
�6�5� $OSHUW� .� %URZQ� 	 %� :RROI ������� ��������

05/21/97 09:50 1

BUILDER (DP 97) Object Creational

Intent

Separate the construction of a complex object from its representation so that the same
construction process can create different representations.

Structure

Discussion

First off, we suggest reading our Abstract Factory pattern before continuing here. There
are several mutual issues with regard to the problem context—the situation under which
the patterns may apply—and the pattern’s solution.

Suppose an application needs to build complex objects based on user selections or
specifications from other objects. Say it’s a car assembly application much like that
described in Abstract Factory. The application must be able to build different products,
specifically Ford, Toyota, or Porsche cars1. We could set a flag in the application to
specify the type of product to create. Each time we need to create a component (say, an
engine) of the overall product, we would perform a conditional based on that flag:

1 For illustrative purposes, we’ll use an oversimplification—of course, there are more than
three auto makers, several different models produced by each manufacturer, etc.

builder
Director Builder

ConcreteBuilder1

addPartA

getResult

ProductA1

addPartA
addPartB

addPartC

getResult

addPartC
addPartBProductB1

ProductC1

ConcreteBuilder2

addPartA

getResult

ProductA2

addPartC
addPartB ProductB2

ProductC2

�6�5� $OSHUW� .� %URZQ� 	 %� :RROI ������� ��������

05/21/97 09:50 2

AnApplication>>createEngine
"Without Builder"
manufacturer == #Ford

ifTrue: [^FordEngine new].
manufacturer == #Toyota

ifTrue: [^ToyotaEngine new].
^PorscheEngine new

We’d need the same sort of logic for every car and car component. We’d also have to
give this object the know-how to assemble the subcomponent parts (engines, bodies,
transmissions) into a coherent final product (a car). That’s a lot of behavior for a single
class. And it’s not very extensible. Just because we have three known car brands now is
no guarantee users or the application domain won’t require some other component
types in the future (e.g., a new car line, Saturn, is introduced to the market). We need a
design that lets us extend the application’s functionality—that is, add new component
types—without modifying the main application itself.

The Builder pattern offers a solution. It makes a separate Builder object responsible for
creating and assembling components on the application’s behalf. The application can
use a Ford Builder to put Fords together, a Toyota Builder to assemble Toyotas, or a
Porsche Builder to assemble Porsches.

Builder separates a thing being built and details of how it gets constructed from a client
of that thing. The thing being built is called the Product; in our example, this is the
overall car. The client is called the Director because it’s in control of the overall
construction process. The Director knows what generic subcomponents go in the Product
(in our example, an engine, a car body, etc.)., but doesn’t know which component
classes to instantiate for different types of Products (e.g., if a Ford is being constructed
and an engine is required, we ought to instantiate the FordEngine class). Further, the
Director does not know how to put the Product together. So it enlists the help of an
external helper, a Builder object—the Builder provides a message interface for both
adding subcomponent parts and retrieving the ultimate Product.

We need several different types of Builders (a Ford, Toyota, and Porsche Builder), and
the application will select the one to use at run-time depending on user preference or
programmatic circumstances. To make this possible, we will define multiple Builder
classes and have them all respond polymorphically to the same set of building messages.
Hence the code in the Director won’t care what sort of Builder it’s talking to, so long as
it adheres to the established Builder protocol. Thus by plugging different Builders
together with a Director, the same Director can construct very different Products—
without having to change the Director object.

The Builder pattern greatly simplifies the implementation of the Director class since the
Director has no direct knowledge of the Product’s internal representations encapsulated
within the Builder, nor of how to put the Product together. Additionally, it’s easy to
change a Builder’s behavior or add new types of Builders to an application because the

�6�5� $OSHUW� .� %URZQ� 	 %� :RROI ������� ��������

05/21/97 09:50 3

Builders have been separated out into separate classes which typically reside in a single
subhierarchy. Hence we know where to go to make these modifications, and
enhancements to the available Builders require no modification to the Director itself.

Collaborations

The following interaction diagram portrays the Builder pattern’s collaborations. Note
that the final result may be retrieved from the Builder by the Director or by the
Director’s client.

aClient aDirector aConcreteBuilder

new

for: builder

construct addPartA

addPartB

addPartC

getResult

ConcreteBuilder
 class

 Director
 class

This differs slightly from the collaboration diagram on page DP 99 because in Smalltalk
we need to account for the run-time messages sent to class objects for instance creation.
With regard to the Builder pattern per se, the Director’s client creates the Builder object
and hands it off to the Director (this is one option; alternatively the Director could
instantiate the appropriate Builder itself). Then the client sends the construct
message to the Director; this method repeatedly asks the Builder object to build new
parts (messages addPartA , addPartB , and addPartC). In response, the Builder
adds parts to its developing Product. When a subcomponent part is added, the Builder
does not respond with—that is, return—anything of interest (of course, since all
methods return something, the Builder just returns self by default). When the building
process is complete, the Director (or in this case the Director’s client) asks the Builder
for the resultant Product by sending getResult .

�6�5� $OSHUW� .� %URZQ� 	 %� :RROI ������� ��������

05/21/97 09:50 4

Implementation

Adding parts

The Builder has some form of internal state: as subcomponent specifications are
received, the Builder adds new parts to its encapsulated Product. Actually, the Builder
has the choice of instantiating subcomponents each time the Director says “Add part so-
and-so,” or of merely saving the “so-and-so” specification and building the final Product
in its entirety when the “Return the final Product” message is received. In either case,
nonetheless, some data is encapsulated within the Builder until the final Product is
retrieved by a client.

There are at least three variations on the “Add part” theme.

• The interaction diagram shows that the Director merely tells the Builder to add
specific types of parts to its Product: add a component of type A, add a part of type
B, “Add a 4-cylinder engine,” “Add a 2-door coupe body.” The Builder just
instantiates the appropriate class and adds the new part to its evolving Product.

• The Director may hand “raw material” to its Builder and tell the Builder to perform
some transformation on that raw part and add the result to the Product. Design
Patterns offers the example of converting the information in a file from one format
(e.g., Rich Text Format) to another (e.g., TeX). There, an “Add part” request might
imply, “Here’s an RTF font-change token; convert it to a TeX font-change
specification and then add it to your Product. Thus the Builder must be
implemented with more know-how than simply instantiating the appropriate class.

• The Director can give an abstract specification of a component to the Builder,
leaving it to the Builder to interpret the specification, construct an object based on
it, and add that object to its Product. This is essentially what’s done in
VisualWorks’ UIBuilder : the VisualWorks UIPainter , which lets users lay
out the widgets of a user interface window, generates an abstract specification based
on the layout. This includes specifications for all of the window’s widgets, their
type, location, size, content (e.g., the text to appear in a label), etc. These
specifications are saved in a method of the application class associated with the UI
window. At application startup, these “window specs” are passed to a UIBuilder
which creates each widget and adds it to the overall window.

Multiple Families of Products

We typically have multiple parts families but want a Builder to create parts from a single
family. In our example, we want cars and their subparts instantiated from the Ford,
Toyota, or Porsche family. In Abstract Factory, we discussed how the code in a factory
object may choose among product families; the implementation issues are the same for
Builder—we can define multiple Builder classes, each of which hardcodes the
component classes to instantiate; we can use part catalogs; we can apply the Factory

�6�5� $OSHUW� .� %URZQ� 	 %� :RROI ������� ��������

05/21/97 09:50 5

Method pattern; we can even define a single Builder class with different methods that
create parts from different Product families. We’ve shown how to implement all of these
options in Abstract Factory, but let’s look in more detail at the Factory Method solution
for Builder and follow that with an alternative solution not considered previously.

Using Factory Method. Different Builders add the same component with the identical
message—e.g., to add a 2-door sedan body, we send add2DoorSedanBody to the
Builder. This method looks the same in all the Builder classes except for the actual class
that gets instantiated:

CarBuilder>>add2DoorSedanBody
"Do nothing. Subclasses will override."

FordBuilder>>add2DoorSedanBody
self car

addBody: Ford2DoorSedanBody new

ToyotaBuilder>>add2DoorSedanBody
self car

addBody: Toyota2DoorSedanBody new

PorscheBuilder>>add2DoorSedanBody
self car

addBody: Porsche2DoorSedanBody new

Alternatively, we can avoid the duplication of code and implement a factory method in
each concrete Builder class, as follows:

CarBuilder>>add2DoorSedanBody
"Define this once for all subclasses. Subclasses will
 override the 'create2DoorSedanBody' factory method."
self car

addBody: self create2DoorSedanBody

CarBuilder>>create2DoorSedanBody
"Factory method; This should only be implemented
 by my concrete subclasses."
self implementedBySubclass "Visual Smalltalk"
"self subclassResponsibility" "VisualWorks, IBM, others"

FordBuilder>>create2DoorSedanBody
"Factory method; Return an instance of the
 Ford 2-door-sedan body class"
^Ford2DoorSedanBody new

ToyotaBuilder>>create2DoorSedanBody
"Return an instance of the Toyota 2-door-sedan body class"
^Toyota2DoorSedanBody new

�6�5� $OSHUW� .� %URZQ� 	 %� :RROI ������� ��������

05/21/97 09:50 6

PorscheBuilder>>create2DoorSedanBody
"Return a Porsche 2-door-sedan body object"
^Porsche2DoorSedanBody new

Using Abstract Factory. There’s another alternative method for selecting among
Product families. We can apply the Abstract Factory pattern as a secondary pattern
within the Builder. Let’s look at an existing example of this approach from
VisualWorks.

A UIBuilder is asked to build the widgets of a window. Since VisualWorks supports
multiple platform-specific interface widgets, there are multiple families of widgets—a
Motif family (classes like MotifRadioButton), an OS/2 CUA family
(CUARadioButton), and so on. The UIBuilder must create widgets from the
currently selected look-and-feel family—for example, if the user selected the OS/2 CUA
look, the UIBuilder must instantiate CUARadioButton when a radio button is
being created.

One solution to this problem, of course, is what we’ve already described—define several
Builder classes and instantiate the one we want. Here we would define UIBuilder as
an abstract class, with concrete subclasses such as MotifUIBuilder ,
CUAUIBuilder , and MacUIBuilder . Instead, VisualWorks applies the Abstract
Factory pattern as a subordinate helper pattern.

A UIBuilder is configured with a UILookPolicy object to which it delegates its
widget-creation tasks—that is, the Builder asks its look policy to instantiate each of the
widgets in the window. Different concrete subclasses of the abstract UILookPolicy
class implement the same widget-creation messages to construct widgets according to a
particular look-and-feel—MacLookPolicy creates radio buttons which appear as they
do on a Macintosh screen, MotifLookPolicy instances create Motif-like buttons.
Depending on the desired look-and-feel, one of these subclasses is instantiated as the
UIBuilder ’s look policy object. The UIBuilder has no knowledge of what sort of
look is being constructed, nor of what sort of look policy object it is talking to; it merely
sends the widget-creation messages defined in the abstract UILookPolicy protocol.

So the UILookPolicy object acts as a factory for the UIBuilder, and the
UIBuilder /UILookPolicy framework is an instance of the Abstract Factory
pattern. Although there is a single Builder class, UIBuilder , it can create Products
from multiple Product (widget) families.

Sample Code

Now let’s look at an example that expands on our car assembly application. Suppose we
have an application that allows a user to walk into a generic car sales showroom, step up
to a computer in a kiosk, and assemble an order for a car. This application might
alternatively be deployed on the Web as a virtual car sales showroom. Imagine this

�6�5� $OSHUW� .� %URZQ� 	 %� :RROI ������� ��������

05/21/97 09:50 7

showroom does not sell cars made by a particular company; rather, the customer can
select any brand of car. She may also choose the options she desires. Imagine a typical
user scenario wherein the user selects a Honda automobile and options such as the two-
door sedan body type, six cylinder engine, automatic transmission, air-conditioning,
luxury audio package, and deluxe paint trim, and then selects a menu item that says
“Order.”

We’d like this application to have a common user interface for all cars and options, and
we’d like to assemble a virtual car based on the user’s selections. That is, as in the
Abstract Factory example, the application will render a 3D, navigable image of the car
on the screen, allowing the customer to view and “tour” the car. Before actually ordering
the car, she can change the car’s configuration and view it again. Finally, the
application generates an order for the car as the user described it.

Assume Product classes similar to those used in Abstract Factory, except there will be
more of them. Since we’re allowing for the selection of options, we’ll have classes like
the following rather than just a FordEngine class:

We’ll have similar subhierarchies under ToyotaEngine , PorscheEngine ,
FordBody , ToyotaBody , PorscheBody , and likewise for all other components.

With regard to the Builder portion of this application, we start by defining a
CarBuilder hierarchy.

Object subclass: #CarBuilder
instanceVariableNames: 'car'
classVariableNames: ''
poolDictionaries: ''

CarBuilder class>>new
^self basicNew initialize

FordEngine

Ford4CylinderEngine FordStandard6CylinderEngine FordTurbocharged6CylinderEngine

CarBuilder

FordBuilder ToyotaBuilder PorscheBuilder

�6�5� $OSHUW� .� %URZQ� 	 %� :RROI ������� ��������

05/21/97 09:50 8

CarBuilder>>car
"getter method"
^car

CarBuilder>>car: aCar
"setter method"
car := aCar

CarBuilder subclass: #FordBuilder
instanceVariableNames: ''
classVariableNames: ''
poolDictionaries: ''

CarBuilder subclass: #ToyotaBuilder
...

CarBuilder subclass: #PorscheBuilder
...

The car instance variable in CarBuilder references the Builder’s Product. When a
Builder is first instantiated, car is initialized to an instance of the appropriate Car
subclass (an empty shell; a Car with no subcomponents yet):

FordBuilder>>initialize
self car: FordCar new.

ToyotaBuilder>>initialize
self car: ToyotaCar new.

PorscheBuilder>>initialize
self car: PorscheCar new.

As the Builder receives requests to add components, it adds them to car. Let’s define
the “Add a subcomponent” messages: we define these messages in the abstract
superclass to do nothing, overriding them as necessary in concrete Builder subclasses:

CarBuilder>>add4CylinderEngine
"Do nothing. Subclasses will override."

FordBuilder>>add4CylinderEngine
self car

addEngine: Ford4CylinderEngine new

ToyotaBuilder>>add4CylinderEngine
self car

addEngine: Toyota4CylinderEngine new

�6�5� $OSHUW� .� %URZQ� 	 %� :RROI ������� ��������

05/21/97 09:50 9

PorscheBuilder>>add4CylinderEngine
self car

addEngine: Porsche4CylinderEngine new

CarBuilder>>addStandard6CylinderEngine
"Do nothing. Subclasses will override."

FordBuilder>>addStandard6CylinderEngine
self car

addEngine: FordStandard6CylinderEngine new

ToyotaBuilder>>addStandard6CylinderEngine
self car

addEngine: ToyotaStandard6CylinderEngine new

PorscheBuilder>>addStandard6CylinderEngine
self car

addEngine: PorscheStandard6CylinderEngine new

We’re assuming here that Car s know how to add subcomponents to themselves with
messages like addEngine: , addBody: , etc.

Now let’s talk about the user interface of our sample application. Users will be able to
select an automobile manufacturer from a menu and then choose the engine type, body
type, and other features from corresponding menus. When the user wants to view what
has been built so far, he selects “Draw” from the “Action” menu. In response, the
application renders the car in the graphics pane (below the menu bar). When the user
wants to order the car, he selects “Order” from the same menu. The UI might look like
the following (where additional pulldown menus would be added for “Audio System,”
“Trim,” and other subcomponents):

Let’s say the user interface is implemented by an AutoAssemblerUI object. The
AutoAssemblerUI is configured with a CarBuilder instance, and the
AutoAssemblerUI tells this Builder to create and add car components based on the

�6�5� $OSHUW� .� %URZQ� 	 %� :RROI ������� ��������

05/21/97 09:50 10

user’s selections. Here’s some of the code that implements this application in Visual
Smalltalk. First, we define the UI application as a subclass of ViewManager and then
add methods to construct and open the window:

ViewManager subclass: #AutoAssemblerUI
instanceVariableNames: 'builder'
classVariableNames: ''
poolDictionaries: ''

AutoAssemblerUI>>open
self

owner: self;
label: 'Auto Assembler';
createView;
openWindow

The window will include the menus described earlier, along with a single graphics pane
in which the car will be drawn.

AutoAssemblerUI>>createView
"Private - create the panes for the receiver window."
| pane |
self mainView

when: #menuBarBuilt send: #rebuildMenuBar to: self.

pane := GraphPane new.
pane

setName: #graphOutput:;
when: #needsContents

send: #graphOutput:
to: self
with: pane;

framingRatio:
(Rectangle leftTopUnit extentFromLeftTop: 1@1).

self addSubpane: pane

AutoAssemblerUI>>rebuildMenuBar
"Fixup the menu bar with the pulldowns required for the
 AutoAssembler application."
| menuWindow |
menuWindow := self menuWindow.
menuWindow

removeMenu: (self menuTitled: 'File');
removeMenu: (self menuTitled: 'Edit');
removeMenu: (self menuTitled: 'Smalltalk');
addMenu: self carMenu;
addMenu: self bodyMenu;
addMenu: self engineMenu;
addMenu: self transmissionMenu;
addMenu: self actionMenu

�6�5� $OSHUW� .� %URZQ� 	 %� :RROI ������� ��������

05/21/97 09:50 11

The actual pulldown menus are constructed by methods invoked above in
rebuildMenuBar . The carMenu method is an interesting one to look at—it
constructs the menu programmatically based on the existing concrete CarBuilder
subclasses. A menu item is constructed for each Builder class; its label is obtained by
sending the manufacturer message to each Builder. The associated action is a
message that invokes the AutoAssemblerUI>>userSelectedBuilder:
method, passing the corresponding CarBuilder subclass as its argument:

AutoAssemblerUI>>carMenu
"Build the car-manufacturers menu."
| menu |
menu := Menu new

title: 'Automobile';
owner: self.

CarBuilder subclasses do: [:aClass |
menu
 appendItem: aClass manufacturer
 selector: (Message

 receiver: self
 selector: #userSelectedBuilder:
 arguments: (Array with: aClass))].

^menu

When the user selects a manufacturer from the “Automobile” menu,
userSelectedBuilder: creates the appropriate Builder by instantiating the class
passed as the message argument. Subsequently, this Builder is used for creating and
assembling all of the car’s subcomponent parts:

AutoAssemblerUI>>userSelectedBuilder: builderClass
| menu |
builder := builderClass new.

"Only after an automobile manufacturer is selected may
 the user select subcomponent parts and options from

menus:"
self enableSubcomponentMenus.

"Uncheck all manufacturer menu items and check the
 one just selected:"
menu := self menuTitled: 'Automobile'.
menu items do: [:menuItem |

menu uncheckItem: menuItem selector].
menu checkItem: builderClass manufacturer.

We also need to define the manufacturer method in each of the CarBuilder
classes:

CarBuilder class>>manufacturer
self implementedBySubclass

�6�5� $OSHUW� .� %URZQ� 	 %� :RROI ������� ��������

05/21/97 09:50 12

FordBuilder class>>manufacturer
^'Ford'

ToyotaBuilder class>>manufacturer
^'Toyota'

PorscheBuilder class>>manufacturer
^'Porsche'

Now we need the menus for other car components. We’re making the simplifying
assumption that all Car s may be constructed with the same generic parts—all may
include either a 4-cylinder, standard 6-cylinder, or turbocharged 6-cylinder engine, for
example. But, of course, for each type of car, the Builders instantiate different classes for
each engine type. In the case of 4-cylinder engines, for example, the application must
instantiate Ford4CylinderEngine , Toyota4CylinderEngine , or
Porsche4CylinderEngine .

AutoAssemblerUI>>engineMenu
 ^Menu new

title: 'Engine';
 owner: self;
 appendItem: '4-Cylinder'

selector: #engineIs4Cylinder;
 appendItem: '6-Cylinder Standard'

selector: #engineIsStandard6Cylinder;
 appendItem: '6-Cylinder Turbocharged'

selector: #engineIsTurbocharged6Cylinder;
 "Gray-out the menu until a manufacturer has

 been selected:"
disableAll;
yourself

So when the user selects, say, “4-Cylinder” from the “Engine” pulldown, the
AutoAssemblerUI>>engineIs4Cylinder method is invoked. It simply sends
the generic add4CylinderEngine message to its Builder:

AutoAssemblerUI>>engineIs4Cylinder
"The user has selected the '4-cylinder' menu item
 from the 'Engine' pulldown menu. Tell my Builder."
self builder add4CylinderEngine

Each Builder class implements add4CylinderEngine to instantiate the appropriate
class depending on the Builder’s parts family (these methods were defined earlier). The
methods for other components are implemented in a similar fashion:

AutoAssemblerUI>>engineIsStandard6Cylinder
"The user has selected the 'Standard 6-cylinder'
 menu item from the 'Engine' pulldown menu."
self builder addStandard6CylinderEngine

�6�5� $OSHUW� .� %URZQ� 	 %� :RROI ������� ��������

05/21/97 09:50 13

AutoAssemblerUI>>engineIsTurbocharged6Cylinder
"The user has selected the 'Turbocharged 6-cylinder'
 menu item from the 'Engine' pulldown menu."
self builder addTurbocharged6CylinderEngine

AutoAssemblerUI>>bodyIs2DoorCoupe
"The user has selected the '2-Door Coupe' menu item
 from the 'Body' pulldown menu."
self builder add2DoorCoupeBody

AutoAssemblerUI>>bodyIs2DoorSedan
"The user has selected the '2-Door Sedan' menu item
 from the 'Body' pulldown menu."
self builder add2DoorSedanBody

We also need to define a method to build our “Action” menu. When the user clicks on
the “Order” menu item, the application will retrieve the Builder’s Product (the
assembled car), pass it to an object that draws the car, and then construct an order based
on the assembled car.

AutoAssemblerUI>>actionMenu
^Menu new

title: 'Action';
owner: self;
appendItem: 'Draw' selector: #drawCar;
appendItem: 'Order' selector: #orderCar;
disableAll; "Gray it out at window-open time"
yourself

AutoAssemblerUI>>orderCar
"The user has selected the 'Order' menu item, signaling
all car/components selections have been made."

| car |
"Get the assembled car from my Builder:"
car := builder assembledCar.
car isNil ifTrue: [^MessageBox message:
 'You haven''t finished assembling a complete car yet!'].

"Draw it for the user:"
CarRenderer new

render: car
using: (self paneAt: #graphOutput:) pen.

"Assemble and print an invoice for the assembled car:"
CarInvoiceMaker new printInvoiceFor: car

CarBuilder>>assembledCar is the Builder’s “Return the final Product” method.
It verifies the car has all essential subcomponents, such as an engine and body, and then
returns the completed car.

�6�5� $OSHUW� .� %URZQ� 	 %� :RROI ������� ��������

05/21/97 09:50 14

CarBuilder>>assembledCar
"Return my final Product after verifying there's
 a completed Product to return."
car isNil ifTrue: [^nil].
car engine isNil ifTrue: [^nil].
...
^car

Structurally, our application looks like the following diagram. Notice the difference
between this and the similar Abstract Factory diagram. In Abstract Factory, the factory
can be asked to create an individual component and it returns the appropriate object. If
the factory client wants to, it may add each of these parts to a larger product, but the
factory itself has no knowledge of this. A Builder can also be asked to create an
individual component, but for each such request the Builder returns nothing of interest;
instead, the newly created component is added to the Product encapsulated within the
Builder. Later, when the all subcomponents have been added, the Builder can be asked
for its ultimate Product.

...

...

FordBuilder

add4CylinderEngine
addStandard6CylinderEngine
addTurbocharged6CylinderEngine

addTurbocharged6CylinderEngine
addStandard6CylinderEngine
add4CylinderEngine

CarBuilder

self car addEngine:
 FordTurbocharged6CylinderEngine new

...

ToyotaBuilder

addTurbocharged6CylinderEngine
addStandard6CylinderEngine
add4CylinderEngine

self car addEngine:
 Toyota4CylinderEngine new

self car addEngine:
 ToyotaTurbocharged6CylinderEngine new

assembledCar

car

...
^car

...

AutoAssemblyUI

engineIs4Cylinder
engineIsStandard6Cylinder
engineIsTurbocharged6Cylinder

self car addEngine:
 Ford4CylinderEngine new

self car addEngine:
 FordStandard6CylinderEngine new

self car addEngine:
 ToyotaStandard6CylinderEngine new

builder addTurbocharged6CylinderEngine

builder

�6�5� $OSHUW� .� %URZQ� 	 %� :RROI ������� ��������

05/21/97 09:50 15

Known Smalltalk Uses

Design Patterns mentions three known uses of the Builder pattern in VisualWorks (page
DP 105). We’ll describe one of these (ClassBuilder) in detail along with additional
examples.

MenuBuilder

MenuBuilder in VisualWorks implements methods to add individual menu parts
(menu items and separator lines). The information about each part is appended to the
MenuBuilder ’s internal representation of its product. When all the parts have been
added, the client asks the MenuBuilder for the finished product by sending the menu
message. In response, the MenuBuilder constructs and returns the completed Menu
instance.

UIBuilder

A UIBuilder in VisualWorks constructs user interface windows and their
subcomponent widgets. Specifications for individual interface widgets can be supplied to
a UIBuilder with the add: message. When all the widget specifications are added,
the UIBuilder can be asked to open the resultant product, a window. A large set of
examples can be found in the UIBuilder class in the VisualWorks image (see the
class methods in the examples category).

ClassBuilder

In VisualWorks, ClassBuilder instances are called on to create new classes or
modify existing ones. For example, a typical class creation message looks like this:

ASuperclass subclass: #ASubclass
instanceVariableNames: 'var1 var2'
classVariableNames: 'ClassVar1'
poolDictionaries: ''
category: 'Companion Examples'

Here’s the implementation of this message directly from the VisualWorks image:

Class>>subclass: t instanceVariableNames: f
classVariableNames: d poolDictionaries: s category: cat

"This is the standard initialization message for
 creating a new class as a subclass of an existing
 class (the receiver)."

�6�5� $OSHUW� .� %URZQ� 	 %� :RROI ������� ��������

05/21/97 09:50 16

^self classBuilder
superclass: self;
environment: self environment;
className: t;
instVarString: f;
classVarString: d;
poolString: s;
category: cat;
beFixed;
reviseSystem

The first message creates an instance of ClassBuilder using a factory method. The
classBuilder method looks like this (class Class inherits from Behavior):

Behavior>>classBuilder
^ClassBuilder new

Subsequently, this ClassBuilder instance is sent a bunch of messages to set various
characteristics of the class being created or modified. For example, the class’ superclass
is set and the class’ name is assigned. Finally, in reviseSystem the
ClassBuilder either constructs a new class object (if the class does not already exist)
or modifies the existing class. This is the “Return the final Product” Builder message.

Related Patterns

Strategy

Builder is similar to the Strategy pattern; the difference between the two is their
intended use. Builder is used to construct new objects, bit by bit, on behalf of a client;
different types of Builder objects implement the same generic building protocol but may
actually instantiate different classes. On the other hand, Strategy is used to provide an
abstract interface to an algorithm, that is, a strategy object is a reification of an
algorithm as an object; different strategy objects provide alternative implementations of
the same generic service.

Abstract Factory

We’ve already seen that the Builder and Abstract Factory creational patterns are closely
related. They are both used in situations where we want to instantiate Products from one
of several Product families. The difference is that an Abstract Factory is called on to
instantiate and return all component parts—each time it is invoked, the factory returns a
Product—and its client may assemble them into a more complex object. A Builder is
called upon in a piecemeal fashion to add components to an ultimate Product, and the
Product is encapsulated within the Builder object. The Builder, rather than its client, is
the Product assembler now. When the client has added all the component parts it
requires, it asks the Builder for its final Product.

