
�6�5� $OSHUW� .� %URZQ� 	 %� :RROI ������� ��������

04/23/97 08:58 1

STATE (DP 305) Object Behavioral

Intent

Allow an object to alter its behavior when its internal state changes. The object will ap-
pear to change its class.

Structure

Discussion

In many circumstances, an object’s behavior will change over time in response to re-
quests that are made of that object. In effect, the “history” of the object’s life determines
how it behaves in the present. We have all seen code that looks like the following:

Order>>submit
self state == #created

ifTrue:[self error: 'Must be validated first'.
self state == #validated

ifTrue:[OrderProcessor submitOrder: self.
 self state: #submitted].

self state == #submitted
ifTrue:[self error: 'Can''t submit this order twice'].

self state == #deleted
ifTrue:[self error: 'Order has been deleted.'].

Code like this serves as a warning to the reader, saying “This object has some significant
history. You ignore it at your peril.” Many design methods represent this kind of
changing behavior of an object through state transition diagrams that represent the dif-
ferent conditions or “States” of an object, the events that cause transitions between those
states, and the actions that occur when a transition is made. However, while the design
diagram may nicely sum up this kind of information, that clarity is usually lost in the
translation to code that looks like the previous example.

state

request

^self state handleRequest

Context

ConcreteStateA

handleRequest handleRequest

ConcreteStateB

State

handleRequest

�6�5� $OSHUW� .� %URZQ� 	 %� :RROI ������� ��������

04/23/97 08:58 2

The State pattern brings this kind of clarity back to the code. With the State pattern,
each of the states is represented as a separate object. The Client initializes itself with its
initial-state object. To transition to a new state, it replaces its state object with an appro-
priate new one. When the Client needs to make decisions or provide behavior based on
its state, it does so by delegating to its state object. In this way, the Client’s implementa-
tion remains relatively free of state dependencies because it delegates them to its col-
laborating state objects.

The key to the State pattern lies in separating the state-dependent behavior of the client
into a separate set of State objects. The State objects implement that part of the system’s
behavior that is dependent on the current state of the client, rather than the client itself.
States are defined in a hierarchy where each subclass represents an individual state. The
client is implemented in a Context class that collaborates with the State hierarchy.
When the Context needs to handle a request that is state-dependent, it delegates the re-
quest to its current State. Each State subclass implements its handling of the request
differently.

Not a Change of Class

The Intent says that the State pattern allows an object to appear to change class when its
internal state changes. Some developers may prefer to look at the problem that way, but
the truth is simply that the object has a lot of behavior that depends on its internal state,
so much so that it acts very differently when its state changes. These differences may be
so profound that the object acts like a totally different specialization of its type, but not
all examples of the State pattern are quite so dramatic.

The basic issue is not so much that the object appears to change class, but that the ob-
ject’s external behavior is highly dependent on its internal state. Most objects have in-
ternal state that can change and affect their behavior. The difference with the State pat-
tern is that a Context has a limited number of well-defined states and a consistent set of
rules that control the transitions between these states.

The Code Transformation

Applying the State pattern causes a fairly consistent code transformation. Without the
pattern, behavior that depends on the states often uses case statements to vary the be-
havior accordingly:

Object subclass: #Context
instanceVariableNames: 'state'
classVariableNames: ''
poolDictionaries: ''

�6�5� $OSHUW� .� %URZQ� 	 %� :RROI ������� ��������

04/23/97 08:58 3

Context>>request
"Handle the request according to the Context's state."
self state == #stateA ifTrue: [^self stateARequest].
self state == #stateB ifTrue: [^self stateBRequest].
...
^self error: 'unknown state'

The Smalltalk Companion contains many examples of the evils of case statements and
why they should be avoided. In this context, the case statement has two basic problems:

1. The same basic case structure must be duplicated for each public request that a cli-
ent might make of the Context . Each such request method will have to test for
#stateA , #stateB , and so on.

2. New states cannot be added without modifying all of the request methods.

The State pattern transforms the code to remove the state dependent code from the
Context . Various ways of handling each request are implemented polymorphically.
The Context still knows its state , but rather than running it through a case state-
ment, the Context delegates to its state as a real object.

Object subclass: #Context
instanceVariableNames: 'state'
classVariableNames: ''
poolDictionaries: ''

Context>>request
"Handle the request according to the Context's
currentState."
self state handle

The state object comes from a hierarchy of possible states. The abstract class defines
the interface that all states have.

Object subclass: #State
instanceVariableNames: ''
classVariableNames: ''
poolDictionaries: ''

State>>handle
self subclassResponsibility

Subclasses of State implement different states that the Context can be in. Each sub-
class implements handle to provide the behavior appropriate to handle the request in
that state.

Object subclass: #ConcreteStateA
instanceVariableNames: ''
classVariableNames: ''
poolDictionaries: ''

�6�5� $OSHUW� .� %URZQ� 	 %� :RROI ������� ��������

04/23/97 08:58 4

State>>handle
"Handle the request one way."

Object subclass: #ConcreteStateB
instanceVariableNames: ''
classVariableNames: ''
poolDictionaries: ''

State>>handle
"Handle the request another way."
...

Other subclasses implement other states. Each subclass encapsulates the behavior for
that state so that it doesn’t clutter the Context or the other states. Adding new states
in the future is easy: The main step is to add a new State subclass that implements the
handle messages appropriately.

Changing the Class for Real

If the point of the State pattern is to make the object seem like it has changed its class,
why not go ahead a actually coerce the instance to a different class? In languages with-
out reflection, like C++, there is a tendency (almost a necessity) to use somewhat com-
plicated means to do what in Smalltalk is possible with messages that change the iden-
tity or metaclass of an object. In all dialects we can use the method become: to change
the identify of an object. In VisualWorks we can use the method changeClassTo-
ThatOf: to change its metaclass.

At first glance, the State pattern appears to be another instance of this unnecessary com-
plication. Why not just change the class? Simply, there are two basic problems with us-
ing changeClassToThatOf: or another coercion method:

1. All of the instance variables that any of the state classes may want to use must be
defined in the superclass. The changeClassToThatOf: method will not work if
a subclass defines any additional instance variables. A variant on this would be to
use become: instead of changeClassToThatOf: . However, that would neces-
sitate copying the values of all of the instance variables in the class over to the new
instance before the become: is sent. Note that changeClassToThatOf: does
not even exist in Visual Smalltalk nor IBM Smalltalk, so the become: approach is
the only choice in these environments.

2. The bigger, and more central problem, is that we are now precluded from making
subclasses of our “Context” object as would have been possible with using the State
pattern. If we wanted to make a subclass, say to add an instance variable holding the
longest run so far, we would be forced to make additional subclasses of all of the
subclasses of the State/Context class. Preventing this class explosion is the biggest

�6�5� $OSHUW� .� %URZQ� 	 %� :RROI ������� ��������

04/23/97 08:58 5

single reason to use composition as in the State pattern rather than reflective facili-
ties.

So, we have seen that the use of the language-specific features does not add flexibility in
this case—it instead makes our design less flexible and harder to reuse. This is an im-
portant point to keep in mind when designing an OO program—the “neatest” or
“slickest” solution may not necessarily be the best. Often the most straightforward solu-
tion is better than those that use special language features.

Applicability

Design Patterns lists a couple of considerations for the appropriateness of the State pat-
tern. Here are some more:

• The Context must have a limited, well-defined list of possible states. It can have
other internal state variables as well, just like any object. But the state that defines
its current status can only have a few valid values so that each of those values can
be implemented as a State subclass. If the state values can have a virtually unlimited
number of valid combinations, then the State class needs a virtually unlimited num-
ber of subclasses, so the State pattern is not appropriate.

• The Context must have well-defined transitions between states. In any possible
state, it must be clear when the Context should change to another state and, in each
case, what that other state should be. If the transition between states is inconsistent
and subjective, the State pattern is not appropriate.

Implementation

One of the Implementation issues deserves further clarification:

Who defines the state transitions? As Design Patterns explains, the State pattern does
not specify which participant—the Context or the States—defines the criteria for the
transitions from one state to the next. One advantage of the State pattern is that it re-
moves the state dependent behavior from the Context and encapsulates it in the State
objects. Similarly, the pattern should extract the state transition behavior from the Con-
text and distribute it among the State objects. This way, each State knows when it should
transition to another State and what other State it should transition to in each case. This
requires that each State know what its Context is and have some way to tell its Context
to switch to a new State.

Sample Code

Without the State Pattern

Let’s look at the example from Design Patterns. We have a class named
TCPConnection whose instances represent network connections (TCP stands for
Transmission Control Protocol, a standard for network communication). A connection

�6�5� $OSHUW� .� %URZQ� 	 %� :RROI ������� ��������

04/23/97 08:58 6

may be in one of several states (e.g., Established, Listening, Closed, etc.), and its be-
havior depends on its current state. For example, when asked to send data, a connection
object reacts differently depending on whether it’s Established or Closed. These states
form a finite state machine that is an implicit part of the connection. The following state
transition diagram shows these states and the transitions between them:

The TCPConnection begins its life in the Closed state. An activeOpen or a
passiveOpen command will send it to the Established or Listen states respec-
tively. Once in the Established state, a close command will send it to the
Listen state, while a transmit command will perform an action, but keep it in the
Established state. In the Listen state, a send command will transfer it to the
Established state.

One approach to implementing such state-dependent behavior might be to code a condi-
tional of some sort which, based on the current state, invokes different code or methods
within the TCPConnection object.

Object subclass: #TCPConnection
instanceVariableNames: 'state'
classVariableNames: ''
poolDictionaries: ''

TCPConnection>>activeOpen
"Open the connection."
self state == #established ifTrue: [^self].
self state == #listen ifTrue: [^self].
self state == #closed

ifTrue: [^self changeStateTo: #established].
^self error: 'unknown state'

Closed
Established

Listen

activeOpen

closepassiveOpen

transmit

send

�6�5� $OSHUW� .� %URZQ� 	 %� :RROI ������� ��������

04/23/97 08:58 7

TCPConnection>>send
"Prepare the connection to send data."
self state == #established ifTrue: [^self].
self state == #listen ifTrue:

[^self changeStateTo: #established].
self state == #closed ifTrue:

[^self error: 'closed connection'].
^self error: 'unknown state'

TCPConnection implements other requests—passiveOpen , close , and
transmit —in a similar manner. Of course this means if we need to add new states
later in the system’s life, we’ll have to revisit the conditional, adding code to account for
these new states.

With the State Pattern

The State pattern offers a cleaner and more easily extensible solution. The structure
looks like this:

This structure has the finite state machine shown earlier implicit in its design.

Let’s assume that you already have the case statement code shown above and you want
to convert it to the State pattern structure shown above. The first step is to represent the
connection’s state with a separate object. Thus TCPConnection ’s state variable is not
a simple enumeration object, such as a Symbol , but is now a real TCPState object
with its own behavior.

Object subclass: #TCPConnection
instanceVariableNames: 'state'
classVariableNames: ''
poolDictionaries: ''

TCPEstablishedState

state

activeOpen:

activeOpen

TCPConnection

close
acknowledge

activeOpen: aConnection

TCPState

close: aConnection
acknowledge: aConnection

close:
acknowledge:

...

...

activeOpen:

TCPListenState

close:
acknowledge:
...

activeOpen:

TCPClosedState

close:
acknowledge:
...

...

state
state: aState

self state activeOpen: self

�6�5� $OSHUW� .� %URZQ� 	 %� :RROI ������� ��������

04/23/97 08:58 8

Object subclass: #TCPState
instanceVariableNames: ''
classVariableNames: ''
poolDictionaries: ''

The second step is to implement TCPConnection to delegate to TCPState . In this
example, we only show the implementation of activeOpen and send . A real frame-
work would also implement passiveOpen , close , and transmit .

TCPConnection>>activeOpen
"Open the connection."
self state activeOpen: aTCPConnection

TCPConnection>>send
"Prepare the connection to send data."
self state sendThrough: aTCPConnection

Step three: Implement TCPState to accept the delegation.

TCPState>>activeOpen: aTCPConnection
"Open the connection."
self subclassResponsibility

TCPState>>sendThrough: aTCPConnection
"Prepare to send data through the connection."
self subclassResponsibility

Step four: Since TCPState is actually an abstract class, implement a concrete subclass
for each possible state.

TCPState subclass: #TCPEstablishedState
instanceVariableNames: ''
classVariableNames: ''
poolDictionaries: ''

Object subclass: #TCPListenState
instanceVariableNames: ''
classVariableNames: ''
poolDictionaries: ''

Object subclass: #TCPClosedState
instanceVariableNames: ''
classVariableNames: ''
poolDictionaries: ''

Step five: Implement each of the superclasses appropriately for each of the subclasses.

TCPEstablishedState>>activeOpen: aTCPConnection
"Do nothing."
^self

�6�5� $OSHUW� .� %URZQ� 	 %� :RROI ������� ��������

04/23/97 08:58 9

TCPEstablishedState>>sendThrough: aTCPConnection
"Do nothing."
^self

TCPListenState>>activeOpen: aTCPConnection
"Do nothing."
^self

TCPListenState>>sendThrough: aTCPConnection
"Prepare to send data through aTCPConnection."
aTCPConnection

establishConnection;
send: aString

TCPClosedState>>activeOpen: aTCPConnection
"Open aTCPConnection."
^aTCPConnection establishConnection

TCPClosedState>>sendThrough: aTCPConnection
"This is an error!"
self error: 'closed connection'

Step six: Implement the messages that the TCPState s send to TCPConnection .
Also, set a TCPConnection ’s default state to closed.

TCPConnection>>establishConnection
"Establish a connection. Do all of the work necessary
to properly establish a valid connection and verify
its success."
self state: TCPEstablishedState new

TCPConnection>>initialize
"Set the connection's default state."
state := TCPClosedState new.
^self

Here’s an example of how you would subsequently use TCPConnection :

| connection |
connection := TCPConnection new.
connection

activeOpen;
transmit;
close

�6�5� $OSHUW� .� %URZQ� 	 %� :RROI ������� ��������

04/23/97 08:58 10

Known Smalltalk Uses

SMTP/Sockets

“A Very Simple VSE SMTP Client” (ParcPlace, 1996) shows a textbook example of the
State pattern’s use to implement an explicit FSM in a communications protocol. This
article shows how to implement an SMTP mail system in Visual Smalltalk Enterprise. It
represents the SMTP states as State classes that cooperate with a SocketClient
Context class to send messages to an SMTP server via TCP/IP sockets.

ControlMode

VisualWorks includes an example of the State pattern that is similar to
DrawingController (DP 313). In VisualWorks, the class ModalController is
used by the UI Builder framework to handle the positioning and resizing of the different
UI components. ModalController “redirects mouse-related events to an internally
held ControlMode object, which may then take some action.”1 A
ModalController contains (through the intermediary of a ValueHolder) an in-
stance of a ControlMode subclass which “implements some or all of the basic control
sequence of a ModalController ” 2.

Both the ModalController /ControlMode combination and the HotDraw example
from Design Patterns are unusual in that there is no explicit FSM to provide the transi-
tions. Instead the user will, by his actions, determine what the next state will be by
picking from the list of possible states. This is an example where the States cannot con-
trol the state transitions, so the Context must control them itself.

AlgeBrain

AlgeBrain is an intelligent tutoring system for algebra (being built by Sherman along
with colleagues Kevin Singley and Peter Fairweather). It uses State objects to represent
the current state of solving an algebraic equation. An AlgebraTutor is configured at
any point in time with an instance of one of several concrete AlgebraState sub-
classes—different AlgebraState objects know what user actions are acceptable or
appropriate given the current state of the problem. Thus, when a user performs an ac-
tion, the tutor delegates its response to its current State object; each of these determines
if the user’s action is correct, and can provide focused, context-dependent error mes-
sages. Each State object also knows what it is expecting in the way of user actions, and
so can be used to provide help regarding what to do next to solve the current problem.

1 VisualWorks ModalController class comment.
2 VisualWorks ControlMode class comment.

�6�5� $OSHUW� .� %URZQ� 	 %� :RROI ������� ��������

04/23/97 08:58 11

Relational Database Interfacing

Brown (1996) demonstrates the use of the State pattern in an order processing system.
The State objects provide for differing behaviors for saving and deleting objects from a
relational database.

Related Patterns

State vs. Strategy

State is often confused with its close cousin Strategy, and it is sometimes difficult to de-
termine which pattern to use, or if an implementation of one is actually the other. A
good rule of thumb to follow to distinguish the two is that if the Context will contain
only one (of several possible) “State” or “Strategy” objects during its lifetime, you are
probably using the Strategy pattern. If, on the other hand, the Context changes during
the normal course of an application so that, over time, it may contain many different
“state” objects , then you may be referring to a State implementation, particularly if
there are well-defined orders of transition between the different states. A subtler distinc-
tion can sometimes be found in the setting of an object’s attributes. An object is usually
put into a state by an external client, while it will choose a strategy on its own.

Another distinction is that a Context seems to hide the Strategy it’s using, but the State
it’s using is quite apparent to its Client. For example, when a Client tells a Storage-
Device to store some text, the device may use one of several different techniques to
compress the text before storing it, including no compression at all. However, the Client
doesn’t care how the device compresses the text, whether it does so at all, or whether it
compresses the text the same way every time. It just wants the device to store and re-
trieve the text on command. Because of the way the compression is private to the device
and hidden from the Client, the different compression objects are Strategies. On the
other hand, once a Client opens a TCPConnection , it certainly expects the connection
to behave like it’s open. Once the Client closes the connection, it expected the connected
to act like it’s closed. Because the connection’s status is readily apparent to the Client,
the status objects are States.

