
�6�5� $OSHUW� .� %URZQ� 	 %� :RROI ������� ��������

05/09/97 10:08 1

STRATEGY (DP 315) Object Behavioral

Intent

Define a family of algorithms, encapsulate each one, and make them interchangeable.
Strategy lets the algorithm vary independently from clients that use it.

Structure

Discussion

The Strategy pattern is used when we wish to encapsulate an algorithm in a class, or
more precisely, when we wish to encapsulate multiple variations of a particular service,
system function, or algorithm in multiple separate classes. When would we want to do
this? Well, many systems must choose among multiple strategies based on the context or
situation, and many interactive applications allow users to select one of several possible
different algorithmic strategies. For example, storage/compression programs, which al-
low users to save files in compressed formats, often allow users to select which compres-
sion standard to use. At times, there are space-vs.-speed considerations in making this
selection: one algorithm operates faster than another but has greater memory require-
ments. At times the choice involves a space-vs.-quality trade-off; this is seen, for exam-
ple, when compressing video data: some algorithms retain high quality video integrity
but result in large data files which require high bandwidth playback capabilities,
whereas other algorithms may be somewhat lossy yet result in smaller file sizes and
simpler playback requirements. Thus, compression programs must allow users to select
the algorithm which best matches their needs. The question at hand is, How do we im-
plement, and programmatically choose among, the various algorithms, each of which
may be quite complex, within an application.

Let’s answer this by considering another example loosely fashioned after the Design
Patterns example on page DP 315. Here, a document editor operates on a composition
object containing text and graphics; the composition is responsible for formatting itself
for output and can choose among several layout strategies based on user preference. One
approach to implementing several strategy choices in such situations would be to “bloat”

Strategy

algorithmInterface

algorithmInterface

ConcreteStrategyA

algorithmInterface algorithmInterface

ConcreteStrategyB ConcreteStrategyC

Context

contextInterface

strategy

�6�5� $OSHUW� .� %URZQ� 	 %� :RROI ������� ��������

2 05/09/97 10:08

the implementation of the responsible class itself, by implementing the various algo-
rithm choices as individual methods therein; in the composition example, this would
mean incorporating the various layout algorithms as distinct methods in the composition
class definition. Then, each time this functionality is required, the composition would
invoke the appropriate method via a set of conditional statements. Of course, with re-
gard to extensibility, this implies revisiting this conditional if we add a new strategy in
the future.

Instead, we can invoke the Strategy pattern to provide a more modular and extensible
solution. Here, we’ll (1) implement each formatting strategy/algorithm in its own—
separate—class, and (2) have the composition point to an instance of one of these Strat-
egy classes and call upon this separate “formatter” object to perform the layout function.
Thus, the formatting function is actually performed by an external helper object. The
choice of formatting algorithm is effected simply by instantiating one or another of the
layout/Strategy classes. This implies the strategy may be changed on the fly by a user
(e.g., by menu selection), or programatically based on some changing condition, at run-
time. Implementation-wise, doing so entails simply creating a new Strategy object and
pointing to it. Now, each time the layout has to be recomputed, the client (the composi-
tion) invokes sends a single message to its formatter, as opposed to repetitively execut-
ing a conditional to decide which message to send itself.

As new formatting requirements arise later in the life of our application, it will be an
easier task to implement and integrate such new algorithms since they have been sepa-
rated into distinct classes. The composition implementation is also easier to understand
and maintain because it does not include all of the various formatting algorithms. In-
stead, in the best tradition of object-oriented design, it merely communicates with some
line-breaking object using an abstract interface and it really doesn’t care what sort of
line-breaking it is, as long as it adheres to this interface.

Let’s take a quick look at the difference in the code required to invoke the line-breaking
functionality (a) if we code the various line-breaking algorithms as separate methods
within the Composition class, and (b) when using the Strategy pattern (this corre-
sponds to the C++ code examples on DP 318, with some modification). Suppose the
Composition class implements a repair method which is invoked to update the
entire layout of the document, and which, in turn, calls the layout code.

Without the Strategy pattern

(Of course, there would be a number of ways to implement this; we’ll look at one simple
approach.) Here, Composition contains an instance variable named formatting-
Strategy which determines the algorithm/method to invoke:

�6�5� $OSHUW� .� %URZQ� 	 %� :RROI ������� ��������

05/09/97 10:08 3

Composition>>repair
"Without the strategy pattern."
formattingStrategy == #SimpleStrategy

ifTrue: [self formatWithSimpleAlgorithm]
ifFalse: [formattingStrategy == #TeXStrategy

ifTrue: [self formatWithTexAlgorithm]
ifFalse: [...]

Using the Strategy pattern

Here, Composition contains an instance variable named formatter which points
to its layout object. The Composition couldn’t care less about the exact class of this
helper object, merely that it responds to the format: message:

Composition>>repair
"With the Strategy pattern."
formatter format: self.

Here’s the structure of this application after applying the Strategy pattern.

Sample Code1

Let’s look more in depth at another example. Suppose we have a financial analysis ap-
plication. It is capable of interacting with the user, on the one hand, and a database, on
the other, to allow the visualization of various financial data. For instance, a user could
request a report on the gross income of her company for the past four quarters. Once this
information has been retrieved from the database, the application is capable of visualiz-
ing it in various formats: as a bar chart, a line graph, or a pie chart, among others. The
user may select a display format before requesting specific data (e.g., set the application
to show subsequent data as bar charts) and may also view the same set of data in various

1 In this pattern, we’ve switched the order of the Sample Code and Implementation sec-
tions: first, we’ll present the code for an example application, and in the later section
we’ll discuss the implementation issues raised by this example.

ArrayFormatterTeXFormatter

formatter

format: format: format:

format: aComposition

FormatterComposition

repair
traverse

formatter format: self
SimpleFormatter

�6�5� $OSHUW� .� %URZQ� 	 %� :RROI ������� ��������

4 05/09/97 10:08

formats (e.g., once a report, such as the past-four-quarters report, has been selected and
formatted as a bar chart, the user may ask to see the same data as a line plot).

So, we start by implementing a FinancialAnalyst class. For purposes of our exam-
ple, we’ll do this the simplest way: since the application is interactive, we’ll make
FinancialAnalyst a subclass of ViewManager (our example will be portrayed
with Visual Smalltalk code). The Financial Analyst window contains a GraphPane
upon which the financial data will be graphed—this will be referenced by the
graphPane variable, set in the open method in which the window is constructed.
FinancialAnalyst also contains an instance variable to hold the data retrieved
from the database prior to invoking the graph-drawing functionality. A third instance
variable will point to the Analyst’s Grapher object to which we delegate the actual
task of drawing the graphic visualization on graphPane . We’ll explain the
graphMessage variable later. So far, we have the following class definition and
methods:

ViewManager subclass: #FinancialAnalyst
 instanceVariableNames: 'graphPane data grapher
graphMessage'
 classVariableNames: ''
 poolDictionaries: ''

FinancialAnalyst>>open
"Create the subpanes for, and open, the Analyst window."
self

label: 'Financial Analyst';
addSubpane:

((graphPane := GraphPane new)
owner: self;
...).

"Setup a default grapher:"
self grapher: (LineGrapher new pen: graphPane pen).
self openWindow

FinancialAnalyst>>grapher: aGrapher
grapher := aGrapher

Now, rather than implementing a set of graphing methods within the Financial-
Analyst class, we define a new subhierarchy of Grapher classes, as follows:

Grapher

BarChartGrapher LineGrapher PieChartGrapher

�6�5� $OSHUW� .� %URZQ� 	 %� :RROI ������� ��������

05/09/97 10:08 5

Grapher is an abstract superclass with (currently) three concrete subclasses. When the
user requests financial information to be portrayed as pie charts, FinancialAnalyst
instantiates PieChartGrapher and installs that instance as its grapher object.
Similarly for line graphs and bar charts. When the graph must be drawn,
FinancialAnalyst sends a message to its Grapher object to perform this task.

Let’s start to define the abstract superclass of the Grapher hierarchy:

Object subclass: #Grapher
instanceVariableNames: 'pen'
classVariableNames: ''
poolDictionaries: ''

Grapher>>pen: aPen
"Draw using aPen"
pen := aPen

All Grapher objects use a Pen instance for their drawing. This works fine for our ex-
ample application, where graphs are drawn on a GraphPane (which has its own Pen).
This also means that the Grapher classes can be reused in applications involving any
classes which incorporate a Pen, such as Bitmap and Printer .

The Analyst window has two menus: one to let the user select the type of report she
wishes to see (e.g., past four quarters gross, past four quarters net, year-to-date sales,
etc.), and another to choose the graph type. Each time a new report is selected,
FinancialAnalyst retrieves the appropriate data from the database and tells its
grapher to draw the graph. Each time a new graph type is selected from the menu,
FinancialAnalyst creates a new Grapher object and tells it to re-graph the cur-
rent data. Suppose the graph selection menu looks like this:

The methods corresponding to these menu items are as follows:

FinancialAnalyst>>useBarChart
"The user has selected 'Bar Chart' from the 'Graph
 Type' menu. Create a new BarChartGrapher."
grapher := BarChartGrapher new

pen: graphPane pen.
self drawGraph

�6�5� $OSHUW� .� %URZQ� 	 %� :RROI ������� ��������

6 05/09/97 10:08

FinancialAnalyst>>useLineGraph
"The user has selected 'Line Graph'."
grapher := LineGrapher new

pen: graphPane pen.
self drawGraph

FinancialAnalyst>>usePieChart
"The user has selected 'Pie Chart'."
grapher := PieChartGrapher new

pen: graphPane pen.
self drawGraph

Notice that when a graph type is selected, we not only instantiate the appropriate
Grapher subclass, but also invoke drawGraph . This is due to what we noted above,
that is, when a new graph type is chosen, the current data is re-graphed using the new
graph type. There are two parts to making this work. First, when any report type is re-
quested, FinancialAnalyst “remembers” the name of the method used to perform
the graphing portion of that report; it does so by saving the method’s selector in the
variable graphMessage (we’ll see this soon). Then, when a new graph type is chosen,
FinancialAnalyst invokes its drawGraph method, whose definition follows; it is
in drawGraph that the grapher/Strategy object is invoked.

FinancialAnalyst>>drawGraph
graphMessage notNil

ifTrue: [grapher
perform: graphMessage
with: data]

We now need a set of methods for the various reports that users can request. For each
report, we’ll have two methods: one in FinancialAnalyst for retrieving the appro-
priate data from the database, and a second in the Grapher classes for plotting the
graph of this information. Each Grapher subclass must implement its own version of
each of the latter plotting methods. We’re not going to show the details of actually plot-
ting the graphs; we leave that to our readers. But, we want to show the overall structure
of the code. We start with the report methods defined in FinancialAnalyst and the
drawing methods in the abstract Grapher superclass; we’ll generically define all the
plotting methods in Grapher so as to identify which methods must be implemented by
its concrete subclasses. In the following, note how each report saves the drawing
method’s selector in graphMessage .

FinancialAnalyst>>past4Qgross
"User selected the 'Gross income for the past four
 quarters' report from the 'Report Type' menu. Gather
 the data from the database; then graph it"
data := FinancialDatabase current past4QGross.
graphMessage := #drawPast4Q:.
self drawGraph

�6�5� $OSHUW� .� %URZQ� 	 %� :RROI ������� ��������

05/09/97 10:08 7

FinancialAnalyst>>salesYTD
"Retrieve the year-to-date sales info from
 the DB and graph it"
data := FinancialDatabase current salesYTD.
graphMessage := #drawSalesYTD:.
self drawGraph

And likewise for each report made available by the Financial Analyst. Now we need the
corresponding plotting messages in Grapher :

Grapher>>drawPast4Q: data
"Draw the graph for the past four quarters'
 financial data"
self implementedBySubclass

Grapher>>drawSalesYTD: data
"Draw the graph for the year-to-date sales data"
self implementedBySubclass

Next, we define the Grapher subclasses including the concrete implementations of the
plotting messages:

Grapher subclass: #BarChartGrapher
instanceVariableNames: ''
classVariableNames: ''
poolDictionaries: ''

BarChartGrapher>>drawPast4Q: data
"Draw a bar chart depicting the quarterly results
 information contained in 'data'."
...

BarChartGrapher>>drawSalesYTD: data
"Draw a bar chart for the year-to-date
sales data showing a bar per month."
...

Grapher subclass: #LineGrapher
instanceVariableNames: ''
classVariableNames: ''
poolDictionaries: ''

LineGrapher>>drawPast4Q: data
"Draw a line plot depicting the quarterly results
 information contained in 'data'."
...

LineGrapher>>drawSalesYTD: data
"Draw a line graph for the year-to-date
sales data."
...

�6�5� $OSHUW� .� %URZQ� 	 %� :RROI ������� ��������

8 05/09/97 10:08

And so on. The generalized structure of the Strategy pattern appears in the Structure
section—relating that diagram to our example, the FinancialAnalyst class corre-
sponds to Context , and Grapher represents the abstract Strategy , defining the
common interface for all concrete Grapher (Strategy) subclasses.
BarChartGrapher , LineGrapher , and PieChartGrapher map to
ConcreteStrategyA , B, and C.

There’s a lot more in this Financial Analyst example other than the Strategy pattern. For
instance, we sent a message to the Grapher object using perform:with: , and we
assumed the database object to be a Singleton (and retrieved it from its class with the
message FinancialDatabase current). But, with regard to the Strategy pattern,
the important points are that we have a separate strategy object (defined by the
Grapher classes) which implements the various graphing strategies, and the applica-
tion delegates the graphing functionality to this helper object rather than implementing
it itself.

Implementation

Here are several implementation issues raised by our example.

implementedBySubclass and subclassResponsibility

Notice that methods in the abstract Grapher class are defined with a single statement:
self implementedBySubclass . Unfortunately, there is nothing in Smalltalk
which enforces a class’ “abstractness”—that is, there is nothing in the language or envi-
ronment which prevents a client from creating an instance of the Grapher class which
we intend to be an abstract class. By convention, programmers add class and code com-
ments to let other programmers know a class is intended to be an abstract superclass—
that is, it is intended not to be instantiated, but rather serves as a template for its con-
crete subclasses, defining (at least a portion of) the generic interface protocol for its sub-
hierarchy. But, there is nothing that actually prevents the instantiation of this class.

However, there is a mechanism by which we may discourage the instantiation of a class.
If a class is intended never to have instances, it may define its generic protocol via
methods which include the expression self implementedBySubclass or self
subclassResponsibility , depending on the Smalltalk dialect: in Visual Small-
talk, we use implementedBySubclass ; in VisualWorks and IBM Smalltalk, the
equivalent message is named subclassResponsibility . In all cases, the method
is defined in the Object class, and when invoked, causes a walkback. Thus, for exam-
ple, if some code creates an instance of Grapher and sends it the drawPast4Q: mes-
sage, the user will get a walkback and the programmer will be “made aware” of the error
of his ways. In a similar fashion, including self subclassResponsibility (or
self implementedBySubclass) in an abstract superclass’ method forces immedi-
ate subclasses to implement their own version of that method—if they don’t override the

�6�5� $OSHUW� .� %URZQ� 	 %� :RROI ������� ��������

05/09/97 10:08 9

otherwise inherited implementation, a walkback will also be produced when a client
sends that message. At a minimum, including this message in an abstract class’ method
acts as documentation for other programmers, informing them that (a) the class is in fact
designed to be abstract, and (b) the programmer creating new subclasses must override
the methods so defined. Thus, using subclassResponsibility is good program-
ming practice.

An alternative approach to preventing the instantiation of an abstract class would be to
override the class’ instance creation method as follows:

AnAbstractClass class>>new
self error: 'AnAbstractClass is an abstract class. ',

'You cannot create instances of it!'

The error: message will, of course, cause a walkback. One consequence of such an
approach, however, is that subclasses of AnAbstractClass cannot invoke their ab-
stract class’ new method via the use of super , as Smalltalk programmers often do:

AnAbstractClassSubclass class>>new
^super new initialize

Doing so would result in invoking the error: code which causes a walkback. Instead,
subclasses would have to send the basicNew message defined in the Behavior class
(and thus inherited by all class objects):

AnAbstractClassSubclass class>>new
^self basicNew initialize

This solution, as well as other approaches for dealing with the abstract class instantia-
tion problem, are discussed in detail by LaLonde (1994, see sections 6.1.9–6.1.10). Liu
(1996) also discusses subclassResponsibility and other approaches for imple-
menting abstract classes in Smalltalk.

Coupling the Context and Strategy Objects

When the FinancialAnalyst needs to graph its data, it calls upon its Grapher
object. An implementation issue that arises here is how to structure the interface be-
tween these two objects (and, in the general case, between the Strategy and Context ob-
jects) so as to share information. In fact, the issue of how to couple two objects such that
they can share information is involved in many of our patterns. As discussed in Design
Patterns, there are several possible approaches.

In the FinancialAnalyst case, the information to be shared is the Pen with which
the Grapher should draw, and the data to plot. These represent different categories of
shared information: static—that which will not change during the running of the appli-
cation (the Pen), and dynamic—that which changes over time (the data). In the static
case, we can inform the helper object, in this case the Grapher , once and be done with

�6�5� $OSHUW� .� %URZQ� 	 %� :RROI ������� ��������

10 05/09/97 10:08

it. On the other hand, we may need to make the helper aware of dynamic information
each time the helper is invoked.

Message Arguments. One possibility is to have the FinancialAnalyst pass all in-
formation to Grapher operations in the form of message arguments, thereby keeping
the two objects loosely coupled. Thus, a message sent to the Grapher might look like:

FinancialAnalyst>>drawGraph
grapher drawPast4Q: data using: graphPane pen

Of course, in this case, we would have defined the graph-drawing methods in the
Grapher classes with two arguments, such as:

Grapher>>drawPast4Q: data using: aPen

In our FinancialAnalyst example, we actually used the perform:with: ap-
proach to generically send all graph-drawing messages to the Grapher , so the mes-
sage-send with the additional argument would look like:

FinancialAnalyst>>drawGraph
grapher

perform: graphMessage
with: data
with: graphPane pen

And since we also included a guard clause to verify graphMessage is not nil , the fi-
nal method would look like:

FinancialAnalyst>>drawGraph
graphMessage notNil

ifTrue: [grapher
perform: graphMessage
with: data
with: graphPane pen]

However, the Pen object is a static bit of shared data. Thus, we can tell the Grapher
object about this once, up front, rather than each time we draw the graph. This is what
we did above—we passed the Pen to the Grapher as soon as we had instantiated it, as
in:

FinancialAnalyst>>useBarChart
grapher := BarChartGrapher new pen: graphPane pen.
self drawGraph

The drawGraph method passes along the dynamic data object which must be sent
each time we draw a graph, but the Pen can be set up once. By the way, we also could
have set this up using an instance-creation method other than new in Grapher , as fol-
lows:

�6�5� $OSHUW� .� %URZQ� 	 %� :RROI ������� ��������

05/09/97 10:08 11

Grapher class>>using: aPen
"Instance creation method."
^self new pen: aPen

FinancialAnalyst>>useBarChart
grapher := BarChartGrapher using: graphPane pen.
self drawGraph

Self Delegation. Another possible approach would have the FinancialAnalyst
pass itself as an argument to the Grapher and let the Grapher explicitly request any
data it needs from the FinancialAnalyst by direct message-sends. Beck (1997) re-
fers to this as self delegation. With this approach, when the FinancialAnalyst
wants to draw a graph, it sends:

FinancialAnalyst>>drawGraph
graphMessage notNil

ifTrue: [grapher
perform: graphMessage
with: self]

The Grapher , thus supplied with a pointer to the FinancialAnalyst (via the
with: self), can send the FinancialAnalyst messages asking for information
such as the data to plot and the Pen to use to draw. So, we would have defined the
graph-drawing methods in the Grapher classes with one argument, the Financial-
Analyst , as in this example:

BarChartGrapher>>drawPast4QFor: aFinancialAnalyst
| data |
data := aFinancialAnalyst data.
"Draw the bar chart:"
...

In fact, if we don’t adopt the approach of setting up the Grapher object with its draw-
ing Pen at instance-creation time, this method might look like:

BarChartGrapher>>drawPast4QFor: aFinancialAnalyst
| data pen |
data := aFinancialAnalyst data.
pen := aFinancialAnalyst penToDrawWith.
"Now, draw the bar chart:"
...

Of course, the FinancialAnalyst class must now define a more elaborate interface
providing access to its internal objects (e.g., methods such as data and
penToDrawWith) . As a result, (a) FinancialAnalyst ’s encapsulation is
“weakened” (it now allows any outsider access to its internal objects rather than pro-
viding them as arguments in messages it chooses to send) and (b) the
FinancialAnalyst and its Grapher are more tightly coupled. Thus, in the current

�6�5� $OSHUW� .� %URZQ� 	 %� :RROI ������� ��������

12 05/09/97 10:08

example, this may be a less desirable solution, but in cases where lots of information
must be shared, it may be a preferable approach.

Back Pointer. A slight variation on the self-delegation option would have the Grapher
object maintaining a back pointer to the FinancialAnalyst in the form of an in-
stance variable. Actually, implementation-wise, it will be a minor variation, but con-
ceptually it’s somewhat different: we can consider the FinancialAnalyst itself as a
piece of static information to be shared with the Grapher object—thus, we can share
this once, at Grapher instance-creation time. Then, any dynamic information the
Grapher requires can be requested on the fly. Thus, the Grapher class would be de-
fined with a financialAnalyst instance variable, and would implement an associ-
ated setter message and a new instance creation method.

Object subclass: #Grapher
instanceVariableNames: 'financialAnalyst'
classVariableNames: ''
poolDictionaries: ''

Grapher>>financialAnalyst: aFinancialAnalyst
financialAnalyst := aFinancialAnalyst

Grapher class>>for: aFinancialAnalyst
"Instance creation"
^self new financialAnalyst: aFinancialAnalyst

This implementation would, of course, be inherited by Grapher ’s concrete subclasses.
This changes the instance creation message-send as follows:

FinancialAnalyst>>useBarChart
grapher := BarChartGrapher for: self.
self drawGraph

Now, messages sent by the FinancialAnalyst to its Grapher are simpler: they
contain no arguments:

FinancialAnalyst>>drawGraph
graphMessage notNil

ifTrue: [grapher perform: graphMessage]

As in the self-delegation case, the Grapher requests information directly from its asso-
ciated FinancialAnalyst , but now via messages sent to its financialAnalyst
instance variable:

�6�5� $OSHUW� .� %URZQ� 	 %� :RROI ������� ��������

05/09/97 10:08 13

BarChartGrapher>>drawPast4Q
| data pen |
data := financialAnalyst data.
pen := financialAnalyst penToDrawWith.
"Now, draw the bar chart:"
...

One potential drawback to this approach is that, since the Strategy object (the
Grapher) directly points to a single Context object (the FinancialAnalyst), the
Strategy object can no longer be shared among different Contexts. Therefore, there may
exist applications for which self-delegation is preferable to a persistent back pointer.

Multiple Simultaneous Strategies, One Active at a Time

Sometimes an application can be linked to multiple Strategy objects simultaneously, al-
though only one is active at any point in time. That is, rather than creating a new Strat-
egy object each time the algorithm or strategy changes, all of the possible Strategy in-
stances can be created when the application starts, and the application can switch among
them. This can be done when the extra instances are not expensive, memory-wise, to
keep around, and is preferable when instantiating and initializing Strategy objects is ex-
pensive time-wise. This approach implies some way of “remembering” the instantiated
Strategy objects, that is, of keeping pointers to them in the main application. One ap-
proach would be to have an instance variable reference a Dictionary containing all
of the Strategy objects and another variable to point to the currently active instance.

Exemplifying this approach with the Financial Analyst, we’ll continue to use the
grapher variable to point to the active Grapher object. The Dictionary contain-
ing all Grapher instances will be referenced by a variable named allGraphers :

ViewManager subclass: #FinancialAnalyst
instanceVariableNames:

'graphPane data grapher graphMessage allGraphers'
classVariableNames: ''
poolDictionaries: ''

We add a method to initialize allGraphers and we modify the open method to in-
voke this initialization method:

FinancialAnalyst>>initializeGraphers
"Set up the Dictionary containing all my Strategy

objects."
allGraphers := Dictionary new.
allGraphers

at: #BarChart put: (BarChartGrapher for: self);
at: #LineGraph put: (LineGrapher for: self);
at: #PieChart put: (PieChartGrapher for: self)

�6�5� $OSHUW� .� %URZQ� 	 %� :RROI ������� ��������

14 05/09/97 10:08

FinancialAnalyst>>open
"Create the subpanes for, and open, the Analyst window."
self

label: 'Financial Analyst';
addSubpane:

((graphPane := GraphPane new)
owner: self;
...).

"Setup all of my graphers and a default grapher:"
self

initializeGraphers;
grapher: #LineGraph;
openWindow.

We’ll change the grapher: setter method to require a Symbol as its argument rather
than a Grapher instance. The Symbol specifies the key in the allGraphers
Dictionary . We’ll also move the drawGraph message-send here so each time we
change the graphing strategy, we redraw the graph (if possible):

FinancialAnalyst>>grapher: aSymbol
"Change my current graphing strategy. Also redraw
 the current data (if any) using the new grapher"
grapher := allGraphers at: aSymbol.
self drawGraph

Finally, when the user selects an item from the “Graph Type” menu, we invoke
grapher: , as follows:

FinancialAnalyst>>useBarChart
self grapher: #BarChart

FinancialAnalyst>>useLineGraph
self grapher: #LineGraph

FinancialAnalyst>>usePieChart
self grapher: #PieChart

Domain-Specific Objects as Strategy Objects

A Strategy object need not merely reify a particular algorithm; it may also be a bona fide
application-specific object that also assumes a Strategy role. Here’s an example from a
financial domain that demonstrates this approach. Our example application concerns
mortgages. Let’s start with a simple scenario: a potential customer walks into a bank
and wants to know how much her monthly payments would be for a loan of a specific
amount. The problem is, there are many different types of mortgages and each results in
different monthly payments for the same prinicipal amount. So, imagine a Mortgage
Calculator application: the user interacts with the system by selecting a mortgage type, a
down payment amount, and the length of time she wants the mortgage to run, and the

�6�5� $OSHUW� .� %URZQ� 	 %� :RROI ������� ��������

05/09/97 10:08 15

application calculates the monthly payments. This sort of application could be used in
kiosks on a banking floor or on a bank’s Web site. The structure for this application
might look like this:

OneYearARM

calculate...

calculateMonthlyPaymentFor: years
 downPayment: downPaymentAmount

MortgageMortgageCalculator

calculateMonthlyPayment

...

FiveYearARM

calculate...calculateMonthlyPaymentFor:
 downPayment:

FixedRateMortgage

^mortgage
 calculateMonthlyPaymentFor: years
 downPayment: downPayment

years
downPayment

mortgage

...

When the user selects a mortgage type, one of the Mortgage subclasses is instantiated
(by the way, ARM stands for “adjustable rate mortgage”). Then, to determine the
monthly payments, the Mortgage instance itself acts as a Strategy object for the appli-
cation and performs the algorithmic calculation—the choice of algorithm is coincident
with the choice of Mortgage-type. So, domain-specific objects that have other responsi-
bilities may also act as Strategies.

Known Smalltalk Uses

ImageRenderer

In VisualWorks, ImageRenderer “is an abstract class representing a technique to
render an image using a limited palette” (from the class comment, emphasis ours). An
ImageRenderer paints an image on a graphics device using an appropriate color pal-
ette for that device (e.g., some screens support 256 colors whereas others support only
16; the ImageRenderer must map colors in the image to those in the supported pal-
ette). Concrete subclasses of ImageRenderer encapsulate different rendering algo-
rithms by providing unique implementations of a common rendering message protocol.
ImageRenderer subclasses include NearestPaint , OrderedDither , and
ErrorDiffusion— again, from the class comment: “Among the subclasses are map-
ping techniques such as NearestPaint and halftoning techniques such as
OrderedDither and ErrorDiffusion .” Different graphics devices (e.g., printers
and the screen) instantiate different ImageRenderer subclasses to perform rendering
depending on their capabilities (gray-scale vs. color, color/gray-scale depth), but code
that sends messages to these rendering objects doesn’t care what type of
ImageRenderer it’s talking to because they all implement the same message
interface.

�6�5� $OSHUW� .� %URZQ� 	 %� :RROI ������� ��������

16 05/09/97 10:08

View-Controller

In the Model-View-Controller (MVC) framework, the view-controller relationship is an
example of the Strategy pattern. A View instance (representing a screen widget) uses a
Controller object to handle and respond to user input via mouse or keyboard. For a
View to use a different user-interaction strategy, it can instantiate a different
Controller class for its controller object. This can even occur at runtime to change
the user interaction style on the fly; for example a View can be disabled (so it does not
accept any user input) by instantiating and switching to a controller that ignores input
(this example is also mentioned on DP 6).

Insurance Policy Policies

Philip Hartman of ISSC Object Technology Services used the Strategy pattern in a
Smalltalk application for an insurance company, in order to implement different busi-
ness logic for individual automobile insurance policies. One requirement of the applica-
tion was that the logic for calculating the cost of insurance had to vary by insurance
company subsidiary and/or by the state of residence of the policy holder. For example,
“points” are charged against drivers based on violations and accidents, and different
subsidiaries and states use different rules for determining how, and how many, points
are assigned. In many cases, this has a large effect on the premium charged. In the im-
plementation, a Policy object represents an insurance policy and points to an instance
of one of the concrete subclasses of PointAssignmentRule . Each
PointAssignmentRule subclass encapsulates a different algorithm for assigning
points to drivers on the policy. Thus, by instantiating one or another of these classes, the
policy logic could be made to vary, without varying the code of the Policy .

Related Patterns

The careful reader will notice that the structure diagrams for Strategy are isomorphic to
those for the Builder pattern. We might even consider Builder a specialization of Strat-
egy. The difference in the patterns is when and where they are used and the functionality
of the helper objects. In the Builder pattern, the helper object has the job of creating a
Product in a step by step fashion: the Director object iteratively calls upon it to build
subcomponents and then once for the final Product. In the Strategy pattern, the Strategy
object acting as an external helper to a Context object is intended to encapsulate any al-
gorithm—not necessarily for creational purposes, but for any runtime service. Multiple
algorithms are encapsulated outside of the “main” Context object and each is reified as
an object. The Strategy object is called on periodically, as needed, to perform a complete
standalone task in one shot.

Strategy and Builder are also related structurally and thematically to Abstract Factory.
In the latter, an external helper object is called upon to create some Product on behalf of
the main application as well. There may be multiple factory objects to choose from and
they all provide the same abstract interface. Thus, the factory’s client doesn’t know or

�6�5� $OSHUW� .� %URZQ� 	 %� :RROI ������� ��������

05/09/97 10:08 17

care the exact class of the factory. It just sends a generic message to its current factory
when a particular type of object has to be constructed. Again, this is similar in structure
to the Strategy pattern, but is divergent in intent and when and where it is used: an Ab-
stract Factory is used for one-shot object creation, rather than periodic algorithm execu-
tion as in Strategy.

Admittedly, the lines between these patterns is sometimes blurry. In our Financial Ana-
lyst example, the Grapher Strategy objects might be said to be producing a product:
each produces a graph based on the data it receives. But, Strategy may be used for any
other runtime service when that service may be implemented in multiple ways.

