
�6�5� $OSHUW� .� %URZQ� 	 %� :RROI ������� ��������

04/23/97 08:57 1

M EDIATOR (DP 273) Object Behavioral

Intent

Define an object that encapsulates how a set of objects interact. Mediator promotes loose
coupling by keeping objects from referring to each other explicitly, and it lets you vary
their interaction independently.

Structure

Discussion

One of the characteristics of object technology is that it helps designers manage com-
plexity better than traditional design methods. Good object-oriented design increases co-
hesion within objects and decreases coupling between them. It composes a system of
collaborating objects, each with distinct responsibilities, whose configuration dictates
how they will work together. The problem is: Where’s the behavior? It’s not in one ob-
ject or another, it’s between the objects. This is very flexible when each object has a few
interactions with a couple of collaborators. But it can lead to designs where the objects
are so highly dependent on each other that changes in any one can affect all of the oth-
ers. When this happens, each object manages itself well, but managing these complex
connections becomes a problem. Mediator can solve this problem.

The key to the Mediator pattern is a set of objects that need to collaborate but shouldn’t
know about each other directly, so instead they all collaborate with a central object that
keeps them coordinated. The coordinating object, called a Mediator, calls the objects it’s
coordinating its Colleagues. Events in one Colleague potentially affect many others, but
for all of them to collaborate together directly would become exponentially complex.
Their design would become dependent on each other such that removing any one of
them would require redesigning the others. Instead, all of the Colleagues collaborate
with the Mediator, which in turn collaborates with the Colleagues. If one Colleague is
removed from the design, the Mediator is redesigned accordingly and the other Col-
leagues remain unchanged.

Mediator Colleague

ConcreteColleague2ConcreteColleague1ConcreteMediator

mediator

�6�5� $OSHUW� .� %URZQ� 	 %� :RROI ������� ��������

2 04/23/97 08:57

Many problem domains involve complex connections between the various objects of the
system. Handling these complex interactions is difficult. For example, let’s consider a
semiconductor manufacturing system.

Semiconductor Manufacturing

On a factory floor, many different machines work on semiconductor wafers in various
stages of production. The machines are connected in an assembly line so that wafers
pass from one stage of production to the next. Semiconductor manufacturing is a com-
plex process. Some of the steps in the process must occur within very fine time toler-
ances. If these tolerances are not met, then thousands of dollars worth of materials are
lost.

What happens when something goes wrong at a machine? A photolithography ma-
chine’s alignment sensors can drift out of spec, or a doping station might run out of
chemicals, or a baking station’s ovens could fall below the minimum acceptable tem-
perature. If this happens, the other machines in the line must adjust their operations,
perhaps even shutting themselves down completely, but in an orderly fashion.

One potential solution is to interconnect all of the machines in the assembly line to-
gether, as shown in the following diagram. That way, if one raises an alarm, it will no-
tify all of the rest.

However, this approach presents a few problems:

• Some of the machines are not affected by certain alarms. Yet precious time is spent
notifying every machine about every alarm. Worse yet, the machines that need to
respond first may not be notified in time.

• Knowledge of how the machines connect is spread and duplicated throughout the
system. If a new machine is added, or the manufacturing process changes, then code
spread throughout the system must be changed.

Another solution is to introduce a new object, an Alarm Supervisor, as shown below.
This object’s responsibility is to listen for and respond to alarms. It notifies only those
machines that are affected, and does so in the optimal order. This way, each machine

aPhotolithographyMachine

aDopingStation

aBakingStation

aRobotArm

�6�5� $OSHUW� .� %URZQ� 	 %� :RROI ������� ��������

04/23/97 08:57 3

can concentrate on performing its own tasks independently of the others. It need only
inform the Alarm Sensor, and only when one of its alarms goes off.

The heart of the Mediator pattern is this approach of taking a number of complex rela-
tionships between objects and reifying them into another, distinct object. Mediator
avoids the problems of complex interconnection by encapsulating the connection be-
havior into a separate Mediator object. It is responsible for coordinating the interactions
of the objects in the group. Each object in that group, a Colleague, knows only about the
Mediator, not about the other members in the group. The Colleagues send requests to
the Mediator, who notifies the other Colleagues as necessary.

A Warning About Mediator

Mediator is often abused. Misapplication of the pattern “…can make the mediator itself
a monolith that’s hard to maintain.” (DP 277) Novice OO designers often take the intent
of the mediator too literally, trying to encapsulate every set of object interactions. They
use the pattern to justify a poor factoring of responsibilities.

Many novice designers create designs containing a large number of “data holders,” ob-
jects that have little behavior other than getter and setter methods. They then find that
these objects are too simple to perform the system’s work. To remedy this, the designer
creates a set of “Manager” objects that contain all of the functionality of the system, and
that operate on the “data holders.” To call such objects “mediators” is a misuse of the
term.

The purpose of a Mediator is to manage the relationships between numerous objects so
that they can each focus on their own behavior independently of the others. A Manager
object, on the other hand, tends to extract state out of one object, manipulate it, and plug
the result into another object. The objects do not encapsulate their own behavior; the
Manager does that for them and makes them passive. You should strive to make your
objects responsible for their own behavior and to coordinate with each other as neces-

aPhotolithographyMachine

aDopingStation

aBakingStation

aRobotArm

anAlarmSuperviser

�6�5� $OSHUW� .� %URZQ� 	 %� :RROI ������� ��������

4 04/23/97 08:57

sary. Then you will not need a Manager object. If the objects’ coordination becomes
overly complex, introduce a Mediator to manage their coordination but not to manage
their fundamental behavior.

Sample Code

A layered architecture is a common architectural choice in many applications. Under-
standing the roles of different objects in an application, and the way control and infor-
mation flow between them is crucial to having a high-level understanding of a complex
application. Brown (1996a) describes a layered architecture for Smalltalk applications
that consists of four layers. The layers are (in order from the top) the View layer, the
Application Model layer, the Domain layer, and the Infrastructure layer. Buschmann et.
al. (1997) describe a similar architecture for IS systems that parallels this division. To
understand why this division of roles is necessary, we have to examine the evolution of
the MVC application framework.

Application Model and Domain Model

In the original Model-View-Controller (MVC) framework, Models have two roles. The
Model is responsible for representing a domain object and storing its state, and is also
responsible for supporting the View’s display of that state. The early examples of MVC
(Krasner & Pope, 1988) showed their Model objects both opening Views on themselves
and coordinating their display, as well as handling domain-specific behavior. Over time,
developers began to realize that this was a lot of responsibility for one object. As Models
evolved to support several different types of Views, they became increasingly complex
and difficult to implement and maintain. As a result, the MVC framework evolved to
factor the Model into two parts, the Domain Model and the Application Model (Woolf,
1995).

The separate Domain and Application Models simplify the Model concept. Each domain
model (also called a domain object) represents an object in the domain. These are the
business objects, the classes in the object model. They know nothing about the user in-
terface or how it will display them, if at all. They work just fine even if there is no user
interface.

The application model provides the user interface support. The View still does the dis-
play, but the application model provides the support it needs. An application model does
not contain much state. Instead, it derives its state from one or more domain models. As
Brown (1996a) demonstrates, the Application Model fulfills two roles. It acts as an
Adapter to convert the domain’s interface into the interface that the View expects. In the
process, the application model provides resources that are not part of the domain, such
as menus. It also acts as a Mediator to coordinate the widgets in the View.

As an example, look at the user interface example diagram in the Motivation for Ob-
server (DP 293). It shows a set of data and three different views of that data: a spread-
sheet, a bar chart, and a pie chart. In this enhanced MVC framework, the objects would

�6�5� $OSHUW� .� %URZQ� 	 %� :RROI ������� ��������

04/23/97 08:57 5

be a domain object that contains the data, three application models to display the data,
and one window for each of the application models.

Notice that the above diagram shows that each different View would have its own spe-
cific Application Model. In actuality, each Window in a user interface would have an
underlying application model that coordinated multiple views. This coordination of
Views is what makes the Mediator pattern so crucial to understanding the Smalltalk
window system architectures.

Design Patterns mentions that Visual Smalltalk uses the Mediator pattern in its appli-
cation architecture (page 281). In fact, all three major dialects of Smalltalk utilize it in
nearly the same way. Let’s look at how their implementations differ by examining a
common example in all three dialects.

Our example is a simple Login dialog, shown in the figure below, used to obtain a user
name and password for a mainframe or relational database (Hendley & Smith, 1992).
There are three types of collaborations between UI widgets in an application model:

• simple actions that only affect one UI widget and not the domain model;

• complex actions that affect multiple UI widgets; and

• simple actions that affect both the UI and domain model.

a=50%
b=30%
c=20%

aDomainModel

aSpreadsheetView aPieChartViewaBarChartView

change notification

requests, modifications

aSpreadsheetApplicationModel aPieChartApplicationModelaBarChartApplicationModel

�6�5� $OSHUW� .� %URZQ� 	 %� :RROI ������� ��������

6 04/23/97 08:57

The three major dialects handle these collaborations differently, as this example will
show. In our example, we will look at three different interactions that occur within the
dialog:

• The Password Field is disabled until the user begins typing in the User Name field.

• The OK button is disabled until the user has entered something into both the User
Name and Password fields.

• The OK button causes the domain model to verify the user name and password. If
the pair is valid, the window closes. Otherwise, the window displays a message in-
dicating that the user name/password pair entered is not valid.

Mediator in Visual Smalltalk

Design Patterns describes the Visual Smalltalk application architecture in detail (page
281). It discusses the event mechanism used to communicate between the panes in a
window and their Mediator, a ViewManager . Our Observer discussion documents this
mechanism as the SASE variation.

ViewManager is part of the older Smalltalk/V application architecture, and is main-
tained for backward compatibility. Applications may now alternatively use a new Me-
diator class, ApplicationCoordinator . The differences between
ApplicationCoordinator and ViewManager are minor, and not relevant to this
discussion. For more information, see the Visual Smalltalk User’s Guide.

The most interesting interaction in the example is the requirement that the OK button be
disabled until the user has entered something into both the user name and password
fields. To accomplish this, we have to check that there is something in both fields before
we enable the button. The easiest way to do this is to connect the #textChanged
event on both entry fields to a method in the ViewManager that looks at the contents
of both before enabling the button. To see how this is accomplished, let’s look at the
following code snippet from the method in LoginViewManager that sets up the
panes.

�6�5� $OSHUW� .� %URZQ� 	 %� :RROI ������� ��������

04/23/97 08:57 7

LoginViewManager>>someMethodName
...
userNameEF "an EntryField"

owner: aModel;
setName: 'userNameEF';
when: #textChanged: send: #tryToEnableOK to: self.

passwordEF "an EntryField"
owner: aModel;
setName: 'passwordEF';
when: #textChanged: send: #tryToEnableOK to: self.

...

As described in Observer, the message

when: anEvent send: aSelector to: aReceiver

creates a Message object. When anEvent occurs in the pane, the message whose se-
lector is aSelector is sent to aReceiver . In this case, the event is each field’s text
changing, the message is tryToEnableOK , and the receiver is the LoginView-
Manager .

This code shows how tryToEnableOK works:

LoginViewManager>>tryToEnableOK
| test1 test2 |
test1 := (self paneNamed: 'userNameEF') contents notEmpty.
test2 := (self paneNamed: 'passwordEF') contents notEmpty.
 (test1 and: [test2])

ifTrue: [(self paneNamed: 'okPB') enable]

In this case, the Mediator pattern is critical. The ViewManager does not need to han-
dle all of the user interface actions in the Visual Smalltalk framework. The receiver of
the SASE can just as easily be another pane. In fact, it is sometimes easier to set up such
connections in very simple cases. For example, if enabling the OK button depended on
just the user name field, we could have set up the field’s text changed event to directly
enable the OK button:

userNameEF "an EntryField"
owner: aModel;
setName: 'userNameEF';
when: #textChanged: send: #enable to: okPushButton

However, when an interaction requires that two or more panes be involved, sending
messages to the ViewManager is the cleanest solution. This is the Mediator pattern.
When we look at the implementation of the Mediator pattern in IBM Smalltalk and
VisualAge for Smalltalk, this becomes even more apparent.

�6�5� $OSHUW� .� %URZQ� 	 %� :RROI ������� ��������

8 04/23/97 08:57

Mediator in IBM Smalltalk and VisualAge for Smalltalk

Unlike the other Smalltalk dialects, IBM Smalltalk does not supply an abstract applica-
tion model class that serves as a Mediator. IBM Smalltalk’s windowing system is based
on OSF Motif, and Motif does not use Mediator. Instead, to implement a Mediator, you
subclass it directly off of Object . This is a valid implementation choice documented in
Design Patterns (page 278).

VisualAge for Smalltalk, a visual programming environment built on top of IBM
Smalltalk, adds an abstract application model class, AbtAppBuilderView . Windows
built in VisualAge are subclassed from that class. However, VisualAge application mod-
els do not really incorporate the Mediator pattern directly. Instead, VisualAge encour-
ages direct connections between UI widgets.

As an example, let’s look at a diagram of the Login window as implemented in Visual-
Age. Below is an example of the VisualAge Composition Editor. It has four types of
connections that can be made between objects (“parts”) on the screen:

• Attribute-to-Attribute — These connections link data items directly.

• Event-to-Action — These connections link events to actions (predefined methods)
of some object.

• Event-to-Script — This means that the occurrence of an event triggers the running
of a script (a user defined method).

• Attribute-to-Script — In this case, a script executes to calculate a value for the at-
tribute; this is a form of lazy initialization.

�6�5� $OSHUW� .� %URZQ� 	 %� :RROI ������� ��������

04/23/97 08:57 9

IBM Smalltalk and VisualAge for Smalltalk use the same event mechanism as Visual
Smalltalk. Events trigger corresponding methods that react to the event. This is the
SASE variation of Observer. All four types of connections in VisualAge use SASE
(through callbacks) to send a DirectedMessage from one part to another when an
event occurs.

Attribute-to-Attribute and Event-to-Action connections link two parts together directly.
In terms of the Mediator pattern, this is communication between Colleagues. The other
two types of connections, Event-to-Script and Attribute-to-Script, are links between the
parts and the Mediator (or “visual part”) that the user is building. An Event-to-Script
connection is an instance of a Colleague informing the Mediator of an event. Each At-
tribute-to-Script connection (which should actually be called “Script-to-Attribute”) is an
instance of the Mediator communicating with a Colleague, presumably in response to an
event.

Therefore, an Event-to-Script connection is the true example of Mediator. While another
form of connection may be visually cleaner and simpler to use, it will not be as easily
extendible.

�6�5� $OSHUW� .� %URZQ� 	 %� :RROI ������� ��������

10 04/23/97 08:57

For example, to implement the login example in VisualAge, we create two Event-to-
Script connections. They go from each entry field to the script named
tryToEnableOK . This is the code for that script:

tryToEnableOK
| test1 test2 |
test1 := (self subpartNamed: 'userName') string notEmpty.
test2 := (self subpartNamed: 'password') string notEmpty.
(test1 & test2)

ifTrue: [(self subpartNamed: 'okButton') enable]

As you can see, the VisualAge implementation is very similar to the Visual Smalltalk
implementation.

Mediator in VisualWorks

As mentioned in Observer, VisualWorks uses a ValueModel as an intermediate object
that reduces the total overhead of change notifications to dependents. The
ValueModel sits between a View and an application model and encapsulates an aspect
in the application model. The View is an Observer of the ValueModel . The applica-
tion model may also observe the ValueModel using a DependencyTransformer .
This additional layer of objects even further decouples the Views from the domain mod-
els.

The figure below shows the connections between the objects in our example as imple-
mented in VisualWorks. The Button has been left out for simplicity, but it is also con-
nected to the LoginAppModel through a ValueModel , a PluggableAdaptor .

This code shows the class definition for the example in VisualWorks. The VisualWorks
UI Builder automatically adds the instance variables userNameHolder and

aLoginAppModel

userNameHolder
passwordHolder

aTextView

model

aValueHolder

dependents

aValueHolder

dependents

aTextView

model

�6�5� $OSHUW� .� %URZQ� 	 %� :RROI ������� ��������

04/23/97 08:57 11

passwordHolder . The UI Builder automatically adds lazy initialization code to set
these instance variables to hold a ValueHolder on an empty String .

SimpleDialog subclass: #LoginAppModel
instanceVariableNames: 'userNameHolder passwordHolder'
classVariableNames: ''
poolDictionaries: ''

The connections between the two ValueHolder s and LoginAppModel are made in
initialize , as shown below. This method is automatically called when the Login-
AppModel is created. The method onChangeSend:to: will create a
DependencyTransformer that will send the message specified by the onChange-
Send: parameter whenever the value of that ValueHolder changes.

LoginAppModel>>initialize
"See superimplementor."
super initialize.
self userNameHolder onChangeSend: #tryToEnableOK to: self.
self passwordHolder onChangeSend: #tryToEnableOK to: self

Now that the ValueHolder s are set up, the message tryToEnableOK is run when-
ever the value of either ValueHolder changes. The method is shown below. As you
can see, its implementation is similar to the two previous implementations.

LoginAppModel>>tryToEnableButton
| button test1 test2 |
button := self builder componentAt: #okButton.
button isNil ifTrue: [^self].
test1 := self userNameHolder value notEmpty.
test2 := self passwordHolder value notEmpty.
(test1 and: [test2]) ifTrue: [button enable]

Known Smalltalk Uses

While Mediator is mostly commonly seen in Smalltalk designs in the application
frameworks described earlier, its use is by no means restricted to user interface pro-
gramming. Brown et al. (1994) describe a class named HostTransaction in the de-
sign of a framework for mainframe communications. HostTransaction acts as a
mediator between HostScreen objects, which represent individual mainframe termi-
nal screens in a transaction. The HostTransaction coordinates the navigation be-
tween the HostScreen objects and controls the flow of information between them.

The semiconductor manufacturing example discussed in the first section is drawn from a
prototype system developed by KSC for a semiconductor equipment manufacturing
company. It is similar to code used in the WORKS system developed by Texas Instru-
ments for semiconductor fabrication facility automation.

