesNotUnderstand: will begin by materializing the customer. With a customer
object now in hand, a conventional handle-body proxy would merely redispatch the
address message to the customer.

But this being Smalltalk, we will do something extraordinary: we will transform
(morph) the ghost into the customer. That is, the ghost object of a moment ago will
become an entirely different kind of object, namely the customer object. To morph an

object in Smalltalk, we will need a special method named become:. Finally, we'll redis-
patch the address message to self, which by this time refers to the customer and not
the ghost.

* This is the only Smalltalk-specific pattern in the chapter.

18.8 PROXIES AND GHOSTS, II 227

The method in its entirety looks like this:

doesNotUnderstand: aMessage

"I, as a ghost, do not support aMessage. I will materialize a

customer, morph myself to it, and then try aMessage again."

| customer

customer := "materialize the customer"

self become: customer.

“aMessage sendTo: self. "re-dispatch!"

Note how the redispatch in the last line treats aMessage as an object. In Smalltalk, every-
thing is an object, including messages. Even in other dialects, where the form of the

redispatch varies slightly, the essential truth remains intact: a message is an object too.
The overall pattern is:

Object

doesNotUnderstand: [©”.

_»(doesNotUnderstand: aMsg i

"materialize customer from id" [doesNotUnderstand: aMsg \e
self become: customer. | "Open a walkback window" j

aMsg sendTo: self.

CustomerGhost Customer

id

+ pes aroma: Uae oy doesNotUnderstand:

The happy outcome of all this activity is that where there was once a ghost that
understood nothing, there now stands a customer that understands address, name, as

well as every other customer message. Thus all future message sends will be success-

fully and immediately handled by the customer.

Technical note: It is only fair to say that this attractive design can have one drawback.
In some Smalltalk implementations, where objects refer directly to other objects rather

than through a table of object pointers, become: can be much slower than the virtually

instantaneous method executions you are accustomed to. The degradation occurs

because the virtual machine must locate all references to the ghost and reset them to

point to the customer. You should therefore run some simple performance tests before

adopting this pattern.

228 DESIGN PATTERNS | CHAPTER 18

18.9 Dependency (aka broadcasting, model-view,
observing, publish-subscribe)

Remember that in a well-designed user interface, views are directly aware of models,

but not conversely. All a model can do is broadcast update messages to its views (or

more generally, to its dependents), and the views then issue any specific inquiries to

the model that they deem appropriate. This lopsided communication recurs often

enough in object-oriented systems that it warrants recognition as a design pattern,

called the observer or dependency pattern. In the model-view situation that you are

most familiar with, views are the observers or dependents, and models are called subjects.

Here is the basic scenario:

Model View

value1 | model

value2 Gon

broadcast gt | broadcast (or "change") update

"Send an update message to getValues repaint

each dependent view"

In Chapter 11 we discussed a variety of ways to implement the dependency rela-
tionship. The model may have a concealed instance variable, or there may be a shared
dictionary somewhere that maintains the dependents of every model in the system.

The specific implementation is unimportant for this discussion. By whatever means,
the view receives an update message.

QC) What should update do?

Solution: It should query the model for the values it cares about and then reflect these

possibly changed values into its display, roughly along these lines:

update

"Obtain current data, then redisplay myself"

model getValues “and process them".

self repaint.

18.9 DEPENDENCY 229

The result is:

Model View

value model

value2 +———_@

broadcast aly aoe broadcast (or "change") lipdate™= |? 9" Wise. gf
getValues repaint “Send an update message to

each dependent view"

|update a. POMS ot 5 SF ;

"Obtain current data, then redisplay."

model getValues "and process them".

self repaint.

As we learned in Chapter 11, the essential benefit of this pattern is that the model

functions independently of the number and kind of views. Models then can represent

the conceptual objects of the problem without being burdened by user interface con-
siderations. Views, on the other hand, concentrate on rendering information. They

know their models and how to extract the information they care about from them.
Notice that “observer” is a misnomer for view or dependent because modern

views, in absorbing the additional responsibility of MVC controllers (Chapter 11), are

not just read-only objects. They respond to user inputs and may set values in their
models as well as get them. However intrusive this “observation” is, models remain

oblivious to their views, which is the most important theme of the pattern.

In general, the dependency pattern is the right way for an object to notify
unknown numbers and kinds of other objects (its dependents) about changes in its

state. For example, a traffic light simulation might notify all vehicle objects that it has

changed to green. Ora palace vault might broadcast an alert to various security devices

and stations if its entry has been breached. In fact, the whole idea of event notification,

such as an operating system notifying windows that a mouse event has occurred, fits
into the scheme of this pattern. (Also, with all broadcasts it is reasonable to pass some

information along as an argument, such as the coordinates where the mouse event

occurred, or a severity indication like “this event is a dire emergency.”)

In the pattern’s sharpest form, the broadcast consists of an arbitrary cluster of mes-

sages, with different clusters triggered by different events. See page 120 for a discus-

sion of this form of the pattern.

230 DESIGN PATTERNS | CHAPTER 18

18.10 Solitaire (aka singleton)

A computer should hold no more than one instance of some kinds of objects. Exam-
ples include objects that manage resources such as windows, or memory, or time.
Another example, from distributed or client/server applications, is a broker object
which obtains objects from the server and keeps track of those it has already obtained.

The problem is to design the protocol for constructing and accessing an instance
of a class in a way that minimizes the possibility of inadvertently constructing a second

instance. Here, for example, is an undesirable solution:

TheBroker := Broker new.

TheBroker getObjectWithId: '1234'.

For one thing, we have introduced a global variable TheBroker, and global vari-

ables are as a rule a bad idea. Global variables present the temptation of writing, else-

where in the application,

OnlyBroker := Broker new.

which creates a second broker, or just as disastrously,

TheBroker := Broker new.

which loses the first broker together with its knowledge of objects it has already
obtained from the server.

The solitaire pattern eliminates the global variable and its risks:

Broker , [instance ri

‘ies
$theOne H theOne isNil |

ifTrue: [theOne := super new]. _-p{new }
“theOne :

$instance / self error: 'Do not use'

BMOW rresnennennene nnn cen sen snenuecnecueceseseenenseeseeneceensseeconsansostteess se

$ denotes a class method or variable

Q) What should you write to obtain an object from the server?

Solution:

Broker instance getObjectWithId: '1234'.

Lazy initialization in the class method named instance assures us of the same instance
of Broker, whether this request is the first or a subsequent one. As an additional precau-
tion against accidentally creating brokers, note that the new method has been disabled.

oon DUET (AKA PAS DE DEUX, DOUBLE DISPATCH) 230

‘Typical client/server systems involve more than one class of objects. Because the
logic that materializes each class of objects may differ, or different classes may require
different servers, it is usually appropriate to define a separate broker for each class.
Broker is then an abstract class with specific broker solitaires like CustomerBroker
and AccountBroker as subclasses.

Technical aside: When Broker has subclasses, a class variable for theOne is not as suit-

able as a Smalltalk class instance variable. Each subclass inherits its own separate,

unshared copy of a superclass’s class instance variable, in which the subclass’s separate

broker may reside. Class variables don’t have this property. Instead, all subclasses share

a class variable defined by their superclass—not very helpful if you want each to have
its own separate broker.

18.11 Duet (aka pas de deux, double dispatch)

Those few occasions when a “function” just doesn’t seem to be a method on a single

object, but rather ought to be a “method” on two peer objects, can cast the whole

applicability of object-oriented programming in doubt. Our modern, object-centric

view of the world is too narrow for these situations.

For example, is play a method in class Instrument that takes a Musician as an argu-
ment? Or is it a method in class Musician that takes Instrument as an argument? Or is

it something else, an operation on a pair of objects? If the situation calls for an opera-

tion on a pair of objects, we use the duet pattern. The most interesting application of

this pattern occurs when Instrument and Musician both have subclasses, because play

then becomes an operation that is polymorphic on both of its arguments. (Refer to the

commentary on multi-methods on page 170 for an example and discussion.)

A basic example of duets is arithmetic, where the asymmetric interpretation of

a + b (a receives the message; b is “just” an argument) rattles Smalltalk newcomers.

From our earliest functional schooling, we developed faith in the symmetry of the

operation a + b. We psychologically want addition to be an operation on two
objects—a multi-method—rather than a message to one of them. But Smalltalk,
being a “pure” object-oriented language, cannot oblige.

232 DESIGN PATTERNS | CHAPTER 18

Only CLOS among commercial object-oriented languages supports genuine multi-
methods. In Smalltalk we can synthesize an arithmetic multi-method with this duet:

Integer Float

+ ree ie ip) Nese nen eaters "
sumFromInteger: i

\
(+ aNumber + aNumber i

qt

"Since aNumber may be of a type too "|, as a float, ought to be able to handle i

complicated for me to understand, |'m simpler types, whatever they may be"

going to let him worry about this"

“aNumber sumFromInteger: self.

sumFromInteger: anInteger

"Do the real work of adding anInteger to

me. | can assume that anInteger is

indeed an Integer!"

You can use + to add an integer and a float in either order. But only one of them—

the Float—can do the real work. If the other—the Integer—is asked to do the job, it
automatically sends a message to the Float, announcing that it is an integer seeking

assistance from the Float to do the arithmetic.

This pattern is a “duet” because it makes the participants seem like peers. It is a

double dispatch or pas de deux because of the dramatic transfer of control and passing

of self as an argument to the other object.

For the programmer who implements the pattern, the important outcome is the

elimination of conditional tests. The integer does not check anything; it immediately

and unconditionally sends the message to its argument, announcing that it is an inte-

ger in need of aid. As we've learned from studying polymorphism, one of the best ways
to simplify software maintenance is to write code without conditionals.

For the consumer programmer, the important outcome is conceptual simplifica-
tion: it doesn’t matter which of the two objects he sends the + message to. In effect, +
is, from his perspective, a non—object-oriented operation. It also doesn’t matter what
types of objects participate in the operation. He can add any combination of Float,
Integer, or Fraction without a second thought.

UW What happens if the + message is merely used to add two integers together, rather
than the more complicated scenario of an integer and a float?

Solution: saumFromInteger: still executes unconditionally, but it is now sent to an Inte-
ger, so the Integer class had better implement sumFromInteger: as well. Fortunately, this
is a reasonable expectation—an integer ought to be able to add another integer to itself.

18.12 LAWYER (AKA OBJECT HANDLER) 233

Although duets are a clean way to implement arithmetic, and VisualWorks and to

a lesser extent VisualSmalltalk use them for arithmetic, IBM Smalltalk does not. For

speed, IBM Smalltalk implements arithmetic directly in its virtual machine.

18.12 Lawyer (aka object handler)

Often, two kinds of objects work together, but neither should be complicated by
direct knowledge of the other. We have seen this situation in many-to-many relation-

ships (page 217), and we are now about to see it in one-to-one relationships.

Consider an icon object and the model object that it stands for. In the spirit of

model-view separations it would be unseemly to give the model object knowledge of

a visual object like its iconic representation. Also, an icon is such a simple visual
object—roughly a bitmap—that we would not expect it to know how the user inter-
face happens to associate some model object with it.

We wish to decouple the two objects, yet on the other hand we would like to keep

the model informed about the icon’s experiences. For example, if in a graphical editor

the user drags an icon representing a graphical element to a different location, we

would expect the coordinates of the graphical element to change. Neither the icon nor

the graphical element alonehas this responsibility. So we construct a third object,

called an object handler or lawyer, which knows both the icon and the graphical ele-

ment [Collins 1995].

The user interface then manipulates lawyers instead of icons. Through lawyers, the

user interface can communicate indirectly with either party a lawyer represents, be it
the icon or the underlying object. The pattern looks like this:

GraphicalEditor

"methods that respond to

dragging or dropping lawyers"

Lawyer

——_——————___—<.
icon

subject

Icon Subject

"methods to expose or (GraphicElement)

manipulate either my icon

or subject"

"methods to change my

coordinates"

234 DESIGN PATTERNS | CHAPTER 18

Updating the coordinates of a graphical element is a relatively simple service of one
lawyer—the lawyer merely mediates between the icon and the graphical element. This

lawyer is an example of the mediator pattern [Gamma et al. 1995]. Lawyers make espe-
cially good livings by talking to other lawyers; this is the relationship we examine next.

Consider icons again. The usual visual feedback that occurs as a result of dragging
one icon over another depends only on the types of the objects represented by the
icons. For example, the feedback will indicate that you cannot drop a file icon onto a

calculator icon, but that you can drop it onto a printer icon. This has nothing really
to do with the underlying objects; the user interface can compute the feedback from
the icons alone. But suppose a sophisticated user interface must provide more refined
feedback, such as an indication that you cannot drop a file icon onto a printer icon if
the printer object is off-line. This feedback depends on the state of the underlying
printer object and therefore cannot be determined solely from the icons.

() What objects can make this determination?

Solution: We have ruled out the icon objects, since they are oblivious to the state of their

associated objects. But lawyer objects can make the determination because they know
about the icons (is the file icon over the printer icon?) as well as the underlying objects

(is the printer on-line?). Thus the file lawyer can negotiate with the printer lawyer to

determine the appropriate feedback. Here are the relationships and responsibilities:

Heol Lawyer

icon

subject

acl isDroppableOn:*

isValidTarget*

, PrinterLawyer FileLawyer

subject . SSubject___

: isDroppableOn: isDroppableOn:
Printer | isValidTarget ~) isValidTarget File

status ——= — fsa ees

isOnline . rlisDroppableOn: aLawyer L plisDroppableOn: aLawyer

a “aLawyer isValidTarget

‘ pisValidTarget ‘ plisValidTarget

“subject isOnline L te

18.13. COMPOSITE 235

Let's step through the interactions. Suppose the user has positioned the file icon
over the printer icon. Since the user interface manipulates lawyers rather than icons, it
asks the file lawyer whether it is droppable on the printer lawyer. To answer the ques-
tion, the file lawyer asks the printer lawyer whether it is a valid target, which the

printer lawyer in turn determines by asking its subject the printer whether it is on-line.

Depending on the response, the user interface will display either a “cannot drop” or
an “ok to drop” indication.

Without delegating the negotiation to the two lawyers, we would have had to write

and maintain messages flowing directly among all four principal parties—two icons

and two model objects. Lawyers simplify the interactions in direct manipulation user

interface designs just as observers or model-view separations simplify the interactions

in windowed user interface designs.

This pattern is not just about user interfaces. The essential lesson is that whenever

two objects are in one-to-one association with each other, the association becomes a

prospective object in its own right. This object—a lawyer—reifies the association. In

our example, the lawyer reifies the association between an icon and the object the icon

represents. The striking additional twist in our example is that two lawyers can go on

to negotiate with each other.

18.13 Composite

The composite pattern is the workhorse of recursive relationships. Whether you are

nesting graphics or exploding a bill of materials or processing a parse tree, the compos-

ite lets you apply some operation to every object or node in the structure.

Suppose you want to calculate the cost of a complex product like a telescope. The
telescope consists of a basic scope and an eyepiece. In turn, the basic scope consists of

a tube and an objective lens, the lens has glass plus a sophisticated fluorite coating....

We can represent any such product with this recursive design:

Product

@

cost*

Atom Compound

products KH

cost cost

236 DESIGN PATTERNS | CHAPTER 18

The picture shows us that a compound product consists of any number of other prod-

ucts, each of which could be either atomic or another compound product. Product is

an abstract class. It cannot calculate its cost and it has no instances. Atom is usually

also an abstract class; in our example, it has irreducible subclasses like FluoriteCoat-

ing, each of which can calculate its own cost.

Q) What is the Smalltalk code for Compound>>cost?

Solution: The instance variable products is a collection (say, an OrderedCollection),

so cost should simply iterate over each product in the collection, ask it for its cost,

increment a total, and respond with the final total. The entire pattern is thus:

Product

@

cost*

| cost
Atom Compound me

kK> i Itotall
products total := 0.

bad ites products do: [:p | total := total + p cost).
cost cost “total

The composite pattern is simple and elegant. What helps account for its appeal is

how the polymorphic cost method acts in a different but unimpeachably apt way for

each class.

The composite pattern is the basis for more specialized patterns, such as the next one.

18.14 Visitor

The visitor pattern blends features from two of the preceding patterns, namely the
duet and the composite. The composite pattern is attractive as long as the action that
must be performed at each node is a straightforward polymorphic message like cost
above. When the action shows signs of blossoming into a complex method involving
other far-reaching objects, the composite solution loses its appeal.

Problems having to do with language translation or program compilation fall into
this category. As a translator iterates through the nodes of a parse tree, it may require
knowledge about a foreign language. This knowledge probably isn’t encapsulated
within the parse tree. A node object from an English sentence knows its syntactic role
in English, but shouldn't have to know about foreign words and syntax.

18.14 VisITOR 23y/

Here is a sample problem. Bear with me while I remind you about some grammar
lessons from school. The first thing a translation program does is the same thing you
did when you diagrammed sentences. It generates a parse tree.4 The sentence, “The
cat chases a dog,” results in this parse tree:

aSentence

'The cat chases a dog!

|

aNounPhrase aNounPhrase

‘The cat’ ‘a dog’

anArticle aNoun aVerb anArticle aNoun

‘The’ ‘cat' ‘chases' ‘a’ ‘dog’

We want to eventually produce the French sentence, “Le chat poursuit un chien,”

from this tree. Each node in this tree is an object, but they are instances of several

classes. The leaf nodes along the bottom row are called Terminal nodes. Thus there are

three subclasses of Terminal, namely Article, Noun, and Verb. The non-leaf nodes are

NonTerminal nodes. The subclasses of NonTerminal are Sentence and NounPhrase.

The inheritance hierarchy for these classes looks enticingly like a composite:

Node @

Terminal NonTerminal

children S

|
Verb Noun Article Sentence NounPhrase

4 There are many ways to generate a parse tree, the simplest of which is known as recursive descent.
The mechanics of generating a parse tree by this or any other means will not concern us; we are
interested in what you can do after you have the parse tree.

238 DESIGN PATTERNS | CHAPTER 18

But if we try to apply the composite pattern, recursively sending a translate mes-

sage to each node object, we face the drawbacks alluded to above. First, the tree is an

English parse tree, and its nodes shouldn't have to know any French. (If they did, the

design could not be reused for translating English into, say, Chinese.) Second, trans-

lation is more subtle than just translating leaf nodes one by one. Translating the noun
cat to chat affects the translation of the preceding article the—the gender and spelling
of chat imply that the result should be /e (and not /z or /’). Unfortunately by the time
the translate message arrives at cat, the preceding word has already been translated. To

translate correctly, we evidently must involve the NounPhrase class, and if we insist on

using the composite pattern we will have to add complex, French-specific logic to its

translate method.

Q) How can we decouple these French-specific complications from the English-based

node classes?

Solution: Invent a new class that reifies the translate method. That is, instead of writ-

ing a complex, French-specific translate method on each node, define a class called

Translator. An instance of Translator visits each node. Upon each visit, it is asked to

perform some operation, which is why the pattern is called a visitor. It looks like this:

Node Translator eee
dictionary

translateNounPhrase:

translateVerb:
visitBy:* poesstetsesseenececconnecs

L

H Si
\._.»|translateNounPhrase: aNounPhrase

"If French masculine, produce le or |' from

5 the and un from a. If feminine, ..."
Terminal NonTerminal ; < J

KR H

children ho ptranslateVerb: aVerb

visitBy: a a "Look up aVerb in dictionary and translate"

..»{visitBy; aTranslator

children do: [:c | c visitBy: aTranslator]
XX

Verb ™ ot NounPhrase

p|VisitBy: aTranslator

aTranslator translateNounPhrase: self.
visitBy; foo \ visitBy: Bas super visitBy: aTranslator.

-pvisitBy: aTranslator 4

aTranslator translateVerb: self. |

18.15 CONCLUSION 239

The burden of translation has been lifted from the humble node and placed on the

back of the able-bodied visitor. Translator will have an instance variable for storing a
language-specific translation dictionary. The complex translate method has been
replaced by the visitBy: method, which merely dispatches a message back to a transla-
tor object, passing self (the node) as an argument. The translator object can then do

whatever it wants with the node. Any complex logic, such as translating the gender

and article of a noun phrase, resides in the translator instead of the nodes of the parse

tree. Note the similarity to a duet: the message to the translator announces the type of
object being passed (translateNounPhrase: or translateVerb:), just as our duet did

(sumFromInteger:).

This pattern also makes other translator classes feasible (EnglishToFrench,

EnglishToChinese...). The English parse tree doesn’t change at all; to translate to

another target language, the parse tree’s nodes are simply visited by a different translator.
The visitor pattern neatly factors behavior into classes for which the behavior is most

suitable. By not cluttering the parse tree with extraneous information, it is easier to
reuse for other language translations. The visitor pattern is a fitting finale to this chap-

ter because it extends two fundamental patterns—the composite and duet—and illus-

trates again the value of reification.

18.15 Conclusion

Since there are infinitely many ways to group objects or classes, it’s not constructive to
call every grouping a pattern. A grouping deserves to be called a pattern only if doing

so is useful for designers. As for what constitutes “usefulness,” here are some informal

criteria:

¢ The grouping is based on metaphor(s) or other recognizable ideas. This, together

with the next criterion, helps designers remember the pattern.

¢ The grouping has an evocative, memorable name. Among object-oriented design-

ers, pattern names are a lingua franca for quickly exchanging ideas about how to

solve a problem, or understanding how a piece of software has been structured.

¢ The grouping resembles a micro-architecture. In other words it is not an ad hoc

assemblage of objects, but an assemblage that conveys a coherent sense of function,

structure, and aesthetics.

Once you know a few design patterns, you will start to recognize opportunities for

applying them. It’s like a chess player who studies openings or a guitarist who learns a
few chords. Sooner or later they are likely to have an opportunity to use them.

240 DESIGN PATTERNS | CHAPTER 18

Here is a summary of the patterns we've studied:

Applicability Pattern Sample problems

Big object and small objects Smart container History log, address book, ...

Heavy verbs Reification Converters, Search, Command, ...

Interactive applications Command Undo/redo

Redundant code Factory method One class routinely uses another

Flat or relational data Objects from records __Client/server materialization

Too many large objects Proxy and ghost Remote computation

One-way observation Dependency MVC, alerts, events, callbacks

No more than one instance Solitaire (singleton) Brokers

Functions instead of methods Duet Multi-methods

One-to-one associations Lawyer State-based visual feedback

Nested objects Composite Drawings, bill-of-materials

Language translation Visitor Translators, code generators

You will find general treatments of all but smart containers, reification, objects

from records, duets, and lawyers in [Gamma et al. 1995]. For more on smart contain-

ers, see [Coad et al. 1995]; for objects from records, see [Wolf and Liu 1995]; for duets

see [Ingalls 1986]; and for lawyers (object handlers) see [Collins 1995].

18.16 Commentary: history

The idea of a software pattern can be traced as far back as the mid-1970s, when Adele

Goldberg and Alan Kay at Xerox PARC realized that novice programmers couldn't
solve hard problems, no matter how wonderful the programming language. The nov-

ices could comprehend the language well enough, but they couldn't be expected to

know the design techniques that might be expressible in the language. This disconti-

nuity is analogous to a child who can read and write English, but is too young to have
digested the wisdom of great literature. To provide some conceptual building blocks
above the raw language, Goldberg and Kay introduced design templates, which are a
forerunner of today’s design patterns [Kay 1993].

Kent Beck and Ward Cunningham discussed a small, potent set of software pat-
terns in 1987 [Power 1988]. But the interest in patterns really burgeoned at Bruce

18.16 COMMENTARY: HISTORY 241

Anderson's architecture handbook workshop at OOPSLA 91.’ Articles on patterns

began to appear a year later [Coad 1992; Eggenschwiler and Gamma 1992; Johnson
1992]. The landmark catalog appeared at the end of 1994 [Gamma et al. 1995].

Ralph Johnson organized the first conference on the subject of patterns in software in

1994 [Coplien and Schmidt 1995].

Software patterns have become so fashionable that they run the risk of overexpo-

sure. Just as almost anything may be construed as a metaphor (page 146), almost any-
thing may be construed as a pattern. Thus, many “patterns” are too narrow and arcane

to be of much use to the general computing public, and many articles that would be

interesting in their own right have been unnaturally cast into a pattern format. Never-

theless, plenty of promising, unexplored territory remains for patterns in software.
Before programmers got excited about software patterns, the architect Christopher

Alexander and his associates published a series of books, starting with [Alexander et al.

1977; Alexander 1979], on the use of patterns to build living spaces for people. Alex-
ander suggested that his catalog of 253 patterns could be a basis for everything from

laying out a community down to deciding the décor for a room. His patterns, like

good software patterns, are metaphoric (“City country fingers”), memorable (“Light
on two sides of every room”), and architectural (“Perimeter beams”). His work

inspired the early software-pattern investigators.
Alexander wanted to go far beyond merely applying proven patterns to the act of

building. He wanted the resulting living space to have what he called, “the quality

without a name.” Patterns were just a means to this end. Unfortunately, this zen-like

quality admits no definition. By and large, people agree on some few dwellings and

communities that have the quality, and they agree that most dwellings and communi-
ties don't. It is the same with software. Programmers can generally agree that certain

software is masterfully designed, but they encounter such software rarely.
In the years following publication of Alexander's books on patterns, he realized

that patterns alone did not ensure that the results would have “the quality without a

name.” (He knew it as early as 1977, but the depth of the insufficiency became appar-

ent only after disappointing experiments.) Revisiting the chess analogy: knowing and

applying chess patterns improves one’s game, but rarely does a beautiful chess game

happen. The key to attaining this quality in software (or any endeavor) has not been
discovered. For an appreciation of the depth of the problem as it pertains to rhetoric

and philosophy, read [Pirsig 1974], and for a discussion of how Alexander hopes to
solve it for architecture and what his ideas mean to software, see the series of articles

[Gabriel 1993-1994].

> OOPSLA is the annual conference on “Object-Oriented Programming, Systems, Languages, and

Applications.”

CHAPTER 19

Frameworks (one hearty example)

Object-oriented frameworks are as fashionable as patterns, and developers everywhere

try to build them. Like patterns, so many things are now called frameworks that the
meaning has gotten blurry, making it tough to appreciate their importance.

A framework is a general skeleton for a software application. More than one appli-

cation may be built around the same framework, but they will all be shaped by the

basic structures and mechanics of the framework, as though frogs of different appear-

ances and appetites could be shaped from the same frog skeleton. To build frogs you

use a frog framework; to build snakes you use a snake framework.
In technical terms, a framework is a body of code that is reusable across different

projects. An example I’ve already talked about is the original MVC framework for user

interfaces. MVC consists of the abstract classes Model, View, and Controller and the

interactions among them. The most famous of these interactions are the broadcasts

that a model issues. Practically every application developer in Smalltalk-80 reuses
MVC by inheriting from one or more of these three abstract classes.

On the other hand, not every reusable library of classes qualifies as a framework.
For instance, no one calls a library of container classes a framework, nor does anyone

call a library of user interface widgets a framework. What's the difference? For one
thing, a framework like MVC imposes a structure on an application, whereas a library

of containers or widgets doesn't.

Another difference is what Erich Gamma calls the Hollywood Principle:' “Don't
call us; we'll call you.” Programmers are accustomed to writing calls to the functions
in a library. (We say programmers call an API, for application programming interface.)

' Erich says that programmers at Xerox PARC coined this usage.

242

19.1 PROBLEMS 243

The Hollywood Principle inverts this relationship: the programmer writes code that
the framework calls. The programmer will have to know in advance what the frame-

work is going to call—his code must conform to the framework’s expectations. These

being object-oriented expectations, the framework will include some abstract classes

for which he builds subclasses and overrides subclassResponsibility (pure virtual)

methods. Using a framework always involves subclassing from abstract classes; using

an ordinary library of container or widget classes usually does not.
In other words, a framework specifies missing elements. When you supply these

elements, the framework makes them operate together as a working application. By

supplying different elements, you can create a different application. A framework pro-
vides all the machinery for an application except the application itself.

The best way to understand the idea of a framework is to study an example. We are
going to tour some highlights of a framework that provides the machinery for devel-

oping client/server applications. This framework simplifies construction of Smalltalk

applications that use non-object data from computers across the network. A frame-

work like this one accounts for a substantial part of the overall effort in developing a

client/server application; the cost and expertise needed to develop this support from

scratch exceeds the cost of developing the application’s model and view objects.

19.1 Problems

Any framework for supporting Smalltalk at the client and non-object data at the server

must address some fundamental problems. You can think of these problems as the
basic use cases of client/server computing.

¢ Materialization: Transforming traditional, non-object data, usually in the form of

records in a file or rows in a relational database, to and from objects that an object-

oriented language can process.

¢ Identity management: Ensuring that at most one version of an object resides at the

client workstation. In other words, materialization should not produce a second

copy of an object if the object has materialized once before.

¢ Searching: Looking for one or more objects that match some criteria.

° Updating: Changing the state of objects at the client workstation and cascading

those changes back to the appropriate server. (The problem of creating a new object

and saving it is similar.)

244 FRAMEWORKS (ONE HEARTY EXAMPLE) | CHAPTER 19

This drawing summarizes the problems:

search

materialize

aes
=

update ,
ee server data

identity management

Imagine now that a programmer has been handed a client/server framework, and

is developing an application for, say, bankers who watch over loans. We want to under-
stand what he must do about each of the problems above. To understand what follows,

you will need to know just a few facts about relational databases:

¢ Data are stored in tables. The columns or fields of a table have names, such as

“LoanNumber,” “OutstandingAmount,” and “Collateral.” And each row in a table

contains related data, such as a specific loan’s number, its outstanding amount, and

its origination date.

¢ The standard language for manipulating relational data is SQL, the Structured Query

Language. All relational database systems support dynamic SQL; a dynamic SQL

statement must be reinterpreted by the database every time it is issued. Some database

systems also support a form of pre-compiled SQL, which, once compiled, is bound

to the database and can therefore execute faster than dynamic SQL. An example of

this kind of SQL is IBM!’s static SQL for its DB2 family of database systems. (You

wont need to know the details of the SQL language to understand this chapter.)

19.2 Materialization

The heart of any client/server application is materialization—the act of producing

objects at the client workstation from some form of flat, non—object-oriented data at
the server.

What the framework does. The framework uses the objects from records pattern
(page 220) to convert flat data (records) to and from objects. An abstract class named

19.2. MATERIALIZATION 245

BusinessObject represents the objects produced by the pattern, and another abstract
class named Broker encapsulates the algorithms for sending and receiving records to
and from the server.

The design of a broker depends on the overall client/server architecture. One bro-

ker can issue dynamic or static SQL calls to the server; another can use a communica-
tion protocol like APPC or TCP/IP to issue calls to procedures or programs that

execute at the server to process the data. In other words, some brokers are SQL brokers

and others are transaction brokers. Because the private behavior of these brokers differs,

the framework has different abstract classes for them. (See the commentary on
page 254 for more on broker varieties.)

Let’s assume that the application designer decides to use the class of brokers that

supports static SQL. The name for this abstract class is SQLBroker. This class collab-

orates with another abstract class called DBPackage, which houses the package of

static SQL statements that gets bound to the database.

The framework must know that a specific combination of broker, package, and

class of business objects works together—it won't do for a LoanBroker to try to mate-

rialize a Customer object, for example—so it declares subclassResponsibility methods

named Broker>>objectClass and Broker>>package that link these classes.

What the programmer does. He builds concrete subclasses of the abstract classes, say
LoanBroker, LoanPackage, and Loan, and links the classes with these methods in

LoanBroker:

objectClass

"Answer the class of business objects I broker"

“Loan

and:

package

"Answer the the package of SQL statements I need"

“LoanPackage instance

The framework then ensures that these classes will work together correctly to materi-

alize loan objects.

Q) Explain the function of the instance message in the method above.

Solution: There should be only one instance of LoanPackage at the workstation. Pack-
ages are therefore solitaires (page 230) and instance is the (conventional) name of the

class method that returns the unique instance of LoanPackage.

246 FRAMEWORKS (ONE HEARTY EXAMPLE) | CHAPTER 19

Here are highlights of the classes involved in materialization:

BusinessObject SQLBroker DB2Package

@ 5
objectClass” $instance

package”

* = subclassResponsibility

L\ Las
Loan LoanBroker LoanPackage

objectClass "Define lots of SQL

package for loans"

You might recognize the methods objectClass and package as examples of the factory

method pattern (page 219). The factory method is the bread-and-butter pattern of

framework building.

19.3. Managing object identity

A built-in peril of client/server systems is the materialization of two separate objects

that represent the same business object. This circumstance exposes the user to the risk

of independently changing both copies, which would be a serious breach of object

identity. (Remember the discussion of object identity, beginning on page 73.)
How could such a thing happen? Suppose a loan object materializes as a result of

searching for all loans with more than $50,000 outstanding. Imagine that some time

later a second search for all loans to some tycoon materializes the same loan. Unless the
application was designed carefully, two loan objects at the client workstation now rep-

resent the same loan. To complete the misadventure, suppose the banker updates the

wording of the collateral (“...log cabin, running water, screened-in porch...”) in one

and extends the payment terms in the other. Now neither loan object has the data the
banker intended, and no matter which loan(s) are committed back to the server, con-
fusion results.

What the framework does. A Broker contains a dictionary of all the objects it has mate-
rialized, Each entry in the dictionary has for its key a unique descriptor for the object
and for its value the object itself. Thus if 100,000 loans are stored in the server

19.3. MANAGING OBJECT IDENTITY 247

database, and the LoanBroker has materialized 29 of them, 29 entries will be in the

LoanBroker’s dictionary. Each of them consists of a key—probably the loan’s loan

number—and a value that is the loan object itself.

If the banker requests another loan object, the framework checks whether the

loan’s loan number is one of the 29 keys already in the dictionary. If so, it must not
materialize another copy, for that would produce the unpleasant scenario above.

To make all this work, the broker evidently needs to know what to use as a key for

its business objects. Therefore the BusinessObject class has a subclassResponsibility
method called identityKey. The broker uses this method to manage the entries in its

dictionary, and in particular to determine whether a business object is already in the
dictionary.

What the programmer does. He writes a method Loan>>identityKey which simply

returns the loan’s loan number. The framework does the rest.

What else the framework does. The other side of the coin is cleaning up: when should

the framework remove entries from the broker’s dictionary of materialized objects? The

framework can’t afford to ignore removal because after prolonged use, a broker’s dic-

tionary of objects may grow so large as to overrun the workstation’s memory. The chal-
lenge is for the framework to recognize when a business object is no longer needed by

the application; that is, when no other business objects or views in the application
refer to the object. At that moment the object can safely be removed from its broker’s
dictionary.

This challenge sounds suspiciously like a garbage collection problem (page 187).

But not guite, for we have an additional, circular twist: the Smalltalk garbage collector

wont recognize the object as garbage until the broker’s dictionary releases its reference
to it; on the other hand, the dictionary dares not release the reference until it knows
that the object is garbage.

Fortunately, the latest major Smalltalk releases extend memory management with

a feature called weak references. A weak reference to an object is a reference that doesn’t

matter to the garbage collector. Ordinary references are strong references; these are the

references that the garbage collector uses to know that an object is still needed.

The idea is to design brokers to use weak references instead of strong ones so that

the brokers don’t stand in the way of the garbage collector. For this a broker must use

a special dictionary known as a WeakDictionary—this and other collection classes

whose names are prefixed by “weak” are the only kinds of objects that can refer weakly
to other objects. The garbage collector doesn’t care if a weak dictionary has a reference

to an object; after all, it’s not a strong reference but a weak one.

In the example above, suppose the weak dictionary has its 29 entries, each consist-

ing of a loan number and the corresponding loan object, when the user decides to

248 FRAMEWORKS (ONE HEARTY EXAMPLE) | CHAPTER 19

close all views that are open on one of the loans. There are now no strong references
to this loan object, but the one weak reference from the weak dictionary remains.

Weak references don’t stop the garbage collector; it considers the object to be garbage,

reclaims its memory, and finally removes its reference from the weak dictionary. We
have achieved the desired effect: by using the WeakDictionary instead of an ordinary
Dictionary, the broker automatically releases an object once no application objects
refer to it.”

What else the programmer does. Nothing more than the identityKey method he has
already written, since all the logic of weak references in the LoanBroker will be inher-
ited from Broker.

Here are the highlights of identity management:

BusinessObject SQLBroker

"a weak dictionary"
5 oe

identityKey* "Manage identity of

business objects"

y

[ae (aN

Loan LoanBroker

identityKey

19.4 Searching (filtering)

Searching for things is a basic human activity. Sometimes we know exactly what we are
looking for and we just want to grab it (the loan with loan number 334455), and
sometimes we want to look at a collection of things (all loans with more than $50,000
outstanding).

* This problem has solutions other than weak references, but none are as satisfying. They all involve
keeping track of references to business objects, which amounts to replicating the work of a garbage
collector. A C++ version of this framework, lacking garbage collection, hence also weak references,
would have no choice but to tackle this sizable and delicate job.

19.4 SEARCHING (FILTERING) 249

What the framework does. Let’s begin with the first case, where the user or application

knows a key that identifies the desired object. The Broker provides a concrete method
with a name like objectWithKey:, which takes the key as an argument and returns the

business object having that key.

What the programmer does. He does not override objectWithKey: in his broker sub-

classes because the code can be written once with complete generality in Broker. On
the other hand, he will find many occasions for invoking this method.

For example, suppose every loan object contains a customer number. That is, a

loan object contains the key identifying the customer that took out the loan. While

examining a loan, the user may want to also examine the customer. So the user clicks

some button, and the programmer’s code responds to the click by sending the

objectWithKey: message, carrying the customer's key as an argument to the Custom-

erBroker, which responds with the customer.

Or the programmer may have designed proxies for customer objects (page 224 ff.),

and imbued the proxies with getters that supply only enough information to display
them in a list widget. By and by the user wants to see the full customer object behind

one of them; this proxy then sends the objectWithKey: message to the Customer-
Broker. Since the proxy knows the customer number for the customer it stands for, the

message carries this key as its argument.

Here are the highlights of these two scenarios for grabbing full customer objects:

Loan SQLBroker

customerNumber

jcustomer | ;
customer $instance

Regs ee objectWithKey:

(CustomerBroker instance

objectWithKey: customerNumber)

CustomerProxy eS

customerNumber

\grabBody) CustomerBroker
grabBody

(CustomerBroker instance

objectWithKey: customerNumber)

The moral of this story is that frameworks not only demand that the programmer
override subclassResponsibility methods, but they also make available concrete meth-
ods that the programmer will want to invoke. Notice that the programmer doesn't

250 FRAMEWORKS (ONE HEARTY EXAMPLE) | CHAPTER 19

need to examine any tricky code such a method may contain; he trusts that the frame-

work got it right. Another way to say this, using some jargon, is that frameworks are

characterized largely by white-box reuse, but they also provide some black-box reuse.

(See page 253 for more on these terms.)

What else the framework does. The other kind of search sometimes goes by the name filter.
the framework accepts a description from the user and filters the server for all the objects

that match the description. This is an interesting problem for the framework designer
because it is an opportunity to introduce two classes of objects that are not initially obvi-

ous. (Remember that such discoveries are known as reification. See page 216.) The first

is an abstract class named Search; this class encapsulates the descriptions of the objects
being sought. The second is BusinessObjectList, which is what a search returns.

Search objects solve a basic usability problem: after seeing the results of the search,

the user often wants to adjust the description of the objects in some small way and
search again. Because the framework retains the Search object, it is an easy matter for
the user to access the original description, modify it, and reissue the search.

A BusinessObjectList is as good as an OrderedCollection for populating list widgets

because it is designed to support the main methods of OrderedCollection—as far as list

widgets can tell, a BusinessObjectList and an OrderedCollection are polymorphic. But

BusinessObjectList also supports behavior that solves a client/server performance prob-
lem: in practice, a search may return so many objects that either the time to move all the
data from server to client is unacceptably long or the objects consume too much of the
client's memory. The search object therefore asks the server to limit the number of
matching objects it returns, say to the first 50 business objects, and then creates a Busi-

nessObjectList to hold these objects. If the user wants to see the next 50, the Business-

ObjectList scrolls, which really means that it asks the search object to retrieve the next 50
matching business objects from the server. Thus a BusinessObjectList holds a limited
number of the objects that match the search description, but it is smart enough to replen-

ish itself with the others as needed. Because it is not the whole list but can access the

whole list, we can call it a virtual list that must mega-scroll to reach all its business objects.

What the programmer does. He builds concrete subclasses of Search such as Loan-

Search, and customizes LoanSearch to handle the search criteria that matter for loans.

19.5 UPDATING 251

The highlights of filtering or searching are thus:

Search SQLBroker

execute searchWith: aSearch

BusinessObjectList

$<

megascroll

LoanSearch LoanBroker

“Criteria like amount,

origination date, ..."

Note that a search object must collaborate with a broker to actually retrieve objects
from the server. Also note that a BusinessObjectList must know the search object that

produced its contents so that it can re-execute this search when it mega-scrolls.

19.5 Updating

An application that allows the user to update data at the server must support two basic
scenarios:

1 The user makes changes and commits them,

2 The user makes changes, thinks better of them, and wants to discard them.

What the framework does. Because the user wants to be able to revert a business object to
its original state, the framework must retain the object’s original data somewhere. The

objects from records pattern (page 220) that we are using for materialization provides stor-

age for both the original data and the user’s changes. The pattern accommodates a Byte-

Array of data plus a cache of converted sub-objects. (The drawing on page 223 shows
one implementation, with both the byte array and cache stored in the record object.)

The ByteArray houses the original data and the cache houses current objects,

whether they are objects cached by conversions from the ByteArray or modifications to
these objects made by the user. Only when the user commits the changes in the cache
does the framework convert the cached objects to raw data in the ByteArray and send
the data back to the server. If the user instead discards the changes, the framework simply

empties the cache, which effectively presents the original ByteArray as the current data.

257: FRAMEWORKS (ONE HEARTY EXAMPLE) | CHAPTER 19

What the programmer does. This is another example of black-box reuse. Assuming that

the user can click buttons for committing or reverting, the programmer writes code that

responds to click events by invoking Loan>>update or Loan>>revert, respectively.

These methods are actually inherited from BusinessObject, and so the framework does

the rest.

Here are the highlights of the design for updating and reverting:

ee clickUpdate BusinessObject

model update
update

revert

L ae » clickRevert

model revert _

LoanView Loan

model

clickUpdate

clickRevert

In keeping with the model-view or observer pattern (page 228), the view’s loan is rep-

resented here by an instance variable named model.

19.6 Summary

The programmer who uses a framework is in something of a straitjacket. He loses

some of programming’s traditional freedom of choice. Because of the Hollywood Prin-

ciple, his first thought is not, “I'll begin by laying out some logic,” but, “Where am I
compelled to begin?”? Since we are talking about object-oriented programming, he

answers this question by looking for the framework’s abstract classes and their sub-

classResponsibility methods.

> The Hollywood Principle illustrates a programming trend: application programmers are writing
more and more code that conforms to expectations or guidelines from elsewhere. Another example
of this trend. is the handlers you wrote in Chapter 12 to respond to events and callbacks. Yet another
is the hook methods that are object-oriented counterparts of user exits in early mainframe systems
programs (see the aside on page 66). Since you are not obliged to write handlers or hook methods,
these represent a variation on the Hollywood Principle in which you don't have to be there when the
call comes. On the other hand, subclassResponsibility methods are obligatory—you had better be
there when the call comes or you will be in trouble.

19.6 SUMMARY 253

Object-oriented frameworks have other characteristics:

* A framework provides white-box reuse, as well as the more familiar black-box reuse

you get from calling an API or using a library of container classes. A framework user
must understand the abstract classes and what is expected of their subclassRespon-
sibility methods, whereas a container user just calls encapsulated add: and remove:
methods, White-box reuse follows from the Hollywood Principle: the framework
will have expectations when it calls your code, and it is your job to look into the
framework far enough to understand what those expectations are. They may be as
straightforward as making sure you override a method named foobar, but whatever
they are, you must understand them.

* Learning to use a framework takes effort. You can’t do white-box reuse until you
learn the abstract classes and their subclassResponsibility methods. Because the
abstract classes interact with one another, you generally have to learn more than one
class before you begin writing your application. Black-box reuse, on the other hand,
usually occurs one class at a time. You are likely to use a Set today and a SortedCol-
lection tomorrow; you don't have to understand interactions between them.

* Developing a framework takes time. You can't know a framework is reusable until

youve used it on more than one project—that’s the definition of reusability—so it

takes at least twice as long to build a framework as to deliver a project. A framework

gradually improves as it is refined on successive projects. The client/server frame-

work outlined in this chapter has evolved over several years from really crude begin-
nings, and it continues to improve, with no end in sight.

* Developing a framework is hard. If it is going to simplify the application program-
mer’s job, it must do al] the things he doesn’t want to do. For a client/server frame-

work, these things can include conversions between databases and objects,

communications and transaction management, event processing and window man-

agement, usability, and even performance optimizations. Technical difficulties that

are not specifically part of the business problem are better left to a reusable frame-

work than agonized over by each application programmer.

For background on the conceptual and practical considerations in client/server
computing, see [Orfali et al. 1994]. The principles governing the client/server frame-
work touched upon in this chapter are the subject of [Wolf and Liu 1995]. The actual
framework is known as MMF W (materialization framework). However, the ideas, names

of classes and methods, and algorithms here are simplified for clarity and do not coin-
cide Siterally with their counterparts in MFW, nor does this chapter cover the full

scope of the framework.

254 FRAMEWORKS (ONE HEARTY EXAMPLE) | CHAPTER 19

Object-oriented frameworks can deal with any aspect of computing: Common-

Point consists of myriad related C++ frameworks for dealing with problems ranging

from graphics to document-editing to National Language Support to I/O device driv-

ers [Lewis et al. 1995]. Accounts is a Smalltalk framework for building business appli-

cations that maintain general ledger accounts, inventories, investment accounts, and

the like [Johnson 1995]. MacApp is a framework for producing applications having

the Macintosh look and feel using either C++ or Object Pascal [Schmucker 1986;

[Lewis et al. 1995]. And MVC is, as historians say about certain landmarks, the oldest

continuously operating framework in the world.

19.7 Commentary: varieties of brokers

The number of kinds of brokers in the computing world is enormous. They are at the

heart of every distributed computing architecture.

Brokers that operate with server programs and exchange standard information

units—records, CORBA objects, Network OLE objects...—are known as transaction

brokers. Transaction brokers are compatible with relational databases: if the server data

are relational, the server programs convert the data to and from standard information

units. Transaction brokers partition logic between computing nodes; distributed
systems based on them therefore decouple clients from servers, which enhances a sys-

tem’s long-term flexibility.
From the point of view of a client application, a broker object functions much like

an object database: it retrieves objects, updates them, manages concurrent access to

them, and so on. If you think of brokers and object databases interchangeably, then it

is not hard to imagine object databases as an alternative approach to distributed

objects. Thus you should expect object databases to compete with transaction brokers

for dominance in client/server and distributed object computing.

Despite the benefits of transaction brokers, SQL brokers are more popular. They

can produce working applications quickly because they don’t require additional pro-

grams to be written in a foreign language at the server. On the other hand, they require

a relational database at the server, and they couple the client tightly to the structure of
the relational tables—the antithesis of the spirit of encapsulation. In the long run they
will remain useful for proofs-of-concept and prototypes, but transaction brokers will
displace them for extensible, high-performance applications.

19.8 COMMENTARY: BUYING OUTDOES INHERITING (SOMETIMES) 255

19.8 Commentary: buying outdoes inheriting (sometimes)

Frameworks prove that there is an essential niche in the world for inheritance and

white-box reuse. Moreover, we are all conditioned to savor the appeal of inheritance—

creating a specialized object by inheriting from some class that provides function close

to what we need. Inheritance is one of the most touted techniques in object-oriented

programming and is so easy to do that we are liable to overdo it. Over time, however,

good designs inherit less and buy more (Chapter 9). That is, we gradually realize ways

to reduce white-box reuse in favor of black-box reuse.

Here is an example. A loan object’s data are different from a customer object’s, so

the fields in their underlying records, as well as their sizes, are decidedly unlike. It is
therefore tempting to create two subclasses of class Record, namely LoanRecord and

CustomerRecord, each of which supports appropriate field-by-field accessors, such as

atCollateral and atCollateralPut: for a LoanRecord, and atName and atNamePut: for

a CustomerRecord.

This straightforward design works, but is unattractive. First, it proliferates classes,

necessitating a separate record class for each class of business object. Second, the inher-

itance is not fundamentally behavioral; rather it is based on inert data attributes like

the loan’s collateral description and the customer's name. Interesting objects ought to
be characterized more by behavior than data. In fact it seems here that each subclass is
accompanied by an entire family of methods that have nothing in common with the

rest. No methods are reused, shared, or overridden, and none are candidates for sub-

classResponsibility methods. The final and perhaps most alarming indication is that

these record classes form an inheritance hierarchy with no polymorphism in sight.
These indications encourage us to consider an alternative, non—inheritance-based

solution. We consider then a single concrete Record class and design it to be config-

urable so that its instances can serve either a loan or a customer. Although the records

for loans and customers have disparate sizes and contents, we design them to be

behaviorally identical. Specifically, their essential public selectors are at: and at:put:,

where the first keyword parameter is the name of a field, such as #Collateral or
#Name. In this way we rid the design of an entire hierarchy of record subclasses, trim-

ming countless methods as well as classes from the application. This inheritance-free

design agrees with the objects from records pattern (see the figure on page 223).

256 FRAMEWORKS (ONE HEARTY EXAMPLE) | CHAPTER 19

Here are two other examples of this progression away from inheritance-based
designs:

* Pluggable views let programmers configure widgets instead of having to create sub-
classes of them (page 140).

¢ Early object-oriented exception-handling mechanisms laid out class hierarchies of
exceptions, even though the essential behavior of all exception objects is the same.
Hence recent exception schemes (including IBM Smalltalk’s) use instance hierar-

chies of exceptions. This scheme nips in the bud a potential flurry of class building.

Lest these arguments induce you to avoid inheritance at all costs, remember that

inheritance designs remain desirable as long as you find polymorphism in them. Thus
the shortcomings outlined above do not apply to the key abstract classes we visited in
this chapter, such as BusinessObject and Broker. You will find lots of overridden
methods and polymorphic behavior (methods Broker>>objectClass and Business-
Object>>identityKey, for example) in the subclasses of these abstract classes, which
should reassure you that this inheritance-based design is entirely appropriate and
worthwhile.

CHAPTER 20

Metaclasses

We have now learned about polymorphism, patterns, frameworks, and the rest of the
customary object-oriented topics. This brief chapter offers a respite from those main-
stream topics and a final excursion for readers who are curious about just how far
Smalltalk goes to celebrate its consistent view of objects. Along the way it answers a
simple but perplexing question: “Where is method new?” It is possible to program
competently in Smalltalk for years without understanding the answer, but the answer
is an opportunity to discover the abstruse world of metaclasses.

20.1 Facts about metaclasses

We begin with a challenge: since a Smalltalk class is an object too, it must be an

instance of something. What? Each class is an instance of its own metaclass. If you
think of classes as factories, then you can think of metaclasses as the factories that produce
ordinary factories like String, Date, Stream, and Whale.

Metaclasses have two unusual characteristics:

1 Every class is the only instance of its metaclass. In other words, each metaclass has
exactly one instance, no more and no less, and that instance is an ordinary class.

2 Metaclasses have no names. This explains why you won't see them in any brows-

ers. How then do you see them in Smalltalk? The same way you see the class of
any object in Smalltalk—by sending the object the message class and displaying
or inspecting the result. Thus, just as displaying 2.7182 class produces Float, dis-

playing Whale class produces the metaclass of Whale. But how would Smalltalk

display this metaclass? After all, I have said that metaclasses have no names. The

answer is barely satisfying: Smalltalk only displays Whale class. That is, Smalltalk

257/

258 METACLASSES | CHAPTER 20

only parrots the original message. Disappointing or not, this is how Smalltalk in-

forms us that the result of a message is a metaclass.

QO) Predict the result of displaying each of the following expressions. If you are uncer-

tain, try the experiments.

‘melatonin' class

String class

Penguin new class class

Bird class

Bird class allInstances size

Solution: Your answers should be String, String class, Penguin class, Bird class, and 1.

Having come this far, you will naturally wonder, “Isn’t a metaclass an object too?

If so, musn’t it also be an instance of something?” The answer is indeed yes, a metaclass

is an object, and the something it is an instance of is a class whose name is Metaclass.

In effect, Metaclass is the factory that produces al/ the metaclasses we have been talk-

ing about. Metaclass then must be quite large.

L) How many instances of Metaclass are there?

Solution: The instances of Metaclass are the metaclass objects, and we know there is
precisely one for each ordinary class. Therefore there are as many instances of Meta-
class as there are ordinary classes in Smalltalk. In the version of VisualAge I am now
using, that amounts to about 2100 instances. You can count the metaclasses in your
own system by displaying Metaclass allInstances size.

Notice that Metaclass has a name. It is an ordinary class! Its instances just happen

to be these peculiar objects known as metaclasses.

20.2. Inheritance

UO) Display the result of each of these expressions.

Integer superclass

Penguin superclass

Penguin new class superclass

Penguin class superclass

Solution and discussion: The first two responses are dull: Number and Bird. But the
result of the last two messages is important news about the inheritance of metaclasses.
The responses, Bird and Bird class, tell us that the superclass of Penguin's metaclass is
Bird’s metaclass. Invent and experiment with other examples involving classes and the

20.3. METHOD NEW 259

superclass message. Your experiments should confirm that whenever A is a subclass of

B, A’s metaclass is also a subclass of B’s metaclass. More eloquently, inheritance of meta-
classes parallels inheritance of classes.' We mustn't forget this discovery, so let’s give it a

name, say, Rule P (for Parallel).

20.3 Method new

Since a class is an object, it has ordinary methods, just as other objects do. Ordinary

methods would be called instance methods, but for classes we have been using a spe-

cial name for their methods, namely class methods. Thus, “class method” is merely a

convenient label for referring to an instance method of the class’s metaclass. It is easier

to talk about “a class method for Whale” than “an instance method for Whale’s meta-

class, Whale class.”

Q) Of all the class methods you will ever need, new is the most important. Suppose
you write a class method new for Bird, and you dont write one for Penguin. What

method do you expect the message Penguin new to execute? Why?

Solution: From our past experience, we expect the new method for class Bird to exe-

cute. That’s because we believe that class methods are inherited. But now we have a

reason for this inheritance: a class method is really a metaclass instance method, which

like any instance method can be inherited from its superclass. But the superclass of

Penguin's metaclass is Bird’s metaclass (Rule P), so if Penguin’s metaclass has no new

method, it inherits the new method from Bird’s metaclass.

This logic is pretty satisfying. Class methods are inherited because of Rule P. But
here’s the shocker. Suppose you don’t write any new methods in the Animal hierarchy
at all. What method do you expect the message Penguin new to execute? Everyone's

first guess is a plausible one—the new class method in Object. But there is no such

method! Class Object has no new method selector, either instance or class.

We will have to push a little further to find the default new method in Smalltalk.

' Or, the superclass of the metaclass is the metaclass of the superclass.

* Similarly, since a class is an object, it has a right to its own instance variables. These instance vari-
ables have a special name too: they are known as class instance variables. Thus, “class instance vari-
able” is the convenient label we use to refer to an ordinary instance variable of the metaclass. We
needed class instance variables for the solitaire pattern on page 230.

260 METACLASSES | CHAPTER 20

20.4 The full picture

We are going to assemble a schematic diagram that shows the conceptual relationships
between instances and their classes and classes and their superclasses. You have seen

the convention before, on page 17, but here it is again in a nutshell:

2 instances of a class a subclass and superclass

The relationships between ordinary instances, their classes, and superclasses look

like this:

The parallel relationships for classes as objects, their classes, and superclasses look

like this:

Animal class

Bird class

Penguin class

|

class objects are shaded

Each metaclass has exactly one instance; these instances are classes and are shaded
to distinguish them from ordinary instances. From bottom to top they are Penguin,
Bird, Animal, and Object. Notice the appearance of a class named Class that conve-
niently contains all the class objects. The picture shows that every class is a Class,
which is a reassuring but unremarkable fact.°

3 You encountered the class named Class in another context, while solving the exercise on object
memory layouts on page 195.

20.4 THE FULL PICTURE 261

Finally, the metaclasses are objects in their own right, and they all reside in a class
named Metaclass. You can think of the metaclass objects depicted from bottom to top

as Penguin class, Bird class, Animal class, and Object class.

Metaclass

O

O

O

O

O metaclass objects are striped

And here is the result of assembling all these schematics into a whole:

Behavior

P Penguin enguin class

obese) | |

O an ordinary instance

a class as an instance (the only instance of its metaclass)

(S) a metaclass as an instance

One of the side effects of this diagramming technique is that if all 2100 or so classes

in VisualAge were represented in one diagram, each class would appear twice, once as

a rectangle to indicate its subclass/superclass relationships and once as a shaded circle

to indicate what it is an instance of. Similarly, every metaclass would appear twice,
once as a rectangle and once as a striped circle.

262 METACLASSES | CHAPTER 20

Notice that one additional class has appeared—Behavior. Behavior is a superclass

of both Class and Metaclass.‘ As its name and position in the hierarchy suggest, it

gathers all the behavior that we would expect for class-like objects.

Behavior is in fact the answer to the question that began this chapter: the default

method new is an instance method in Behavior. A glance at the diagram shows that

this is an excellent location for new. For if none of the animal metaclasses implements

a new method, inheritance up the metaclass hierarchy in the center of the diagram
shows that the lookup for the message Penguin new will eventually arrive at Behavior,

where the default new will execute.
In addition to new, what other instance methods could plausibly reside in Behav-

ior? Well, any method that makes sense for all the class-like objects. By browsing class
Behavior you will find alluring methods like allSubclasses, allSuperclasses, instVar-
Names, methodDictionary, as well as ones youve already used like new and all-

Instances.

20.5 Recapitulation

Smalltalk is pure. “Everything is an object,” and every object is an instance of some
class. Even an object like a class or metaclass is an instance of some class. The diagram

above records these instance-of relationships as circles within rectangles. Whether a

circle represents an ordinary instance, a class as an instance, or a metaclass as an

instance, it is still an instance of some class, represented by the rectangle enclosing it.

The diagram also records subclass relationships as nested rectangles. Any class-like

object, whether a class or a metaclass, also occurs in the diagram as a rectangle. And its

superclass occurs as the immediately surrounding rectangle.

The left and middle columns in the diagram illustrate Rule P, that metaclass inherit-

ance parallels class inheritance—that the superclass of the metaclass is the metaclass of

the superclass. A class message like Penguin new is really an instance message of the meta-

class. In the absence of any overriding implementations of new, it executes the default
instance method new found in class Behavior at the top of the metaclass hierarchy.

‘ In IBM Smalltalk and VisualWorks have yet another class—ClassDescription, which is a subclass
of Behavior and a superclass of both Class and Metaclass. Its purpose is administrative, and so it
would add nothing to the present discussion.

20.6 EXERCISES 263

20.6 Exercises

It is a simple matter to verify any relationship in the diagram by experimenting with
an appropriate message. For example, the diagram asserts that Penguin’s metaclass is a
subclass of Bird’s metaclass. To verify an inheritance relationship like this, use the
superclass message. Thus, you would disp/ay Penguin class superclass and expect a
result of Bird class.

Similarly, to verify an instance relationship, such as the diagram’s assertion that
Penguin's metaclass is an instance of class Metaclass, use the class message. Thus, you
would display Penguin class class and expect a result of Metaclass.

Q) Conversely, the diagram can help predict the result of the messages class or super-
class. Use the diagram to predict the result of displaying each of the following mes-
sages. Of course you can also verify your answers by running the experiments:

Bird new class

Bird new class superclass

Bird class

Bird class superclass

Animal class superclass

Object class superclass

Bird class class

Animal class class

Object class class

Behavior class

Q) The diagram is incomplete. A large Smalltalk image contains hundreds of thou-

sands of live objects instead of the 19 shown here. Where in the diagram would

each of these objects, represented as plain, shaded, or striped circles, be?

¢ A whale instance

¢ A string instance

¢ Whale

e String

¢ Whale’s metaclass

¢ String’s metaclass

¢ Metaclass

¢ Metaclass’s metaclass

You can verify your answers by experimenting with the objects above, starting by
sending each of them the message class.

CHAPTER 21

Why developing software is

still hard

The whole job of software development remains about as hard as ever. Every aspect is

hard: making sense of requirements, designing good classes, building coherent user

interfaces, writing extensible code. Objects add an exciting flavor to the enterprise, but

object-oriented development efforts often don’t achieve their goals, and many end up

as downright failures. What goes wrong?

21.1 Misconceptions

Object-oriented software development is not the bed of roses that many expect. This
section challenges some of the popular misconceptions, and should adjust your expec-
tations to a realistic level.

Object-oriented development is easier to learn and do

Reality: The Smalltalk language is easy to learn because it is so small. But the language

by itself doesn’t do much. It is powerful only in conjunction with the hundreds of
foundation classes and thousands of supporting classes that are part of today’s Small-
talk products. You will have to learn many of these classes before you can write clean
Smalltalk code. This takes time and practice.

It also takes time to become proficient in applying the ideas in this book—design-
ing with containers, polymorphism, patterns, and so on. Everyone has the innate abil-
ity to understand and talk about objects, but not everyone will work long and hard

264

21.1 MISCONCEPTIONS 265

enough with them to become a good designer. Look at it this way: object-oriented
development increases our toolkit of techniques, which gives us more ways than ever

to make a mess. Without the maturity that comes with experience, it is harder than

ever to pinpoint desirable solutions in this enlarged universe of possibilities.

Inexperienced programmers are better with objects

A popular misconception about object-oriented programming, particularly Smalltalk
programming, is that it is detrimental to have had conventional programming experi-

ence, because bad habits acquired from this experience will have to be unlearned. The

extreme form of this misconception is that it is better never to have programmed than

to have been corrupted by conventional programming languages. Thus, the argument
goes, an object-oriented project can succeed better with inexperienced programmers

than it would with experienced ones.

Reality: The evidence suggests otherwise. Programming experience is advantageous for

learning object-orientation.' And projects that move ahead, meet their milestones,

and satisfy users and managers, are staffed by knowledgeable programmers—the more
expert, the better. Expert programmers excel at the whole infrastructure of software

development—connectivity, databases, versioning and configuration management,

testing, procedural logic, requirements gathering—all of which were essential to soft-

ware development before objects were popularized and none of which have been obso-

lesced by objects. And expert programmers learn objects faster, appreciate their

ramifications, and sense how to apply them to problems at hand.

Object-oriented projects are more successful

Reality: An object-oriented project is no more likely to succeed than any other project.

Out-of-touch leadership, misplaced optimism, complacency, the wrong tools, and all

the rest are just as likely to afflict an object-oriented project as any other. Successful
projects need business acumen coupled with technological knowhow, and you can

find these qualities in conventional projects as well as in object-oriented ones.

Object-oriented applications enjoy reuse

Reality. A project enjoys reuse if a coherent framework is in place. A framework’s

abstract classes help developers avoid redundancy. But frameworks are hard to build,

' See the study of several hundred students in [Liu et al. 1992].

266 WHuy DEVELOPING SOFTWARE IS STILL HARD | CHAPTER 21

especially for the first problem that the framework is meant to address. Thus reuse

within one project is not automatic.

Reuse of objects across projects is also not automatic. Plug-compatible objects are

rare. Under the pressures of software development, it is hard enough to make an object
work well for the product it is designed for, let alone for one it isn’t designed for. The

fellow who built the first fire didn’t worry about building one in the rain until later.

The first one demanded all his attention.

When reuse occurs across projects, it is commonly in the form of a framework that

was successful on another project. A good framework’s abstract classes stand a chance

of being applicable to multiple projects. Eventually we will also succeed in assembling

corporate or industry libraries of concrete classes, but only for problems that we
understand thoroughly—old problems. New problems demand new solutions, for

which there is nothing yet to be reused. Meanwhile, your most reusable asset is your
design: code is less valuable than the thinking that went into its creation. Recast in the

vocabulary of this book, an organization's real assets are the conceptual models of

objects and patterns that its people hold. Therefore, for some time yet, the organiza-

tion will be better off with the people than the code.

Performance depends on the language

Reality: Performance is popularly ascribed to the programming language: assembler

and C++ are fast; LISP and Smalltalk are slow. But the effect of programming lan-

guages on performance is smaller than the effect of design. A good Smalltalk design is

faster than a bad C++ design, and vice versa. Design therefore matters more than the

language.

Be especially wary of the performance of distributed objects. These are typically
objects that are portable enough to operate in either a Smalltalk or a C++ environ-

ment. We measured the performance of one such object to be 70 times slower than its

native Smalltalk counterpart. Extreme generality is almost always as costly as it is
seductive.

If it’s demo-able, it’s do-able

Reality: A demo is the tip of the iceberg. The hard, time-consuming work comes after,
and under the demo, in producing robust, fast distributed or client/server support.
Making objects persist across a network is tough. (See the border problem on page 267.)

Here's a rule of thumb: from the time the software operates fully, including access-
ing samples of actual data in a local database, allow half again as much effort to deliver
the final product. In other words, a fully operational requirements release, which

21.2 WHERE PROJECTS GO AWRY: BORDERS 267

appears to a user as the final product, consumes only 40 percent of the effort. It is
important to get this message across to everyone who is waiting for the final product,
or else you stand the risk of disappointing your sponsors. What they can touch and see
doesn’t change for most of the development cycle.

GUI builders make it easy

Reality: GUI builders alleviate tedium. They are a pleasurable addition to our bag of
software tools. But they don't make model-view separations automatic and they divert
us from the profoundly challenging task—design. (Remember Chapter 13.)

“T design in Smalltalk”

Reality: Smalltalk programming is unusually close to design, but it is not the same as
design. If you are working at a blackboard, whiteboard, with CRC cards, or some-

where else away from your computer, you are clearly designing. Good design is often
a social activity. Very often, hard design problems succumb when you try to explain
the difficulty to someone else, and some inconsequential remark triggers an idea that

pays off.
Nevertheless, much of the time you spend in front of a Smalltalk system is honest

design time. Designing is weighing alternatives, including discovering them in the
first place and eventually rejecting all but one. This is what you are doing when you
investigate classes (remember that today’s Smalltalks contain thousands), read and

experiment with their methods, or create your own throwaway classes and methods.
Struggling over naming classes and selectors, or wordsmithing comments, counts too.
Working in Smalltalk can be a form of design, but it is not the only form.

21.2 Where projects go awry: borders

Spectacular project overruns occur when development teams underestimate the diffi-
culty in connecting their applications to other critical computing systems. These sys-
tems may be off-the-shelf database products or homegrown systems that are de facto
standards for the business. Crossing the borders between the Smalltalk application and
each of these systems requires thoughtful design. Smalltalk objects are on one side of
each border, and something quite different is on the other. Development teams rarely
invest enough time or talent to resolve this mismatch.

The classic system border is the relational-to-object interface that occurs in most
of today’s client/server applications. The database server may be on a local LAN, but

268 WHY DEVELOPING SOFTWARE IS STILL HARD | CHAPTER 21

if it is at a remote or mainframe computer the number of conceivable techniques for

crossing the border multiplies considerably. Culling the solutions that cannot handle

the size or flux of traffic, or cost too much to implement, or are difficult to test, takes

seasoned developers. Clean, efficient translations result from intimate familiarity with

both sides of the border.

The hurdles proliferate when other kinds of “servers” enter the picture. The

requirements of projects I’ve worked on include borders with other corporate sys-

tems—the payments system, the global customer database, the workflow system, and
so on. These borders can be treacherous, for these reasons:

¢ The other system isn’t working yet.

The other system was never designed to have an interface with our new client appli-

cation.

The interface exists, but new programs will have to be written on the other system
to process our client’s requests.

The system is written in another language, and so we must entrust the work to an

entirely different organization.

The physical connection to the other system is unreliable.

The cost of testing the border crossing skyrockets.

A small failure at one of these system borders stops the application cold; this kind

of failure is more critical and costly than a bug in a user interface or model object.
Experienced project planners allot more than half (60 percent—see page 266) of a

project's resources to the border problem. Turnkey, black-box solutions rarely match

your problem and are difficult to adapt. Workable solutions involve frameworks on

one side and perhaps foreign languages on the other.

System borders may be the most spectacular failure points, but all borders are
opportunities for missteps. Chapter 13 concerns the treacherous human—computer

border. That border dovetails with what is traditionally called requirements gathering,

which is the border between the problem-domain expert and the analyst. Ill-defined

requirements acquired at this border are at the heart of many disappointing projects.

But every human-to-human border in software development exacts some toll for the

inefficiency of handing off ideas.

The ultimate, fine-grained border is the public interface of a programming object.
Each object is supposed to have an understandable outside, consisting of its public
method selectors, so that people will know how to use it. Getting these object borders
right is the programmer’s core obligation. The lesson of individual objects coincides
with the lesson of large-scale software development: borders, or interfaces, matter

21.3. CHARACTERISTICS OF SUCCESSFUL PROJECTS 269

most. Peter Deutsch, one of the eminences from Smalltalk’s heyday at Xerox PARC,
summarized it thus: “Interface design and functional factoring constitutes the key intel-
lectual content of software and is far more difficult to recreate than code” [Deutsch
1991].

21.3 Characteristics of successful projects

If we are going to cross our borders efficiently, we will have to understand them. The
first guideline is therefore readability.

Readability

You sometimes encounter software in which, as soon as a bug appears and it becomes

necessary to peer into the code, you discover a fragile labyrinth of object-oriented spa-

ghetti. You have no hope of fixing the bug, let alone extending the software, without

introducing new errors. Working software isn’t impressive unless it is also a joy to read:
it should hold no mysteries.

Readability plainly involves comments; style; names of methods, classes, and
instance variables; and so on. (See [Skublics et al. 1996].) But it includes broader con-

siderations, like window classes weighed down by too many methods, or complicated
behavior that ought to have been reified, or code that could be re-factored into pat-

terns or abstract classes, or.... Readability is almost synonymous with good design,

and is more of an art than a measurable commodity.

Motivation to write clear code can come from unusual sources. One project, suf-

fering in the wake of client/server code left behind by some eager but inexperienced
framework developers, sponsored a contest for “The Method from Hell.” To win, you
had to find the most hopelessly incomprehensible method in the framework. As a by-
product of this friendly competition, developers thought twice before writing meth-

ods of their own that might be eligible for future honors.

Reading samples of code is like taking someone’s temperature: a project with
muddy code, like a person with a fever, cannot be healthy. The code is where all other

factors come together; if it is unreadable you have a problem somewhere. You may not
know immediately if the root of the problem is faulty analysis, crude design, or slip-

shod implementation, or even haphazard organizational structures or processes. But

you know you must begin the investigation.

270 WHY DEVELOPING SOFTWARE IS STILL HARD | CHAPTER 21

Names

Clear names are an essential element of readability: names of methods, names of

instance variables, names of classes. The first thing a Smalltalk programmer does when

looking at a class is browse through the class’s method selectors. Well-named selectors

are signposts; poorly named ones confuse programmers and hinder understanding.

Bad names haunt a project forever; good names trumpet the software's design.
Names are especially significant in object-oriented software. The name someone

gives a class is supposed to clearly and immediately evoke the nature of that class to

everyone else—analysts, developers, testers. Effective names connote the right idea

and act as handles for conversations between developers. Here are some examples of

the consequences of names—a good, mediocre, and bad choice, respectively:

¢ Nicknames for ideas help developers communicate. After deciding to use Skinny-

Customer for the name of a class of ghosts (page 226), we referred to instances as

“skinnies.” This nickname expedited countless rapid-fire conceptual discussions.”

¢ Precise names can be too cumbersome for day-to-day thinking and conversation.

MutualFundAccountTelephoneExchangeRole may be precisely right, but it is a
mouthful that takes a while for the brain to process. Sometimes it is worth sacrific-

ing a little precision for the sake of a simpler name and to trust the context of a

project to supplement everyone’s understanding.

¢ At the other extreme, a name like SmartGuy is too vague. Explanations of this
unfortunate name dragged on through weeks of meetings because it evoked dispar-

ate ideas in the minds of different people. Here, the choice of names impeded rather

than enhanced design. (In this project, the behavior of SmartGuy encompassed

ideas that could have been identified by several specific names, including TaskMon-
itor and WorkflowServer.)

Bad names waste time and money. We expend mental energy reconstructing

what they mean. If a project names the yellow-rumped warbler a “red-winged black-

bird,” then whenever someone says “red-winged blackbird” we start to imagine a

chunky dark bird in the reeds instead of the tiny flitty bird overhead that we are sup-
posed to imagine. Our brains start down the wrong track, processing excess, irrele-

vant thoughts.

2 . fi . . . We rejected several alternatives: SummaryCustomer (connotes collapsing and paraphrasing rather
than simple subsetting); LiteCustomer (too trendy to stand the test of time); DietCustomer (point-
lessly humorous); and SynopsisCustomer (difficult to repeat quickly during a spirited design con-
versation).

21.3 CHARACTERISTICS OF SUCCESSFUL PROJECTS 271

Understanding the problem

Nothing is more disgraceful than paying expensive Smalltalk programmers to produce
what they think an organization needs. If they don’t understand the problem they’ve
been asked to solve, be it how bankers finance international trade or geneticists infer
the locations of genes on chromosomes, the project’s outlook is grim. The remedy,
whether you call it requirements gathering or object-oriented analysis, is a sizable
investment of time and work with someone who does understand the problem. The
border between developers and users must be crossed.

Understanding object-orientation

This is the obvious factor. Until you are comfortable with containers, abstract classes,
polymorphism, and all the rest, your designs are bound to be crude. And until you
have written a sizable body of Smalltalk code, you can benefit from an experienced
Smalltalk programmer who reviews your work and suggests ways of cleaning it up.

Leadership

Leaders may be managers, or team leaders, or programmers. The title matters less than

the qualities. Effective leaders understand the problem and have firsthand experience

with the power and limitations of their object-oriented tools. They also have political
savvy: they are familiar enough with the surrounding organization to secure the sup-

port and resources the project needs. When any of these elements is missing, a project
founders. It acquires the wrong tools and frameworks at the wrong times, and misap-

plies whatever it acquires. Something will work and delight the team or its customers,

but no culture or discipline moves the effort toward an industrial-strength product. In

the saddest scenarios, programmers and designers run amok formulating grand

abstractions and trying to solve general problems. (If they knew the adage, “The devil

is in the details,” they would know that there are plenty of challenges in basic, concrete
problems, and that until they overcome those challenges, any attempt to solve general

problems is futile.)

I once heard it suggested that software development proceeds like the universe
unfolding from the Big Bang. What happens at a key moment can shape the whole
course of the future. The hiring of an unusual developer or manager, an insinuation

about an architecture or tool, the fateful throwaway remark—any of these can lead even-

tually to products with entirely different looks and feels, performance, or durability.
Each decision influences the next decision, and the next, and the next. Software devel-

opment is a chaotic phenomenon like the weather, whose outcome in New York can

272 WHY DEVELOPING SOFTWARE IS STILL HARD | CHAPTER 21

pivot on how a butterfly happened to flap its wings one month earlier in Beijing. No one
is prescient enough to forecast the precise shape of the future. We only hope that our
leaders’ hunches—their flapping wings—will save us from the costliest blunders.

Involving prospective users, continuously

A parable: A partnership was formed late in the 1980s to build a 14-mile road. The

partners planned to reap a profit by charging motorists $1.75 for driving on it. The
road would serve a high-income area with a rapidly growing population. In 1995 the

road opened, toll booths and all. But the partnership landed immediately in financial
trouble because few motorists were willing to pay $1.75 for the privilege of using the

road. It turns out that no one ever asked any motorists how much such a road would

be worth to them.’

Had this been a software project, the developers might have surveyed prospective
users before the project began, and several more times while construction proceeded.

As often as practical, the developers would even show the users what they hoped to

deliver. This is the best way to prevent unwelcome surprises at the end of the project.

The developers might even have decided that the project wasn’t worth doing.

Humility

Unless you've done it before, whether it’s delivering industrial-strength software or

running a marathon, it’s going to hurt more than you think. Make the first milestone

modest. You will learn object-oriented design and programming, how to make objects

persist in a database across a network, and how to tune the application so that it per-

forms acceptably.

21.4 An optimistic conclusion

You know by now that the overall difficulty of software development has not changed
much from the days before objects. Design, leadership, technology, and so on were
important then too. Producing high-quality software has always been difficult, and
always will be difficult. Better tools and technologies help, but mostly to simplify the
tasks that we have come to understand well enough to build tools for. The hard work
is understanding new kinds of problems and designing solutions for them. No matter
how good our tools get, the next generation of problems will tax our ingenuity.

> You can find this story documented in the Washington Post, December 26, 1995.

21.4 AN OPTIMISTIC CONCLUSION 273

Objects present the opportunity for creating elegant software solutions by apply-

ing polymorphism and patterns and frameworks and the like. But amid the hoopla
over these buzzwords we should not overlook the underlying benefit of objects. It is

what we began with (page 7): objects equip programmers with the same cognitive
tools, the same mental processes and metaphors, which the rest of the human popula-
tion enjoys. Objects therefore reduce the cost of translating ideas from one mind to
another. They reduce the occasions for misunderstanding throughout the software
enterprise, from requirements analysis through final testing.

We don’t know how to quantify the price of these misunderstandings, or the sav-

ings from preventing them. Misunderstandings are not as measurable as methodolo-

gies, tools, and schedules, or method size, numbers of abstract classes, depths of

inheritance hierarchies, or numbers of patterns. We therefore scarcely appreciate the

essential economic value of objects: they reduce misunderstandings, so that we can

deliver better software.

APPENDIX

Some differences between dialects

The table below outlines some of the differences among major Smalltalk dialects. It is

neither detailed nor complete and therefore is not meant for the faint of heart. But for

readers with an investigative bent it hints at discrepancies that are likely to arise between

this book, written for IBM Smalltalk, and other dialects. It also points to a few areas not

discussed in this book where the dialects are based on fundamentally different precepts.

Note that ParcPlace-Digitalk is working to converge the VisualSmalltalk and Visual-

Works products into one offering, which will reconcile the differences between the last

two columns in the table.

VisualAge VisualSmalltalk Visual Works
(IBM Smalltalk) (Smalltalk/V) (Smalltalk-80)

Image name Reh v.exe Coane
(default) a8 v.image (Macintosh) en’

Execute Do It do it

Display Show It print it

eae . EtTranscript TextWindow TextCollector
cla

Global variables Must be Prompts you on first Prompts you on first
(use sparingly) explicitly declared attempt to use one attempt to use one

Yes—literally instance
Class instance F

Yes variables of the class’s class
Yes—literally instance

variables Gbeontincoldenversions) variables of the class's class

Dispatching the anObject perform: aMsg

= Siike aMsg sendTo: anObject aMsg perform selector withArguments:
mes aMsg arguments

275

276 SOME DIFFERENCES BETWEEN DIALECTS | APPENDIX

VisualAge VisualSmalltalk Visual Works
(IBM Smalltalk) (Smalltalk/V) (Smalltalk-80)

Pure virtual (abstract, subclassResponsibility implementedBySubclass _ subclassResponsibility
deferred) method

f C dTextVi
Opening a text EtWorkspace new TextWindow new Zi se ras er

window show: 'Hello, world’ openOn: ‘Hello, world’ asConipincd Test

Collection hierarchy No No No
is subtyped

Finalization and Yes Yes (absent in Yes

weak references older versions)

Look and feel gov-
erned by platform's Yes Yes No
window manager

Literal strings may
be modified = a *
Literal arrays may
be modified Ne a be

Block temporary Yes ee es
variables [|x| ...]

Pool dictionary class EsPoolDictionary Dictionary Dictionary

Pool dictionary keys String String Symbol

Subclasses inherit Yee No Yes
pool dictionaries

SmallInteger range 30 30 30 30 29 29
(on 32-bit platforms) es ae see a oA a eters

SUITE ERUETETEEEEEEEREEEEIE YT 99P=< SSRN Ry =r ir pear EEE ener seeeemen eeeeee
Broadcaster AbtObservableObject * EventManager Model ©

Exceptions Instance hierarchy Class hierachy Instance hierarcy

“Also, the same protocol, but less efficient and less encapsulated, is available for any Object. A third
protocol is the traditional one using the class variable Dependents in Object.

b Also, the same protocol, but less efficient and less encapsulated, is available for any Object. Older ver-

sions supported the traditional protocol using the class variable Dependents in Object.

“ This class supports the traditional (original MVC) protocol. Also, the same protocol, but less efficient
and using the class variable Dependents, is available for any Object. ParcPlace-Digitalk intends to add
EventManager broadcasting, as in VisualSmalltalk.

References

[Agha et al. 1989] Gul Agha, Peter Wegner, Akinori Yonezawa, editors. ACM SIGPLAN Notices

(Proceedings of the ACM SIGPLAN Workshop on Object-Based Concurrent Programming,
September 26-27, 1988), vol. 24, no. 4 (April 1989).

[Agha et al. 1991] Gul Agha, Carl Hewitt, Peter Wegner, Akinori Yonezawa, editors. ACM OOPS

Messenger (Proceedings of the ECOOP-OOPSLA Workshop on Object-Based Concurrent
Programming, October 21-22, 1990), vol. 2, no. 2 (April 1991).

[Alexander 1979] Christopher Alexander. The Timeless Way of Building. New York: Oxford Univer-

sity Press, 1979. The first of Alexander’s twelve volumes (eight published, four to appear) dis-
cusses the “quality without a name.”

[Alexander et al. 1977] Christopher Alexander, Sara Ishikawa, Murray Silverstein, with Max Jacob-

son, Ingrid Fiksdahl-King, Shlomo Angel. A Pattern Language. New York: Oxford University
Press, 1977. The highly readable catalog of 253 patterns for building living spaces.

[America 1991] Pierre America. “Designing an Object-Oriented Programming Language with
Behavioural Subtyping,” Foundations of Object-Oriented Languages: REX School/Workshop,
Noordwijkerhout, The Netherlands, May 28—June 1, 1990, Proceedings. Berlin: Springer-
Verlag, 1991, pp. 60-90.

[Aristotle 330BC] Aristotle. “Parts of Animals,” A New Aristotle Reader. J. L. Ackrill, editor. Princ-

eton: Princeton University Press, 1987.

[Baker 1978] Henry G. Baker, Jr. “List Processing in Real time on a Serial Computer,” Communi-

cations of the ACM, vol. 21, no. 4 (April 1978), pp. 280-294. Baker credits the idea of semi-
spaces all the way back to work by Marvin Minsky in 1963; this paper hones the algorithm for
real-time applications.

[Beck and Cunningham 1989] Kent Beck, Ward Cunningham, “A Laboratory for Teaching
Object-Oriented Thinking,” ACM SIGPLAN Notices (OOPSLA ’89 Conference Proceedings),
vol. 24, no. 10 (October 1989), pp. 1-6. The article that introduced CRC cards.

[Black et al. 1986] Andrew Black, Norman Hutchinson, Eric Jul, Henry Levy. “Object Structure in
the Emerald System,” ACM SIGPLAN Notices (OOPSLA ’86 Conference Proceedings) vol.

21, no. 11 (November 1986), pp. 78-86.

[Booch 1994] Grady Booch. Object Oriented Analysis and Design with Applications, 2nd ed. Red-
wood City, CA: Benjamin/Cummings, 1994. Probably the most popular object-oriented
design methodology.

MI

278 REFERENCES

[Briot 1992] Jean-Pierre Briot. Tutorial 5: Object-Oriented Concurrent Programming, OOPSLA ’92.

Ottawa, Canada, 1992.

([Buhr and Casselman 1992] Raymond J. A. Buhr, Ronald S. Casselman. “Architectures with Pic-

tures,” ACM SIGPLAN Notices (OOPSLA ’92 Conference Proceedings), vol. 27, no. 10

(October 1992), pp. 466-483.

[CACM 1993] Communications of the ACM (Special Issue: Concurrent Object-Oriented Program-

ming), vol. 36, no. 9 (September 1993).

[Cardelli et al. 1992] Luca Cardelli, James Donahue, Lucille Glassman, Mick Jordan, Bill Kalsow,

Greg Nelson. “Modula-3 Language Definition,” ACM SIGPLAN Notices, vol. 27, no. 8
(August 1992), pp. 15-42.

[Chambers 1989] Craig Chambers, David Ungar, Elgin Lee. “An Efficient Implementation of

SELF, a Dynamically Typed Object-Oriented Language Based on Prototypes,” ACM SIG-
PLAN Notices (OOPSLA ’89 Conference Proceedings), vol. 24, no. 10 (October 1989), pp.

49-70.

[de Champeaux et al. 1993] Dennis de Champeaux, Douglas Lea, Penelope Faure. Object-Oriented
System Development. Reading, MA: Addison-Wesley, 1993.

[Civello 1993] Franco Civello. “Roles for composite objects in object-oriented analysis and design,”
ACM SIGPLAN Notices (OOPSLA 1993 Conference Proceedings), vol. 28, no. 10 (October

1993), pp. 376-393.

[Coad 1992] Peter Coad. “Object-oriented patterns,” Communications of the ACM, vol. 35, no. 9
(September 1992), pp. 152-159.

[Coad et al. 1995] Peter Coad, David North, Mark Mayfield. Object Models: Strategies, Patterns, and

Applications. Englewood Cliffs, NJ: Prentice-Hall, 1995.

[Coad and Yourdon 1991] Peter Coad, Edward Yourdon. Object-Oriented Analysis, 2nd ed. Engle-

wood Cliffs, NJ: Prentice-Hall, 1991.

[Collins 1995] Dave Collins. Designing Object-Oriented User Interfaces. Redwood City, CA: Ben-
jamin/Cummings, 1995. The broadest and deepest resource relating user interfaces to object-
oriented programming.

[Cook 1989] W. R. Cook. “A Proposal for Making Eiffel Type-safe,” ECOOP 89 (Proceedings of
the 1989 European Conference on Object-Oriented Programming). Cambridge, UK: Cam-
bridge University Press, 1989, pp. 57-70. Part of the subtyping debate; this paper supports
contravariance of argument types.

[Cook 1992] William Cook. “Interfaces and Specifications for the Smalltalk-80 Collection Classes,”
ACM SIGPLAN Notices (OOPSLA ’92 Conference Proceedings), vol. 27, no. 10 (October
1992), pp. 1-15. The definitive analysis of types versus classes in Smalltalk-80’s collection
classes.

[Coplien and Schmidt 1995] James Coplien, Doug Schmidt, editors. Pattern Languages of Program
Design. Reading, MA: Addison-Wesley, 1995.

[Crick 1988] Francis Crick. What Mad Pursuit: A Personal View of Scientific Discovery. New York:
Basic Books, 1988.

[Cunningham and Beck 1986] Ward Cunningham, Kent Beck. “A Diagram for Object-Oriented
Programs,” ACM SIGPLAN Notices (OOPSLA ’86 Conference Proceedings), vol. 21, no. 11
(November 1986), pp. 361-367.

REFERENCES 279

[Davis and Morgan 1993] John Davis, Tom Morgan. “Object-Oriented Development at Brooklyn

Union Gas,” JEEE Software, vol. 10, no. 1 (January 1993). Describes an early object-oriented
tour de force.

[Deutsch 1991] L. Peter Deutsch. “Objects: Just Another Technology?” Presentation at Symposium
on Object-Oriented Computing. Thornwood, NY: IBM, 1991.

[Dijkstra et al. 1989] Edsger Dijkstra. “On the Cruelty of Really Teaching Computing Science,”

Communications of the ACM, vol. 32, no. 12 (December 1989), pp. 1398-1404. Rejoinders

follow by David Parnas, W. L. Scherlis, M. H. van Emden, Jacques Cohen, R. W. Hamming,
Richard Karp, Terry Winograd, pp. 1405-1414.

[Eggenschwiler and Gamma 1992] Thomas Eggenschwiler, Erich Gamma. “ET++ Swaps Man-

ager: Using Object Technology in the Financial Engineering Domain,” ACM SIGPLAN
Notices (OOPSLA ’92 Conference Proceedings), vol. 27, no. 10 (October 1992), pp. 166-177.
Terse descriptions of some patterns that have since entered the object-oriented vernacular.

[Feynman 1967] Richard Feynman. The Character of Physical Law. Cambridge, MA: MIT Press,

1967. Illuminating lectures aimed at the non-specialist.

[Gabriel 1993-1994] Richard Gabriel. (5 articles) “The quality without a name”; “Pattern lan-

guages”; “The failure of pattern languages”; “The bead game, rugs, and beauty, parts I and II”;
Journal of Object-Oriented Programming, vol. 6, no. 5 (September 1993), pp. 86-89; vol. 6, no.
8 January 1994), pp. 72-75; vol. 6, no. 9 (February 1994), pp. 84-88; vol. 7, no. 3 (June
1994), pp. 74-78; vol. 7, no. 5 (September 1994), pp. 44-49. A retelling of the architectural
odyssey of Christopher Alexander, with attempts to link it to software.

[Gamma et al. 1995] Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides. Design Pat-

terns: Elements of Reusable Object-Oriented Software. Reading, MA: Addison-Wesley, 1995. The
standard reference on patterns, written by the so-called Gang of Four.

[Gibson 1990] Elizabeth L. Gibson. “Objects—Born and Bred,” BYTE Magazine (October 1990),

pp. 245-254. The first description of the Object Behavior Analysis (OBA) design methodology.

[Goldberg and Robson 1983] Adele Goldberg, David Robson. Smalltalk-80: The Language and its

Implementation. Reading, MA: Addison-Wesley, 1983 (Reprinted with corrections, July 1985).
The classic Smalltalk sourcebook, now, sadly, out of print.

[Hadamard 1954] Jacques Hadamard. An Essay on the Psychology of Invention in the Mathematical
Field. Reprint of 1949 Princeton University Press edition, New York: Dover, 1954.

[IBM 1995] JBM Smalltalk Programmer's Reference: Version 3, Release 0. SC34-4493-02. IBM Corpo-
ration, 1995. Clear exposition of Motif widget support, as well as other facets of IBM Smalltalk.

[Ingalls 1986] Daniel H. H. Ingalls. “A Simple Technique for Handling Multiple Polymorphism.”
ACM SIGPLAN Notices (OOPSLA ’86 Conference Proceedings) vol. 21, no. 11 (November

1986), pp. 347-349. The original discussion of double dispatch, succinct and lucid.

[Jacobson 1987] Ivar Jacobson. “Object Oriented Development in an Industrial Environment,”
ACM SIGPLAN Notices (OOPSLA ’87 Conference Proceedings), vol. 22, no. 12 (December

1987), pp. 183-191.
[Jacobson et al. 1992] Ivar Jacobson, Magnus Christerson, Patrik Jonsson, Gunnar Overgaard.

Object-Oriented Software Engineering: A Use Case Driven Approach. Reading, MA: Addison-
Wesley, 1992.

280 REFERENCES

[Johnson 1992] Ralph E. Johnson. “Documenting Frameworks Using Patterns,” ACM SIGPLAN

Notices (OOPSLA ’92 Conference Proceedings), vol. 27, no. 10 (October 1992), pp. 63-76.

Patterns for understanding the HotDraw framework.

[Johnson 1995] Ralph E. Johnson. “Accounts: A framework for business transaction processing,”
hetp://st-www.cs.uiuc.edu/users/johnson/Accounts.html.

[Johnson and Russo 1991] Ralph E. Johnson and Vincent FE. Russo. “Reusing Object-Oriented

Designs,” University of Illinois Technical Report UIUCDCS 91-1696.

[Kay 1988] Alan Kay. Presentation at IBM symposium, Directions in Object-Oriented Computing.

Thornwood, NY: IBM, 1988.

[Kay 1990] Alan Kay. “User Interface: A Personal View,” The Art of Human-Computer Interface
Design. Brenda Laurel, editor. Reading, MA: Addison-Wesley, 1990, pp. 191-207.

[Kay 1993] Alan Kay. “The Early History of Smalltalk,” ACM SIGPLAN Notices (History of Pro-
gramming Languages—II) vol. 28, no. 3 (March 1993), pp. 69-95. The lore of how Smalltalk
came to be, told by its creator.

[Krasner 1984] Glenn Krasner, editor. Smalltalk-80: Bits of history, words of advice. Reading, MA:
Addison-Wesley, 1984.

[Lakoff and Johnson 1980] George Lakoff, Mark Johnson. Metaphors We Live By. Chicago: Univer-
sity of Chicago Press, 1980.

[Lalonde et al. 1986] Wilf LaLonde, Dave Thomas, John Pugh. “An Exemplar-Based Smalltalk,”

SIGPLAN Notices (OOPSLA ’86 Conference Proceedings) vol. 21, no. 11 (November 1986),

pp. 322-340. An early attempt to resolve the type versus class conflict in Smalltalk.

[Laurel 1990] Brenda Laurel, editor. The Art of Human-Computer Interface Design. Reading, MA:

Addison-Wesley, 1990.

[Lea 1992] Doug Lea. “Run-Time Type Information and Class Design,” USENIX C++ Technical

Conference Proceedings 1992. Usenix Association, 1992, pp. 341-347. Practical advice for
using the recent RTTI feature of C++.

[Lewis et al. 1995] Ted Lewis, Glenn Andert, Paul Calder, Erich Gamma, Wolfgang Pree, Larry
Rosenstein, Kurt Schmucker, André Weinand, John M. Vlissides. Object-Oriented Application

Frameworks. Greenwich, CT: Manning Publications, 1995. Summaries of several notable
frameworks.

[Lieberman 1986] Henry Lieberman. “Using Prototypical Objects to Implement Shared Behavior
in Object Oriented Systems,” SIGPLAN Notices (OOPSLA ’86 Conference Proceedings), vol.

21, no. 11 (November 1986), pp. 214-223.

[Lieberman and Hewitt 1983] Henry Lieberman, Carl Hewitt. “A Real-Time Garbage Collector
Based on the Lifetimes of Objects,” Communications of the ACM, vol. 26, no. 6 (June 1983),
pp. 419-429.

[Linnaeus 1753] Carl Linnaeus. Species Plantarum, A Facsimile of the first edition 1753, with an
introduction by W. T. Stearn. London: the Ray Society, 1957 (vol. 1) 1959 (vol. 2).

[Meyer 1988] Bertrand Meyer. Object-Oriented Software Construction. Hertfordshire, UK: Prentice
Hall International, 1988.

[Meyer 1992] Bertrand Meyer. Eiffel: The Language. Hertfordshire, UK: Prentice-Hall Interna-
tional, 1992.

REFERENCES 281

[Muir ca. 1880] John Muir. The Wilderness World of John Muir. Edwin Way Teale, editor. Boston:
Houghton Mifflin, 1954. The passage on page 147 comes at the climax of the adventure of the
singular mutt Stickeen.

[Nelson 1990] Theodor Holm Nelson. “The Right Way to Think About Software Design,” The Art

of Human-Computer Interface Design. Brenda Laurel, editor. Reading, MA: Addison-Wesley,

1990, pp. 235-244.

[Objectshare 1995] WindowBuilder Pro 3.0 Tutorial and Reference Guide. Edition for IBM Small-

talk and VisualAge. Objectshare Systems, Inc., 1995. Includes excellent discussion of Motif

widget programming.

[Orfali et al. 1994] Robert Orfali, Dan Harkey, Jeri Edwards. Essential Client/Server Survival Guide.

New York: John Wiley & Sons, 1994. A comparative approach to the concepts and implemen-
tation alternatives of client/server computing.

[Petroski 1985] Henry Petroski. To Engineer Is Human: The Role of Failure in Successful Design. New
York: St. Martin’s Press, 1985. Failure has always been intertwined with progress, and always

will be.

[Pirsig 1974] Robert Pirsig. Zen and the Art of Motorcycle Maintenance. New York: Bantam, 1974.

A study of quality and the hopelessness of describing it.

[Plato 375BC] Plato. The Republic. London, UK: Penguin rev. ed., 1987. The date is approximate;
the famous dialogue on beds begins Book X.

[Power 1988] Leigh Power. “Specification and Design of Objects,” ACM SIGPLAN Notices (OOP-
SLA ’87 Addendum to the Proceedings), vol. 23, no. 5 (May 1988), pp. 7-16. Kent Beck dis-
cusses a tiny pattern language for user interfaces that is as relevant today as then.

[Reenskaug 1996] Trygve Reenskaug, with Per Wold, Odd Arild Lehne. Working with Objects: The
OOram Software Engineering Method. Greenwich, CT: Manning Publications, 1996. Peppered
with wisdom on the human role.

[Rubin and Goldberg 1992] Kenneth S. Rubin, Adele Goldberg. “Object Behavior Analysis,”
Communications of the ACM, vol. 35, no. 9 (September 1992), pp. 48-62.

[Rumbaugh et al. 1991] James Rumbaugh, Michael Blaha, William Premerlani, Frederick Eddy,

William Lorensen. Object-Oriented Modeling and Design. Englewood Cliffs, NJ: Prentice-Hall,

1991. A standard reference on object design, slanted toward entity-relationship modeling.

[Sacks 1985] Oliver Sacks. The Man Who Mistook His Wife for a Hat, and Other Clinical Tales.
HarperCollins, 1985. Revealing tales of neurological irregularities.

[Sakkinen 1989] M. Sakkinen. “Disciplined Inheritance,” ECOOP 89 (Proceedings of the 1989

European Conference on Object-Oriented Programming). Cambridge, UK: Cambridge Uni-
versity Press, 1989, pp. 39-56.

[Samples et al. 1986] A. Dain Samples, David Ungar, Paul Hilfinger. “SOAR: Smalltalk Without
Bytecodes,” ACM SIGPLAN Notices (OOPSLA ’86 Conference Proceedings), vol. 21, no. 11

(November 1986), pp. 107-118.

[Sarkela 1989] John Sarkela. Presentation at IBM workshop, Management Implications of Object-

Oriented Programming. Westlake, TX: IBM, ca. 1989.

[Schmucker 1986] Kurt J. Schmucker. Object-Oriented Programming for the Macintosh. Hasbrouck

Heights, NJ: Hayden, 1986. The MacApp framework, plus an appendix on Macintosh UI

standards.

282 REFERENCES

[Shakespeare 1609] William Shakespeare. “Sonnet 18,” The Riverside Shakespeare. Boston, MA:

Houghton Mifflin, 1974.

[Shoch 1979] John E. Shoch. “An Overview of the Programming Language Smalltalk-72,” ACM

SIGPLAN Notices, vol. 14, no. 9 (September 1979), pp. 64-73.

[Skublics et al. 1996] Suzanne Skublics, Edward J. Klimas, David A. Thomas. Smalltalk with Style.

Englewood Cliffs, NJ: Prentice-Hall, 1996. One hundred and twenty-six guidelines worth

considering.

[Snyder 1986] Alan Snyder. “Encapsulation and Inheritance in Object-Oriented Programming
Languages,” ACM SIGPLAN Notices (QOPSLA ’86 Conference Proceedings), vol. 21, no. 11

(November 1986), pp. 38-45.

[Stroustrup 1991] Bjarne Stroustrup. The C++ Programming Language, 2nd ed. Reading, MA:
Addison-Wesley, 1991.

[Stroustrup 1994] Bjarne Stroustrup. The Design and Evolution of C++. Reading, MA: Addison-
Wesley, 1994. The story of where C++ has been and where it might go, by its chief inventor.

[Sun 1995] The Java Language Specification, Release 1.0 Alpha. Sun Microsystems Computer Cor-
poration, 1995.

[de Troyes 1190] Chrétien de Troyes. “The Story of the Grail,” Arthurian Romances. New York:
Penguin, 1991. The earliest known telling of Arthurian tales.

[Ungar and Jackson 1988] David Ungar, Frank Jackson. “Tenuring Policies for Generation-Based

Storage Reclamation,” ACM SIGPLAN Notices (OOPSLA ’88 Conference Proceedings), vol.

23, no. 11 (November 1988), pp. 1-17.

[Wegner 1987] Peter Wegner. “Dimensions of Object-Based Language Design,” ACM SIGPLAN
Notices (OOPSLA ’87 Conference Proceedings), vol. 22, no. 12 (December 1987), pp. 168-182.

[Wegner and Zdonik 1988] Peter Wegner, Stanley Zdonik. “Inheritance as an Incremental Modi-

fication Mechanism or What Like Is and Isn't Like,” ECOOP 88 (Proceedings of the 1988

European Conference on Object Oriented Programming). Berlin: Springer-Verlag, 1988,

pp. 55-77.

[Wirfs-Brock et al. 1990] Rebecca Wirfs-Brock, Brian Wilkerson, Lauren Wiener. Designing

Object-Oriented Software. Englewood Cliffs, NJ: Prentice-Hall, 1990. Focus first on the
responsibilities of objects.

[Wolf and Liu 1995] Kirk Wolf, Chamond Liu. “New Clients with Old Servers: A Pattern Lan-

guage for Client/Server Frameworks,” Pattern Languages of Program Design. James Coplien,
Doug Schmidt, editors. Reading, MA: Addison-Wesley, 1995, ch. 4.

[Yonezawa and Tokoro 1987] Akinori Yonezawa, Mario Tokoro, editors. Object-Oriented Concur-
rent Programming. Cambridge: MIT Press, 1987.

Index

>> notation 47

A (caret) 38, 49

A

ABC (abstract base class) 66

abstract base class 66

abstract class 61, 242

abstract data type 13
abstract method 64, 68

accessor method 95
Accounts framework 254
Adat3.27,,.29
Ada95 29

address book 152

aggregation 21, 28
vs. association 215

vs. container 78

agnosia, visual 146
AKO (A-Kind-Of) 14, 198, 199
Alexander, Christopher 241
aliasing 59, 150

analysis 88
analysis, object-oriented 110
Anderson, Bruce 241

ANSI standard Smalltalk 30, 126, 212

API 242, 253
APL 29
apparent down-call 68
application (in IBM Smalltalk) 26

application programming interface
Aristotle 30

array, literal 36

assembly 21
assignment 12, 34

subtyping and 201
association 72

See API

283

association class 217
attributes of an object 19
autonomy and concurrency 10

B
Baker garbage collector 190
base method 68
BASIC 182

Beck, Kent 82, 240

behavior of an object 19
black-box reuse 103, 250, 252, 253, 255
block 42

temporary variable 56, 276
broadcast pattern 276
broadcasting 228
broker object 219, 221, 230, 245, 254
buy 175

vs. inherit 99, 255
bytecodes 182

C
Celia?
C++ 23, 27, 29, 168

garbage collection and 192
method lookup 185
polymorphism and 206
pure virtual function in 64, 66

cache 184
callback 129, 138

handler 137
callbacks and events 137, 140
cascade 52
category theory 204
Cg See common graphics
characteristics of an object 19
CHOICES operating system 166

284

class 11

AbtConverter 217

AbtObservableObject 125, 276
Array 35, 49, 70, 208
Bag 208
Behavior 262

BitBlt 217
Boolean 32, 163
ByteArray 70, 223, 251
CgDrawable 138
CgSingleDrawingAreaApplication 138
CgWindow 138

Character 32, 35

Class 260
ClassDescription 262

Collection 69, 100, 208
CompiledMethod 182
ComposedTextView (in VisualWorks) 276

Controller (in VisualWorks) 125

CwButtonEvent 139

CwForm 129

CwMainWindow 129

CwMotionEvent 139

CwPushButton 137
CwText 129

CwTopLevelShell 129

Date 14, 56

Dictionary 70, 72, 208, 248

DirectedMessage 19
EsPoolDictionary 131, 276

EtWindow 133, 136

EtWorkspace 276
EventManager (in VisualSmalltalk) 125, 276

False 164

Float 14, 32, 33

IdentityDictionary 70, 74

Integer 14, 32, 33, 40

Magnitude 14, 15, 16, 61

Message 19

Metaclass 258

Model (in VisualWorks) 125, 276

Number 14, 16

Object 14, 61, 125, 184, 208, 259

OrderedCollection 70, 100, 135

Point 184, 187

Set 70, 208

SmallInteger 32, 40, 70, 73, 276

SortedCollection 70, 71, 135

Stream 70

String 32, 35, 70, 194, 208, 276

Symbol 35, 276

INDEX

TextWindow (in VisualSmalltalk) 276

Time 14

True 164

View (in VisualWorks) 125

WbApplication 136
WeakDictionary (EsWeakDictionary) 247
WidgetWindow 136

class (in other contexts) 13

class-based language 28

client/server computing 267
CLOS (Common Lisp Object System) 29, 31,

193

CUO, 2D
Coad, Peter 216

COBOL 29
collection 13, 69
collection-worker pattern 216

Collins, Dave 157

command pattern 217
as reification 216

comment, Smalltalk 36

common graphics 128
common widgets 128
CommonPoint 254

compiled method 182

composing objects 99
composite pattern 235
composite relationship 21

conceptual model 13, 89, 144, 266
concurrency 10
conformance 202

container 22, 69, 208

containers vs. aggregations 78

context (block) 55

contravariance of argument types 204
control flow 42

control object as reification 217
control, user interface 128

controller (in MVC) 117, 217

Cook, William 207

copy constructor, C++ 81

copying objects 79
CORBA 224, 254

coupling and inheritance 102

covariance of return types 204

CRC card 82, 174

Crick, Francis 83

Cunningham, Ward 82, 240

Cw See common widgets

INDEX 285

D

data type 13
DB2 (IBM Database 2) 244

dead cycle 189
debugger, Smalltalk’s 57
Deep Blue 213
deep copy 80
deferred routine or method 64
delegation 28
dependency pattern 120, 228
DeScribe 150
design 88
design templates 240
dictionary 72
dictionary, system 12
Dijkstra, Edsger 9
dispatcher 183
Display menu selection 49
display vs. execute 7, 49
displaying Smalltalk expressions 7
DOS 124
double dispatch pattern 172, 232
doughnut 174
duet pattern 172, 231

dynamic binding 28, 158
performance of 165

dynamic link library 193
dynamic SQL 244

E

effect 3, 6
Eiffel 23, 29, 168, 192

conformance in 205

deferred routine 64

polymorphism and 206
pre- and postconditions in 205

Einstein, Albert 9
Emerald, polymorphism and 206
encapsulation 1

Envy 54, 136
equality 73
equality vs. identity 73
event 138

handler 137

notification 121, 125
trace 114

events and callbacks 137, 140

exception, object-oriented 256, 276
Execute menu selection 49
execute vs. display 7, 49

executing Smalltalk expressions 7

F

factory 11, 13
factory method pattern 219, 220, 246

Feynman, Richard 157

filter (in client/server framework) 250

flow chart 105
FORTRAN 29

foundation classes 81, 212

fragmentation 192
framework 242

function, C++ 20

G
Gamma, Erich 214, 242

garbage collection 28, 187
incremental 190

GemStone 224
generation scavenging garbage collector 191
getter method 95, 109

ghost pattern 226
Goldberg, Adele 240

graphical user interface See GUI
graphics context 138
GUI (graphical user interface) 125, 127

builder 267
See also Ul

H

Hadamard, Jacques 9
handle-body 224
has-a relationship 21
hash 63, 75, 184
heap memory 192
Helm, Richard 214
heterogeneous vs. homogeneous containers 70
heuristic 213
Hollywood Principle 242, 252, 253
homogeneous vs. heterogeneous containers 70
homunculus 2
hook method 66, 252

|

IBM Smalltalk 19, 26, 30, 70, 125, 127, 128,

USN, XG, B37, WES, IS, D0), DI), 2338), 75)

identity management 243, 246
identity vs. equality 73
identity, object See object identity

image, Smalltalk’s 9, 12, 44, 181

immediate object 194
immutable object 5, 35
implementation 88

286 INDEX

implementation inheritance 199 M
implementedBySubclass method 64 MacApp 125, 254
implicit polymorphism 211 Macintosh 124, 150
inherit vs. buy 99, 255 Macintosh trash can 149
inheritance 13, 28 magic 10, 148

essential 200 main window, Motif 129

incidental 200 many-to-many relationship 217
invisible 200 mark-and-sweep garbage collector 188
multiple 99, 103 materialization 243, 244
private (C++) 104, 207 framework 253
repeated 104 mediator pattern 234
single 99 mega-scroll 250
subclass 200 member data (C++) 19
subtype 200 memory of an object 19
vs. subtyping 199 message 2, 18, 20
visible 200 binary 33

inspector, Smalltalk’s 51 flow diagram 114
instance 18 handler 183
interaction diagram 106, 114 keyword 33
interface of an object 19 unary 34
interface, Java 207 metaclass 43, 257

interpreter 182 metaphor 2, 8, 9, 146

Interviews 125 method 18, 20
isomorphism 154, 155 dispatch (lookup) 183

iterative development 89 lookup (dispatch) 161, 183
method, class 41, 43, 259

J method, design 82

Jacobson, Ivar 105, 114 method, instance 41
Java 23, 29, 168, 193 methodology, design 82

abstract method 64, 68 MFW (materialization framework) 253

polymorphism in 206 mix-ins 99
Johnson, Ralph 214, 241 modal user interface 140

model in MVC 116
K model-pane-dispatcher See MPD
Kasparov, Gary 213 model-view See MV

Kay, Alan 9, 10, 158, 240 model-view-controller See MVC

Klondike solitaire 149 Modula-2 3, 27, 29
Modula-3 168

IL polymorphism and 206
late binding 28 module, Modula-2 3

See also dynamic binding Morgan, Tom 8
lawyer pattern 123, 233 Motif 127, 182
lazy initialization 225 MPD (model-pane-dispatcher) 124

link attribute 217 multi-method 170, 204, 231

Linné, Carl von (Linnaeus) 14, 30 multiple inheritance 28
literal mutable object 5

array 276 MV (model-view) 125; 228

object 35 MVC (model-view-controller) 115, 125, 242,

string 276 254

INDEX 287

N implicit 169
Network OLE 254 inclusion 169
new, method 257, 259 multiple 172

signature-based 169
Oo substitutability and 200
object 1 pool dictionary 131, 276

database 254 POOL-I and polymorphism 206
elementary 32 POSIX 182

handler pattern 233 postcondition 205

identity 246 postponement as computing trend 158
vs. variable 20 precedence of messages 34

object identity 35, 73 precondition 205
Object Pascal 23 Presentation Manager 108, 124
object-based language 28 primitive method 193
Objective-C 23, 29 private members in C++ 207
object-oriented language 28 private method 94
objects from records pattern 220, 244, 251 Prolog 29
ObjectStore 224 protocol of an object 19

Objectworks 30 proxy pattern 224, 226

observer pattern 228 public member functions in C++ 19

OMT (Object Modeling Technique) 214 public method 89, 94
one-to-one relationship 233, 235 publish-subscribe pattern 228

OS/ZI127. 131 pure virtual 64, 243

shredder 149
overloading 158 R
overriding equality 75 record as object 222

record, traditional 220
P recursive descent parsing 237
package, Ada 3 Reenskaug, Trygve 124

PARC (Palo Alto Research Center) 9, 30, 124, reference semantics 80
182, 240, 242 reference-counting garbage collector 188

part-of relationship 21 reflection or reflectiveness 181, 187

pas de deux pattern 172, 232 reification 216, 250
Pascal 27, 29, 182 begets polymorphism 217

performance 165, 186 relational database 220, 244
design and 266 renaming, Eiffel 104

memory fragmentation and 192 resources, widget 130

method dispatch and 184, 186 responsibility-driven design 90

period as separator 37 return 3, 7

Personal Information Manager See PIM reuse of knowledge 14

philosophy as a conceptual model 157 reuse of software 265

PIM (Personal Information Manager) 151 RISC computers 160
Plato 30 Rolodex 2

pluggable view 140, 256 run-time type testing in C++ 169, 172

polymorphism 103, 158, 161, 176, 178, 255
ad hoc 169

apparent 169 script for message flows 114

in C++ 167, 168 search (in client/server framework) 243, 248

example of 163, 166, 169, 171, 180, 231, search as reification 216

236 selector 20

288

self (special variable) 37, 54

SELF language 22, 28

semi-space 190
services of an object 19

set 13

setter method 95
shallow copy 80
shell 129

signature, C++ 20

Simula-67 23, 29, 31

singleton pattern 230

Sketchpad 31

Smalltalk and polymorphism 206
Smalltalk/V 30, 108, 124, 125, 275
Smalltalk-72 30

Smalltalk-80 30, 31, 124, 140, 182, 183, 242,

275
smart container pattern 79, 213, 215

solitaire pattern 40, 230, 245

specialization 13
specification inheritance 200

spiral development 89
SQL (Structured Query Language) 244

broker 245, 254

state of an object 19
static SQL 244

stream 77

strong reference 247

Structured Query Language See SQL
subclass 13
subclass inheritance (subclassing) 200

subclassing vs. subtyping 200
subclassResponsibility method 64, 176, 214,

243, 276

substitutability and subtyping 200
subtype inheritance (subtyping) 200
subtyping vs. subclassing 199
super (special variable) 54

superclass 13
Sutherland, Ivan 31

T

taxonomy 13

telegram (message) 2

telephone book 152

template method 68
template, C++ 81

Tensegrity 224

tenured area (in garbage collection) 191

INDEX

timing diagram 114
tombstone 190
toolkit 128
transaction broker 245, 254
translation between people 7, 89, 99, 273
type 13
type hierarchy 199
type-checking 166

U

UI (user interface) 96, 115, 142

undo 150, 176

UNIX 127

unnamed instance variable 86

update (in client/server framework) 243, 251

use case 105

user exit 66

user interface See UI

Vv

value semantics 81

variable 11

class 39, 54
class instance 40, 231, 259, 275
formal argument 39
global 39, 48

instance 18, 39, 54

local or temporary 37, 39, 49
vs. object 20

Versant 224

version (in Envy) 54

view in MVC 116

virtual base class, C++ 104

virtual function table, C++ 185

virtual function, C++ 185

virtual list 250

virtual machine 181

VisiCalc 148, 149

visitor pattern 236

visual programming 137

VisualAge 26, 30, 120, 127, 137, 141, 150,
QU 2615275

VisualSmalltalk 30, 141, 233, 275

VisualWorks 30, 117, 124, 125, 127, 183, 217,
233, 275

Vlissides, John 214

y-table See virtual function table, C++

INDEX

WwW

walkback 33, 57

waterfall development 89
weak reference 247, 276

Wegner, Peter 27
white-box reuse 103, 250, 253, 255

whole-part relationship 21

widget 128
window handle 129

WindowBuilder Pro 127, 136, 137, 150

Windows 124, 127, 150

Klondike solitaire in 149

Windows95 150

Wirfs-Brock, Rebecca 89

Wolf, Kirk 68

Word, Microsoft 150

x

Xevent 137

X server 137

X/Motif 125

Xlib 128

xm (X/Motif) 128

Xt Intrinsics 128

X-Windows 124, 128

Y
yourself method 52
yo-yo method 68

Z

zero, one, infinity” rule 150

289

—
—

7
)

_
—

h
)
l
|
l
U
C
U
C
O
C
C
O
N
R

: : 2 — : z 2

5

:

SMALLTALK

".,. approachable, literate, fun, accurate and different ... the writing is
of the highest calibre.”

. — Ralph Johnson, University of Illinois

"This is a very sound and well-written book ... from one of the most
experienced Smalltalk educators."

— Dave Thomas

Object Technology International, Inc.

",,. one of the best design-oriented books that | have read to date."
— Eric Clayberg, Objectshare Systems, Inc.

",.. the scope and level are very interesting ... a very useful collection of

things which are spread around and hard to find ..."

— Tom Morgan, Brooklyn Union

Face a book that balances hands-on Smalltalk programming with

object-oriented design in a way that lets you see how they work

hand-in-hand. By focusing on practical alternatives and trade-offs, it

demonstrates how to make design choices the way experts do. if

you're a programmer or object designer working on Smalltalk pro-

jects, this book is for you. Project managers, system architects, and

5 | | t | L modelers will also benefit from this enjoyable, unique book.

aale 6) / What's inside: * No-nonsense introduction to ihe

Smalltalk language

Ob . ° The basics: objects, classes and inheritance
oC 5, e Abstract classes, containers and object identity

¢ Using polymorphism to improve design

and Design NEW NEW meena
isic application

LIV COMLA +r interfaces
iy ae SMALLT, OBJ 100496 Chamond Liu PRENTICE Fortune 1000 companies, specializes

frameworks in Smalltalk. He is an

nacher of Smalltalk, C++ and object- NOL32b83353 ‘ded (BM earache ated aneeeet
Day CATALYS' t BOOKSHO J

SMALL
>>>$44,00 IS!) LI Ce TALK. OBJECT

ISBN: 0132683350 _)
ail @-13-268335-8 a CLASS: CLAN. >

MANNING

|| ITP
5 IAI vs Manning ISBN: 1-884777-27-9 Hil iil | Pa

P-H ISBN: 0-13-268335-0 g I, 7 780132'683357! 3

