

Macmillan Coaputer Science Series
Consulting Editor
Professor F.H. Sumner, University of Manchester

S.T. Allworth and R.N. Zobel, Introduction to Real-time Software
Design, second edition
Ian 0. Angell and Gareth Griffith, High-resolution Computer Graphics
Using FORTRAN 77
Ian 0. Angell and Gareth Griffith, High-resolution Computer Graphics
Using Pascal
M.A. Azmoodeh, Abstract Data Types and Algorithms
C. Bamford and P. Curran, Data Structures, Files and Databases
Philip Barker, Author Languages for CAL
A.N. Barrett and A.L. Mackay, Spatial Structure and the
Microcomputer
R.E. Berry and B.A.E. Meekings, A Book on C
G.M. Birtwistle, Discrete Event Modelling on Simula
T.B. Boffey, Graph Theory in Operations Research
Richard Bornat, Understanding and Writing Compilers
Linda E.M. Brackenbury, Design of VLSI Systems - A Practical
Introduction
J.K. Buckle, Software Configuration Management
W.D. Burnham and A.R. Hall, Prolog Programming and Applications
J.C. Cluley, Interfacing to Microprocessors
J.C. Cluley, Introduction to Low Level Programming for
Microprocessors
Robert Cole, Computer Communications, second edition
Derek Coleman, A Structured Programming Approach to Data
Andrew J.T. Colin, Fundamentals of Computer S~ience
Ar.drew J.T. Colin, Programming and Problem-solving in Algol 68
S.M. Deen, Fundamentals of Data Base Systems
S.M. Deen, Principles and Practice of Database Systems
Tim Denvir, Introduction to Discrete Mathematics for Software
Engineering
P.M. Dew and K.R. James, Introduction to Numerical Computation in
Pascal
M.R.M. Dunsmuir and G.J. Davies, Programming the UNIX System
K.C.E. Gee, Introduction to Local Area Computer Networks
J.B. Gosling, Design of Arithmetic Units for Digital Computers
Roger Hutty, Z80 Assembly Language Programming for Students
Roland N. Ibbett, The Architecture of High Performance Computers
Patrick Jaulent, The 68000 - Hardware and Software
J.M. King and J.P. Pardoe, Program Design Using JSP - A Practical
Introduction

H. Kopetz, Software Reliability
E.V. Krishnamurthy, Introductory Theory of Computer Science
V.P. Lane, Security of Computer Based Information Systems
Graham Lee, From Hardware to Software - an introduction to computers
A.M. Lister, Fundamentals of Operating Systems, third edition
G.P. McKeown and V.J. Rayward-Smith, Mathematics for Computing
Brian Meek, Fortran, PL/1 and the Algols
A. Mevel and T. Gueguen, Smalltalk-80
Barry Morrell and Peter Whittle, CP/M 80 Programmer's Guide
Derrick Morris, System Programming Based on the PDPll
Y. Nishinuma and R. Espesser, UNIX - First contact
Pim Oets, MS-DOS and PC-DOS - A Practical Guide
Christian Queinnec, LISP
Gordon Reece, Microcomputer Modelling by Finite Differences
W.P. Salman, 0. Tisserand and B. Toulout, FORTH
L.E. Scales, Introduction to Non-linear Optimization
Peter S. Sell, Expert Systems - A Practical Introduction
Colin J. Theaker and Graham R. Brookes, A Practical Course on
Operating Systems
J-M. Trio, 8086-8088 Architecture and Programming
M.J. Usher, Information Theory for Information Technologists
Colin Walls, Programming Dedicated Microprocessors
B.S. Walker, Understanding Microprocessors
Peter J.L. Wallis, Portable Programming
I.R. Wilson and A.M. Addyman, A Practical Introduction to Pascal -
with BS6192, second edition

Non-series
Roy Anderson, Management, Information Systems and Computers
J.E. Bingham and G.W.P. Davies, A Handbook of Systems Analysis,
second edition
J.E. Bingham and G.W.P. Davies, Planning for Data Communications

Small talk -80
A. Mevel and T. Gueguen

Edited by
Mario W olczko,
Department of Computer Science,
University of Manchester

M
MACMILLAN
EDUCATION

© Edition s Eyrolle s 198 7

Authorised Englis h Languag e editio n o f Smalltalk-80 , b y A . Méve l an d
T. Guéguen , firs t publishe d 198 7 b y Edition s Eyrolles , 6 1 boulevar d
Saint-Germain, 7500 5 Pari s

Translated b y M.J . Stewar t

© Englis h Languag e edition , Macmilla n Educatio n Ltd , 198 7

All right s reserved . N o reproduction , cop y o r transmissio n o f thi s
publication ma y b e mad e withou t writte n permission .

No paragrap h o f thi s publicatio n ma y b e reproduced , copie d o r
transmitted sav e wit h writte n permissio n o r i n accordanc e wit h th e
provisions o f th e Copyrigh t Ac t 195 6 (a s amended) , o r unde r th e term s
of an y licenc e permittin g limite d copyin g issue d b y th e Copyrigh t
Licensing Agency , London .

Any perso n wh o doe s an y unauthorise d ac t i n relatio n t o thi s
publication ma y b e liabl e t o crimina l prosecutio n an d civi l claim s fo r
damages.

First publishe d 198 7

Published b y

MACMILLAN EDUCATIO N LT D
Houndmills, Basingstoke , Hampshir e RG2 1 2X S
and Londo n
Companies an d representative s throughou t th e worl d

British Librar y Cataloguin g i n Publicatio n Dat a
Mével, A.

Smalltalk-80. -- - (Macmilla n computer scienc e series).
1. Smalltal k -8 0 (Compute r system)
I. Titl e II . Guéguen, T.
005.13'3 QA76.8.S63 5

ISBN 978-0-333-44514- 3 ISB N 978-1-349-09653- 4 (eBook)
DOI 10.1007/978-1-349-09653- 4

Contents

Preface
1 Introduction

1.1 Presentation
1.2 Smalltalk and its growth

2 Principles of the Language
2.1 Objects and messages
2.2 Classes and instances
2.3 Methods

3 Classes and Instances
3.1 Declaration of variables

3.1.1 Instance variables
3.1.2 Class variables
3.1.3 Global variables
3.1.4 Pool variables

3.2 Classes and subclasses
3.2.1 General remarks
3.2.2 Definition of a class

3.3 Metaclasses

4 Syntax
4.1 Literals

4.1.1 Numbers

xi
1
1
1

6
6
7
8

9
9
9
9

10
10
10
10
11
11

13
13
13

4.1.2 Characters 14
4.1.3 Character strings 14
4.1.4 Symbols 14
4.1.5 Arrays 14

4.2 Variables 15
4.3 Messages 15

4.3.1 Composition of a message 15
4.3.2 Value returned by a message 16
4.3.3 Message priority 17
4.3.4 Cascaded messages 18

4.4 Blocks 18
4.4.1 Description of blocks 18
4.4.2 Blocks with arguments 18
4.4.3 Use of blocks in control structures 19

v

vi Contents

5 Methods 21
21
21
22
22
23
23
24
25

5.1 Messages and methods
5.1.1 Methods search
5.1.2 Object returned by a method
5.1.3 Temporary variables

5.2 Pseudo-variables
5.2.1 Pseudo-variable self
5.2.2 Super pseudo-variable

5.3 Primitive methods

6 Some Elements of the User Interface
6.1 General description
6.2 Main menu
6.3 Workspaces
6.4 Browsers

7 The Class Object
7.1 Identification of an object
7.2 Copies of objects

7.2.1 Non-duplicated instance variables
7.2.2 Duplicated instance variables
7.2.3 Copy message

7.3 Comparisons of objects
7.3.1 Equivalence of two objects
7.3.2 Equality of two objects
7.3.3 Comparison with nil

7.4 Indexed objects
7.5 Representation of objects
7.6 Control of errors
7.7 Control of messages
7.8 Dependencies between objects
7.9 Primitive messages

26
26
27
27
28

31
31
32
32
32
33
33
33
33
34
34
34
35
35
36
38

8 Description of Architecture of Classes 40
8.1 Class Behavior 41

8.1.1 Dictionary of methods 41
8.1.2 Instances 43
8.1.3 Manipulation of the class hierarchy 45

8.2 The classes ClassDescription and Class 47
8.2.1 Access to the description of a class 48
8.2.2 Category of classes and messages 48
8. 2. 3 Copy of messages 4 9
8.2.4 Compilation of methods 49
8.2.5 Access to variable names 50
8.2.6 Saving a class on a file 50

8.3 The class Metaclass 50
8.4 Multiple inheritance 50

9 The Magnitude Classes 53
9.1 The class Magnitude 53
9.2 The class Date 54

Contents

9. 2 .l Creation of instances
9.2.2 Information about the calendar
9. 2. 3 Arithmetic
9.2.4 Conversion

9. 3 The class Time
9. 3. l Creation of instances
9.3.2 Information about the time
9. 3. 3 Conversions
9. 3. 4 Arithmetic

9.4 The class Character
9.4.1 Access to the instances
9.4.2 Testing the instances

10 The Numeric Classes
10.1 The class Number

10.1.1 Arithmetic
10.1.2 Mathematics
10.1.3 Tests
10.1.4 Truncation and rounding
10.1.5 Conversions
10.1.6 Nature of the object returned by

arithmetic operations
10.2 The class Float

vii

54
54
55
55
56
56
56
56
56
57
57
57

59
59
59
60
61
62
62

63
64

10.3 The class Fraction 64
10.4 The class Integer 64

10.4.1 Enumeration 64
10.4.2 Some additional arithmetic functions 65
10.4.3 Bit manipulation 65
10.4.4 Changing base 66

ll The Class Collection 67
11.1 Creation of instances 67
11.2 Manipulating the elements of a collection 68

11.2.1 Adding elements to a collection 68
11.2.2 Removing elements from a collection 68

11.3 Tests on a collection 69
11.4 Enumeration of a collection 69
11.5 Conversion of a collection
11.6 The subclasses of the class Collection

11.6.1 The class Bag
11.6.2 The class Set
11.6.3 The class Dictionary
11.6.4 The class IdentityDictionary
11.6.5 The class SequenceableCollection

The class OrderedCollection
The class SortedCollection
The class LinkedList
The class Interval
The class Ar·rayedCollection

70
71
71
7l
71
74
74
77
78
79
80
81

viii Contents

12 The Class Stream
12.1 The class PositionableStream

12.1.1 The class ReadStream
12.1.2 The class WriteStream
12.1.3 The class ReadWriteStream

12.2 The class ExternalStream
12.2.1 The class FileStream
12.2.2 The class FileDirectory

13 Processes
13.1 The class Process
13.2 The class ProcessorScheduler
13.3 The class Delay
13.4 Semaphores

14 The Classes Point and Rectangle
14.1 The class Point

14.1.1 Creating a point
14.1.2 Messages supported by the class

14.2 Coordinate system within Smalltalk
environment

14.3 The class Rectangle
14.3.1 Creating a rectangle
14.3.2 Instance methods

15 The Graphics Classes
15.1 The class Bitmap
15.2 The class DisplayObject

15.2.1 The class DisplayText
15.2.2 The class DisplayMedium
15.2.3 The class Form
15.2.4 The class Cursor
15.2.5 The class DisplayScreen
15.2.6 The class Path

15.3 The class BitBlt
15.4 The class Pen

16 Basic Elements of the Interface
16.1 Mouse
16.2 Windows
16.3 Pop-up menus
16.4 Standard windows
16.5 The system menu

17 Text Editing Windows
17.1 Scrollbars
17.2 How to select text
17.3 Edit commands
17.4 Workspaces
17.5 System workspace

84
85
87
87
88
88
89
89

91
91
92
93
94

96
96
96

Point 96

98
99

100
100

105
105
105
106
107
110
112
112
113
114
115

118
118
118
119
119
120

122
122
124
127
127
128

Contents

18 Browsers
18.1 Description
18.2 The categories of class
18.3 The classes
18.4 Protocols
18.5 Methods
18.6 The code window

18.6.1 Editing a class
18.6.2 Editing a method

19 Other Windows
19.1 Inspectors

19.1.1 Description
19.1.2 Other inspectors

19.2 Debuggers
19.2.1 List of methods
19.2.2 The code window
19.2.3 Inspector of the receiver
19.2.4 Inspector of local variables

19.3 Views of external files

ix

129
129
130
131
134
135
136
137
137

139
139
139
140
142
143
143
144
144
144

19.4 Graphics editors 147
19.4.1 The Form Editor 147
19.4.2 The Bit Editor 148

20 Management of User Events 150
20.1 The class InputState 150
20.2 The class InputSensor 150

21 Model-View-Controller System 152
21.1 The class View 152

21.1.1 The class WindowingTransformation 153
21.1.2 Instance variables of the class View 154
21.1.3 Messages understood by instances

of View 156
21.2 The class Controller 158

21.2.1 Instance variables of Controller 158
21.2.2 Messages understood by instances

of Controller 159
21.3 The class ControlManager
21.4 The class MouseMenuController
21.5 The classes StandardSystemView and

StandardSystemController
21.6 Text-scrolling windows

21.6.1 Text-editing windows
21.6.2 Lists

21.7 Example

Index

160
160

162
163
164
165
167

175

Preface

With the advent of affordable personal computing power,
the Smalltalk-SO system is rapidly gaining in popular-
ity. The Smalltalk-80 system can provide the personal
computer user with a glimpse into the future of the pro-
gramming process over the next decade.

This book is an introduction to programming in the
Smalltalk-80 system. It describes the major elements of
the system, namely the programming language, class
structure and user interface, and serves as a concise
reference for the most important classes in the sys-
tem. Also included are many examples of Smalltalk-80
usage, and the source to a complete application. The
description is based on the version 2 Virtual Image from
Xerox, probably the most popular version of Smalltalk in
use today.

The Smalltalk-80 system is large, and one cannot hope
to describe it all in a book of this size. For a more
comprehensive source, the reader is referred to Small-
talk-SO: The language and its Implementation, by A.
Goldberg and D. Robson, Addison-Wesley, l9S3, and Small-
talk-SO: The Interactive Programming Environment, by A.
Goldberg, Addison-Wesley, l9S4.

1 Introduction

1.1 Presentation
Smalltalk is one of several things: a programming
language, an operating system, a programming environ-
ment, and a design and programming methodology. Many
people consider Smalltalk to be a tool for knowledge
representation, thus making it a serious competitor to
Lisp and Prolog. It has moved on from its position as
internal support system at the Xerox Palo Alto Research
Center, which it held for ten years, to being used for
the industrial production of software. The application
areas in which it excels are application prototyping,
interactive graphics systems and simulation. Although
there are still some problems with speed of execution
(mainly stemming from the interpretive nature of the
system), spectacular results have been achieved in cost
savings with certain types of software, especially in
applications containing a high graphics or interactive
component. The principal reason for this is that the
Smalltalk environment takes the maximum advantage of the
reuse of software components.

1.2 Sma11ta1k and its growth
Smalltalk is available on an increasing number of modern
machines. It was first developed at Palo Alto in the
beginning of the 1970s at the instigation of Alan Kay,
and has evolved through three important stages:

- Sma1ltalk-72 was inspired by the Flex machine and the
languages Lisp and Plasma

- Smalltalk-76 formalised the class, object and inher-
itance concepts inspired by Simula-67

- Smalltalk-80 is the latest version of the language,
which was released from the Palo Alto laboratories.

Highlighted below are some of the stages in the des-
ign and development of Smalltalk at the PARC laborator-
ies leading up to its general publication.

October 1972 building of first Smalltalk interpreter
December 1972 definition of Smalltalk-72 according to
the following basic principles

- control with automatic de-allocation
- interaction by messages
- behaviour of objects defined by classes

2 Smalltalk-80

1974 Smalltalk-74
- introduction of message dictionaries
- graphic control by BitBlt

1976 Smalltalk-76
- unification of classes and contexts as objects
- inheritance by class hierarchy

1978 Smalltalk-78
- portability achieved with NoteTaker
- improvement of performance
- experimental implementation on an 8-bit microcomputer

(Z80 or 6502) TinyTalk
Summer 1979 first publications on Smalltalk produced.
Invitations to several companies to carry out experi-
mental implementations and participate in the evaluation
of the product: Apple, DEC, Tektronix, Hewlett Packard
August 1981 publication of an issue of 'Byte' devoted
to Smalltalk
September 1983 first Smalltalk licences granted by Xerox
Summer 1984 appearance of first implementations of
Smalltalk on different machines (Sun, SM90, etc)
Early 1985 Tektronix 4404 workstation made available
Spring 1985 'Methods' (a Smalltalk clone) available for
the IBM PC (DigiTalk Inc) and Smalltalk for the Apple
Lisa (Macintosh XL)
Autumn 1985 Smalltalk available on the Apple Macintosh
512K (Apple) and on the IBM PC/AT (SoftSmarts Inc). More
powerful Tektronix 4405 and 4406 models announced.

The essential characteristic of Smalltalk is its
economy of design. In fact, this is based on the four
concepts of object, message, class and inheritance.

Other mechanisms, such as the block or the dictionary
are seen by the programmer as constructs developed from
these basic concepts. This effort towards unification
can be pushed even further, but it currently has no
equivalent in other languages and systems. What it does
do is to facilitate rapid mastery of the programming
tools available.

From the outset of his research work, Alan Kay
established one of the principles that was later to be
followed in the different versions of Smalltalk. That
was the principle of reaction. At any time, an object is
active and must be capable of presenting itself to the
user in a tangible form. This property greatly facilit-
ates the creation and development of models.

One important difference between the architecture of
a traditional product and that of a product based on
Smalltalk is the absence of any frontier between the
application and the system, which is thus completely
open (this system is called the virtual image in Xerox
terminology). To take an example, in a traditional

Introduction 3

approach, it is possible to find an application that
implements a table control by hash coding while the
compiler also uses the same algorithm. With Smalltalk,
it would be a design error not to reuse something that
is already present in the system.

Programming with Smalltalk is incremental by nature
and therefore lends itself very well to the progressive
development of models (by stepwise refinement). This has
two important consequences:

There is an intentional fusion of the roles of
programmer and user, because the same metaphors are
used. This means that the user of a program will be able
to move progressively from simple utilisation to modif-
ication and extension of the program with the same type
of interaction.

Of course, it will become possible to mix intimately
the different activities of programming and debugging.

It would be possible to expand on other character-
istics of Smalltalk that improve programming efficiency.
For example, one can cite the abandonment of the concept
of mode (in the context of insertion mode, query mode,
etc). One can also think of the principle of strong
modularity which requires that no part of the system
depends upon details of the internal functioning of
other parts, this property being induced by the archi-
tecture of communicating objects. However, it is above
all the importance of the graphics interface and its
good integration with the system and the language that
one associates with Smalltalk.

The graphics interface consists of a bit-mapped
screen and a three-button mouse that permits zones of
pixels to be designated on the screen. These devices
allow

- working in an environment consisting of several
windows

- mixing text and graphics
- maintaining a dialogue very easily, thanks to pop-up

menus which disappear as soon as the button that
calls them is released

- selecting points, areas and text, all with great
ease.
It should be appreciated that the graphics screen and

the mouse pointing device have nothing to do with 'add-
ons' to an existing system. They are thoroughly integr-
ated into the programming environment which exploits
them to the full.

Many research projects are currently evaluating the
value of Smalltalk-80 in industrial software production.
It is still too soon to pass overall judgement on this
product, but some characteristics can be underlined here
and now.

4 Smalltalk-80

The fashion for object oriented languages goes beyond
the phenomenon of Smalltalk. A large number of tools
that make explicit reference to the same concepts are
available or currently appearing. Without striving to be
exhaustive, the following can be mentioned: Formes (P.
Cointe), Kool (P.Albert), Ulysses (Y. Autret), Mering
(J. Ferber), Ceyx (J.M. Hullot), X-Lisp (D.Betz), R-Lisp
(J.L. Roos), Ross (D. McArthur), Loops (Bobrow), Glisp
(Novak), Actl and Act2 (Liebermann and Theriault),
Flavors (Cannon and Moon), LRO (Ch. Roche), C++ (B.
Stroustrup), Objective-C (Cox and Love), Clascal
(Apple), Methods (Digitalk Inc), ObjectivePascal (N.
Wirth and Apple), Oblogis (P.Y. Gloess), Neon (Kryia
System Inc), Eiffel (B. Meyer), etc. All of these,
mentioned at random, have quite diverse fields of
application, but they all, to varying degrees, share
certain aspects of Smalltalk. We can therefore say that
the language conceived of by Alan Kay has had an import-
ant influence on the evolution of software production
tools. The question is to establish whether this influ-
ence will be direct (effectively using Smalltalk), or
indirect (borrowing ideas). Simula-67, which Smalltalk
draws on considerably, has had a great influence on
current programming languages, but its influence has
been mainly indirect.

- The key to the question that has just been put on the
future of the industrial use of Smalltalk depends very
much on the choice that educational institutions make on
the use of this language for their courses. The current
availability of Smalltalk would indicate important
growth potential from 1986 onwards. The present barrier
to the wider industrial spread of Smalltalk is not the
cost of the necessary workstations, but the lack of
staff trained to use it.

- The extreme flexibility of Smalltalk allows the pro-
grammer to redefine the majority of his system functions
with no restrictions. This can pose problems in a shared
programming environment. Solutions exist, but are not
yet integrated. However, for use in prototyping, this is
not a serious handicap and the economies achieved
promise increasing use of this tool.

There are currently numerous development projects
based on Smalltalk. The most serious test of a wide-
spread use of this product will be the existence of an
exchange supply of software components written in
Small talk.

The aim of this book is not to expound the theory of
object languages but rather to offer a practical guide
to programming in Smalltalk. There can be no question of
developing here all the aspects of Smalltalk, because in
its most recent versions it contains more than 230

Introduction 5

classes and 4500 methods. Nevertheless, we have tried
not to neglect any of the important points of Smalltalk;
in particular, we have devoted several chapters to the
user interface and more precisely to the MVC (Model,
View, Controller) interface system that forms the basis
of every Smalltalk interface.

2 Principles of the Language

2.1 Objects and messages
All the entities used in Smalltalk-80 are objects. For
example, an object can represent a number, a character,
a drawing, a list, a program, an editor, etc.

An object has two main characteristics:
- it allows data belonging to it to be stored and

accessed
- it can reply to a certain number of messages.

For example, the object 3.14 will respond to the
message sin by returning the value 0, which is written:

3.14 sin
The only means of manipulating an object is to send

it a message. Messages therefore constitute the inter-
face between objects and the external world. The way in
which an object responds to a message is private to it
and does not have to be known externally.

Writing an application in Smalltalk consists of
determining the objects necessary for the description of
the problem and in defining the possible operations fer
each object.

For example, let us take a computer-aided drawing
application. This must allow us to draw easily all
simple geometric shapes. We will restrict ourselves to
points, straight lines and circles. We can see already
that just stating the problem indicates some of the
objects that will have to be created; this produces a
first breakdown of the problem into objects:

- drawing
- point
- line
- circle

Drawings will be defined by a list of points, a list
of straight lines and a list of circles.

Points will be defined by two coordinates x and y.
Lines will be defined by two points.
Circles will be defined by a point and a radius.
The following operations are defined on drawings:

- display (displays the drawing on the screen)
- points (returns the list of points in the drawing)
- lines (returns the list of lines in the drawing)

6

Principles of the Language

circles (returns the list of circles in the drawing)
- addPoint: aPoint (adds a point to the drawing)
- addLine: aLine (adds a line to the drawing)
- addCircle: aCircle (adds a circle to the drawing)

The following operations are defined on points:

- display (displays the point on the drawing)
- xy (returns the coordinates of the point)
- x: aNumber (initialises the x-coordinate of the

point)
- y: aNumber (initialises the y-coordinate of the

point)

The following operations are defined on lines:

- display (displays the line on the drawing)
- origin (returns the startPoint of the line)

- corner (returns the the endPoint of the
line)

- origin: aPoint (initialises the startPoint of the
line)

- corner: aPoint (initialises the endPoint of the
line)

The following operations are defined on circles:

- display (displays the circle on the drawing)
- centre (returns the centre point of the circle)
- radius (returns the radius of the circle)
- centre: aPoint (initialises the centre of the

circle)
- radius: aNumber (initialises the radius of the

circle).

7

This example demonstrates the modular aspect of
Smalltalk. When the basic objects of an application and
the operations on these objects are defined, the pro-
grammer can use them without knowing the detail of their
construction; he can also reuse them in contexts that
are quite different from those for which they were
constructed.

2.2 Classes and instances
In the previous example, a drawing is made up of several
points, several lines and several circles. All the
points must interpret the messages sent to them in the
same way.

This leads us to group together objects of the same
kind into classes (that is, those objects that represent

8 Smalltalk-80

the same sort of entity and interpret messages in the
same way).

Thus, the class of points whose elements will be
particular points is defined.

Objects contained in a class are called instances of
this class. The class describes the form in which in-
formation about its instances are stored; it also
describes the way in which its instances will reply to
the messages that they receive. In a class the instances
are represented by a certain number of variables called
instance variables. For the class of points the instance
variables are the coordinates x and y; for the class of
lines the instance variables are the origin and the cor-
ner.

2.3 Methods
The way in which an object responds to a message is
described in a method. All instances of a class use the
same method to respond to a message. Each class contains
a list of methods that allows its instances to respond
to the messages that are sent to them.

3 Classes and Instances

3.1 Declaration of variables
In the Smalltalk environment we encounter several types
of variable that differ in their scope. These different
types are:

- instance variables
- class variables
- global variables
- pool variables

3.1.1 Instance variables
Instance variables are variables
object and which allow it to be

that belong
differentiated

to an
from

other instances of its class. We can distinguish two
types of instance variable, those that are indexed and
those that are named.

Named instance variables
These are instance variables that are identified by a
name. For the instances of the class Point there are two
named instance variables, x and y.

When the name of an instance variable appears in an
expression, this name refers to the value of the cor-
responding instance.

When a new instance is created, it contains instance
variables specified by its class; the default value of
these instance variables is the undefined object called
nil.

Indexed instance variables
These are instance variables that are not accessed by
name but by a numeric index. In contrast to objects that
possess only named instance variables, those that
possess indexed instance variables may have a varying
number of instance variables.

In Smalltalk-80 there is for example a class with
indexed instance variables which allows arrays to be
represented; for each instance the number of variables
corresponds to the size of the table.

3.1.2 Class variables
Class variables are variables that are shared by all the

9

10 Smalltalk-80

instances of a class. For example, in the case of a
computer-assisted drawing application, the outline of a
circle is made up of several line segments; the number
of these segments is the same for all circles, and one
can therefore define it as a class variable.

3.1.3 Global variables
Global variables are variables that are shared by all
objects. They are stored in a dictionary called Small-
talk. For example, all the classess are referenced by
global variables whose name is the access key to the
dictionary called Smalltalk.

3.1.4 Pool variables
Pool variables are variables that are accessible by the
instances of several classes. In order to define a set
of variables shared by several classes, it is necessary
to define a dictionary that is common to these classes,
this dictionary being itself a global variable.

3.2 Classes and subclasses

3.2.1 General remarks
Each object belongs to one and only one class, as can be
represented thus:

Class A Class B

• • • •
•

• •
• •

• • •

• • •
• • Class C
• •

It can, however, be useful to share some elements of
the description between several classes or to describe
one class by means of another.(See also section 5.2.2.)

This is what happens in Smalltalk, where each class
is described in terms of another class called its su-
perclass. The instances of the new class are identical
to those of its superclass, except for the additions

Classes and Instances 11

made explicit in the new class. The new class thus
defined is a subclass of its superclass.

One subclass is itself a class and can therefore also
have one or more subclasses. The set of classes thus
takes on a tree structure whose root is the class called
Object. Object is the only class that does not possess a
superclass.

The instances of each subclass inherit from all the
instance variables and from all the class variables, as
well as from all the methods of the superclass.

3.2.2 Definition of a class
To give a complete definition of a class, we need the
following elements:

- its name
- its superclass
- its new class variables
- its new pool variables
- its new instance variables
- the list of its new methods.

The name of the class is obligatory and must be
different from the name of any other existing class.

The superclass is obligatory and must correspond to a
class already in existence.

Variables are optional, but if they exist their name
must be different from any name already defined in the
set of its superclasses.

New methods may be added, or methods already defined
in the set of its superclasses way be redefined.

3.3 Metaclasses
As we have said earlier, each Smalltalk entity is an
object. Consequently, a class is itself an object. We
have also seen how each object belongs to one and only
one class. A class is therefore itself an instance of
another class that we call its metaclass. In earlier
versions of Smalltalk all the classes were instances of
one single metaclass. For reasons of flexibility (es-
pecially when creating new instances of a class), each
class is the sole instance of a metaclass.

The metaclasses are classes and therefore contain
methods that allow their instances (that is, the class-
es) to respond to the messages that they receive. As a
result, these methods will be called class methods,
while the other methods will be called instance methods.
When a class is created, a new metaclass is auto-
matically created. Among the messages sent to classes we
find for example the message new, which allows a new
instance of the class that received this message to be
created.

12 Smalltalk-80

In contrast to other classes, metaclasses have no
name; neither are they metaclass instances. They are all
instances of the same class called Metaclass.

One can access the metaclass of a class by sending it
the message class. So, if we call Point the class of
points, we can access its metaclass with the expression:

Point class

The metaclasses are classes and therefore have a
superclass called Class.

To summarise, we can regard metaclasses in two ways:
- as instances of the class Metaclass,
- as a subclass of the the class Class.

Metaclass and Class are two subclasses of the class
ClassDescription.

4 Syntax

An expression is a sequence of characters which, when
evaluated, always returns an object. In Smalltalk-80
there are four lexical types, as follows:

- literals that represent certain predefined objects
like numbers, characters, character strings;

- variable names that represent variables that can be
accessed in the context of the expression;
-messages;
- blocks that represent an expression whose evaluation

is postponed.

4.1 Literals

4.1.1 Numbers
Numbers are objects that represent numerical values and
respond to mathematical messages.

A number may be positive or negative; if it is negat-
ive it will be preceded by the minus sign -.

A number may be a decimal or an integer; if it is
decimal it includes the decimal point in its sequence of
figures, for example:

4
4.56
-7
-7.234
432
When the base used is not base 10, the number begins

with its base expressed in base 10, followed by the
character 'r' and ending with the expression of the
number in that base. When the base is greater than 10,
the first letters of the alphabet are used to represent
numbers greater than 9, for example:

Smalltalk Base 10
expression

2rl0
2rl010
2rl.l
8rll
8rl23
16rAl
16r-Al

13

equivalent

2
10
1.5
9
83
161
-161

14 Smalltalk-80

A number may be expressed in scientific notation; in
this case the list of figures is followed by the char-
acter 'e' and the exponent is expressed in base 10. The
number in front of the exponent is multiplied by the
base to the power of the exponent, for example:

Scientific notation

2.549e3
-2.459e-3
2rl0e3
2rl0e-3

4.1.2 Characters

Base 10

2459
-0.002459
16
0.25

Characters represent the elements of the alphabet. They
are indicated by the '$'followed by a character, for
example:

$a
$A
$~

$9

4.1.3 Character strings
A string of characters represents a sequence of char-
acters. This is indicated by placing the list of
characters between quote marks. If the string itself
contains an apostrophe, this must be doubled in order to
avoid errors in interpretation, for example:

'this is a string'
'it"s a string too'

4 .1. 4 Symbols
Symbols are strings of characters that are used to
resent the names of objects in the system. They
written by prefixing them with the hash '#',
example:

#namel
#ThisisASymbol

4.1.5 Arrays

rep-
are
for

An array is a structured object whose elements may be
accessed by their numeric index. Each element of the
array is a literal. It is indicated by the hash and the
list of its elements is enclosed by brackets. If an
array or a symbol is included among the elements of the
array, there is no need for a hash in front of these
elements, for example:

(l)

#(2 7 9)
(1 'one one (1 one 'one is a string'))

Syntax 15

4.2 Variables
A variable allows an object to be referenced; all vari-
ables except indexed variables have a name. A variable
name may be used in an expression to designate an
object. From a given object one may access objects
referenced by variables whose name is known by this
object.

Because the range of instance variables of an object
is limited to the object itself, they will be in-
accessible from any other object, and can therefore only
be used by methods defined for this object.

A variable name is a sequence of alphanumeric char-
acters and must begin with a letter, for example:

vl
nameOfVariable
NameOfVariable
By convention, variables whose range is limited to

the object (instance variables and temporary variables)
begin with a lower case letter, and variables that are
accessible by several objects (global variables, pool
variables, class variables) begin with an upper case
letter.

To assign a value to a variables, the special
character '<-' is used, preceded by the variable name
followed by an expression whose evaluation will return
an object that will then be referenced by the variable,
for example:

variablel <- 1
variable2 <- 'variable 2 references a string of
characters'
variable3 <- Point class
variable4 <- variableS <- 123

4.3 Messages
Messages allow interactions between objects,
ample:

2 sqrt
returns the square root of 2,

2 + 8
returns the sum of 2 and 8,

variablel + 4

for ex-

returns the sum of 4 and the number referenced by vari-
able 1,

variablel > variable4
compares the objects referenced by the two variables,

10 raisedTo: 2
returns 10 raised to the power of 2.

4.3.1 Composition of a message
An expression requires a receiver to appear, followed by

16 Smalltalk-80

a selector and possibly arguments. The receiver and the
arguments are described by expressions, while the sel-
ector is described by a literal, for example:

2 sqrt
the receiver is 2, the selector is sqrt,

2 + 8
the receiver is 2, the selector is +, the argument is 8,

variable! + 4
the receiver is the object referenced by variable!, the
selector is +, the argument is 4,

variable! > variable4
the receiver is the object referenced by variable!, the
selector is >, the argument is the object referenced by
variable4,

10 raisedTo: 2
the receiver is 10, the selector is raisedTo:, the
argument is 2.

There are three types of messages,
the number of arguments:

Unary messages

characterised by

These are messages that have no argument, for example:
2 sqrt

Keyword messages
This is the most common form of message. The selector is
made up of one or more keywords preceding each argument.
Each keyword terminates with ': ', for example:

10 raisedTo: 2
the selector is raisedTo:, the unique keyword is raised-
To:, the argument is 2,

list at:2 put: l
the selector is at:put:. the keywords are at: and put:,
the arguments are 2 and l.

Binary messages
In the case of a single argument, it is possible not to
use a keyword for the selector but to replace it with a
selector made up of one or two non-alphanumeric char-
acters; in this case the message is said to be binary,
for example:

2 + 8
variable! >= variable4

4.3.2 Value returned by a message
In response to the message the receiver returns an
object which becomes the value of the expression. In the
following example

2 + 3 * 4

Syntax 17

the first message sent to object 2 has as its selector
+, and as its argument 3; the object returned in res-
ponse to this message is object 5. The expression then
becomes

5 * 4
and the result returned by the first expression is the
object 20.

In the case where the expression includes an as-
signment, the object returned is the object referenced
by the assignment variable. For example, the expression

variable! <- 2 + 3 * 4
returns the object 20.

4.3.3 Message priority
Messages are taken in order from the left of the
expression, with the following priorities (in decreasing
order of precedence):

- unary message
- binary message
- keywords message

In the example
10 raisedTo: 2 + 3 sqrt

the highest priority message is the unary message sqrt;
the value ret~rned will be 1.73205. The second message
will be the binary message +, the returned value being
3.73205. The last message will be the keyword message
raisedTo:, with the value returned being 10 raised to
the power of 3.73205, that is 5395.74.

In order to alter the order in which messages are
sent, parentheses may be used. The highest priority mes-
sage is the one enclosed between parentheses. For
example, in the expression

2+(3*4)
the first message sent will be *, which will go to the
object 3 with argument 4; the result will be 12, which
will become the argument for the selector + of the
second message. The final object returned will thus be
14.

When several keywords appear in a message, they are
grouped under a single selector. For example, in the ex-
pression

10 raisedTo: 2 raisedTo: 3
the selector will be raisedTo: raisedTo:, which is not a
correct selector. Parentheses must therefore be used, as
follows:

(10 raisedTo: 2) raisedTo: 3
or
10 raisedTo: (2 raisedTo: 3)

18 Smalltalk-80

4.3.4 Cascaded messages
It is possible to send several messages to the same
object by separating these messages with semi-colons. In
the following example

list at: l put: 'one
list at: 2 put: 'two'
list at: 3 put: 'three'

could be written
list at: l put: 'one at: 2 put: 'two' ; at: 3 put:

'three'
The use of cascaded messages is not obligatory but it

does make the writing of expressions more concise.

4.4 Blocks

4.4.1 Description of blocks
Blocks are Smalltalk objects used in control structures.
A block is a sequence of expressions separated by full
stops; it begins with the character '(' and ends with
the character '] '. Evaluation of a block must be
requested explicitly; this allows it to to be used in
control structures. An example of a block is:

[variable! <- l. variable2 <- 2]
If there is a point between the last expression and

the final bracket, it will be ignored.
A block is an object that can execute expressions

placed within brackets if it receives the message value.
For example

[variable! <- l. variable2 <- 2] value
and

variable! <- l. variable2 <- 2
will produce the same result.

Evaluation of a block returns the value returned by
the last expression in the block. When a block contains
no expression the value returned is nil.

4.4.2 Blocks with arguments
It is possible to pass one or more arguments to a block
before its execution. In a block the arguments are spec-
ified at the beginning of the block by identifiers
beginning with the colon :. Arguments are separated from
expressions by the bar character I .

For example, the block
[: i \ variable! <- i]

is a block with an argument that is i. The block
[: i : j I variable! <- i. variable2 <- j]

is a block with two arguments, i and j.
The arguments of a block are variables local to that

block.

Syn~x 19

To evaluate a block with an argument, you must send
it the message value: with an argument that will be
passed to the block. In the event of two arguments, the
message to be used is value:value:.

Use value: value: value: and value:value:value:value:
for three or four arguments; use valueWithArgs: anArray
for more.

4.4.3 Use of blocks in control structures
When we refer to classic programming languages like
Pascal or C, we find that they contain three types of
control structure: the loop (for, do), the test (if then
else) and the conditional loop (while, until). These
structures are also found in Smalltalk-80 and make use
of blocks. Smalltalk-80 does not have an equivalent to
the multi-branch (case) statement.

Loops
Starting with a list of elements it is possible to
execute a block for each element in the list, with each
element becoming the argument of the block. This is done
by sending the message do: to a list of elements. For
example

listintegers do: [:eachinteger I sum<- sum+
eachintEger]

will have the effect of calculating the sum of all the
integers contained in the list.

Tests
Boolean objects are returned from messages like >, <,
>=, <= etc. These Boolean objects, true and false,
respond to the messages ifTrue:, ifFalse:, ifTrue:if-
False: and ifFalse:ifTrue:. The arguments of these
messages are blocks that will be evaluated or not, de-
pending on whether the receiver is true or false. In the
example

aninteger < 0 ifTrue: [aninteger <- 0 - aninteger]
the sign of aninteger is changed if it is negative.

In the example
aninteger < 0 ifTrue: [aninteger <- 0] ifFalse:
[aninteger <- aninteger sqrt]

aninteger is set to 0 if it is negative, otherwise its
square root is assigned to it. To clarify the express-
ion, it can be formatted differently and may for example
be written as follows:

aninteger < 0 ifTrue: [aninteger <- 0]
ifFalse: [aninteger <- aninteger sqrt]

Conditional loops
A conditional loop operates for as long as a condition
is true or holds. This condition is evaluated at each

20 Smalltalk-80

iteration of the loop. That can for example be achieved
by sending the message whileTrue: or the message while-
False: to a block with another block as argument. The
example below allows the factorial of a number to be
calculated iteratively

fact <- l.
[aNumber > l] whileTrue:
[fact <-fact* aNumber.aNumber <- aNumber- l]
So long as aNumber is greater than l, the value

returned by the evaluation of the first block is true
and therefore the second block is evaluated. As soon as
aNumber is equal to l, the evaluation of the first block
returns false and the iteration stops. The result will
be referenced by the variable fact. This example can be
handled with the message whileFalse:

fact <- l.
[aNumber <= l] whileFalse:
[fact <-fact * aNumber.aNumber <- aNumber - l]
Note that these control structures are constructed

from the basic language features, namely, blocks methods
and messages, and require no extra features in the
language.

For example, the ifTrue: ifFalse: control structure
is built from two methods, one in class True (whose sole
instance is true),

ifTrue: aBlock ifFalse aSecondBlock
iaBlock value

and another in class False (whose sole instance is
false),

ifTrue: aBlock ifFalse: aSecondBlock
iaSecondBlock value

5 Methods

5.1 Messages and methods
A method describes how an object is going to reply to a
message. The name of a method is the same as the name of
the message to which the method must allow a response to
be made. A method consists of its name followed by a
list of expressions separated by full stops. For ex-
ample, the method of the class Point which returns the
x-coordinate of that point will be written

x message name
ix return of instance variable x

The method of class Point which alters the x-coordin-
ate of the point will be written

x: aValue message name
x <- aValue assigns to x the value aValue

The method of class Point which displays the point on
the drawing will

display j
I square

be written

square <- Form new.

square extent: 2@2

square black.
square displayAt: x@y

message name
definition of a variable
local to method
square becomes a new
instance of Form
size of square is fixed as 2
x 2 pixels
square is black
display square at position
(x,y)

Form is a predefined Smalltalk class.
new is a method of class which creates a new inst-

ance.
extent:, black and displayAt: are three instance

methods of the class Form.
The arguments found in the method name are variables

local to the method and cannot be altered. For example
x:aValue

aValue <- aValue + l.
x <- aValue

produces a syntax error.

5.1.1 Methods search
When an object receives a message, it looks in its class

21

22 Smalltalk-80

for a method having the same selector as the message
received. If it does not find it, it continues its
search in the superclass of its class; this search is
continued through the sequence of its superclasses until
the correct method is found.

If on reaching the root class, Object, the method has
not been found, there is an error. The receiver is then
sent the message doesNotUnderstand:, whose argument is
the message whose selector has not been found.

The method which replies to the message doesNotUnder-
stand: is set up in the class Object and is therefore
known to all objects. It indicates to the programmer
that there is an error.

If the search is successful, each expression of the
method found is evaluated. When all expressions have
been evaluated, the receiver returns to the sender an
object which is the response to the message received.

5.1.2 Object returned by a method
When a method terminates the receiver returns an object
to the sender. The default object is the receiver it-
self. When it is required to return another object, this
is indicated in the method by prefixing the object to be
returned with the character '1'.

As soon as this character is found, the object
produced by the expression that follows is returned to
the sender and the method terminates. For example, the
following method of class Point

xPositive
x > 0 ifTrue: [!true]

if False: [!false]
will return true if the x-coordinate of
positive, and false otherwise. This
written more simply as

xPositive
ix > 0

5.1.3 Temporary variables

the point
method may

is
be

As we saw in the example dealing with the display method
in class Point, a variable, square, was introduced.
Temporary variables like this may be declared in a
method, but they are accessible only during execution of
the method.

To declare temporary variables their name must be
placed between two '!'characters.

Declaration of these variables must occur between the
method name and the list of expressions. Every time that
a method is executed these variables are set to nil. For

example, the method
invertXandY

Methods

\temporaryVariable\
temporaryVariable <- x.
X <- y
y <- temporaryVariable

23

allows the coordinates of a point to be inverted using
the temporary variable called temporaryVariable.

5.2 Pseudo-variables
A pseudo-variable is a variable whose value cannot be
altered by assignment.

Some pseudo-variables are constants; that is, they
always refer to the same object. So far we have met
three, namely

- nil the default value of a variable
- true the object returned by a
- false the object returned by

Other pseudo-variables depend
they are used. Such is the
variables, self and super.

5.2.1 Pseudo-variable self

true condition
an false condition.
on the context in which
case with the pseudo-

The pseudo-variable self always refers to the receiver
of the message itself. Every method has access to the
self pseudo-variable. For example, the method

abs
self < 0 ifTrue: [iO - self]

returns the absolute value of the receiver.
self also allows recursion to be handled, as in the

following example:
factorial

self= 0 ifTrue: [il].
iself*(self - l) factorial

When the expression 3 factorial is evaluated, self
will represent 3 at the first pass. The method will re-
quest the response to the message (self- l) factorial,
namely 2 factorial, and so on until 0 factorial. This
may be shown diagrammatically as follows:

3 factorial self 3
2 factorial self 2

l factorial self l
~~ ~actorial self 0

i l
i 2

i 6

When a message is sent to self, the search for the
method corresponding to the message will begin in the

24 Smalltalk-80

class of the object referenced
well be a subclass of the class
method. This is a consequence
look for a method.

5.2.2 Super pseudo-variable

by self. This class may
containing the first

of the strategy used to

There is a second pseudo-variable, called super, that is
also accessible by all methods.

This pseudo-variable again refers to the receiver,
but its strategy for searching for a method is differ-
ent.

When a message is sent to super, the method search
begins not in the receiver's class, but in the super-
class of the class that the message was sent from.

For example, say we have a hierarchy of three
classes, as shown in the following figure:

Class A • a

Class B

Class C • b

• c

in which a b c are three respective instances of classes
A B C. Say that in class A the method is

name
i 'A'

in class B the method is
name

i 'B'

and in class C the method is
name

and

i 'c,
Say that in class B the methods are
myName

Tself name

super Name
Tsuper name

Methods 25

The different results of the messages myName and
superName sent to objects b and c will be

Expression Result

c myName
c superName
b myName
b superName

One of the most frequent cases of the
super pseudo-variable is when redefining
subclass. For example:

initialise
super initialise.
self init

use of the
a method in a

This method calls the method with the same name that
is located in a superclass of the class in which it is
embedded.

5.3 Primitive methods
We have just seen that in order to respond to a message
an object executes a method; execution of this method
results in the evaluation of one or more expressions and
therefore also to the sending of messages to other ob-
jects. To avoid an infinite regress of message sending,
there must be methods that do not send any messages, but
perform basic operations. These methods are not embedded
in the virtual image but in the virtual machine; they
are written in machine code and are referred to as
primitive methods. For example, the mathematical operat-
ions + * I - are primitive methods.

There are about a hundred primitive methods; the num-
ber varies according to the implementation.

When a method is a primitive method, it begins with
an expression of the form

<primitive #n>
where n is the number of the primitive.

If the primitive cannot be executed correctly, the
expressions that follow it in the method are executed;
this allows errors to be controlled.

6 Some Elements of the User

Interface

Part of this book is devoted to the user interface in
Smalltalk. However, at this point we want to give the
reader some elements so that he or she may test the
examples that have already been presented and those that
are to follow in the book. It is worth repeating once
again that learning Smalltalk is best done in a practi-
cal context; this means that the support of a machine,
while not absolutely necessary, is highly desirable for
tackling the remainder of this book.

snapsh0t.PS4 created at (27 January
1987 2:25:53 :Atn)

System Version 1
Copyright (c) 1983 X•rox CtNp

.4~ rights rvsfln'Vld

Create File Synem

Disk • "-ltofileOiroccory now.

SourceFllu ., Arra.y new: 2.
Sourcefilu at: 1 put:

(FiloStrUI'I'I Oldf1tliiiN1!1med: 'Smalltalk-BO.sources ').

Sourcanlas au 2 put:

•Answer the r•ctorlel of tho recolvar. For a)(ample, 6 factorial •• 6•6•4•3•2•1.
Signal an error It tha racalnr is leu th•n o.·

sou> o
lfTruo: ["self • (:s.alf - 1) 1'actorial),

~utlf • 0
ltTrua: [-t1].

self error: ·rectorlol Invalid for. • 1 self prlntString

II.

6.1 General description
When compared with a traditional machine, the
interface has three special features:

a bitmap screen
a three-button mouse
multiple windows and pop-up menus.

26

Small talk

Some Elements of the User Interface 27

A window is an area of the screen corresponding to
the user interface of a particular application.

A pop-up menu is a menu that appears on the screen
when the user presses one of the mouse buttons and which
disappears when the button is released to execute the
selected function.

6.2 Main menu
Depending on the window types, the pop-up menus vary.
When the cursor is outside any window, the user can make
the menu shown below appear by pressing the middle
button of the mouse.

restore display
exit project

project .
browser

workspace
system transcript
system workspace

save
quit

We shall briefly describe the main functions of this
menu.

restore display
redisplays the complete screen,

file list
opens a window accessing the file system,

browser
opens a window viewing the classes and methods,

workspace
opens a window in which expressions can be evaluated,

save
saves the virtual image in a file,

quit
exits the Smalltalk system.

6.3 Workspaces
A workspace is a window in which it is possible to edit
text and evaluate expressions.

In this type of window the left-hand button of the
mouse is used to designate a position in the text or
select a part of this text, showing it in inverse video.

The middle button on the mouse is used to edit the
text or evaluate expressions.

28 Smalltalk-80

2*4+5.
12 factorial sqrt

The main functions of the middle button menu are:
again

which repeats the last text replacement,
undo

cancels the last editing function,
copy

copies the selected text into a buffer memory,
cut

removes the selected portion of text, placing a copy in
the buffer memory

paste
inserts the text held in the buffer at the position
marked by the cursor or replaces the selected section of
text with the contents of the buffer,

do it
evaluates the selected portion of text,

print it
evaluates the selected portion of text and displays the
result of the evaluation.

6.4 Browsers
Browsers are windows used to browse through the classes
and methods in the system.

For greater clarity of presentation, classes and
methods are grouped into categories. These categories
are arbitrary and have no effect on the system archi-
tecture.

A browser type window contains five sub-windows. The
four at the top are windows that can access lists; the
one at the bottom is a text editing window. The four top
windows contain respectively:

- the class categories - classes belonging to the same
category are classes which deal with similar problems

- classes
- the methods (or protocols) categories, methods that

ths
Graphics-Viaws
Graphics-Editors
Graphics-Support
Kernel-Objects
Kgrngi-Ciassgs
Kernel-Methods

Some Elements of the User Interface

.fopy: destRectangle from: sourcePt in: sourceForm rule: rule
"Make up a BitBit table and copy the bits"

(BitBit
destform: self
:sourceForm: sourceform
halftoneForm: nil

combina tionAule: rule
destOrigin: de•tAectangle origin
sourceOrlgin: sourcli:!Pt
extent: destRect.angle extent
clipAect: (0@0 extent: width@height)) copyBits

[Sensor redButtonPressed] whileFalse:
[Display copy: (30@30 extent: 300@300) from: Sensor cursorPoint in: Display rule: Form

have a close functionality are grouped into the
category
methods.

29

same

The bottom window serves mainly for editing classes
and methods. When a class is selected and no method
category is chosen, the bottom window contains the
definition of the class. The figure below shows a
browser containing the definition of the class Point.

PQn accllil:s:sing

1~!!!!~~··1 comparing I~ arithmetic

instancaV ariableNames: 'x y '
classVariableNamas: "
poolDictionaries: u

category: 'Graphics-Primitiv@s'

truncation and round
polar coordina tvs
point functions
converting

30 Smalltalk-80

Having edited the definition of an existing class, it
is possible to alter the characteristics of this class
or create a new class. In order to save these
characteristics, you need to use the accept function of
the middle button mouse menu.

When a protocol is chosen, the user can create a new
method or alter an existing method in the bottom window.
To link the method into the system the accept function
must again be used; this has the effect of compiling the
text of the method. The figure below shows a browser
viewing the text of the method <= in class Point.

.<• aPoint

>•
hash
hashMappedBy:
max:

"Answar whathu tha rec&iver is 'naither below nor to the right' of aPoint.•

~x <• aPoint x and: (Y <• aPoint y)

The two types of windows that we have just described
are sufficient for testing most of the examples in this
book. The other principal types of windows are:

- Debuggers for examining the state of computation
during the evaluation of an expression

- FileLists - which allow access to the external files
- Transcripts - there is generally one single window of

this type in which the system displays information
relating to the progress of the Smalltalk session.

7 The Class Object

The class Object is the superclass of all other classes
and consequently the methods that are defined in it are
accessible by all Smalltalk-80 objects. Of course, these
methods can be redefined in any class.

7.1 Identification of an object
The characteristics of an object depend on the class to
which it belongs. Certain messages allow access to these
characteristics. We have already met one of these:

class
which when sent to an object returns the class of that
object.

For example,
2 class

returns Smallinteger,
$A class

returns Character.
There are others:
isKindOf: aClass

allows one to find out if the receiver is an instance of
the argument aClass or of one of its subclasses.

For example,
2 isKindOf: Smallinteger

returns true,
2 isKindOf: Number

returns true, because Smallinteger is a subclass of Num-
ber.

isMemberOf: aClass
allows one to find out if the receiver is a direct inst-
ance of aClass.

For example,
2 isMemberOf: Smallinteger

returns true,
2 isMemberOf: Number

returns false.
respondsTo: aSelector

allows one to find out if the receiver understands the
message. For example,

2 respondsTo: #+
returns true,

2 respondsTo: #at:
returns false.

The selectors of messages are instances of class
Symbols and are therefore prefixed with the hash.

31

32 Smalltalk-80

7.2 Copies of objects
It is possible to copy an object, that is, create a new
object having the same characteristics as the original.

There are two ways of making a copy, depending on
whether the instance variables of the object are duplic-
ated or not.

7.2.1 Non-duplicated instance variables
Instance variables are shared between the original and
its copy, as in the following diagram.

If the original or its copy alters one of its
instance variables, this alteration is also made for the
other object. The message to make this copy is

shallowCopy
For example,
a <- 'ABC'

b <- a shallowCopy
assigns a copy of a to b.

7.2.2 Duplicated instance variables
Instance variables belong to the copy; there is no
longer any dependence between the original and its copy.
We have the following arrangement:

The copy is made in a recursive way at the level of
the instance variables; that is, the objects referenced
by the instance variables can themselves have their own
instance variables. These instance variables are also
duplicated up to the point of having objects without
instance variables.

The Class Object

The message to make this copy is
deepCopy

33

For example, if fl is an instance of class Form (that
is, a bitmap- see 15.2.3), then after evaluating the
following expressions (the reverse message changes black
to white and vice versa):

f2 <- fl deepCopy.
f3 <- fl shallowCopy.
fl reverse

f2 will contain a copy of the original bitmap, whereas
fl and f3 will both refer to the original bitmap, which
has been reversed.

7.2.3 Copy message
The class Object contains the definition of the method
that will respond to the message

copy
This method calls shallowCopy directly. In the sub-
classes of Object it is possible to redefine this method
according to the nature of the objects to be copied.

Some variables can thus be duplicated while others
cannot.

7.3 Comparisons of objects
Two types of comparisons may be made. The equivalence
and the equality of two objects can be tested.

7.3.1 Equivalence of two objects
Two expressions are equivalent if they refer to the same
object. The message for testing equivalence is

==anObject
For example:

variablel <- anObject.
variable2 <- anObject.
variablel==variable2

returns true, because variable l and variable 2 refer to
the same object. We can also test if two objects are not
equivalent with the message

~~anObject

7.3.2 Equality of two objects
Whereas equivalence is defined in
should not be redefined, equality

class Object, and
should be defined

appropriately for each class.
For example, two instances

sidered to be equal if their
but are not equivalent unless

variablel <- 3@4
variable2 <- 3@4

of class Point are con-
x- andy-values are equal,
they are the same object:

variablel = variable2 returns true
but variablel==variable2 returns false.

34 Smalltalk-80

7.3.3 Comparison with nil
There are two messages to compare an object with the nil
object. The message

is Nil
returns true if the receiver is nil. The message

notNil
returns true if the receiver is not nil.

7.4 Indexed objects
We have seen how an object can have named instance
variables and/or indexed instance variables. For objects
with indexed instance variables, there are several
messages that allow access to the objects referenced by
these variables. These are

at: anindex
which returns the object referenced by the instance var-
iable that has the index anlndex.

at: anindex put: anObject
allows the object anObject to be assigned to the inst-
ance variable of index anlndex.

basicAt: Anindex
is equivalent to at:, but must not be redefined in the
subclasses of Object.

basicAt: anlndex put: anObject
is equivalent to at:put:, but must not be redefined in
the subclasses of Object.

size
returns the number of indexed instance variables in the
receiver.

basicSize
is equivalent to size, but must not be redefined in the
subclasses of Object.

For example,
8 size
'ABC' size
#(1 2 3 (2 4)) size
(#(1 2 3 (2 4)) at: 4) size

7.5 Representation of objects

returns 0
returns 3
returns 4
returns 2

Smalltalk-80 represents objects internally in a binary
form which is not readable by users. Therefore, it also
provides methods to generate representations of objects
in a human-readable form. There are two possible forms
of external representation:

a first external representation in summary form,
- a second representation which is an expression that,

if evaluated, will recreate the object.
There are two methods in class Object that create

such representations. These are
printString

The Class Object 35

which returns a character string giving a summary re-
presentation of the receiver, and

storeString
which returns a character string giving a syntactic re-
presentation of the receiver.

For example,
#(2 3) printString

will return the character string '(2 3) ',
#(2 3) storeString

will return the character string '#(2 3) '.
(Set with: 1 with: 2) printString

will return the character string 'set(l 2)
(Set with: l with: 2) storeString

will return the character string '((Set new) add: l;
add: 2; yourself)' which allows an identical copy of the
receiver to be reconstructed.

7.6 Control of errors
The search for a method begins at the level of the class
of the receiver; it continues through the hierarchy of
superclasses. If the method is not found, there is an
error; this is conveyed by the message doesNot-
Understand: with as its argument the message that caused
the error. This method signals the error to the pro-
grammer; it is defined within the class Object and is
therefore accessible to all objects. This method can be
redefined for a particular class, for example, to make
an automatic correction.

There are a number of other methods defined within
class Object that are intended to control errors. These
methods are:

error:aString
indicates to the user that there is an error and dis-
plays the string aString,

primitiveFailed
indicates to the user that a primitive method has
failed,

shouldNotimplement
indicates to the user that the method that should res-
pond exists but should not be used,

subclassResponsibility
indicates to the user that the method must be redefined
in the class of the receiver.

7.7 Control of messages
It is sometimes useful to choose which message to send
to an object by computing the selector within an ex-
pression.

One cannot simply write:
receiver variableSelector

36 Smalltalk-80

because the receiver will try to execute the method
variableSelector.

There are, however, five methods that are available
to deal with this problem:

perform:aSymbol
sends to the receiver the unary message aSymbol,

perform:aSymbol with:anObject
sends to the receiver the keyword or binary message
aSymbol with argument anObject,

perform:aSymbol with:anObject with:anOtherObject
sends to the receiver the keyword message aSymbol with
arguments anObject and anOtherObject,

perform:aSymbol with: anObjectl with: anObject2 with:
anObject3

sends to the receiver the keyword message aSymbol with
arguments anObjectl, anObject2 and anObject3,

perform:aSelector withArguments: anArray
sends to the receiver the message aSelector with the
arguments contained in anArray. There will be an error
if the number of elements in the array does not corres-
pond to the number of arguments expected by the
selector.

For all the messages, there will be an error if the
number of arguments does not match the number expected
by the selector. For example,
sort: aSelector

\test\
self size

to: 1
by: -1
do: [: j ! 1 to: j - 1 do:

[:k!
test <- (self at:k)

perform: aSelector
with: (self at: k + 1).

test ifFalse:
[self swap: k with: k + 1]]]

is a method for sorting an array, whose argument
aSelector is the sort criterion. This method must be de-
fined in the class SequenceableCollection.

#(3 7 0 1) sort: # <
will return the array #(0 1 3 7)

#(3 7 0 1) sort: # >
will return the array #(7 3 1 0).

7.8 Dependencies between objects
In the Smalltalk-80 system it is possible to define
dependencies between objects in such a way that, when an
object is dependent on a second one, any alteration of
the second is signalled to the first.

The Class Object 37

The class Object has defined within it methods that
allow dependencies between objects to be created ex-
plicitly. These methods are:

addDependent:anObject
anObject is added to the list of objects depending on
the receiver,

removeDependent:anObject
anObject is removed from the list of objects depending
on the receiver,

dependents
returns an instance of OrderedCollection containing the
objects depending on the receiver,

release
removes all the dependencies on the receiver, leaving it
with no dependency on any other object,

changed
the receiver signals to all its dependent objects that
it has changed by sending them the message update,

changed:aParameter
the receiver signals to all its dependent objects that
it has changed by sending them the message update:aPar-
ameter, whose argument aParameter indicates the nature
of the change,

update:aParameter
is the method that must respond to the message sent by
changed or changed:. This method is used to update the
receiver,

broadcast:aMessage
sends the unary message aMessage to all the objects de-
pending on the receiver,

broadcast:aMessage with:anObject
sends the keyword message aMessage with the argument
anObject to all the objects dependirtc; on the receiver.

We will take as a~ example the channel-selecting keys
of a TV set. Only one of these keys can be selected at
once. One key is characterised by its state (selected or
not). The class Key of the keys can thus be defined with
the following methods

class name
superclass
name of instance variables
class methods

new
isuper new initialise

instance methods
initialise

selected <- false
select

Key
Object
selected

selected ifFalse: [selected <- true.self changed]

38 Smalltalk-80

update: aKey
aKey == self ifFalse: [selected <- false)

The class Keyboard is also defined

class name
superclass
instance variables name
class methods

new: numberOfKeys

Keyboard
Object
keys

Tsuper new createKeys: numberOfKeys

instance methods
select: aNumberOfKey

(keys at: aNumberOfKey) select
createKeys: numberOfKeys

keys <- Array new: numberOfKeys.
l to: numberOfKeys do:

[:index I keys at: index put: Key new).
keys do:

[:aKey I
keys do:

[:aDependentKey\
aKey == aDependentKey ifFalse:
[aKey addDependent: aDependentKey)))

The method createKeys: allows a keyboard to be
initialised with a certain number of keys. The created
keys are neither selected nor deselected at the start. A
key is dependent on all the other keys. Note the pseudo-
variable super in the method new: which avoids recursive
calls of this method.

The example can be made to run with:
keyboard<- Keyboard new: 5.
keyboard select: l.
keyboard select: 4.
Selection of key l of the keyboard will cause the

message update: to be sent to all the other keys, which
will deselect them whatever their status.

7.9 Primitive messages
There are a certain number of primitive methods describ-
ed in the class Object. These methods are:

become:anObject
allows the pointers of the receiver and of the argument
anObject to be exchanged. All the variables that refer
to the receiver will refer to the argument and vice
versa. There will be an error if one of the two objects
is an instance of the class Smallinteger,

instVarAt: anlndex

The Class Object 39

returns the named instance variable of rank anindex. The
numbering of named instance variables corresponds to
their order of definition,

instVarAt: anindex put: anObject
assigns the object anObject to the named instance var-
iable of rank anlndex,

nextlnstance
returns the instance following the receiver in the list
of all instances of the class of the receiver. It
returns nil if all the instances have been returned.

8 Description of Architecture

of Classes

We know that each object is an instance of a class. As a
class is itself an object, it is the instance of a class
that we call its metaclass. To access the metaclass of a
class we send it the message class.

The hierarchy that appears at the level of the meta-
classes is the same as that which appears at the level
of the classes; that is, if a class A is a subclass of a
class B, the metaclass of A will be a subclass of the
metaclass of B, as in the diagram below.

Small Integer __..Integer ., Number ., Object

! ! ! !
Smalllnteger __..Integer • Number • Object

class class class class

Each metaclass has only one instance and thus there
are exactly as many metaclasses as classes. The meta-
classes are also objects and thus belong to a class that
is called Metaclass.

Metaclass is a class and thus has a metaclass which
is an instance of Metaclass. Metaclass and its metaclass
are both instances of each other.

Object is the only class that does not have a
superclass; on the other hand its metaclass has a super-
class called Class. The diagram below illustrates this
architecture.

Small Integer _.Integer_. Number _.Object Class Metaclass

! ! ! ! ! !
Smalllnteger _.Integer_. Number _.Object Class Metaclass

class class class class class class

40

Description of Architecture of Classes 41

8.1 Class Behavior
The class Behavior defines the elementary methods nec-
essary to objects that have instances. The instances of
Behavior are objects representing the classes. As in-
stance variables they have a dictionary of methods, a
pointer to a superclass and a list of subclasses.

8.1.1 Dictionary of methods
The methods described in a class are held in a diction-
ary called the dictionary of class methods. The keys to
the dictionary are the selectors, and the objects
assigned to these keys are methods in compiled form.

Creation
The methods that allow the method dictionary to be mani-
pulated are:

methodDictionary: aDictionary
assigns a dictionary to the method dictionary of the
receiver;

addSelector: aSelector withMethod: aMethod
adds a method to the method dictionary of the receiver,
with selector aSelector and for compiled method aMethod;

removeSelector: aSelector
removes from the method dictionary of the receiver that
method with selector aSelector.

Compilation
The methods that allow one or more methods to be compil-
ed are:

compile: code
compiles the text of the expressions contained in the
argument code. The argument code is a string of charact-
ers. An error is produced if the argument code cannot be
compiled,

compile: code notifying: requestor
compiles the text of the expressions contained in the
argument code. If the argument code cannot be compiled,
an error is signalled to the requestor object by a mess-
age,

recompile: aSelector
compiles the method in the method dictionary whose key
is aSelector;

decompile: aSelector
decompiles the method in the method dictionary whose key
is aSelector. It returns a string of characters repres-
enting the decompiled form of the compiled method;

compileAll
compiles all the methods in the method dictionary;

compileAllSubclasses
compiles all the methods contained in the method dict-
ionaries of the subclasses of the receiver.

42 Smalltalk-80

Access to selectors or methods
The methods that allow access to the selectors or
methods in the method dictionary are:

selectors
returns an instance of Set containing the selectors in
the method dictionary of the receiver,

all Selectors
returns an instance of Set containing all the selectors
in the method dictionary of the receiver and of its
superclasses, that is, all the selectors assigned to the
messages that are understandable by an instance of the
receiver,

compiledMethodAt: aSelector
returns the compiled method assigned to the
aSelector contained in the method dictionary of
eiver,

sourceCodeAt: aSelector

selector
the rec-

returns a string of characters corresponding to the
method assigned to the selector aSelector in the method
dictionary of the receiver,

sourceMethodAt: aSelector
returns an instance of Text corresponding to the method
assigned to the selector aSelector in the method dict-
ionary of the receiver. In this book the name of the
method is shown in bold type (as are class names).

Some examples of the use of these methods might be:
Number selectors

returns Set (to:do: even roundTo: storeOn: log: tan
rounded)

Number allSelectors
returns Set (raisedTo: asPoint between:and: negated
min:max: truncated)

Number sourceCodeAt: #abs
returns:
'abs

"Answer a Number that is the absolute value
(positive magnitude) of the receiver"

self <0 ifTrue: [iself negated]
ifFalse: [iself] '

Testing
The contents of the methods dictionary can be tested in
order to find out the methods that are accessible by the
instances of the receiver or the methods that possess
certain characteristics. The methods that allow these
tests to be carried out are:

hasMethods
returns true if the methods dictionary of the receiver
is not empty,

includesSelector: aSelector
returns true if the instances of the receiver can res-

Description of Architecture of Classes 43

pond to the message with selector aSelector, that is, if
the selector is a key in the method dictionary of the
receiver or of its superclasses,

whichClassincludesSelector: aSelector
returns the first class contained in the sequence of
superclasses of the receiver whose method dictionary
contains the key aSelector; it returns nil if no class
is found,

whichSelectorsAccess: instanceVariableName
returns an instance of Set containing the selectors of
the methods in the method dictionary of the receiver
that access the instance variable called instance-
VariableName,

whichSelectorsReferTo: anObject
returns an instance of Set containing the selectors of
methods in the method dictionary of the receiver that
access the object anObject.

scopeHas: aName ifTrue: aBlock
executes the block aBlock if the variable called aName
is accessible by the receiver.

Here are some examples of the use of these methods:
Number hasMethods

returns true because the method dictionary of the class
Number is not empty;

Number includesSelector: # ==
returns false because this method is not in
dictionary of the class Number but in
dictionary of the class Object;

Number canUnderstand: # ==

the method
the method

returns true because this method is contained in the
method dictionary of a superclass of the class Number;

Number whichClassincludesSelector: # ==
returns class Object.

8.1.2 Instances
The instances of a class are created by sending the
message new or new: to it. These methods are defined in
class Behavior, but can be redefined in any subclass. If
a class redefines the method new or new:, the methoj
will necessarily contain the message super new in order
to avoid a recursive call of itself. It can be useful to
redefine these methods if, for example, you want to
initialise instance variables with values other than
nil.

Creation
The four methods defined in class Behavior that allow
instances to be created are:

new
returns a new instance of the receiver. This instance

44 Smalltalk-80

has no indexed instance variables;
basicNew

is identical to new, but this method must not be
redefined;

new: aninteger
returns a new instance of the receiver with a number of
indexed instance variables given by aninteger;

basicNew: aninteger
is identical to new:, but this method must not be
redefined.

Here are some examples of the use of these methods:
matrixl <- Array new.
matrix2 <- Array new: 3.

matrixl is an instance of the class Array which has no
indexed instance variables. The message new is equival-
ent to the message new: 0 for those classes that have
indexed instance variables.

Accessing
There are different methods that allow one or more inst-
ances of a class to be accessed. These methods are:

all Instances
returns an instance of OrderedCollection containing all
the direct instances of the receiver (without the inst-
ances of its subclasses).

some Instance
returns a direct instance of the receiver,

instanceCount
returns the number of direct instances of the receiver,

instVarNames
returns an instance of Array containing the names of the
named instance variables,

subclassinstVarNames
returns an instance of Set containing the names of the
named instance variables of the subclasses of the rec-
eiver,

allinstVarNames
returns an instance of Array containing the names of the
named instance variables of the receiver and of its
superclasses,

classVarNames
returns an instance of Set containing the names of the
class variables of the receiver,

allClassVarNames
returns an instance of Set containing the names of the
class variables of the receiver and of all its super-
classes,

sharedPools
returns an instance of Set containing the names of the
dictionaries that contains the shared variables,

allSharedPools

Description of Architecture of Classes 45

returns an instance of Set containing the names of the
dictionaries that contain the shared variables defined
in the receiver and its superclasses.

Enumeration
There are certain methods that allow an operation to be
carried out on each instance. These methods are:

allinstancesDo: aBlock
evaluates the block aBlock for each instance of the rec-
eiver,

allSubinstancesDo: aBlock
evaluates the block aBlock for all the subclass inst-
ances of the receiver.

Testing
Other methods allow the instance variables of the rec-
eiver to be tested

isPointers
returns true if the instance variables of the receiver
are stored in the form of pointers,

isBits
returns true if the instance variables of the receiver
are stored in the form of bits,

isBytes
returns true if the instance variables of the receiver
are stored in the form of bytes,

isWords
returns true if the the instance variables of the rec-
eiver are stored in the form of words,

isFixed
returns true if the instances of the receiver have no
indexed instance variables,

isVariable
returns true if the instances of the receiver have ind-
exed instance variables,

instSize
returns the number of named instance variables of the
receiver.

Some examples are:
Number isFixed

returns true because the instances of Number do not have
indexed instance variables,

Array instSize
returns 0 because the instances of Array do not have
named instance variables.

8.1.3 Manipulation of the class hierarchy

Creation
Methods defined in class Behavior allow alteration of

46 Smalltalk-80

the class hierarchy by setting a class's superclass and
subclasses. These methods are:

superclass: aClass
fixes the superclass of the receiver at aClass,

addSubclass: aClass
adds the subclass aClass to the receiver,

removeSubclass: aClass
removes the subclass aClass £rom the receiver.

Accessing
There are methods that allow the hierarchy of the rec-
eiver to be accessed. These are:

subclasses
returns an instance of Set containing the immediate sub-
classes of the receiver,

allSubclasses
returns an instance of OrderedCollection containing all
the subclasses of the receiver, that is, its immediate
subclasses and the subclasses of its subclasses, and so
on,

withAllSubclasses
returns an instance of OrderedCollection containing the
receiver and all of its subclasses,

superclass
returns the superclass of the receiver,

allSuperclasses
returns an instance of OrderedCollection containing the
superclass of the receiver followed by the other super-
classes in hierarchical order; the last element is
always Object.

For example,
Number subclasses

returns Set (Float Fraction Integer),
Number allSubclasses

returns OrderedCollection (Fraction Integer Float Small-
Integer LargePositiveinteger LargeNegativeinteger),

Integer superclass
returns the object representing the class Number,

Integer allSuperclasses
returns OrderedCollection (Number Magnitude Object).

Testing
There are certain methods that allow the hierarchy of
the receiver to be tested. These methods are:

inheritsFrom: aClass
returns true if the class aClass belongs to the sequence
of superclasses of the receiver,

kindOfSubclass
returns a string describing the type of the receiver.
There are four types of class in Smalltalk-80:

- classes which have no indexed instance variables

Description of Architecture of Classes 47

where the named instance variables represent pointers to
other objects; the returned string will be 'subclass:'

- those classes which have indexed instance variables
that can represent

- pointers; the returned string will be
'variableSubclass: '
- bytes; the returned string will be
'variableByteSubclass:'
-words; the returned string will be
'variableWordSubclass:'

For example:
Integer inheritsFrom: Number

returns true because Number is the superclass of Int-
eger,

Integer kindOfSubclass
returns 'subclass:',

Float kindOfSubclass
returns 'variableWordSubclass:'

Enumeration
There are certain methods that allow operations to be
carried out on a part of the class hierarchy related to
the receiver. These methods are:

allSubclassesDo: aBlock
evaluates the block aBlock for all the subclasses of the
receiver, that is, for its immediate subclasses and the
subclasses of its subclasses, and so on

allSuperclassesDo: aBlock
evaluates the block aBlock for all the superclasses of
the receiver,

selectSubclasses: aBlock
evaluates the block aBlock for all the subclasses of the
receiver and groups in an instance of Set all the
classes for which evaluation returns true. This instance
of Set is returned.

selectSuperclasses: aBlock
evaluates the block aBlock for all the superclasses of
the receiver and groups in an instance of Set all the
classes for which evaluation returns true. This instance
of Set is returned.

8.2 The classes ClassDescription and Class
The description of a class is not totally described by
the class Behavior. Behavior does not allow the names of
instance variables and class variables to be stored; nor
does it allow a name to be given to the class or a
comment describing the class to be stored.

The class ClassDescription, which is a subclass of
the class Behavior, and the class Class, which is a sub-
class of the class ClassDescription, are the classes

48 Smalltalk-80

that allow a name to be given to a class, a comment to
be assigned to it and the names of named instance
variables to be stored.

8.2.1 Access to the description of a class
The additional methods that allow access to the des-
cription of a class are:

name
returns a string representing the name of the receiver,

comment
returns a string giving the comment assigned to the rec-
eiver,

comment: aString
assigns the string aString to the commentary associated
with the receiver,

addinstVarName: aString
adds to the list of named instance variables of the rec-
eiver the named instance variable whose name is aString,

removeinstVarName: aString
removes from the list of named
receiver the named instance
aString. It returns an error
of a named instance variable.

instance variables of the
variable whose name is

if aString is not the name

8.2.2 Category of classes and messages
To clarify the description of the class hierarchy, the
classes are grouped into categories. This grouping is
arbitrary and simply allows classes that relate to the
same problem to be grouped together; for example, the
category Numeric-Numbers groups classes Number, Integer,
Float, Fraction, Smallinteger, LargePositiveinteger,
LargeNegativeinteger, Random. This grouping has no eff-
ect on the hierarchy of the classes.

Just as classes can be grouped into categories, so
can the methods of classes.

The methods that allow access to the category of a
class or a method are:

category
returns the category of the receiver,

category: aString
assigns to the category of the receiver the string
aString,

removeCategory: aString
removes all the methods from the methods dictionary of
the receiver whose category is aString,

whichCategoryincludesSelector: aSelector
returns the category of the method whose selector is
aSelector; it returns nil if the method is not found in
the method dictionary of the receiver.

Description of Architecture of Classes 49

8.2.3 Copy of messages
Some methods are provided that copy one or more methods
from another class. These methods are:

copy: aSelector from: aClass
copies the method of selector aSelector described in the
class aClass and places it in the method dictionary of
the receiver,

copy: aSelector from: aClass classified: acategory
copies the method of selector aSelector described in the
class aClass and places it in the method dictionary of
the receiver under category aCategory,

copyAll: arrayOfSelectors from: aClass
copies the methods whose selectors are contained in the
arrayOfSelectors described in the class aClass and
places them in the method dictionary of the receiver,

copyAll: arrayOfSelectors from: aClass classified:
aCategory

copies the methods whose selectors are contained in the
arrayOfSelectors described in the class aClass and
places them in the method dictionary of the receiver
under the category aCategory,

copyAllCategoriesFrom: aClass
copies ull the methods described in the class aClass and
places them in the method dictionary of the receiver,

copyCategory: aCategory from: aClass
copies all the methods described in the class aClass
under the category aCategory and places them in the
method dictionary of the receiver,

copyCategory: aCategory from: aClass classified:
aNewCategory

copies all the
under the category
method dictionary
aNewCategory.

methods described in the class aClass
aCategory and places them in the
of the receiver under the category

8.2.4 Compilation of methods
There are two particular methods that allow source code
to be compiled and the result placed under a category.
These two methods are:

compile: aSourceCode classified: aCategory
compiles the text of the expressions contained in the
argument aSourceCode and places the compiled method
obtained in the method dictionary of the receiver under
category aCategory. An error is indicated to the pro-
grammer if the argument aSourceCode cannot be compiled:

compile: aSourceCode classified: aCategory requestor:
aRequestor

compiles the text of the expressions contained in the
argument aSourceCode and places the compiled method
obtained in the methods dictionary of the receiver under
category aCategory. An error is sent to the argument

50 Smalltalk-80

aRequestor if the argument aSourceCode cannot be compil-
ed.

8.2.5 Access to variable names
Three methods allow variable names to be returned in the
form of strings. These three methods are:

classVariablesString
returns a string of characters containing the names of
all the class variables of the receiver,

instanceVariablesString
returns a ~tring of characters containing the names of
all the instance variables of the receiver,

sharedPoolsString
returns a string of characters containing the names of
all the dictionaries that contain the shared variables
of the receiver.

8.2.6 Saving a class on a file
Three methods allow the description of a class to be
saved on a file. These methods are:

fileOutOn: aFile
saves the description of the receiver on the file aFile
which is an instance of the class FileStream,

fileOutCategory: aCategoryName
creates a file whose name is the name of the receiver
concatenated to the string 'st' and places in it all the
methods whose category is aCategoryName,

fileOutChangedMessages: aListOfChanges on: aFile
the argument aListOfChanges is made up of class/message
couplets; it is an instance of the class Set. The des-
cription of the couplets class/message is saved on the
file aFile, which is an instance of the class File-
Stream.

The class ClassDescription possesses another subclass
called Metaclass.

8.3 The class Metaclass
The metaclasses are instances of the class Metaclass. We
have seen that the role of a metaclass is to allow the
initialisation of class variables and the creation of
instances of the class that is assigned to it. Each
metaclass contains an instance variable called thisClass
which allows its unique instance to be referenced.

8.4 Multiple inheritance
We have seen that a class inherits variables and methods
from its superclass. In the general case a class may
inherit from a single other class (this is so for all
the classes of the Smalltalk system), but it is also
possible for a class to inherit from several other
classes; this is called multiple inheritance.

Description of Architecture of Classes 51

Multiple inheritance allows the properties of two or
more existing classes in the system to be fused into one
class. Multiple inheritance imposes certain additional
constraints that arise from the conflicts that may
appear between the different superclasses:

- A class cannot inherit from two classes that have a
same instance variable (that is, a variable having the
same name).

- When creating a class with multiple superclasses,
there may be a conflict between different inherited
methods with the same name. When this occurs, a new
method with the same name is automatically created in
the new class which signals an error if activated. If
the user wishes to resolve the conflict, he should edit
the new method to call one of the inherited methods,
designating the method by its name, prefixed with the
name of its class and a full stop. For example:

Point.+
designates the method of addition of two points.

To implement multiple inheritance, the Smalltalk sys-
tem possesses a subclass of Metaclass called Metaclass-
ForMultipleinheritance, whose instances have an instance
variable called otherSuperclasses which contains the
list of additional superclasses. The metaclasses of
multiple inheritance classes are instances of Meta-
classForMultipleinheritance.

To create a class that inherits from several other
classes the following message must be sent to the class
Class

named: aSymbol
superclass: namesOfSuperclasses
instVariableNames: namesOfinstanceVariables
classVariableNames: namesOfClassVariables
category: nameOfCategory
For example, consider the case of simulating a

transport network in which the following two classes are
defined:

MotorVehicle
which has two instance variables, namely:

tankCapacity and operatingHours
WheeledVehicles

which has one instance variable:
mileage
The class Automobile embraces the two aspects of

classes MotorVehicle and WheeledVehicles; thus, to def-
ine it we need to construct it as the subclass of these
two classes:
Class named: #Automobile

superclasses: 'MotorVehicle WheeledVehicles'
instVariableNames: 'numberOfSeats'
classVariablesNames:

52 Smalltalk-80

category: 'simulation-network'
Those methods that conflict will have to redefined;

for example, the method printOn: which generates a
textual representation of an object.

For multiple inheritance to be attractive to use, the
number of conflicting methods needs to be small; that
is, the two superclasses should have few aspects in
common.

9 The Magnitude Classes

The magnitude classes
ordering relation can be
for which the concept of

contain the objects on
established. They are
size has a meaning.

which an
objects

9.1 The class Magnitude
The class Magnitude is
All the ordered classes
this is why Magnitude
may be used by all the

a subclass of the class Object.
are subclasses of Magnitude;

describes comparison methods that
instances of its subclasses.

These methods are:
< aSize

returns true if the receiver is less than the argument
aSize,

<= aSize
returns true if the receiver is less than or equal to
the argument aSize,

> aSize
returns true if the receiver is greater than the argu-
ment aSize,

>= aSize
returns true if the receiver is greater than or equal to
the argument aSize,

between: min and: max
returns true if the receiver is greater than or equal to
the argument min and less than or equal to the argument
max,

min: aSize
returns the minimum of the receiver and the argument
aSize,

max: aSize
returns the maximum of the receiver and the argument
aSize,

aSize
this message must be redefined in subclasses of Magnit-
ude. In class Magnitude the method = is described by the
unique expression self subclassResponsibility.

For example:
2 > l returns true
l > 2
2 between:
2 min: 5
2 max: 5

l and: 3

53

returns false
returns true
returns 2
returns 5

54 Smalltalk-80

9.2 The class Date
The class Date is a subclass of Magnitude. Its instances
are dates that represent a day, a month and a year of
the calendar. It knows the days of the week and the mon-
ths of the year by storing index/name pairs.

There are a number of methods that allow these dates
to be manipulated.

9.2.1 Creation of instances
When a new date is created, it is initialised with spe-
cial values. The different creation methods are:

today
returns a new
today's date,

instance of the class Date representing

fromDay: numberOfDays
returns a new instance of Date
obtained by adding numberOfDays
1901,

representing the date
to the first of January

newDay: aDay month: aMonth year: aYear
returns a new instance of Date whose day is aDay, the
month aMonth and the year aYear. The arguments aDay and
aYear are integers, whereas the argument aMonth is a
symbol.

newDay: numberOfDays year: aYear
returns a new instance of Date representing the date
obtained by adding numberOfDays to the first of January
of the year aYear.

For example:
Date today returns 22 October 1986
Date fromDays: 3 returns 4 January 1901
Date newDay: 8 month: #Oct year: 86

returns 8 October 1986
Date newDay: 3 year: 86 returns 4 January 1986

9.2.2 Information about the calendar
It is possible to obtain general information about the
calendar through the following methods:

dayOfWeek: nameOfDay
returns the number of the day nameOfDay in the week (l
for #Monday, etc),

nameOfDay: aNumber
returns a symbol representing the day of the week with
number aNumber,

indexOfMonth: nameOfMonth
returns the number of the month nameOfMonth in the year
(l for #January or #Jan, etc). The name of a month can
be abbreviated,

nameOfMonth: aNumber
returns a symbol representing the month of the year of
number aNumber,

The Magnitude Classes 55

daysinMonth: nameOfMonth forYear: aYear
returns the number of days of the month nameOfMonth for
the year aYear,

daysinYear: aYear
returns the number of days of the year aYear,

leapYear: aYear
returns 1 if the year is a leap year, otherwise 0,

dateAndTimeNow
returns an instance of Array whose first element is the
actual date and second element the actual time.

For example:
Date dayOfWeek: #Tuesday returns 2
Date nameOfDay: 3 returns Wednesday
Date indexOfMonth: #Mar returns 3
Date nameOfMonth: 4 returns April
Date daysinMonth: #February forYear: 1984

Date daysinYear: 1984
Date leapYear: 1984
Date dateAndTimeNow

9.2.3 Arithmetic

returns 29
returns 366
returns 1
returns (a Date a Time)

There are three methods for carrying out arithmetic ope-
rations on dates. These methods are:

addDays: numberOfDays
returns a date obtained by adding numberOfDays to the
receiver,

subtractDays: numberOfDays
returns a date obtained by subtracting numberOfDays from
the receiver,

subtractDate: aDate
returns the number of days separating the
the argument aDate.

For example:

receiver from

Date today addDays: 10
Date today subtractDays: 10
Date today subtractDate:

returns 1 November 1986
returns 12 October 1986

(Date newDay: 5 month: #Oct year: 1986)
returns 17

9.2.4 Conversion
In order to be able to carry out calculations on dates
and hours both are converted into seconds. The method
that allows a date to be converted into seconds is:

as Seconds
which returns the number of seconds that have elapsed
since 1 January 1901 up to the beginning of the current
day.

56 Smalltalk-80

9.3 The class Time
The class Time is a subclass of the class Magnitude. The
instances of Time represent an instant of a day.

9.3.1 Creation of instances
Three methods allow an instance of Time to be created.
These three methods are:

now
returns an instance of Time representing the current
time,

fromSeconds: numberOfSeconds
returns an instance of Time representing the time
calculated by adding numberOfSeconds to midnight:

dateAndTimeNow
returns an instance of Array whose first element is the
actual date and whose second element is the actual time.

9.3.2 Information about the time
The class Time can respond to a certain number of gener-
al messages about the time:

millisecondsClockValue
returns the number of milliseconds since the clock pass-
ed zero,

millisecondsToRun: aBlock
returns the number of milliseconds it takes to execute
the block aBlock,

timeWords
returns the number of seconds that have elapsed since l
January 1901 at the Greenwich meridian.

total Seconds
returns the number of seconds that have elapsed since l
January 1901, allowing for corrections for time zones
and summertime.

9.3.3 Conversions
In order to be able to carry out calculations on dates
and times, it is useful to be able to convert these into
seconds. The method that allows this to be done is:

as Seconds
returns the number of seconds that have elapsed since
midnight.

9.3.4 Arithmetic
Two methods allow arithmetic operations to be carried
out on times. These are:

addTime: aPeriod
returns
culated
aPeriod

an instance of Time representing the time cal-
by adding aPeriod to the receiver. The argument

must be an instance of Date or of Time,
subtractTime: aPeriod

The Magnitude Classes 57

returns an instance of Time representing the time cal-
culated by subtracting aPeriod from the receiver. The
argument aPeriod must be an instance of Date or of Time.

9.4 The class Character
The class Character is also a subclass of the class
Magnitude. It is an ordered class because the instances
of this class represent ASCII codes. There are therefore
256 instances in this class; they belong to the Small-
talk system and cannot be altered. It is not possible to
make new Characters.

9.4.1 Access to the instances
The methods that allow access to the instances of the
class Character are:

value: aninteger
returns the Character with ASCII code aninteger,

digitValue: aninteger
returns the character representing the digit correspond-
ing to aninteger (when aninteger is greater than 9, it
returns the first letters of the alphabet),

ascii Value
returns the ASCII code of the receiver,

digitValue
returns the number corresponding to the digit represent-
ed by the receiver.

For example:
Character value: 67
Character digitValue: l
Character digitValue: 10
$A asciiValue
$B digitValue

9.4.2 Testing the instances

returns $C
returns $1
returns $A
returns 65
returns ll

The following methods test for the nature of the inst-
ances of the class Character:

isAlphaNumeric
returns true if the receiver is a letter or a digit,

isDigit
returns true if the receiver is a digit (0-9),

isLetter
returns true if the receiver is a letter,

isLowerCase
returns true if

is UpperCase
returns true if

is Separator
returns true if
characters (cr,

isVowel

the receiver is a lower case letter,

the receiver is an upper case letter,

the receiver is one of the separator
tab, line feed, form feed) ,

returns true if the receiver is an upper or lower case
vowel.

58 Smalltalk-80

For example:
$+ isAlphaNumeric returns false
$2 isDigit returns true
$t isLetter returns true
$G isLowerCase returns false
$G is UpperCase returns true
$; isSeparator returns false
$a isVowel returns true

The following chapter describes another subclass of
Magnitude, namely the class Number.

10 The Numeric Classes

The instances of the numeric classes are the objects
that we use to carry out arithmetic operations or
mathematical calculations. Each type of numeric value is
represented by a class. All the numeric classes are
subclasses of class Number which has three direct sub-
classes.

- the class Float
- the class Fraction
- the class Integer.
The class Integer has three subclasses
- the class Smalllnteger
- the class LargePositiveinteger
- the class LargeNegativeinteger.
The classes Number and Integer are abstract

subclasses, that is, they have no direct instance.

10.1 The class Number
A certain number of messages are understood by all the
numeric objects. These messages allow arithmetic oper-
ations and comparisons to be made. The majority of these
messages are redefined in the subclasses of class Num-
ber. The messages common to all the subclasses of class
Number are described below.

10.1.1 Arithmetic
The messages allowing arithmetic operations on numbers
to be carried out are:

+ aNumber
returns the sum of the receiver and the argument
aNumber,

- aNumber
returns the difference between the receiver and the arg-
ument aNumber,

* aNumber
returns the product of the receiver and the argument
aNumber,

I aNumber
returns the quotient between the receiver and the arg-
ument aNumber. If the division is not whole the result
is an instance of the class Fraction,

59

60 Smalltalk-80

II aNumber
returns the whole part of the division of the receiver
by the argument aNumber,

\\ aNumber
returns the whole part of the remainder of the division
of the receiver by the argument aNumber,

abs
returns the absolute value of the receiver,

negated
returns the opposite of the receiver,

quo: aNumber
returns the whole part of the division of the receiver
by the argument aNumber,

rem: aNumber
returns the whole part of the remainder of the division
of the receiver by the argument aNumber,

reciprocal
returns the inverse of the receiver, producing an error
if the receiver is equal to 0.

For example:

Expressions

2 + 3
2 - 3
2 * 3
412
413

4113
-4113
4 \\ 3
-4 \\ 3
-5 abs
5 negated
-4 quo: 3
-4 rem: 3
7 reciprocal

10.1.2 Mathematics

Results

5
-1
6
2
(413) instance of the
class Fraction with
denominator 3 and
numerator 4

1
-2
1
1
5
-5
-1
-1
(117)

The messages that allow mathematical operations to be
carried out on numbers are:

exp
returns the exponent of the receiver,

ln
returns the naperian logarithm of the receiver,

log: aNumber

The Numeric Classes

returns the logarithm to base aNumber of the receiver,
floorLog: aNumber

61

returns the whole part of the logarithm to base aNumber
of the receiver,

raisedTo: aNumber
returns the receiver raised to the power aNumber,

raisedTointeger: anlnteger
returns the receiver raised to the power anlnteger. The
argument aninteger must be an instance of class Integer.

sqrt
returns the square root of the receiver,

squared
returns the square of the receiver,

sin
returns the sine of the receiver expressed in radians,

cos
returns the cosine of the receiver expressed in radians,

tan
returns the tangent of the receiver expressed in
radians,

arcSin
returns the arcsine of the receiver in radians,

arcCos
returns the arccosine of the receiver in radians,

arcTan
returns the arctangent of the receiver in radians.

For example:
Expressions Results

1 exp
1 ln
2 log: 2
3 floorLog: 2
4 raisedTo: 2.4
4 raisedTointeger:
2 sqrt
9 squared

10 .1. 3 Tests

3

2.71828
0.0
1.0
1.0
27.8576
64
1.41421
81

There are the following messages that allow the charact-
eristics of a number to be tested.

even
returns true if the receiver is an even number,

odd
returns true if the receiver is an odd number,

negative
returns true if the receiver is negative,

positive
returns true if the receiver is positive or zero,

strictlyPositive

62 Smalltalk-80

returns true if the receiver is strictly positive,
sign

returns l if the receiver is strictly positive; -1 if it
is strictly negative; 0 if it is zero.

10.1.4 Truncation and rounding
Several messages allow a number to be truncated or roun-
ded. These messages are:

ceiling
returns the smallest integer greater than or equal to
the receiver,

floor
returns the largest integer less than or equal to the
receiver (that is, its whole part),

truncated
returns the receiver without its decimal part,

truncateTo: aNumber
returns the largest multiple of the argument aNumber
whose absolute value is less than or equal to the absol-
ute value of the receiver,

rounded
returns the integer closest to the receiver,

roundTo: aNumber,
returns the multiple of the argument aNumber closest to
the receiver.

For example:

Expressions

2.3 ceiling
-2.3 ceiling
2.3 floor
-2.3 floor
2.3 truncated
-2.3 truncated
2.3 truncateTo: 0.7
-2.3 truncateTo: 0.7
2.3 rounded
2.6 rounded
-2.3 rounded
-2.6 rounded
2.3 roundTo: 0.7
2.6 roundTo: 0.7

10.1.5 Conversions
A number can represent
degrees or in radians. Two
angles to be made:

degreesToRadians

Results

3
-2
2
-3
2
-2
2.1
-2.1
2
3
-2
-3
2 .l
2.8

an angle expressed either in
messages allow conversions of

the receiver being expressed in degrees, it returns a

The Numeric Classes

number representing the receiver expressed in radians,
radiansToDegrees

63

the receiver being expressed in radians, it returns a
number representing the receiver expressed in degrees.

10.1.6 Nature of the object returned by arithmetic
operations
Arithmetic operations can be broken down into two categ-
ories.

Those in which the argument and the receiver are in-
stances of the same class, for example:

2 + 3
- Those in which the argument and the receiver are not

instances of the same class, for example:
2.2 + 3
When the receiver and the argument are instances of

the same class, one is able to determine the class of
the result. Depending on the values represented by the
argument and the receiver, the result returned may
belong to different classes.

For example:
8/4 returns 2, an instance of class Integer
8/3 returns (8/3), an instance of class Fraction.
When the receiver and the argument are not instances

of the same class, one of the operands must be trans-
formed to get back to the preceding case. The transform-
ation must be made with the minimum loss of data. The
answer is therefore to transform the item that contains
the minimum of data.

Thus a hierarchy of numbers can be defined depending
on their generality. This is as follows:

Float
Fraction
LargePositiveinteger LargeNegativeinteger
Small Integer
All numbers can be represented by instances of the

class Float (see below), but the precision is not infin-
ite.

There are three messages for making conversions:
coerce: aNumber

returns a number representing the number aNumber that is
an instance of the the same class as the receiver. This
method must be defined in each subclass of Number.

generality
returns the degree of generality of the receiver,

retry: aSelector coercing: aNumber
the receiver and the argument not being instances of the
same class, the least general must be converted, then
the selector message aSelector must be re-evaluated. For
example, in the expression

3.7*2

64 Smalltalk-80

the argument 2 and the receiver 3.7 are not instances of
the same class. Evaluation of the expression will then
look like

3.7 retry#* coercing: 2
which will transform 2 into 2.0 and will return the
result 7.4.

10.2 The class Float
The instances of class Float represent real numbers with
a finite precision and lying between two limiting
values. For example, the precisi~~ may be_j~ 6 figures,
with the numbers lying between 10 and 10

Some examples of floating number are:
1.2 -1.2 2.le4 -2.le4
Whenever one of the operands in an arithmetic expr-

ession is a Float, the result is a Float.

10.3 The class Fraction
The instances of the class Fraction represent rational
numbers. This representation is exact; a fraction has an
integer numerator and denominator. The instances of the
class Fraction can be obtained in an arithmetic ex-
pression when one of the operands is a fraction and the
other is not a floating number (cf 10.1.6 and 10.2).
Instances of class Fraction can also be obtained by div-
iding two integers, when the numerator is not an exact
multiple of the denominator.

10.4 The class Integer
The instances of class Integer represent
bers. This class has three subclasses which

integer num-
are:

Smallinteger
which represents
than a limit which
in one word less 1

integers whose absolute value is less
allows for compact storage (typically
bit),

LargePositiveinteger
which represents arbitrarily large positive integers,

LargeNegativeinteger
which represents arbitrarily large negative integers,

Calculations are much more costly when they involve
instances of the classes LargePositiveinteger and Large-
Negativeinteger.

If an operation on two instances of the class Small-
Integer gives a result outside the limits of the class,
the result is transformed into a LargePositiveinteger or
a LargeNegativeinteger.

10.4.1 Enumeration
There is a method for evaluating a block several times.
This is

timesRepeat: aBlock

The Numeric Classes 65

which evaluates the block aBlock a number of times equal
to the receiver. For example:

a <- 1.
5 timesRepeat: [a <- a/20 + a reciprocal]

assigns to a the value 1 and then evaluates the block 5
times. The final value of a is 1.41421 (close to the
square root of 2).

10.4.2 Some additional arithmetic functions
The class Integer contains
that belong to integers.
these functions are:

factorial

some arithmetic functions
The messages that relate to

returns the factorial of the receiver, which must not be
negative,

gcd: aninteger
returns the greatest common divisor of the receiver and
the argument aninteger,

lcm: aninteger
returns the largest common multiple of the receiver and
the argument aninteger.

10.4.3 Bit manipulation
An integer can be interpreted as a sequence of bits (the
representation of the integer expressed to the base 2).
Some messages allow access to these bits. These are:

allMask: aninteger
returns true if all the bits set in the argument an-
Integer are also set in the receiver,

anyMask: aninteger
returns true if at least one of the bits set in the
argument aninteger is also set in the receiver,

noMask: aninteger
returns true if none of the bits set in the argument
aninteger is set in the receiver,

bitAnd: aninteger
returns an integer whose bits are obtained by making a
logical "and" between the corresponding bits of the
argument aninteger and the receiver,

bitOr: aninteger
returns an integer whose bits are
"or" between the corresponding
aninteger and the receiver,

bitXor: aninteger

obtained by a logical
bits of the argument

returns an integer whose bits are obtained by making an
"exclusive or" between the corresponding bits of the
argument aninteger and the receiver,

bitAt: anindex
returns the receiver bit positioned at anindex,

bitinvert
returns an integer whose bits are complements of the

66 Smalltalk-80

receiver bits,
highBit

returns the position of the most significant bit of the
receiver or the number of bits necessary to represent
the receiver to base 2,

bitShift: anlnteger
returns an integer (in two's complement) obtained by
shifting the receiver bits (in two's complement) of
aninteger to the left.

For example:
Expressions Results

2rl010
2rl000
10 all Mask: 8
8 allMask: 10
8 anyMask: 10
10 noMask: 8
10 bitAnd: 8
10 bi tOr: 8
10 bitXor: 8
10 bitAt: 3
10 bitinvert
10 highBit
10 bitShift: 2

10.4.4 Changing base

10
8
true
false
true
false
8
10
2
0
-11
4
40

We have seen how a number could be expressed to another
base. There is a message to do this:

radix: anlnteger
returns a representation to base anlnteger of the rec-
eiver. For example:

2 radix: 2
9 radix: 3
4rl0 radix: 2

returns 2rl0
returns 3rl00
returns 2rl00

11 The Class Collection

A collection represents a set of objects that are not
necessarily of the same kind.

Most of the subclasses of Collection use indexed in-
stance variables. Indexed instance variables are access-
ed by an index.

The class Collection is an abstract
describes the behaviour of all collections.
four categories of message described below.

11.1 Creation of instances

class that
It supports

Some collections can be expressed in literal form (see
chapter 5). For example

#(1 5 3 4)
represents an instance of Array with four elements,

'this is a string'
represents an instance of String with 16 elements.

The usual messages for creating an instance of a
Smalltalk-80 class are new and new:. These messages are
also usable for instances of the class Collection.
However, there are additional messages allowing the
creation of new collections in which the elements are
initialised on creation. These messages are:

with: anObject
returns a new instance of the receiver containing the
single element anObject,

with: aFirstObject with: aSecondObject
returns a new instance of the receiver containing the
two elements aFirstObject and aSecondObject,

with: aFirstObject with: aSecondObject with: aThird-
Object

returns a new instance of the receiver containing the
three elements aFirstObject, aSecondObject and aThird-
Object,

with: aFirstObject with: aSecondObject with: aThird-
Object with: aFourthObject

returns a new instance of the receiver containing the
four elements aFirstObject, aSecondObject, aThirdObject
and aFourthObject.

67

68 Smalltalk-80

For example:
Array with: l with: 5 with: 3 with: 4

is equivalent to #(1 53 4).
String with: $a with: $b with: $c

is equivalent to 'abc'.

11.2 Manipulating the elements of a collection

11.2.1 Adding elements to a collection
There are two messages that allow elements to be added
to a collection. They are:

add: anObject
adds to the receiver the element anObject,

addAll: aCollection
adds to the receiver all the elements of the collection
aCollection.

For example:

Expressions

a <- Bag new.
a add: $a.
a addAll: #(2 3 $b)

Contents of a

Bag()
Bag ($a)
Bag ($a 2 3 $b)

11.2.2 Removing elements from a collection
Just as you can add elements to a collection, so you can
remove them. There are three messages that allow ele-
ments to be removed from a collection. They are:

remove: anObject
removes one of the occurrences of the element anObject
from the receiver and returns the object anObject. If no
occurrence is found, an error is produced.

remove: anObject ifAbsent: aBlock
removes one of the occurrences of the element anObject
from the receiver and returns the object anObject. If no
occurrence is found, the block aBlock is evaluated.

removeAll: aCollection
removes an occurrence of each element of the collection
aCollection. If, for an element of the collection
aCollection, there is no occurrence in the receiver, an
error is generated. If not, the collection aCollection
is returned.

For example:

Expressions

a
a remove: $a
a remove: $a ifAbsent: [a add: $b]
a removeAll: #(2 $b)

Contents of a

Bag ($a 2 3 $b)
Bag (2 3 $b)
Bag ($b 2 3 $b)
Bag (3 $b)

The Class Collection 69

11.3 Tests on a collection
Three messages allow collections to be tested. These
are:

includes: anObject
returns true if the object anObject is equal to one of
the elements of the receiver,

isEmpty
returns true if the receiver is an empty collection,

occurrencesOf: anObject
returns the number of elements of the receiver equal to
the argument anObject.

For example:

Expressions

a
a includes: 2
a isEmpty
a occurrencesOf: $b

11.4 Enumeration of a collection

Result

Bag ($a 2 3 $b $b)
true
false
2

A collection generally includes several elements. There
are several messages described in the class Collection
that allow each element of a collection to be accessed
and allow an operation to be performed on this element.
These messages are:

do: aBlockWithOneArgument
evaluates the block aBlock for each element of the
receiver, the element being the argument of the block,

select: aBlockWithOneArgument
evaluates the block aBlock for each element of the
receiver and returns a collection of the same class as
the receiver, containing those elements for which eval-
uation of the block has returned true,

reject:aBlockWithOneArgument
evaluates the block aBlock for each element of the
receiver and returns a collection of the same class as
the receiver, containing those elements for which eval-
uation of the block has returned false,

detect: aBlockWithOneArgument
evaluates the block aBlock for each element of the
receiver and returns the first element of the receiver
that evaluation of the block has returned as true. If no
element is found, an error is produced.

detect: aBlock ifNone: anOtherBlock
evaluates the block aBlock for each element of the
receiver and returns the first element of the receiver
that evaluation of the block aBlock has returned as
true. If no element is found, the block anOtherBlock is
evaluated.

70 Smalltalk-80

inject: aninitialValue into: aBlockWithTwoArguments
evaluates the block aBlockWithTwoArguments for each ele-
ment of the receiver. The second argument of the block
is the element, the first argument of the block is the
result of its preceding evaluation. At first evaluation,
the first argument is aninitialValue.

For example:
sum <- 0
a<-# (1 2 3 4 5).
a do: [:anElement I sum<- sum +anElement].

places in the variable sum the sum of all the elements
in the array a;

a<- #(1 2 3 4 5).
a select: [:anElement

returns Array (2 4);
a reject: [:anElement

returns Array (1 3 5);
a detect: [:anElement

returns 3;

anElement even].

anElement even]

anElement > 2.5]

a detect: [:anElement anElement > 5] ifNone:
['Element not found']

returns 'Element not found';
a inject: 10 into: [:initialValue: anElement I
initialValue + anElement]

returns 25. On the first evaluation of the
initialValue is 10, anElement is 1; the result
evaluation of the block, which is also the result
evaluation of its last expression, is 11. On the
evaluation, initialValue is 11, anElement is 2,
on.

block,
of the
of the
second
and so

The message inject: into: allows a local variable to
be initialised in the message that will be passed
between the successive evaluations of a block. To write
the previous example without inject: into:, one could
write, for example:

counter <- 10.
a do: [:anElement \ counter<- counter+ anElement]

11.5 Conversion of a collection
Five messages understood by the instances of class
Collection transform instances of a subclass of class
Collection to instances of another subclass of class
Collection.

as Bag
returns an instance of class Bag whose elements are
those of the receiver,

asSet
returns an instance of class Set whose elements are
those of the receiver (an instance of class Set does not
possess two equal elements),

asOrderedCollection

The Class Collection 71

returns an instance of class OrderedCollection whose
elements are those of the receiver,

asSortedCollection
returns an instance of class SortedCollection whose
elements are those of the receiver (the elements are
stored in ascending order),

asSortedCollection: aBlock
returns an instance of class SortedCollection whose
elements are those of the receiver (the criterion for
the order of the elements being given by the evaluation
of the block aBlock).

11.6 The subclasses of the class Collection
Class Collection has no instances; that is, it is an ab-
stract class. It possesses several subclasses that allow
the different structures of useful data to be repre-
sented. These subclasses are arranged in the following
hierarchy.

11.6.1 The class Bag
Class Bag is a subclass of class Collection. The ele-
ments of an instance of Bag represent an arbitrary set
whose elements are not accessible by keys. Because of
this, the messages at: and at: put: are not understood
by the instances of class Bag. In fact, an instance of
the class Bag just represents a group of elements. There
is only one additional message that is understandable by
the instances of this class. It is as follows:

add: anObject withOccurrences: aninteger
adds to the receiver a number of occurrences of anObject
equal to aninteger.

11.6.2 The class Set
Class Set is also a subclass of class
contrast to the instances of class Bag,
Set cannot contain two equal elements.

11.6.3 The class Dictionary

Collection. In
those of class

Class Dictionary is a subclass of class Set. The elem-
ents of an instance of class Dictionary are instances of
class Association. An instance of class Association is
represented by a pair of objects; the first element is
called the key, the second element is called the value
assigned to the key.

The messages at: and at: put: are still defined for
the instances of this class; however, their methods tave
been redefined. In contrast to the foregoing, the
argument of the keyword at: is no longer a numeric index
but any object that represents a key.

The additional messages that can be understood by the
instances of class Dictionary are as follows.

72 Smalltalk-80

Access
at: aKey ifAbsent: aBlock

returns the value assigned to the key aKey. If the key
is not found, the block aBlock is evaluated.

associationAt: aKey
returns the association whose key is aKey. If the key is
not found, an error is produced.

associationAt: aKey ifAbsent: aBlock
returns the association whose key is aKey. If the key is
not found, the block aBlock is evaluated.

keyAtValue: aValue
returns a key that refers to the value aValue, and if
several keys reference the same value, returns the first
one found. If no key is found, nil is returned.

keys
returns an instance of class Set containing all the keys
of the receiver,

values
returns an instance of class Bag containing all the val-
ues of the receiver.

For example:
dictionary <- Dictionary new.
dictionary at: #un put: #one.
dictionary at: #deux put: #two.
dictionary at: #trois put: #three.
dictionary add: (Association key: #quatre value:

#four).
allows a dictionary to be created. We have used two mes-
sages to add an element to the dictionary, the message
at:put: and the message add: whose argument must be an
Association.

Expressions

dictionary at: #deux
dictionary associationAt: #deux
dictionary keyAtValue: #three
dictionary keys

dictionary values

Test

Result

two
deux -> two
trois
Set (un deux trois
quatre)
Bag (one two three
four)

Being a subclass of Collection, the class Dictionary
inherits the test messages of this class, in particular,
includes:, although the method assigned to this message
is redefined in the class Dictionary. This message
allows for testing the inclusion or otherwise of a value
of an association. The same goes for the message occur-
rencesOf:. The new messages are:

includesAssociation: anAssociation

The Class Collection 73

returns true if the receiver contains the element an-
Association,

includesKey: aKey
returns true if one of the elements of the receiver has
aKey as its key.

For example:

Expressions

dictionary includes: #two
dictionary includes: #deux
dictionary includesAssociation:
(Association key: #deux value: #two)
dictionary includesKey: #two
dictionary includesKey: #deux

Deletion

Result

true
false
true

false
true

Three new messages allow an element to be deleted from a
dictionary. The message remove: defined in Collection is
unusable for a dictionary. So as to be able not to use
it, the method assigned to it is redefined in Diction-
ary; it is written as follows:

remove: anObject
self shouldNotimplement

The new messages are:
removeAssociation: anAssociation

which deletes the element anAssociation from the receiv-
er. If the element anAssociation is not found in the
receiver, an error is produced.

removeKey: a Key
deletes the element of the receiver whose key is aKey.
If the key is not found, an error is produced; if suc-
cessful, the value assigned to the key is returned.

For example:

Expressions

dictionary removeAssociation:
(Association key: #un
value: #one)
dictionary removeKey:
#deux

Enumeration

Dictionary

Dictionary (deux -> two
quatre -> four
trois -> three)

Dictionary (trois -> three
quatre -> four)

Being a subclass of class Collection, class Dictionary
inherits the messages of this class, in particular, do:,
even though the method assigned to this class is re-
defined in class Dictionary. This message allows eval-
uation of a block for all values of the receiver and not
the associations. The new messages are:

associationsDo: aBlock

74 Smalltalk-80

evaluates the block aBlock for all associations of the
receiver.

keysDo: aBlock
evaluates the block aBlock for all keys of the receiver.

For example:

dictionary associationDo: [:anAssociation 1anAssociation
value:anAssociation value asString]

means that the values of the dictionary are no longer
symbols but strings. The result for the dictionary is:
Dictionary (one -> 'un· two-> 'deux· three -> 'trois'
four-> 'quatre').

11.6.4 The class IdentityDictionary
The class IdentityDictionary is a subclass of class
Dictionary. The difference between these two classes is
that for class Dictionary the search for a key uses the
equality (=), whereas for class IdentityDictionary the
search for a key uses the equivalence (==).

11.6.5 The class SequenceableCollection
The class SequenceableCollection is a subclass of class
Collection. The instances of SequenceableCollection have
ordered elements that are accessible via a numeric
index. An instance of SequenceableCollection possesses a
first element and a last element.

Access
Being a subclass of Collection, the class Sequenceable-
Collection inherits from the access messages of this
class, especially at: and at:put:. The other messages
are:

atAll: aCollection put: anObject
assigns the argument anObject to each index of the rec-
eiver that belongs to the argument aCollection,

atAllPut: anObject
assigns the argument anObject to all indices of the rec-
eiver,

first
returns the first element of the receiver, producing an
error if the receiver is empty,

last
returns the last element of the receiver, producing an
error if the receiver is empty,

indexOf: anElement
returns the first index of the element anElement,
returning 0 if the receiver does not contain the element
anElement,

indexOf: anElement ifAbsent: aBlock
returns the first index of the element anElement, and

The Class Collection 75

evaluates the block aBlock if the receiver does not
contain the element anElement,

indexOfSubCollection: aSubCollection
startingAt:anindex

if the argument aSubCollection is a subcollection of the
receiver, returns the index in the receiver of the first
element of the subcollection, the search starting at the
index anindex, and returns 0 if the subcollection is not
found,

indexOfSubCollection: aSubCollection startingAt:
anindex ifAbsent: aBlock

if the argument aSubCollection is a subcollection of the
receiver, returns the index in the receiver of the first
element of the subcollection, the search starting at the
index anindex, and evaluates the block aBlock if the
subcollection is not found,

replaceFrom: beginning to: end with: aCollection
replaces the elements whose index lies between beginning
and end with the elements of the argument aCollection;
if the size of the argument aCollection does not match
with beginning and end, an error is produced,

replaceFrom: beginning to: end with: aCollection
startingAt: indexBeginning

replaces the elements whose index lies between beginning
and end with the elements of the argument aCollection,
starting at the index indexBeginning; the size of aColl-
ection must not be less than (end - beginning + index-
Beginning). For example:
Expressions

#($a $b $c $d) size
#($a $b $c $d) at: 3
#($a $b $c $d) at: 3 put: $e
#($a $b $c $d) atAll: #(1 2) put: $f
#($a $b $c $d) atAllPut: $a
#($a $b $c $d) first
#($a $b $c $d) last
#($a $b $c $d) indexOf: $b
#($a $b $c $d) indexOf: $t ifAbsent:
'abcdefgh' indexOfSubCollection:

'cd' startingAt: 1
'abcabc' indexOfSubCollection:

Result

4
$c
#($a $b
#($f $f
#($a $a
$a
$d
2

[5] 5

3

'be' startingAt: 3 5

$e $d)
$c $d)
$a $a)

'abcdefgh' replaceFrom: 5 to: 7 with 'FGH' 'abcdFGHL'
'abcdefgh' replaceFrom: 5 to: 8 with:
'ABCDEFGHIJK' startingAt: 3 'abcdCDEF'

Copy
There are messages that allow all or part of an instance
of SequenceableCollection to be copied. They are:

, aCollection

76 Smalltalk-80

the receiver concatenated with the
which must be an instance of

returns a copy of
argument aCollection
SequenceableCollection,

copyFrom: beginning to: end
returns a copy of the subcollection of the receiver
starting at the index beginning and finishing at the
index end,

copyReplaceAll: aSubCollection with: anOtherSub-
Collection

returns a copy of the receiver in which all the occur-
rences of the subcollection aSubCollection are replaced
with the collection anOtherSubCollection,

copyReplaceFrom: beginning to: end with: aCollection
if end is greater than beginning, replaces the sub-
collection starting at the index beginning and finishing
at the index end with the collection aCollection; if end
is less than beginning, inserts the collection aCollect-
ion in front of the index beginning and returns the copy
of the new collection,

copyWith: anObject
returns a copy of the receiver concatenated with
anObject,

copyWithout: anObject
returns a copy of the receiver from which all occur-
rences of the object anObject have been removed.

For example:

Expressions

'abc', 'def'
'abcdef' copyFrom: 2 to: 5
'abcdef' copyReplaceAll: 'cd' with: 'coE'
'abcdef' copyReplaceFrom: 2 to: 3 with: 'AAA'
'abcdef' copyReplaceFrom: 3 to: 2 with: 'AAA'

'abcdef' copyWith: $g
'abcdef' copyWithout: $f

Enumeration

Result

'abcdef'
'bcde'

'abCDef'
'aAAAdef'

'abAAAcdef '
'abcdefg'
'abcde'

Because the elements of an instance of Sequenceable-
Collection are ordered, enumeration of these elements is
also made in an ordered manner. The new messages access-
ible by the instances of SequenceableCollection are:

findFirst: aBlock
which evaluates the block aBlock for each element of the
receiver, and returns the index of the first element for
which evaluation of the block returns true,

findLast: aBlock
evaluates the block aElock for each element of the rec-
eiver, and returns the index of te last element for

The Class Collection 77

which evaluation of the block returns true,
reverseDo: aBlock

evaluates the block aBlock for each element of the rec-
eiver starting with the last and going back to the
first,

with: aCollection do: aBlock
evaluates the two argument block aBlock, taking as first
argument an element of the receiver and as second
argument an element of the SequenceableCollection
aCollection. The SequenceableCollection aCollection must
be the same size as the receiver.

For example:

Expressions Result

'abcDEFG' findFirst: [:i I i isUpperCase] 4
'abcDEFG' findLast: [: i I i isUpperCase] 7
mult <- Bag new.
#(l 2 3 4) with: #(5 6 7 8)
do: [: i : j I mul t add: i * j] .
mult Bag(S 12 21 32)

SequenceableCollection possesses several subclasses;
these are OrderedCollection, LinkedList, Interval and
ArrayedCollection.

11.6.5.1 The class OrderedCollection
The class OrderedCollection is a subclass of Sequence-
ableCollection. The order of the elements of an instance
of OrderedCollection is fixed by the order in which they
are added. The new messages accessible by the instances
of OrderedCollection are:

addLast: anObject
which adds the object anObject to the end of the rec-
eiver,

addFirst: anObject
adds the object anObject to the beginning of the rec-
eiver,

add: anObject after: anOtherObject
adds the object anObject to the receiver after the first
occurrence of anOtherObject. If the object anOtherObj-
ect is not an element of the receiver, an error message
is produced,

add: anObject before: anOtherObject
adds the object anObject to the receiver in front of the
first occurrence of anOtherObject. If the object anOth-
erObject is not an element of the receiver, an error
message is produced,

addAllFirst: aCollection
adds to the beginning of the receiver all the elements
of the OrderedCollection aCollection,

addAllLast: aCollection

78 Smalltalk-80

adds to the end of the receiver all the elements of the
OrderedCollection aCollection,

removeFirst
rEmoves the first element of the receiver and returns
this element,

remove Last
removes the last element of the receiver and returns
this element. An error is produced if the receiver is
empty,

after: anObject
returns the element that appears
occurrence of the object anObject. If
ains no object anObject or there is
anObject, an error is produced,

before: anObject

after the first
the receiver cont-
no element after

returns the element that appears in front of the first
occurrence of the object anObject. If the receiver cont-
ains no object aObject or there is no element in front
of anObject, an error is produced.

For example:

Expressions List

list <- OrderedCollection new. OrderedCollection
list add: 1 OrderedCollection

()

(1)

list addFirst: 2
list addLast: 3
list add: 4 after: 1

list add: 5 before: 1

list removeFirst

list removeLast
list before: 1
list after: 1
list addAllFirst: list

list addAllLast: list

OrderedCollection
OrderedCollection
OrderedCollection
(2 1 4 3)
OrderedCollection
(2 5 1 4 3)
OrderedCollection

(2 1)
(2 1 3)

(5 1 4 3)
OrderedCollection (5 1 4)
returns 5
returns 4
OrderedCollection
(5 l 4 5 1 4)
OrderedCollection
(5 1 4 5 1 4 5 l 4 5 1 4)

11.6.5.2 The class SortedCollection
The class SortedCollection is a subclass of Ordered-
Collection whose elements are ordered. To order these
elements the class uses a function represented by a two
argument block. To create an instance of SortedCollect-
ion, it is sufficient to send the message sortBlock: to
the class. The argument of sortedBlock: is a two argu-

The Class Collection 79

ment block, for example:
SortedCollection sortBlock: [:arg 1 :arg 2 j arg 1 >
arg2]

This instance of SortedCollection will contain a coll-
ection of objects stored from largest to smallest.

The message new allows creation of a SortedCollection
with the following as default sort block

[: argl : arg2 I argl <= arg2]
There are two other messages that allow any collect-

ion to be converted into a SortedCollection. These are:
asSortedCollection

which transforms the receiver into a SortedCollection
with the block as default sort function,

asSortedCollection: aBlock
which transforms the receiver into a SortedCollection
with the block given as argument being the sort funct-
ion.

There are two messages sortBlock and sortBlock: that
are understood by instances of SortedCollection; the
first returns the sort block of the receiver, the second
allows the sort block of the receiver to be altered.

For example:

Expressions

collection <- SortedCollection new
collection add: 'abcdefg'
collection add: 'abdef'
collection add: 'aa
collection

collection sortBlock:
[:a :b I a size> b size]

collection add: 'abc'
collection

Results

SortedCollection ()
'abcdefg'
'abdef'
'aa

SortedCollection
'aa' 'abcdefg' 'abdef ')

SortedCollection
('abcdefg' 'abdef' 'aa ')

'abc'
SortedCollection

('abcdefg' 'abdef ''abc' 'aa ')

The only constraint imposed on the sort block is that
it returns true or false. In particular, it is important
to ensure that the objects of the SortedCollection can
be compared by the sort clock.

11.6.5.3 The class LinkedList
The class LinkedList is a subclass of Sequenceable-
Collection whose instances contain a list of instances
of the class Link ordered explicity at the time of add-
ition or removal. The class Link is a subclass of Object
whose instances make reference to another instance of
Link.

80 Smalltalk-80

To create an instance of the class Link, the message
nextLink: aLink

needs to be sent to the class. The argument of the mess-
age nextLink: must be an instance of Link.

There are two messages that are understood by inst-
ances of Link:

nextLink
which returns the instance of Link referenced by the
receiver; and

nextLink: aLink
which allows the reference of the receiver to be alter-
ed.

The class Link has no direct instances because they
would not be usable (that is, the class Link is an
abstract class). To use the class LinkedList, subclasses
of Link have to be defined whose instanGes will have
other usable variables.

The instances of LinkedList understand the same mess-
ages as the instances of Link; they also understand all
the messages of the class SequenceableCollection (add-
First, removeFirst, etc). The following example, which
allows a circular list of n objects to be created, shows
how the class LinkedList may be used:

name of class
superclass
name of instance variables
instance methods
object

iobject
object: anObject

object <- anObject
name of class
superclass
class method
new: ASize

)aList I
aList <- super new.
(1 to: aSize) inject: nil into:

Bond
Link
object

CircularList
LinkedList

[:i :jl aList addFirst: (Bond nextLink: i)].
aList last nextLink: aList first

11.6.5.4 The class Interval
The class Interval is a subclass of SequenceableCollect-
ion whose instances represent arithmetic sequences. An
arithmetic sequence is characterised by its first ele-
ment and the increment which steps from one element to
the next up to a finite limit. There are two messages
that create Interval instances.

from: beginning to: end

The Class Collection 81

returns an instance of the class Interval starting at
the beginning number and finishing at the end number,
with increments of l.

from: beginning to: end by: anincrement
returns an instance of the class Interval starting at
the beginning number and finishing at the end number and
incrementing by anincrement.

The class Number also supports two messages that
create Interval instances:

to: aNumber
which returns an instance of the class Interval starting
at the receiver and finishing at the number aNumber,
with an increment of l.

to: aNumber by: anincrement
which returns an instance of the class Interval starting
at the receiver and finishing at the number aNumber,
with an increment of anincrement.

For example:
l to: 5 by: 2

returns an instance of Interval whose elements are l, 3
and 5.

l to: 5 by: 2. l
returns an instance of Interval whose elements are l and
3 .l.

11.6.5.5 The class ArrayedCollection
The class ArrayedCollection is a subclass of Sequence-
ableCollection whose instances are arrays of objects.
Each object is accessible by a numeric key representing
its position in the array. The class ArrayedCollection,
which is an abstract class, has five subclasses, as
described below.
- The class Array
An instance of the class Array can store any type of ob-
ject. The messages understood by instances of Array are
the messages supported by the class Collection.
- The class String
In contrast to class Array the instances of class String
only contain characters. The instances of String are
therefore strings of characters. The additional messages
supported by the class String are:

Creation
Two messages allow instances of String to be created:

fromString: aString
returns a copy of the string aString;

readFrom: aStreamOfCharacters
returns an instance of String created from the charact-
ers contained in the stream of characters aStreamOf-
Characters (an instance of Stream, see chapter 12).

82 Smalltalk-80

Comparison
Six messages allow strings of characters to be compared
with one another. The distinction between upper and low-
er case is ignored. These messages are:

<aString
returns true if the receiver precedes the argument
aString alphabetically,

<=aString
returns true if the
aString alphabetically

>aString

receiver precedes the argument
or if two strings are equal,

returns true if the receiver follows the argument
aString alphabetically,

>=aString
returns true if the
aString alphabetically

match: aString

receiver follows the argument
or if the two strings are equal,

returns true if the argument aString appears in the rec-
eiver. The characters # and * have a special meaning in
the receiver:
- # can represent any character
- * can represent any string of characters (including
the empty string).

sameAs: aString
returns true if the receiver and the argument aString
are equal.

Conversion
Three messages allow character strings to be converted:

asLowerCase
returns a string of characters equivalent to the rec-
eiver containing only lower case characters,

as UpperCase
returns a string of characters equivalent to the rec-
eiver containing only upper case characters,

as Symbol
returns the symbol made up of characters cf the rec-
eiver.

For example:

Expressions

'string'= 'string'
'string'= 'string'
'string' sameAs: 'string'
'string' sameAs: 'string'
'#tring' match: 'string'
'*ng' match: 'string'
'string' asUpperCase
'string' asSymbol

Result

true
false
true
true
true
true
'STRING'
string

The Class Collection 83

The class Symbol
The class Symbol is a subclass of the class String whose
instances are used to name objects in the system. The
objects that have to be named are for example classes,
messages, variables, etc. In the interests of saving
space, symbols are only represented once in the system.
Two messages allow new symbols to be created:

intern: aString
returns the unique symbol made up of the characters of
the string aString;

internCharacter: aCharacter
returns the unique symbol made up of the character
aCharacter.

Remember that the syntax for writing a symbol as a
literal form is #nameOfSymbol.

The class Text
The class Text is a subclass of ArrayedCollection. The
class Text allows strings of characters to be stored as
String, with the additional possibility of assigning to
each character a further characteristic that can for
example represent the style of the character when
displayed.

The class ByteArray
The class ByteArray is a subclass of the class Arrayed-
Collection whose instances contain integers coded into a
byte (between 0 and 255). This class allows arrays of
such integers to be stored efficiently.

The class RunArray
The class RunArray is a subclass of the class Arrayed-
Collection. This class allows the convenient storage of
arrays containing sequences of similar objects. The
instances of RunArray have two named instance variables
that are runs and values. The variable runs contains a
list of integers and the variable values contains a list
of objects. Each object of values is assigned to an
integer of runs that represents the number of ccnsecut-
ive occurrences of this object.

12 The Class Stream

Collections allow objects to be grouped. Each object of
a collection can be accessed individually; also, an
operation can be carried out on all the objects of a
collection, provided that this is done in a loop. How-
ever, it is not easy to mix the two types of access and
operate on the enumeration of objects.

The class Stream is a subclass of the class Object
that allows streams of objects to be controlled. The
instances of Stream have a variable representing the
current object in the objects stream. The instances of
Stream do not directly store objects, but they do
control access to these objects.

Several types of access are possible; they will be
defined in the subclasses of Stream, which accounts for
why Stream is an abstract class.

To summarise, the instances of Stream allow access to
the collections to be controlled.

The messages of class Stream can be classified into
several categories, as follows.

Reading
Four access messages are understood by the instances of
Stream:

next
returns the next object accessed by the receiver,

next: aninteger
returns the next aninteger objects accessed by the rec-
eiver, in the collection form of the same class as the
collection accessible by the receiver,

nextMatchFor: anObject
accesses the next object and returns true if this object
is equal to the argument anObject,

contents
returns all the objects accessed by the receiver.

Writing
Three write messages are understood by the instances of
Stream:

nextPut: anObject
stores the argument anObject at the next position acces-
sed by the receiver and returns anObject,

nextPutAll: aCollection

84

The Class Stream 85

stores all the objects of the argument aCollection at
the next positions accessed by the receiver and returns
aCollection,

next: aninteger put: anObject
stores the argument anObject at the next aninteger posi-
tions accessed by the receiver and returns anObject.

Test
The message atEnd establishes whether the receiver can
access any more objects.

Enumeration
The message do: aBlock evaluates the argument aBlock for
all the objects accessible by the receiver.

12.1 The class PositionableStream
The class PositionableStream is a subclass of Stream. It
is again an abstract class that has three subclasses:
- the class ReadStream
- the class WriteStream
- the class ReadWriteStream

In addition to the protocol defined within class
Stream, instances of the class PositionableStream allow
positioning within the object stream; these streams of
objects therefore must themselves be ordered, that is,
they must be instances of the class SequenceableCollect-
ion.

To create an instance of PositionableStream, two
messages are possible:

on: aCollection
returns an instance of PositionableStream allowing cont-
rol of the stream made up of the objects of the argument
aCollection.

on: aCollection from: indexBeginning to: indexEnd
returns an instance of PositionableStream allowing cont-
rol of the stream made up of the the objects of the
argument aCollection that lie between the arguments
indexBeginning and indexEnd.

The additional messages understood by the instances
of PositionableStream fall into several categories, as
follows.

Test
The message isEmpty returns true if the collection cont-
rolled by the receiver is empty.

Access
Four messages allow
collection controlled

peek

access to the
by the receiver:

objects of the

returns the next object of the collection, but does not

86 Smalltalk-80

alter the current position in the stream; it returns nil
if the receiver is at the end,

peekFor: anObject
returns true and advances one position in the stream if
the next object is equal to the argument anObject; if
the object is not found, it returns the remainder of the
collection,

reverseContents
returns a collection in inverse order of that controlled
by the receiver.

Positioning
The messages that alter or give the position in the ob-
jects stream are:

position
returns the integer representing the current position in
the stream,

position: an!nteger
places the receiver at the position given by the argu-
ment an!nteger; if the position given as argument is not
within the limits of the collection controlled by the
receiver, an error is produced,

reset
places the receiver at the beginning of the collection
that it controls,

setToEnd
places the receiver at the end of the collection that it
controls,

skip: an!nteger
shifts the current position of the argument aninteger,
ensuring that this position never goes beyond the
permitted bounds,

skipTo: anObject
shifts the current position to place it immediately
after the next occurrence of the argument anObject in
the collection controlled by the receiver; it returns
true if such an object exists and false otherwise.

For example:
Expression Result

pS
pS
pS
pS
pS
pS
pS
pS
pS
pS
pS

<- ReadStream on: # (peter paul john)
reset
next
next
next
next
position
position: 2
peek
next
contents

pS reverseContents

peter
paul
john
nil
3
2
paul
paul

(peter paul john)
(john paul peter)

The Class Stream 87

12.1.1 The class ReadStream
The class ReadStream is a subclass of the class Posit-
ionableStream. The instances of this class can read the
stream of objects of a collection but cannot alter this
stream. None of the messages nextPut:, next: and next-
PutAll: is recognised.

12.1.2 The class WriteStream
The class WriteStream is a subclass of the class Posit-
ionableStream. The instances can alter the objects
stream of a collection but cannot read the objects of
this stream. In the system this class is used on numer-
ous occasions to implement the methods printString and
printOn that allow objects to be dis~layed in a textual
form.

Additional messages are supported by the class Write-
Stream. They fall into the following categories.

Creation
The messages that allow instances to be created are:

with: aCollection
creates an instance of WriteStream allowing the collect-
ion given as argument to be controlled, and places it at
the end of the stream (the next objects will be added at
the end),

with: aCollection from: indexBeginning to: indexEnd
creates an instance of WriteStream allowing control of
the collection of objects lying between the arguments
indexBeginning and indexEnd in the collection given as
argument, and places it at the end of the stream (the
next objects will be added at the end).

Writing characters
The following methods allow a character to be added to
an objects stream:

cr
adds a carriage-return after the current position of the
receiver,

tab
adds a tabulation after the current position of the rec-
eiver,

space
adds a space after the current position of the receiver,

crTab
adds a carriage-return and a tabulation after the cur-
rent position of the receiver,

crTab: n
adds a carriage-return and tabulations after the current
position of the receiver.

An interesting case is where the collection is a
string of characters. In such a case the control of the
character stream amounts to carrying out editing funct-

88 Smalltalk-80

ions on a string of characters.

12.1.3 The class ReadWriteStream
The class ReadWriteStream is a subclass of WriteStream
which allows control of a stream of objects when reading
or writing. It supports all the messages of ReadStream
and WriteStream.

12.2 The class ExternalStream
The class ExternalStream is a subclass of the class
ReadWriteStream. In the Smalltalk system, communication
with the external files is also carried out by means of
data streams. In contrast to the subclasses of Stream
that we have already met, the input/output streams do
not contain any objects but only bytes. The messages
supported by the class ExternalStream fall into two
categories.

Access
The access messages to byte streams are:

nextNumber: n
returns the next n bytes of the ccllection accessed by
the receiver and interprets them as a positive instance
of Smallinteger or of LargePositiveinteger, depending on
the value read,

nextNumber: n put: aninteger
stores in n bytes the positive integer aninteger (an
instance of Smallinteger or of LargePositiveinteger) in
the collection accessed by the receiver,

nextString
returns in the form of a character string (instance of
String) the next bytes of the collection accessed by the
receiver,

nextStringPut: aString
stores the string of characters aString in the form of
bytes in the collection accessed by the receiver,

next Word
returns the next two bytes interpreted as an integer,

nextWordPut: aninteger
stores in two bytes the integer aninteger in the
collection accessed by the receiver.

Positioning
The messages for positioning on the byte streams are:

padTo: aSize
places itself at the next multiple position of aSize,
and returns the number of bytes skipped,

padTo: aSize put: aCharacter
places itself at the next multiple position of aSize
writing the character aCharacter the required number of

The Class Stream

times, and returns the number of bytes skipped,
padToNextWord

89

places itself on the next word (first even byte posit-
ion), and returns the character skipped if there is one,

padToNextWordPut: aCharacter
places itself on the next word writing the character
aCharacter as many times as necessary,

skipWords: n
skips n words,

wordPosition
returns the current position in words,

wordPosition: aPosition
places itself at the position aPosition in words.

12.2.1 The class FileStream
The class FileStream is a subclass of the abstract class
ExternalStream. All accesses to files are carried out by
means of instances of FileStream. In contrast to its
superclasses, the class FileStream does not work on
collections present in central memory, but on streams of
bytes present in auxiliary memories. In addition to the
messages supported by the class ExternalStream, the
class FileStream supports messages relating to the
status of a file (open, closed, etc). Three class meth-
ods allow instances of FileStream to be created:

oldFileNamed: aString
creates an instance of FileStream accessing the file
named aString and verifies that it exists,

newFileNamed: aString
creates an instance of FileStream accessing the file
named aString, creating it if it does not exist and de-
leting it if it does,

fileNamed: aString
creates an instance of
named aString and creating

The two important new
Stream are:

open

FileStream accessing the file
it if it does not exist.

messages supported by File-

which allows the file accessed by the receiver to be
opened; read and write operations cannot take place
until this message has been sent.

close
which allows the
closed.

file accessed by the receiver to be

12.2.2 The class FileDirectory
The class FileDirectory is a subclass of the class File-
Stream. The class FileStream allows files to be named,
while the class FileDirectory allows them to be located
in the logical organisation of the secondary memory. The

90 Smalltalk-80

methods of the class FileDirectory depend on the system
support, that is, the file organisation of the operating
system on which the Smalltalk interpreter has been writ-
ten. The instances of the class FileDirectory represent
directories or volumes.

13 Processes

A process represents a sequence of instructions that has
to execute a particular task. A conventional machine,
for example, contains processes for reading the key-
board, writing to disk, printing out text via a printer,
etc. When a machine is what is known as a uniprocessor,
it can only execute one process at a time; it is there-
fore necessary to be able to select a process to execute
and synchronise the various processes required. Small-
talk-SO contains several classes that allow such con-
cepts to be defined.

13.1 The class Process
A process is a sequence of expressions that are inter-
preted by Smalltalk. There are already in the system
processes that inspect the input interfaces (keyboard
and mouse) and a process that is activated when the
amount of available memory is running low, notifying the
user of a potential problem.

Processes are instances of the class Process which is
a subclass of Link. To create a new process, four mess-
ages are supported by the class BlockContext:

fork
creates a new process from the receiver which is a block
containing the expressions to be interpreted, and places
it on the list of processes to be executed; the priority
of the process created is equal to the priority of the
process that creates it,

forkAt: aPriority
creates a new process from the receiver which is a block
containing the expressions to be interpreted, and places
it on the list o£ processes to be executed with the
priority aPriority,

newProcess
creates a new process from the receiver which is a block
containing the expressions to be interpreted, but does
not place it on the list of processes to be executed,

newProcessWith: anArray
creates a new process from the receiver which is a block
containing the expressions to be interpreted, without

91

92 Smalltalk-80

putting it on the list of processes to be executed. The
arguments of the block are initialised by the objects
contained in the argument anArray.

The messages that allow action on processes are:
resume

which authorises execution of the receiver,
suspend

which halts executions of the receiver, but keeps it on
the list of processes to be executed; to authorise con-
tinuation, the message resume must be sent,

terminate
halts execution of the receiver and removes it from the
list of processes tc be executed,

priority
returns the priority of the receiver,

priority: aPriority
alters the priority of the receiver and gives the value
of the argument aPriority.

13.2 The class ProcessorScheduler
The Smalltalk virtual machine has only one processor;
since as a consequence only one process can be executed
at a time, the activation of the various processes must
be controlled.

It is the role of the class ProcessorScheduler, a
subclass of the class Object, to control a list of
processes. The class ProcessorScheduler has only one
instance which is stored in a global variable called
Processor.

The messages supported by the class ProcessorSched-
uler are:

activePriority
returns the priority of the process currently being
executed,

activeProcess
returns the process
being executed,

terminateActive
terminates the process

yield
authorises execution
as the active process,

highiOPriority

(instance of Process) currently

currently being executed,

of a process of the same priority

returns the priority of the fast input/output processes,
lowiOPriority

returns the priority of the slow input/output processes,
systemBackgroundPriority

returns the priority of the Smalltalk processes
operating in the "background",

timingPriority

Processes 93

returns the priority of the processes that consult the
real-time clock,

userBackgroundPriority
returns the priority of the user processes operating in
the "background",

userinterruptPriority
returns the priority of the user processes considered to
be of high priority,

userSchedulingPriority
returns the priority of the non-priority user processes.

The list below gives the rank order of priorities,
from the highest to the lowest:

timingPriority
highiOPriority
lowiOPriority
userinterruptPriority
userSchedulingPriority
userBackgroundPriority
systemBackgroundPriority

13.3 The class Delay

->
->
->
->
->
->
->

Priority 8
Priority 7
Priority 6
Priority 5
Priority 4
Priority 3
Priority 2

The class Delay is a subclass of the class Object. The
instances of the class Delay allow the active process to
be suspended for a determined period. There are three
messages to create instances of Delay, as follow.

forMilliseconds: aNumberOfMilliseconds
returns a new instance of the class Delay that will sus-
pend execution of the active process for the number of
milliseconds equal to the argument,

forSeconds: aNumberOfSeconds
returns a new instance of the class Delay that will sus-
pend execution of the active process for the number of
seconds equal to the argument,

untilMilliseconds: aNumberOfMilliseconds
returns a new instance of the class Delay that will sus-
pend execution of the active process until the real-time
clock reaches the value of the argument.

To suspend execution of the active process, the
message wait must be sent to an instance of Delay that
is initialised for the required delay.

The message resumptionTime sent to an instance of
Delay returns the value in milliseconds of the real-time
clock at which the interrupted process can resume.

For example:

[[true] whileTrue:
[Time now printString asDisplayText displayAt:
Sensor cursorPoint. (Delay forSeconds: l) wait]] fork

will display the current time every second at the cursor
position.

94 Smalltalk-80

13.4 Semaphores
We have seen that processes are independent of one an-
ether. In some circumstances it is useful to be be able
to synchronise processes and communicate data between
them.

The instances of the class Semaphore, which is a sub-
class of the class LinkedList, allow processes to be
synchronised.

To allow a process to wait for an event from another
process, it places itself in a wait state by sending a
wait message to a semaphore. When the second process
sends a signal to the first, the latter is able to res-
ume.

The order in which these messages are sent has no
effect on the execution of the processes, except that it
may or may not cause the process placed in signal await
state to wait.

The two messages that are involved are:
wait

which suspends the active process until the semaphore
receives a signal,

signal
which allows a process to signal an event to the sema-
phore.

Several processes can wait for a semaphore; they res-
ume execution in the same order that they were suspended
as and when the semaphore receives the messages sig-
nalling an event.

One of the useful applications of semaphores is for
achieving mutual exclusion between two processes. Two
processes are in mutual exclusion when one of them
cannot interrupt the other when it is in a critical sec-
tion.

To define a mutual exclusion semaphore, a new sema-
phore must be created and the signal message sent to it.
This is done by:

forMutualExclusion
A critical section is a part of a process that cannot

be interrupted by another process. To define it, there
must be a mutual exclusion semaphore to which the mess-
age wait is sent; that is, from that moment any process
that sends the message wait to that same semaphore is
blocked. When a critical section is terminated, it is
then sufficient to signal to the semaphore to free
access to the protected resource. The following message
defines a critical section in a method:

critical: aBlock
which evaluates the argument aBlock, while preventing
any other process from being activated.

Processes 95

The class SharedQueue
The instances of this class are queues that are used in
Smalltalk to transmit data between processes while
protecting their integrity. The instances of this class
have two instance variables that refer to two sema-
phores. The first counts the elements in the queue and
blocks the process that reads this queue when it is
empty. The second is used for read and write operations
to protect the queue (two processes cannot alter the
queue at the same time, because of the danger of losing
data).

The messages understood by a queue are:
isEmpty

returns true if the queue is empty, false if otherwise,
next

returns the next object in the queue and positions it-
self at the following object; if there is no object in
the queue, the process is suspended until an object is
added,

peek
returns the next object in the queue without positioning
itself at the following object; if there is no object in
the queue, the process is suspended until an object is
added,

nextPut: anObject
places the argument anObject at the next position in the
queue.

14 The Classes Point and

Rectangle

Just as we have numbers to represent scalar sizes, we
also need objects to represent sizes in two dimensions.
These sizes are essential in order to represent screen
positions. The class Point, a subclass of the class Ob-
ject, was introduced for this purpose.

14.1 The class Point
The instances of the class Point have two instance vari-
ables called x and y, which represent respectively the
abscissa and ordinate of a point.

14.1.1 Creating a point
A class method creates new points:

x: anAbscissa y: anOrdinate
returns a new instance of the class Point whose abscissa
is anAbscissa and ordinate anOrdinate.

There is another instance method cf the class Number
that allows new points to be created:

@ aNumber
returns a new instance of the class Point whose abscissa
is the receiver and whose ordinate is aNumber.

14.1.2 Messages supported by the class Point
Like numbers (instances of the class Number), points are
basic objects and therefore they understand a large
number of messages. These can be divided into the fol-
lowing categories.

Access
The messages that allow access to the characteristics of
a point are:

X

returns the abscissa of the receiver,
y

returns the ordinate of the receiver,
x: aNumber

replaces the abscissa of the receiver by the argument
aNumber,

y: aNumber
replaces the ordinate of the receiver by the argument
aNumber.

96

The Classes Point and Rectangle 97

Arithmetic
The arithmetic operations are:

+ anOffset
returns a new point whose x-coordinate is the sum of the
x-coordinates of the receiver and the argument anOffset;
similarly for the y-coordinate. If the offset is not a
point but a number, the two coordinates are incremented
by the same value,

- anOffset
returns a new
coordinate of the
of the argument
but a number, the
same value,

point obtained by subtracting from each
receiver the corresponding coordinate
anOffset; if the offset is not a point
two coordinates are decremented by the

* aCoefficient
returns a new point obtained by
ordinate of the receiver by the
if the coefficient is not a point

multiplying each co-
argument aCoefficient;
but a number, the two

coordinates are multiplied by the same value,
I aCoefficient

returns a new point obtained by dividing the receiver by
the argument aCoefficient; if the coefficient is not a
point but a number, the two coordinates are divided by
the same value,

II aCoefficient
returns a new point obtained by carrying out the integer
division for each coordinate between the receiver and
the argument aCoefficient; if the coefficient is not a
point but a number, the two coordinates are divided by
the same value,

abs
returns a new point obtained by taking the absolute
value of each coordinate of the receiver,

rounded
returns a new point whose coordinates are the integers
closest to each coordinate of the receiver,

truncateTo: aCoefficient
returns a new point whose coordinates are the largest
multiples of the argument aCoefficient smaller than the
coordinates of the receiver,

dist: aPoint
returns the Euclidean distance between the receiver and
the argument aPoint,

grid: aPoint
returns the multiple of the argument aPoint closest to
the receiver,

truncateGrid: aPoint
returns the largest multiple of the argument aPoint
smaller than the receiver,

transpose

98 Smalltalk-80

returns a new point whose x-coordinate is the receiver's
y-coordinate, and whose y-coordinate is the receiver's
x-coordinate.

Comparison
The messages that allow two points to be compared are:

< aPoint
returns true if the two coordinates of the receiver are
less than the two coordinates of the argument,

<= aPoint
returns true if the two coordinates of the receiver are
less than or equal to the two coordinates of the
argument,

> aPoint
returns true if the two coordinates of the receiver are
greater than the two coordinates of the argument,

>= aPoint
returns true if the two coordinates of the receiver are
greater than or equal to the two coordinates of the arg-
ument.

For example:

Expressions

Point x: 10 y: 20
10@20
(l0@20)x
(l9@20)y
(l0@20)x: 30
(l0@20)y: 30
(10@20)+(5@8)
(10@20)+5
(10@20)-(5@8)
(19@20)-5
(10@20)*(2@3)
(10@20)*2
(10@20)/(2@4)
(10@20)/3
(10@20)//(3@7)
(10@20)//3
(-10@20) abs
(10.7@20.2) rounded
(10@20) truncateTo: 3
(4@4) dist: (1@0)
(10@20) grid: (3.3@7)
(10@20) truncatedGrid: (3.3@7)
(10@20) transpose

Results

10@20
10@20
10
20
30@20
10@30
15@28
15@25
5@12
14@15
20@60
20@40
5@5
(10/3)@(20/3)
3@2
3@6
10@20
11@20
9@18
5
9.9@21
9.9@14
20@10

14.2 Coordinate system within Smalltalk environment
Each point on the screen can be defined by two co-
ordinates, an abscissa and an ordinate. The diagram

The Classes Point and Rectangle 99

below shows the position and orientation of the two co-
ordinate axes in the Smalltalk system.

0.0

Ordinate
(y-axis)

200.512
•

Abscissa (x-axis)

512.512
•

14.3 The class Rectangle

1024.1024

A rectangle parallel to the axes can be defined by two
points. In the Smalltalk system many objects use this
concept of a rectangle (for example, windows, menus,
etc). The class Rectangle, which is a subclass of the
class Object, allows rectangles to be defined by two
points, an origin and a corner.

The origin and the corner of a rectangle are defined
as shown in the following diagram:

Origin (10.10)

Graphic representation of
rectangle having
origin 10@10
and corner 100@50

Corner (100.50)

100 Smalltalk-80

14.3.1 Creating a rectangle
Three messages create new rectangles:

origin: anOriginPoint corner: aCornerPoint
returns a new instance of the class Rectangle whose ori-
gin is anOriginPoint and corner aCornerPoint,

origin: anOrigin extent: aVector
returns a new instance of the class Rectangle whose ori-
gin is anOriginPoint and whose corner is obtained by
adding to the argument anOrigin the argument aVector
(which is an instance of Point),

left: limitLeft right: limitRight top: limitTop
bottom: limitBottom

returns a new instance of the class Rectangle whose co-
ordinates are delimited by the limits given as argu-
ments.

There are two messages understood by instances of the
class Point that also allow new rectangles to be
created:

extent: aPoint
returns a new instance of the class Rectangle whose
origin is given by the receiver and whose corner is
obtained by adding the origin to the argument aPoint,

corner: aPoint
returns a new instance of the class Rectangle whose
origin is given by the receiver and whose corner is the
argument aPoint.

14.3.2 Instance methods
The instance methods of the class Rectangle may be divi-
ded into several categories:

Access
There are nine methods for accessing particular points
of a rectangle:

topLeft
returns the point located at the top left of the receiv-
er,

topCenter
returns the point located at the top centre of the rec-
eiver,

topRight
returns the point located at the top right of the rec-
eiver,

leftCenter
returns the point located at the left centre of the rec-
eiver,

center
returns the point located at the centre of the receiver,

rightCenter

The Classes Point and Rectangle 101

returns the point located at the right centre of the
receiver,

bottomLeft
returns the point located at the bottom left of the rec-
eiver,

bottomCenter
returns the point located at the bottom centre of the
receiver,

bottomRight
returns the point located at the bottom right of the
receiver,

origin
returns the same point as the method topLeft,

corner
returns the same point as the method bottomRight.

These points are located as shown in the following
diagram:

top left
top center

---------------____, top right

center
left center right center

bottom left ._ _______________ ___. bottom right

bottom center

Other messages give access to the characteristics of
the receiver:

origin: anOrigin corner: aCorner
replaces the origin and the corner of the receiver by
the arguments anOrigin and aCorner,

origin: anOrigin extent: aSize
replaces the origin by the argument anOrigin and the
corner by the point obtained by adding the origin with
the argument aSize,

width
returns the width of the receiver,

height
returns the height of the receiver,

extent
returns aPoint whose abscissa is the width and whose
ordinate is the height,

top

102 Smalltalk-80

returns the ordinate of the origin of the receiver,
bottom

returns the ordinate of the corner of the receiver,
left

returns the abscissa of the origin,
right

returns the abscissa of the corner,
area

returns the area of the rectangle (the product of its
height and its width).

Operations on rectangles
These operations return new objects, in
those that we shall examine later, which
receiver. These operations are:

amountToTranslateWithin: aRectangle

contrast to
transform the

returns a point corresponding to the minimal translation
that is required to be made to the receiver for it to be
placed within the argument aRectangle,

areasOutside: aRectangle
returns a collection of rectangles contained in the rec-
eiver and not intersecting the argument aRectangle,

expandBy: anincrement
returns a new rectangle obtained by increasing the rec-
eiver by the value given as argument; the argument can
be a number, a point or a rectangle,

insetBy: aDecrement
returns a new rectangle obtained by decreasing the rec-
eiver by the value given as argument; the argument can
be a number, a point or a rectangle,

insetOriginBy: anOriginincrement
cornerBy: aCornerDecrement

returns a new rectangle whose origin is the origin of
the receiver increased by the argument anOriginincre-
ment and whose corner is the corner of the receiver de-
creased by the argument aCornerDecrement; the arguments
can be points or numbers,

intersect: aRectangle
returns the rectangle obtained by taking the intersec-
tion of the receiver and the argument,

merge: aRectangle
returns the smallest rectangle containing the receiver
and the argument,

rounded
returns a new rectangle whose coordinates are the
rounded coordinates of the receiver,

translateBy: aTranslation
returns a new rectangle whose coordinates are the co-
ordinates of the receiver translated from the argument
aTranslation; aTranslation can be a number or a point,

scaleBy: aCoefficient

The Classes Point and Rectangle 103

returns a new rectangle
ordinates of the receiver
aCoefficient; aCoefficient

Test

whose coordinates are the co-
multiplied by the argument
can be a number or a point.

Three methods allow the characteristics of a rectangle
to be tested:

contains: aRectangle
returns true if the argument aRectangle is within the
receiver,

containsPoint: aPoint
returns true if the argument aPoint is within the rec-
eiver,

intersects: aRectangle
returns true if the intersection of the receiver and the
argument aRectangle is non-empty.

Transformations
The methods that alter rectangles are:

moveBy: aTranslation
translates the origin and the corner of the receiver by
the argument aTranslation; aTranslation can be a number
or a point,

moveTo: aPoint
translates the receiver in such a way that the origin of
the receiver is located at the argument aPoint.

We shall take as an example three rectangles placed
as in the following diagram:

0.0

r1

40.30

r2
70.50

130.80

30.90

r3

130.150

104 Smalltalk-80

Expression Result

rl <-Rectangle origin: (0@0) corner: (70@50)
r2 <-Rectangle or1g1n: (40@30) extent: (90@50)
r3 <- 30@90 corner: (130@150)
rl centre
r2 width
r3 area
rl amountToTranslateWithin: r3
rl areasOutside: r2

r3 expandBy: 20
r3 expandBy: 20@10
r3 expandBy: (20@10 corner:
10@5)
rl intersect: r2
rl merge: r3
rl contains: r2
rl intersects: r2
r3 containsPoint: 50@100
rl moveBy: 10@20
rl moveTo: 100@100
rl scaleBy: 2
rl scaleBy: 2@4
rl translateBy: -so
rl translateBy: -50@50

35@25
90
6000
30@90

OrderedCollection
((0@0 corner: 70@30)
(0@0 corner: 40@50))
10@70 corner: 150@170
10@80 corner: 150@160

10@80 corner: 140@155
40@30 corner: 70@50
0@0 corner: 130@150
false
true
true
10@20 corner: 80@70
100@100 corner: 170@150
200@200 corner: 340@300
200@400 corner: 340@600
50@50 corner: 120@100
50@150 corner: 120@200

15 The Graphics Classes

An object can be represented in different ways. For ex-
ample, a collection of numbers may be seen as

- a sequence of numbers
- a histogram
- a piechart
- a curve passing through points

a rectangle may be seen as
- two points giving the extremities of the rectangle
- four right-angled segments
- a system of four mathematical equations.

We have seen that all the objects of the Smalltalk
system respond to the message printString by returning a
string of characters. This string allows the character-
istics of the object to be explained, that is, its class
and its instance variables. For certain objects, this
representation is not helpful; they require graphic
representation in addition.

In the Smalltalk system, the graphics interface
consists of a bit-mapped screen. A bit-map screen is a
screen in which each point is individually accessible,
and where the characteristics of each point are stored
in memory. A point on the screen is called a pixel, and
in the case of Smalltalk each pixel can have one of two
possible states, on or off. Thus, a single bit is suf-
ficient to store this state and there are as many bits
in memory as there are pixels on the screen.

15.1 The class Bitmap
The class Bitmap is a subclass of the abstract class
ArrayedCollection. It therefore has indexed instance
variables, each of which allows a machine word to be
stored. The instances of the class Bitmap are able to
store sequences of pixels. Since the size of one of
these instance variables is the same as that of the
machine word, pixel manipulation is carried out effic-
iently.

15.2 The class DisplayObject
The class DisplayObject is an abstract subclass of the
class Object. An instance of the class DisplayObject
represents a picture described by its width, its height,

105

106 Smalltalk-80

and a point that provides the offset applied when it is
displayed. The class DisplayObject contains five sub-
classes, each of which adopts a different way of storing
a graphics object. The methods supported by the class
DisplayObject are:

width
returns the width of the minimum rectangle containing
the receiver,

height
returns the height of the minimum rectangle containing
the receiver,

extent
returns a point whose coordinates are the width and
height of the minimum rectangle containing the receiver,

offset
returns the point giving the offset of the minimum
bounding rectangle when the receiver is displayed,

offset: anOffset
replaces the offset of the receiver by the argument
anOffset,

scaleBy: aPoint
multiplies the offset of the receiver by the argument
aPoint, coordinate by coordinate,

translateBy: aPoint
adds the argument aPoint to

align: aPointOfAlignment
translates the offset of
argument aPointOfAlignment
the argument anOtherPoint,

boundingBox

the offset of the receiver,
with: anOtherPoint

the receiver such that the
is placed at the position of

returns the minimum rectangle containing the receiver,
taking the offset into account,

display
displays the receiver at the point 0@0,

displayAt: aPoint
displays the receiver at the point aPoint.

15.2.1 The class DisplayText
The class DisplayText is a subclass of the abstract
class DisplayObject. The objects that we want to rep-
resent in the class DisplayText are instances of the
class Text. Recall that a text is made up of a string of
characters and of an instance of the class RunArray
representing the style of the characters. To display a
text, additional data is required, like for example the
graphical representation of the character fonts or what
action is to occur in the case of tabulation. Such
information is collected together in the class Text-
Style, each instance of which represents a style of dis-
play.

The Graphics Classes 107

15.2.1.1 Creating an instance of the class DisplayText
The message asDisplayText, when sent to an instance of
the class String or to an instance of the class Text,
returns a new instance of the class DisplayText ini-
tialised with the character string or the text. For
example:

Time now printString asDisplayText displayAt: 100@100
displays the current time at position 100@100.

Two other messages sent to the class DisplayText
allow instances to be created:

text: aText
returns an instance of the class DisplayText consisting
of the text given as argument; the style of the instance
is given by a shared variable (pool variable) placed in
the dictionary TextConstants and called DefaultTextStyle
(recall that the dictionaries containing the pool vari-
ables are referenced by global variables).

text: aText textStyle: aStyle
returns an instance of the class DisplayText consisting
of the text given as argument with as style the argument
aStyle.

15.2.1.2 Instance methods
The instance methods of the class DisplayText are:

string
returns the character string that makes up the text of
the receiver,

text
returns the text of the receiver,

text: aText
replaces the text of the receiver by the argument aText,

setText: aText textStyle: aStyle offset: anOffset
replaces the text, style and offset of the receiver by
the values given as argument,

textStyle
returns the style of the receiver,

textStyle: aStyle
replaces the style of the receiver by the argument
aStyle.

15.2.2 The class DisplayMedium
The abstract class DisplayMedium is another subclass of
the class DisplayObject. The graphics object is stored
in pixel form. The class DisplayMedium implements addit-
ional messages that allow a drawing to be filled with a
motif and a border added to the rectangle containing the
drawing. A motif is a 16 x 16 pixel drawing that is re-
peated in every direction. The messages can be divided
into categories, as follows.

108 Smalltalk-80

15.2.2.1 Background colour
The messages that fill a drawing with a motif are:

black
fills the receiver with black,

black: aRectangle
fills the intersection between the argument aRectangle
and the rectangle containing the receiver with black,

dark Grey
fills the receiver with dark grey,

darkGrey: aRectangle
fills the intersection between the argument aRectangle
and the rectangle containing the receiver with dark
grey,

lightGrey
fills the receiver with light grey,

lightGrey: aRectangle
fills the intersection between the argument aRectangle
and the rectangle containing the receiver with light
grey,

veryLightGrey
fills the receiver with very light grey,

veryLightGrey: aRectangle
fills the intersection between the argument
and the rectangle containing the receiver
light grey,

white
fills the receiver with white,

white: aRectangle

aRectangle
with very

fills the intersection between the argument aRectangle
and the rectangle containing the receiver with white.

15.2.2.2 Drawing borders
The messages that add a border to an instance of the
class DisplayMedium are:

border: aRectangle width: aWidth
draws a black border inside the rectangle aRectangle of
width aWidth,

border: aRectangle width: aWidth mask: aMotif
draws a border with the motif aMotif inside the rect-
angle aRectangle of width aWidth,

border: aRectangle widthRectangle: aRectangleinterior
mask: aMotif

constructs a rectangle from the rectangle aRectangle and
from the rectangle aRectangleinterior, in which the new
rectangle has as origin the origin of the first, plus
the origin of the second, and as corner the corner of
the first less the corner of the second. It fills the
difference between the rectangle aRectangle and the new
rectangle with the motif aMotif.

The Graphics Classes 109

15.2.2.3 Filling with a motif
The aim of these messages is to compose two pictures,
the first having the same size as the receiver, with
background colour a motif propagated in all directions;
the second being the picture of the receiver.

There are several ways of composing the two pictures.
In the Smalltalk system an integer is assigned to each
composition rule. There are 16 of them.

Composition
rule

0
l
2

3
4

5
6
7
8

9

10

ll

12

13

14

15

Final image

all the pixels are white
logical AND between the two pictures
logical AND between the first picture
and the second inverted picture
the final picture is the first picture
logical AND between the first inverted
picture and the second picture
the final picture is the second picture
exclusive OR between the two pictures
logical OR between the two pictures
logical AND between the two inverted
pictures
exclusive OR between the first inverted
picture and the second picture
the final picture is the second inverted
picture
logical OR between the first picture and
the second inverted picture
the final picture is the first inverted
picture
logical OR between the first inverted
picture and the second picture
logical OR between the two inverted
pictures
all the pixels are black

The messages that allow a picture to be composed with
a motif are:

fill: aRectangle mask: aMotif
fills the intersection between the argument aRectangle
and the rectangle containing the receiving with the
motif aMotif, applying composition rule 3,

fill: aRectangle rule: aCompositionRule mask: aMotif
fills the intersection between the argument aRectangle
and the rectangle containing the receiver with the motif
aMotif, applying composition rule aCompositionRule,

reverse
inverts the picture of the receiver, that is, fills the

110 Smalltalk-80

picture of
composition

reverse:
inverts the

the receiver with a black motif, applying
rule 6 (exclusive OR),
aRectangle
intersection of the receiver and the argu-

ment aRectangle,
reverse: aRectangle mask: aMotif

fills the intersection of the receiver and the argument
aRectangle with the motif given as argument, applying
composition rule 6 (exclusive OR).

15.2.3 The class Form
The class Form is a subclass of the class Display-
Medium. An instance of the class Form allows a rectang-
ular picture to be stored. This picture is described by
its height, its width and the value of the pixels that
make it up. The instance variable called bits which
stores pixels is an instance of the class Bitmap.

15.2.3.1 Creating a form
Six messages create and initialise a Form:

extent: aSize
returns a new instance of Form whose size is equal to
the argument aSize, and whose bitmap is not yet
initialised,

extent: aSize fromArray: anArray
returns a new instance of Form whose size is equal to
the argument aSize, and whose bitmap is initialised to
the values contained in the argument anArray,

extent: aSize fromArray: anArray offset: anOffset
returns a new instance of Form whose size is equal to
the argument aSize, and whose bitmap is initialised to
the values contained in the argument anArray and offset
is initialised by the argument anOffset (the offset is a
shift that is added when the form is displayed),

fromDisplay: aRectangle
returns a new instance of Form, created from the screen
by taking the bitmap contained in the rectangle given as
argument,

fromUser
returns a new instance of Form, created from the screen
by taking the bitmap contained in the rectangle desig-
nated by the user,

fromUser: aPoint
returns a new instance of Form, created from the screen
by taking the bitmap contained in the rectangle desig-
nated by the user; the position and size of this rect-
angle are multiples of the argument aPoint,

readFrom: aFileName
returns a new instance of Form read from the file called
aFileName.

The Graphics Classes 111

15.2.3.2 Other class methods
The Smalltalk system contains a number of predefined
forms used to construct motifs. The size of these forms
is 16 x 16 pixels. The forms available are:

black

darkGrey

grey

light Grey

veryLightGrey

white

returns a form in which all the pixels
are black
returns a form in which almost all the
pixels are black
returns a form in which one pixel in two
is black
returns a form in which the number of
white pixels is greater than the number
of black
returns a form in which almost all the
pixels are white
returns a form in which all the pixels
are white

Some class methods return an integer corresponding to
a composition rule. These methods are:

and
returns l which corresponds to the logical AND between
the two pictures,

over
returns 3 which corresponds to the replacement of the
first picture by the second,

erase
returns 4 which corresponds to the erasure in the first
picture of all the pixels that are black in the second,

reverse
returns 6 which corresponds to the exclusive OR between
the two pictures,

under
returns 7 which corresponds to the logical OR between
the two pictures, giving the impression that the second
picture is located under the first.

15.2.3.3 Instance methods of the class Form
Some useful messages supported by the class Form are:

bits
returns the instance of the class Bitmap that stores the
pixels,

bits: aBitmap
replaces the bitmap of the receiver by the argument
aBitmap

borderWidth: aWidth
inserts a black border of width aWidth around the rec-
eiver,

112 Smalltalk-80

displayOn: aDisplayMedium
at: aPoint
clippingBox: aRectangle
rule: aCompositionRule
mask: aMotif

displays the receiver on the argument a DisplayMedium at
the position aPoint, without exceeding the limits of
aRectangle and applying the mask aMotif with the compos-
ition rule aCompositionRule,

follow: aBlock while: aBlockCondition
so long as evaluation of the block aBlockCondition
returns true, the block aBlock is evaluated to give the
position at which the receiver must be displayed and the
zone hidden by the receiver at the previous evaluation
is redisplayed,

valueAt: aPoint
returns 0 or 1 depending on whether the pixel located at
the position aPoint in the receiver is white or black,

valueAt: aPoint put: aBit
sets the pixel located at the position aPoint in the
receiver to white or black depending on whether the
argument aBit is 0 or 1.

15.2.4 The class Cursor
The class Cursor is a subclass of the class Form. Dep-
ending on the system status, different cursors appear.
These cursors indicate, by their position, the place on
the screen pointed to by the mouse, and by their form
the status of the system. The cursor forms occupy
16 x 1 6 pixels .

The message cursorLink: sent to the class Cursor all-
ows movement of the cursor to be linked or not to the
movement of the mouse, depending on whether its argument
is true or false.

The messages supported by the class cursor are:
show

where the receiver becomes the current cursor,
showGridded: aPoint

the receiver becomes the current cursor, with its
position being a multiple of the argument aPoint,

showWhile: aBlock
the receiver becomes the current cursor while the block
given as argument is evaluated, after which the current
cursor becomes the previous cursor.

15.2.5 The class DisplayScreen
The class DisplayScreen is a subclass of the class Dis-
playMedium. The instances of the class DisplayScreen
serve to represent the complete screen (the screen is a
rectangular form comprising a certain number of pixels;
it may therefore be likened to an instance of the class

The Graphics Classes 113

Form). There is in the Smalltalk system a single inst-
ance of the class DisplayScreen referenced by the global
variable Display. Note the following message:

flash: aRectangle
which causes to flash that part of the screen corres-
ponding to the rectangle given as argument.

15.2.6 The class Path
of the class DisplayObject

form along the length of a
an OrderedCollection of
class Path have two inst-

and a trajectory. The
may be divided into the

The class Path is a subclass
which is used to draw a
"trajectory". A trajectory is
points. The instances of the
ance variables that are a form
messages of the class Path
following categories.

Access
The messages that allow access to the characteristics of
the instances are:

form
returns the form referenced by the receiver,

form: aForm
replaces the form referenced by the receiver by the form
aForm,

at: anlndex
returns the point of the trajectory referenced by the
receiver of index anindex,

at: anlndex put: aPoint
replaces the trajectory point of index anlndex by the
point aPoint,

size
returns the number of points of the trajectory refer-
enced by the receiver.

Test
The message isEmpty returns true if the trajectory ref-
erenced by the receiver contains no point.

Add
The message add: adds the point given as argument at the
end of the trajectory referenced by the receiver.

Remove
The message removeAllSuchThat: removes from the traject-
ory referenced by the receiver all the points for which
evaluation of the block given as argument returns true.

Enumeration
The three messages that allow the points of a trajectory
to be handled successively are:

do: aBlock

114 Smalltalk-80

evaluates the block given as argument for each point of
the trajectory referenced by the receiver,

collect: aBlock
evaluates the block given as argument for each point of
the trajectory referenced by the receiver and returns an
instance of OrderedCollection containing the results of
each evaluation,

select: aBlock
evaluates the block given as argument for each point of
the trajectory referenced by the receiver and returns an
instance of OrderedCollection containing the points for
which the evaluation hes returned true.

The subclasses of the class Path correspond to part-
icular trajectories. These are:

- straight lines
- arcs of circles
- circles

15.2.6.1 The class Line
The class Line is a subclass of the class Path that all-
ows rectilinear trajectories to be represented by giving
the two extremities of the trajectory. The additional
messages implemented in this class are:

beginPoint
returns the first point of the receiver,

endPoint
returns the second point of the receiver,

beginPoint: aPoint
replaces the first point of the receiver by the point
aPoint,

endPoint: aPoint
replaces the second point of the receiver by the point
aPoint.

15.2.6.2 The classes Arc and Circle
The classes Arc and Circle are subclasses of the class
Path which allow sections of circles and circles to be
represented.

15.3 The class BitBlt
The class BitBlt is a subclass of the class Object. (The
name BitBlt stands for Bit Block Transfer, a technique
for altering and copying rectangular areas of a pict-
ure.) The instances of the class are objects that are
capable of transferring pixels of one form to another
form, while respecting certain constraints given by
their instance variables. The instance variables that
control pixel transfer are:

destForm
which is a form in which the transferred pixels will be
stored,

sourceForm

The Graphics Classes 115

which is a form from which the pixels to be transferred
are taken,

halftoneForm
which is the motif with which the starting form will be
composed. There are four possible cases:

- sourceForm and halftoneForm are equal to nil; the
form transferred will be a black form

- sourceForm is equal to nil; the form transferred will
be the motif propagated in all directions
halftoneForm is equal to nil; the form transferred
will be the sourceForm

- halftoneForm and sourceForm are not nil; the
transferred will be obtained by making a logical
between the sourceForm and the motif propagated
all directions.
combinationRule

form
AND

in

which is an integer representing the composition rule of
the starting form and arrival form (cf composition rules
defined in 15.2.2).

sourceX, sourceY, width, height
which are four integers designating the region of the
starting form from which the pixels will be copied,

destX, destY
which are two integers designating the region of the
destination form where the pixels will be placed,

clipX, clipY, clipWidth, clipHeight
which are four integers that limit the region that can
be altered by the copy.

The message that makes the copy, while respecting the
constraints imposed by the instance variables, is copy-
Bits. Generally, the call to BitBlt is made by other
classes like Form, Line, etc., and the user does not
have to invoke it explicitly.

The class BitBlt implements another important mess-
age:

drawFrom: aStartPoint to: anEndPoint
which allows a form to be propagated between the two
points given as argument.

15.4 The class Pen
The class Pen is a subclass of the class BitBlt. The in-
stances of the class Pen simulate a stylus that can be
moved on the screen and which leaves a trace, or does
not, depending upon whether it is lowered or raised.

Since the class Pen is a subclass of the class Bit-
Blt, drawing operations are carried out more quickly
using it rather than instances of the class Line.

The instances of the class Pen have four instance
variables:

pen Down

116 Smalltalk-80

which is a boolean indicating whether the stylus is low-
ered or raised,

location
which is a point indicating the current stylus position,

direction
which is an angle expressed in degrees indicating the
direction of the stylus trace,

frame
which is a rectangle indicating the limits within which
the stylus can trace.

The messages of the class Pen may be divided into the
following categories.

Access
The messages that allow access to the characteristics of
the stylus are:

down
lowers the receiver,

up
raises the receiver,

location
returns the current position of the receiver,

direction
returns the direction in degrees of the trace of the
receiver,

turn: anAngleinDegrees
adds to the current direction of the trace of the rec-
eiver the argument anAngleinDegrees, which is equival-
ent to turning the angle anAngleinDegrees in relation to
its current direction,

north
orients the trace of the receiver towards the top of the
screen,

frame
returns the rectangle in which the receiver may trace,

frame: aRectangle
replaces the rectangle in which the receiver may trace
by the argument aRectangle,

defaultNib: aWidth
replaces the width of the receiver by the argument
aWidth,

colour: aMotif
replaces the motif of the receiver by the motif given as
argument.

Movement
The messages that allow the stylus to be moved are:

place: aPoint
replaces the current position of the receiver by the
point aPoint,

home

The Graphics Classes 117

places the receiver at the centre of the rectangle in
which it may trace,

go: aDistance
moves in the current direction by a distance aDistance,
tracing if the receiver is lowered,

goto: aPoint
moves in a straight line to the point given as argument,
tracing if the receiver is lowered.

16 Basic Elements of the Interface

Every information system has an interface to allow com-
munication with a user. This interface usually consists
of a keyboard and a screen.

There are two basic types of screen, a character type
and a graphics type. Smalltalk uses a graphics screen.

Two technologies are used for graphics screens, dep-
ending on their function vector scan screens and
raster scan screens. The former allow lines to be drawn
very quickly, and they are used for CAD and similar
applications. The latter manipulate points; if these
points are individually accessible, such screens are
said to be bit-mapped. It is this last type of screen
that we find in the Smalltalk system.

The number of points on the screen depends on the
machine and the Smalltalk system can adapt itself to
this number of points.

The Smalltalk system uses a standard keyboard as
input device, but another device, commonly known as a
"mouse", is also required.

16.1 Mouse
A mouse is a device that allows the user to designate a
point on the screen by moving the mouse around on a flat
surface. The mouse incorporates buttons that cause
different operations to occur when they are pressed.
There are usually three buttons in the Smalltalk system.

These buttons are identified by colour:
the left button is the red button (redButton),
the centre button is the yellow button (yellow-
Button),
the right button is the blue button (blueButton).
In the Smalltalk system each button has a particular

function:
the red button is used to select or designate a

visible area,
the yellow button is used to call up the menu that

allows the inside of the viewed area to be changed,
the blue button is used to call up the menu that

allows the viewed area itself to be changed.

16.2 Windows
A window is a rectangular portion of the screen in which

118

Basic Elements of the Interface 119

a program specific to this window runs, independently of
the content of other windows. For each application there
are specialised windows. For example, there are windows
in which text can be edited and others in which drawings
can be edited.

In the Smalltalk system, activities are not assigned
to the screen but to the individual windows that go to
make up the screen.

A window is said to be active when the user can
interact with the contents of that window. There can be
only one window active at a time.

When windows are superimposed, the active window is
the one that is visible.

If there is no active window, as soon as the cursor
moves inside a window, that window becomes active. To
change windows, the cursor must be placed in an inactive
window and a button on the mouse pressed. If one of the
mouse buttons is pressed with the cursor outside any
window, there is no longer any window active.

16.3 Pop-up menus
A pop-up menu is a window that appears at the cursor
position when the yellow or blue button on the mouse is
pressed. This menu remains displayed for as long as the
user holds the button down.

These menus offer a list of commands. To select a
command the user must move the cursor to the command
that he wishes to execute and then release the button.
Positioning the cursor on the command has the effect of
inverting the display of this command line. If the user
releases the button without selecting any command, the
pop-up menu disappears and no command is executed.

Pop-up menus are instances of the class PopUpMenu
which is a subclass of the class Object.

16.4 Standard windows
One of the important window classes is the class
StandardSystemView. The instances of this class are win-
dows that have a title indicating the functions of the
view. These windows can be manipulated; they can be mov-
ed, altered in size, etc. These actions are carried out
by means of a pop-up menu which appears on the screen
when the blue button is pressed while within the window.
The diagram below shows a menu example that appears when
the blue button is pressed in a standard window:

120 Smalltalk-80

The actions possible are:
under

calls for a window below the cursor to be activated. If
there are several inactive windows under the cursor, one
of these will be activated. If there is no inactive win-
dow under the cursor, this command has no effect,

move
moves the active window without altering its size. The
window follows the movement of the cursor until the red
button is pressed,

frame
changes the dimensions of the active window. An origin
cursor follows the movement of the mouse until the red
button is pressed. The position thus obtained corres-
ponds to the top left corner of the window. Subsequent-
ly, a corner cursor follows the movement of the mouse
for as long as the red button remains pressed. The new
position obtained corresponds to the bottom right corner
bottom of the window.

collapse
removes all of the window except its title. To make this
window reappear, the command frame must be used to
change its dimensions,

close
causes the window to disappear completely from the
screen.

16.5 The system menu
The system menu is the pop-up menu that appears when the
yellow button is pressed outside any window. This is the
menu that, for example, is used to create windows or to
exit the Smalltalk system. The diagram below shows an
example of a system menu.

restore display
exit project

project

browser
workspace

system transcript
system workspace

save
quit

The commands offered by this menu are:
restore display

redisplays the complete screen, beginning with the back-
ground in a grey motif, then displaying all the windows,

exit project

Basic Elements of the Interface 121

allows you to exit from the current project. A project
is a list of windows that relate to a particular applic-
ation. When you return to a project, the screen is clea-
red and the windows of this project are displayed. When
you have entered a project, the system menu is the same,

project
opens a window that will allow entry to a project,

file list
opens an access window to the external files,

browser
opens a window that allows classes and methods to be
edited,

workspace
opens a window that allows text to be edited and ex-
pressions evaluated,

system transcript
opens a window used by the Smalltalk system to display
its messages,

system workspace
opens a text window whose contents are initialised by
the Smalltalk system with a number of expressions that
are useful to know,

save
allows the Smalltalk virtual image to be saved to a
file,

quit
allows you to quit the Smalltalk system.

17 Text Editing Windows

Numerous types of window use a text editor. Whatever the
window type, the editor used is always the same.

To edit text, the user can use the keyboard and the
mouse. The keyboard provides the means of entering new
characters, while the mouse allows a section of text to
be selected with the red button or commands to be exe-
cuted using the yellow button.

If a section of text is too long to be displayed all
at once in the window, there needs to be a means of dis-
playing only part while retaining easy access to the
remainder. This is what happens on a conventional word
processor page, where at most 24 lines are displayed,
but the rest of the text can be accessed by means of
arrow keys. In the Smalltalk system, the windows have
another means of accessing a particular section of text.

17.1 Scrollbars
A "scrollbar" is a rectangular area that appears on the
left of an editing window of active text when the cursor
is located inside the window.

Whenever the cursor moves outside of this window, the
scrollbar disappears, only to reappear again when the
cursor returns to the window.

This scrollbar represents the totality of the text.
It contains a grey rectangle whose position in the
scrollbar represents the position of the text shown on
the screen relative to the text in its entirety. Its
height, in relation to the height of the scrollbar,
represents the proportion of text shown on the screen in
relation to the text in its entirety.

To access a particular section of text, the rectangle
within the scrollbar must be moved. When the mouse
points to the interior of the scrollbar, there are three
different cursors, depending on the relative position of
the cursor and of the interior rectangle.

If the mouse points to the left of the rectangle, the
down cursor appears. If the user pressess the red
button, the inside rectangle moves up and the text
displayed in the text window moves down, as shown in the
following diagram.

122

Text Editing Windows

Workspace

A.

This

is
a window for editing
text

If the mouse points to the right of the
rectangle, the up cursor appears. If the user
the red button, the interior rectangle moves
the text displayed in the text window moves up,
below.

for editing

123

interior
presses

down and
as shown

If the mouse points along the same level as the
interior rectangle, the marker cursor appears. If the
user presses the red button, the interior rectangle
centres itself on the cursor and causes the text to
move, as shown below.

124 Smalltalk-80

... A
This

is
a window for editing
text

17.2 How to select text
Selecting part of a text means choosing a continuous
section of text with a view to manipulating it with an
edit command.

In a text window there is a special cursor that
indicates the position of the next text input. This
cursor is shaped like an inverted "v", as can be seen on
the previous three diagrams. This cursor can be moved
around in the window by pressing and releasing the red
button on the mouse until the correct position for the
mouse cursor is found. There are several ways of select-
ing a text; these are described in the following para-
graphs.

Text Editing Windows 125

The mouse cursor is placed at a position on the text,
the red button is pressed without being released and the
mouse cursor is moved to another position on the text,
then the button is released. The text located between
these two positions will be displayed in reverse video,
as shown in the figure on page 124 (bottom).

The mouse cursor is placed on a word, the red button
is pressed and released twice without moving the mouse.
This will select a complete word, as shown below.

::.

This
is
a window for editing -~

126 Smalltalk-80

The cursor is placed at the beginning or at the end
of the text, the red button is pressed and released
twice without moving the mouse. This will select all of
the text, as shown on page 125.

The cursor is placed after or in front of a carriage
return, the red button is pressed and released twice
without moving the mouse. This will select that section
of text that extends backwards or forwards to the next
carriage return, as shown below.

This
is
a window for _editing
text

init: aNode
firstNode ._ aNode.

aNode addDependent: self.
self at: firstNode put: (Node new position:

EJ!b.
~If calcula tePositionA fter: 0@0

Text Editing Windows 127

The cursor is placed after or in front of a delimit-
er, the red button is pressed and released twice without
moving the mouse. This will select that portion of text
located between delimiters, as shown in the example at
the foot of page 126.

If the Escape key on the keyboard is pressed, all
text entered since the last use of the mouse buttons
will be selected.

If the text contains a selected section and the user
enters characters via the keyboard, the entered charact-
ers will replace those in the selected section.

17.3 Edit commands
The edit commands can be accessed by a menu that appears
when the yellow button is pressed. Each command is exe-
cuted as soon as the button is released. This menu is
illustrated below.

2*4+5.
12 factorial sqrt

The commands are:
cut

removes the selected section from the text,
copy

places a copy of the selected text in a buffer,
paste

replaces the selected text with the contents of the
buffer,

again
re-executes the last command,

undo
cancels the effect of the last command.

17.4 Workspaces
A workspace is a text-editing window which makes it
possible to evaluate expressions contained in a selected
section of text. Smalltalk expressions can be evaluated

128 Smalltalk-80

by two commands that can be accessed via the yellow but-
ton menu. They are:

dolt
which evaluates the selected text, and

printit
which evaluates the selected text and displays the text
that describes the object returned by the last evalua-
tion. The returned text becomes the current selection.

When a text is evaluated, the text expressions are
compiled. If there is a syntax error, an error message
is displayed immediately in front of the position cor-
responding to the detected error. This message becomes
the selected section of text, which allows it to be
amended immediately or replaced with other text.

In the basic version of Smalltalk-80, when there is
an unknown variable in an expression, a menu appears
offering a choice of possible declarations for this
variable. This menu also offers the possibility of
correcting the variable name or of abandoning the eval-
uation.

More recent versions of Smalltalk-80 consider that
variables can be local to a workspace. These variables
will be defined when first assigned and will be stored
in a dictionary local to the workspace.

During evaluation of expressions, the scrollbar dis-
appears from the window. It reappears when the evalua-
tion is finished.

17.5 System workspace
The System workspace is a workspace whose contents con-
sists of expressions that it may be useful to know in
order to change certain operating parameters in Small-
talk. The parameters that can be changed are, for
example:

the size of the screen
the "sources" and "changes" files
The System workspace also contains expressions for

reconstructing an image after an accidental break.

18 Browsers

The browsers are windows that allow access to the
classes and methods. A browser has two possible uses; it
allows the user to:

- consult or change the existing classes and methods.
Since the Smalltalk environment is itself written in
Smalltalk, the user has access to all of its cude. From
this point of view Smalltalk can be regarded as a self-
documented language. The advantage of having access to
the existing classes encourages the reuse of code. It is
not advisable to change the existing classes or methods,
as any such changes could have consequences well beyond
any that could be foreseen.

- create new classes or new methods. In the Smalltalk
environment, the building of an application amounts to
enriching the environment with new classes and new meth-
ods.

18.1 Description
A browser is made up of five main windows. Four of these
give access to the following lists:

- list of categories of classes,
- list of classes belonging to the selected category,
- list of categories of methods or protocols of the

selected class,
- list of methods of the selected protocol.

The fifth window, located beneath the other four, is
a Smalltalk code editing window, the contents of which
will be interpreted according to the options selected
from the lists.

There are two additional windows located under the
list of classes; the one on the left contains the
'instance' text, that on the right the 'class' text.
These two windows allow access to a class or to its
metaclass, depending on whether the left or right window
is selected (indicated by reverse video). If the left
window is selected, the methods displayed are the
instance methods; if the right window is selected, the
class methods are displayed. These two windows cannot be
selected simultaneously.

Each window has a particular menu linked to the
central button on the mouse. The diagram below shows
these different menus.

129

130 Smalltalk-80

Kar - BoolaanV!aw ------------

Kc!1 m ptln!n•toouutt ~
1
Bud fl~c:! out basic con

1
trol seQuence lllilll!ld~.~~~-!!~*~"·~iii~i!~! !!!!~I ~

nta , ,. n pnnt out nt a.cca 11a out ~~-'-'_P_ fila out mg:
lnte spawn Lee spawn IQr borde print out
Into ~dd catogory On spawn hiorarch) 111!111!111 spawn IIIII print out = ~:~~~: -~ ~~=~~~~~ - ~a~~~e ad~~~o~~col s~d:;,
lnte up~ate onfi Sw comment contr rgmove imphiilimllilntors
lnta edit all Sw ___I!!'"Otocols privat messages
Inter acg- n:spC!ctor nst var ra :s ------------ mova

cl~~!,~a;e~:fs J--..L.---------IL--L-.;.;re;,;:m~o;,;,v,;;,e......IL--1

1 delta :savedArea 1 nmama
frame .,.. frame align: m remove aPoint.

delta +- frame amountToTranslati1Withln: Display boundlngBox.
frame moveBy: delta.
marker +- markar align: marker cent!;!r with: aPolnt + delta.
:savedArea .. Form fromDisplay: fra.mg,

ragarn
1

undo
copy
cut

~
Display black: (framo origin + (1(! 1) corner: frame comer). ~
Display black: (frame origin corner: frame corner- (1@ 1)). accvpt

form displayOn: Display ~t: frame inside topleft clippingBox: fram ~
selection -= 0 ifTrue: [Display reverse: marker].
aBiock valug,

•savedArea displayOn: Display at: frame toplef\:'

spawn

~

18.2 The categories of class
The categories of class group together the classes by
function. Once again, be reminded that the categories
have no influence on the behaviour of the system. The
list of these categories appears in the left window. The
menu in this window, linked to the central button,
contains eight functions, namely:

file out
which, for all classes of the selected category, outputs
the text of the class and its methods to a file. This
file can then be reread by the message filein- The name
of the file produced is the name of the category with
the suffix '_ st ',

print out
which causes the same action as the function 'file out',
except that in this case the file created cannot be re-
read. Special formatting is inserted into the text so
that when printed it can be more easily read by humans.
In particular, the names of methods appear in bold char-
acters. The name of the file produced is the name of the
category with the suffix .pp'. (Note that the exact
nature of this option varies from machine type to type,
so your machine may du something different.)

spawn
which opens a browser dedicated to the selected categ-
ory,

rename
which allows
changed,

remove

the name of the selected category to be

Browsers 131

which removes the selected category, along with all the
classes that belong to it,

update
which updates the list of categories. This list may have
been changed in another browser or by reading a file,

edit all
which presents the list of categories and their classes
in the Smalltalk code editing window of the browser.
This list can then be changed using the menu available
in that window.

18.3 The classes
The list of classes of the selected category appears in
the second window. If no class category is selected,
this window is empty. The functions offered by the menu
in this window are:

file out
as before, this outputs the definition of the selected
class and the text of its methods to an external file.
The name of the file produced is the name of the class
concatenated with the suffix '.st',

print out
as for the class categories, this outputs the definition
of the selected class and the text of its methods to an
external file. The name of the file produced is the name
of the class with the suffix .pp ,

spawn
opens a browser dedicated to the selected class, as
shown in the diagram below for the class Point:

and round off
pol,ar coordinates ~
polnt functioos
converting
cogrcing

A<= aPolnt

hash
hashMappodBy:
max:

class

"An:swer whether the n::tcQiver I~ 'neither below nor to thG
right' of aPoint.•

•x <• aPoint x and: [Y <• aPolnt y)

132 Smalltalk-80

spawn hierarchy
opens a browser on the hierarchy of the selected class
(that is, its subclasses and superclasses), as shown in
the following diagram:

in:stancGVariablfiiiNamus: ·x y •
cla:s:sVariabfgNamfiil:s: ••
pooiDictiona.rifiils: "

catfiilgory: 'Graphic:s-Primitivliiil:s'

hierarchy
displays in the code window the hierarchy of the select-
ed class; tb.e depth of the classes in their hierarchy is
represented by indentation of the text,

definition
displays in the text window the definition of the sel-
ected class,

comment
displays in the code window the commentary relating to

accessing

~~~~~1!111•••1 comparing 
arlt~motlc 

Roctangre 

j'a.CCQSSing' X x: y y:) 

truncation and 
polar coordlnatcu 
point functions 
COOVG!rting 

('comparing' < <- - > >· hash hashMappedBy: max: min:) 
('arithmGtic' • + - I II abs) 
("truncation and round otr roundQd truncataTo:) 
('polar coordinates' r thota) 
('point functions' di$t: dotProduct: grid: normal polntNearestline:to: tram:po:Ht 
truncatl:!dGrid: unltVe.ctor) 
('converting' asPolnt comer: extent:) 
('coercing' coE!r~:e: generality) ~ 

('transforming' scaleBy: tran:slateBy:) 
('copying' doopCopy s~a l lowCopy) 

('printing ' printOn: noreOn:) 
('privato' sotX:>otY :) 



Browsers 133 

the selected class. This can then be changed, 
protocols 

displays in the code window the list of protocols and 
methods belonging to these protocols, as shown on page 
132 (foot). The name of a protocol is a string of char-
acters, whereas the name of a method is a symbol. 

inst var refs 
causes a pop-up menu to appear containing the list of 
named instance variables of the selected class and of 
its superclasses. It is then possible to select one of 
the variables from the offered menu, which has the eff-
ect of opening a browser on the list of methods that 
make reference to this variable. The following two dia-
grams show the selection of the instance variable 
labelText from the class StandardSystemView: 

: 

Kern;I-Procenr•n ------------ Ill -----------
Kemoi·Support Expt.alnRr lnitlallzQ-rg.!g.asG-
lntertace-framewo MousaMenuControll tlllsting 

•mmn·RAJ''UWiilil b~PI accoss 
lnterface-Usts model Iii! 

Interface-Text controlluor amlng 
Interface-Menus :!Up"'ryl"'w ntrolter acclii!5:5 
lntorfo.co-Prompt/C subVoows splaying 
Interface-Browser transformation Emphasizin!1 

,.view subcla.ss: NSta. 
... i;wport 
window 

lnsta.nc:RVariable displayTr ... orma. tion alTiilixt lsla.beiComplamentRd 

:!&VRdSubVIc:!WJ minln lnsotDisplo.yBox 

classVa.rlablc:~Nal1 bordgrwidth 
bordGorColor 

poo!Dictlona.rles: insiduColor 
ca. tegory: 'int~:~rf boundinQBox 

Iabat rama .. 
sla.baiComplamliillntad 

sa.vedSubViaw.s 
minimumSiza 
maxrmumSize 

... 
------------

Systom Brows•rl St4ndard5y:stemVIG:w labCI!I: 

K&rnQI-PrOCiiiSSiiill5 StandardSystliillmView reversela.be1 

Kornoi·Support 
.. . . 

lnterf.a.ce-Fra.ma wo StandardSystemVIew labal 

~~~:t~J~i!OO 
StandardSystamVIaw collapsa ______ .. _____

lnterface-LJst:s
lnterfacg-Te

displo~.yView Interface-Me
lntarfa.cCI!-Pro 1 cllppingBox labaiDisp layBox 1
lnUlrfaca-Bro clipplngBox +- salf clippingBox.
View subcla."S labaiDisplayBox +- salf labaiDis playBox.

lnsta.nco\1 (lab;IDisplayBox intarsGct: clippingBox) displayOn:
so. vodSubVio• Display.

cla.ssVari 11!!!111111111!isNil ~ pooiDictl iffalsa:
ca.t9gory [laboiToxt

displayOn: Display
at: (laboiDisplayBox contor -

(laboiToxt boundlngBox contor •
lo.boiToxt boundingBox

topL•ft))
clippingBox: clippingBox]

134 Smalltalk-80

class var refs
causes a pop-up menu to appear containing the list of
class variables of the selected class and its super-
classes. It is then possible to select one of the class
variables from the menu, which has the effect of opening
a browser on the list of methods that make reference to
this variable.

class refs
opens a browser on the list of methods that make ref-
erence to the selected class, as shown in the diagram
below:

rename

elassV~oriableN4mas:

pooiOlctionaries: "
ca. to gory:

truncateTo: grid
M Answer o new Point tha.t is thra racaivar's x and y

trunca tlliild to grid .x and grid y.•

(gri~ isKjndOI: liZ!!!Ilh
ifTrug: ('t(x trunca.uTo: grid x) IIi {)I

truncatoTo: grid y)]
iffal5a: ('t(x trunca.U!To: grid) G (Y trunca.taTo:

allows the name of the selected class to be changed. If
any methods make reference to this class, a browser is
opened on the list of these methods,

remove
removes the selected class and its subclasses
exist.

18.4 Protocols

if they

The third window contains the list of protocols of the
selected class. If no class is selected, this window is
empty. The reader is reminded that the sole function of
protocols in the system is to clarify the presentation
of the methods in browsers. The functions offered by
this menu are:

file out
which outputs the text of all the methods belonging to
the selected protocol. The name of the file produced is
the name of the class concatenated with the name of the
protocol, concatenated with the string '.st',

Browsers 135

print out
causes the same action as file out, but produces a
formatted text,

spawn
opens a browser on the list of methods of the selected
protocol. The figure below shows an opened browser on
the protocol comparing of the class Point:

Si:!!lt spe!!cll!s "' a~lnt species

add protocol

lfTruo: ['X • aPolnt x and: (Y • aPolnt y])
ifFal:'1112: [Halse!)

allows a protocol to be added to the list of existing
protocols. The name of this protocol is requested in an
edit window,

rename
allows the name of the selected protocol to be changed,

remove
removes the selected protocol, together with the list of
all its methods.

18.5 Methods
The list of methods
is given in the
ected, this window
the menu are:

file out

belonging to the selected protocol
right window. If no protocol is sel-

is empty. The functions offered by

which allows the text of the selected method to be
output. The name of the file produced is the name of the
class, concatenated with the name of the method, con-
catenated with with the string '.st',

print out
causes the same action as file out, but produces a form-
atted text,

spawn
opens a browser on the selected method,

senders
opens a browser on the list of methods that send the
message with the same name as the selected method,

136 Smalltalk-80

implementors
opens a browser on the list of methods
name as the selected method,

messages

with the same

causes a menu to appear giving the list of all the
messages sent in the selected method. Using this menu,
it is possible to access all the implementations of one
of the messages given in the menu,

move
allows the selected method to be moved. If it is moved
to another class, it is copied; if its protocol is
changed, it is simply moved,

remove
removes the selected method.

18.6 The code window
The Smalltalk code window, which appears in the browser,
is like the text windows described in the previous chap-
ter. In addition to its editing functions, this window
offers three more functions in its menu:

format
this function relates exclusively to methods and will
thus only be valid when a method is displayed. Its pur-
pose is to present the code of the method in the
clearest possible form. To achieve this, the name of the
method is shown in bold and some conventions in its
presentation are observed; the most important of these
are:

- there is only one statement per line
loops are shown with additional indentation.
The figure below shows the effect of the formatting

on a method.

SystQm Browser!
................................ lntetgar +
N.um".~~c - ~~9r;tltu largaNaga.tivelntG ~~ *'*':;; -
~~,......A!r!C~.~~~ ·~La~9!'?0'itiv;tn~~g mathematical fun I
Collactions'""Abstr Jii~ !il~ usting II ,
Collections-Unord Random truncation and ro i!!!r11'-t.~ll~?~~~
Colloctlons-Soquo c ass coarcing naga.ud
~bs

•Answar a Numbetr that is tha absolutG value (positive magnitude) ot
the roceivar.•

sglf < o itfaiSo: ["olt] itTruo: [•solt nogatod]

........................... Fraction +
Numeric-Maqnitu lntagar i1410uijil
OllhU.Jii§li!!lijl$ La.rgaNegativetnt ma thematical fun 1
Collections-Abst LarjuPositivelnta tening II

'----------tcoflections-Unor UM.T!•I§ truncation and r~li-l:l· •••••I
Conactions-Sequ ~ class coercing ngga.ted

JbS
•Answer a Number tha.t Is the absolutQ va.lue (positiva ma.gnhuda)

of tha receiver. •

sgtf < 0
ltTruo: [•solt nogatod)
itfalso: [•solt]

Browsers 137

spawn
which opens a new browser on the selected method,

explain
this function is very useful; it allows the nature of
the selected word to be explained. Only one word can be
selected at a time. The following example shows the
explanation provided by the system for the word 'x'.
This word can be explained in two ways: x is an instance
variable of the class Point, and x is a message defined
in the class Point.

Collliilctions-Arra.yad ------------
CoiiCICtions-StrGa.ms Pet n
Colloctions-Support
~iV'!SiP·rt"WH Qua.dra.ngl;
Graphics-Do>play 0 Aoctanglo
Graphics-Paths ------------
Graphics-Viaws
Graphics-Editors
Graphics-Support class

&bs

accessing
comparing

mni1UJ¥jii
+

truncation and roun I

polar coordinatGS I~/~/D•••••I
point functions 11
convQrtlng
coarcing

•An:swC!r a nC!w Point whosQ x and y an:~~ thliil absoluu va.lu;s of the rCi!CC!IVC!r".s

x and y.•

"15 ~n m5tance vanable of t he r12celver, de t1n ~d 1n CI&:S! Point•

Pomt browseAIIAccessesTo •x•.
·x is .& messaga seiQCtor which 1S detfinQd 1n these cLasses (Point).·
Smo&llt.a lk browseAIIImplementorsO t. # x
abs y: y abs

Depending upon the options chosen from the list at
the top, the code window has two main uses, described in
the following sections.

18.6.1 Editing a class
When a category is selected, without a class being
selected, a text giving the general form of a class is
displayed; this can be changed. To capture this newly
defined class, the accept function accessible via the
middle button must be used.

When a class is selected, without a protocol being
selected, the definition of this class appears in the
text window. It is then possible to change and accept
it, as before.

18.6.2 Editing a method
When a protocol is selected, without a method being
selected, the general form of a method is displayed in
the text window. The user may change this general form
in order to produ~e a new method. If the name of the
method that is displayed is the same as that of a method
already in existence in this class, the newly accepted

138 Smalltalk-80

method will replace the old. To compile the method, the
accept option (via the centre button) must be used.

When a method is selected, the text of this method is
displayed in the text window. This text may then be
changed. If the method name is changed, a new method
will be created.

19 Other Windows

19.1 Inspectors
Just as a browser allows classes to be accessed and
changed, so an inspector allows access to any object in
the system. It provides access to all the instance
variables of the object inspected and all the Smalltalk
objects can be inspected. Inspectors are used chiefly
during the development phase of an application.

To open an inspector on an object, the message insp-
ect has to be sent to it. For example:

#(l 2 3 4) inspect
opens an inspector on the receiver of the message,

Set someinstance inspect
opens an inspector on an instance of the class Set.

19.1.1 Description
An inspector type window consists of two subwindows, as
shown in the figure below.

self
tally
1
2

4

linspectl

0@ 1.2345""

again
undo
copy
cut

_Q_aste
do 1t

print it
accept
cancel

139

140 Smalltalk-80

The left window contains a list made up of the symbol
self, representing the object inspected, and the list of
names of its instance variables. In the case where the
inspected object has indexed instance variables, the
latter are represented by their index.

In the left window, the menu linked to the middle
button offers the choice of inspecting the object that
is selected. If the selected opject is self, a second
inspector will be opened on the same object.

The right window is a text window which contains the
textual description of the object that is selected from
the list on the left. The reader is reminded that this
textual description is obtained by sending the message
printString to the selected object.

The menu in this window, linked to the middle button,
offers the usual functions suggested in a text window,
namely:

- three text-editing functions: cut, copy and paste
two evaluation functions: do it and print it
two functions for manipulating the window contents:
accept and cancel. The contents are the text that
appears when it is open.
In contrast to the text windows that we have met be-

fore (for example, workspaces), evaluations in an insp-
ector are carried out in the context of the inspected
object, that is, at the time of evaluation references
can be made to an object contained in the list on the
left. In particular, an expression can be built by
sending a message to self or to one of its instance var-
iables, which is not the case in a workspace.

The function accept assigns the result of the eval-
uation of the text present in the text window to the
variable selected from the list on the left.

19.1.2 Other inspectors
We have seen how in order to inspect an object the
message inspect has to be sent to it. The method for
responding to this message is defined in the class
Object; thus all objects can be inspected. In some
classes, this message is redefined, which allows the
opening of windows adapted to certain types of objects.

Dictionaries have special inspectors that allow keys
to be manipulated. The following figure shows an insp-
ector on a well known dictionary, namely the dictionary
called Smalltalk, which contains all the global
variables in the system, it will be recalled. In the
left window the keys of the dictionary appear, while in
the right window the value assigned to the selected key
appears.

The left window offers the following options:
inspect

which opens an inspector on the selected variable,

Other Windows 141

references
which opens a browser on all the methods that refer to
the selected variable,

add field
which allows a key to be added to the dictionary,

remove
which removes the selected key from the dictionary.

SystemDic tiona.ry

NotifierCont farser
NotifierView
Number
Object
OneOnSwitc
OnlyWhenSe
OnlyWhenSe
OpaqueForm
OrderedColl
OtherChang
Paragraph
ParagraphE
Parse Node
Parser
ParseS tack
p-,....,=------.1

remove

again
undo
copy
cut
aste

do 1t
rint it

accept
cancel

Views (instances of the class View) also have special
inspectors which allow access to the model and to the
controller assigned to the view to form a MVC (model-
view-controller) system. The MVC system is described in
detail in chapter 21.

The figure below shows an inspector on an instance of

Model: a Browser

organization
.a Browser

category
className
mat a
protocol
selector
textMode

View: a Brow:serView

transformation
...,OrderadColhiiiCtion (a SelactionlnUstVililw a
SelectionlnlistViaw a BoolaanVi;w a

viewport
BoolaanVi;w a SahactionlnUs,tViaw a window

displayTransforma t SalactionlnlistViaw a Cod;Viaw)

Controller: a StandardSy:nemController
yellowButtonMes:!la .. a PopUpMonu

1!1CII!Ii'IIMDII§ii1M
blueButtonMessage
status

142 Smalltalk-80

BrowserView, which is the view assigned to a browser.
This inspector is in fact made up of three inspectors on
the three objects of the MVC system.

19.2 Debuggers
Development tools are very important
gramming environments and in Smalltalk
very carefully designed.

tools in pro-
they have been

Debuggers are windows that serve to visualise the
methods and variables implicated in the evaluation of an
expression during the actual evaluation. A debugger can
be opened from a window called a Notifier, in which the
menu, controlled by the middle button, offers two
actions:

proceed
which resumes the interrupted activity,

debug
which opens a debugger on the interrupted context.

The Notifier contains the list of the last methods
that were used before the interruption, as shown in the
following figure.

User Interrupt

[] in Smalllnteger(lnteger)»digitMultiply:neg:
Smalllnteger(Number)>>to:do:
Smalllnteger(lntege iply:neg:
Smalllnteger(lnteger)
Smalllnteger»*

In Smalllnteger(lnteger)>>dlgltMultlply:neg:

Smalllnteger(lnteger)>>dlgltMultiply:neg:
Sma.lllntogor(lntogor)>>*
Smalllntegor»*

to: stop do: &Block again
•create an Interval from tha recaivar ~
incrementing by 1. For aach elament copy

block, aBiock. •
cut

~ do 1t

I noxtlla.luo I ~
milxtV alua + self. accopt

[noxtllaluo <• stop] ~ t
whilaTrua: 5pawn

[aBiock ~
naxtValu agaon 1/aluo + 1)

I undo
copy
cut

I full stack
proceed
restart

Ji 3andars
he J'mplemantors
nto me!Saqos I stop

sand

agarn
~ copy

cut
paste -------- .. 1 ~ --------- ...,1 doTt

t
~ ____

~ a Block

!nspactl ~jns:fact(
accopt

accop cancel
cancel

p,
tho

Other Windows 143

Several circumstances can cause the opening of a
Notifier. These are usually:

- an object does not understand a message that it rec-
eives,

- the user causes interruption of an activity by press-
ing control C,

- an object receives a halt message.
A debugger type window is made up of several subwin-

dows, as shown in the bottom figure on page 142. The six
windows involved are described below.

19.2.1 List of methods
This list contains the name of the last methods that
were active before the interruption. When the user
selects one of the methods contained in the list, the
text of this method appears in the code window located
below, with the expression that was being evaluated when
the interruption occurred highlighted. This subwindow
contains a menu controlled by the middle button which
offers the following options:

full stack
which completes the list of methods by adding to it all
the methods that were active within the process,

proceed
which resumes execution of the interrupted process,

restart
which restarts evaluation of the selected method from
the beginning,

senders
which opens a browser on the list of methods that send a
message with the same name as the selected method,

implementors
which opens a browser on the list of methods with the
same name as the selected method,

messages
which cause a pop-up menu to appear giving the list of
all messages sent from the selected method. From this
menu it is possible to access all the implementations of
a message present in the menu,

step
which causes the next expression to be evaluated. The
selected part in the code window is updated,

send
which causes the next message in the selected expression
to be sent.

19.2.2 The code window
This window is located under the window that provides
the list of methods that have been used. When a method
is selected from the list of methods, its text appears
in the code window, as in a browser. The expression that

144 Smalltalk-80

was being evaluated at the time of the interruption is
shown in inverse video. The functions offered in the
menu, which is controlled by the centre button, are the
same as those offered in the code window of a browser.

19.2.3 Inspector of the receiver
This inspector is an inspector which
receiver of the message selected from
top. In this window it is possible to
instance variables of the receiver and

describes the
the list at the

access all the
change them.

19.2.4 Inspector of local variables
The inspector enables access to the arguments of the
method selected from the list of methods, as well as
access to all its local variables. It is possible to
consult or change these variables.

19.3 Views of external files
These windows, called 'fileLists', allow access to the
file system underlying the Smalltalk virtual machine.
The windows allow access to both directories and files.
They are used in particular for integrating new classes
into the system; rather than transfer complete images,
it is more economical to transfer definitions of classes
and methods that have been obtained by means of a
fileOut.

The fileList type windows are made up of three sub-
windows, as shown in the following figure.

The top window is a text window in which the user
enters the name of the file that is to be accessed. The
character '*'can be used to replace any character
string when designating the file; for example:

*.st
designates all the files suffixed by '.st', that is, all
the files obtained by a fileOut in a browser.

Once the name of the file(s) has been entered, the
user can obtain a list of all the filenames matching the
name entered by using the accept function controlled by
the middle button.

The central window
whose name is compatible
of the top window.

contains the list of the files
with the filename specification

If there are files whose name corresponds to the name
in the top window, the menu controlled by the middle
button offers the following options:

get contents
allows the text from the selected file to be loaded into
the bottom window,

filein
this operation carries out the opposite function to the
browser fileOut; it allows the text of the selected file

Other Windows

/smalltalk/filgln/SystgmMonitor.st
/smalltalk/fileln/Time class-currentTime:.st
/smalltalk/fileln/tracker.st
/smalltalk/fileln/UnixFileDirectory-oldFile:.st
/)nlallto.lk./tll~lr•/wlnduws ;:.t

,::This package provides an improved implementation of the
Smalltalk windowing system, as defined in StandardSystemView.
The aims of the package are twofold:

1. To provide improved performance when moving between
windows, and
2. To eliminate the unpleasant effects that occur when
windows are moved, resized, collapsed or closed (i.e., the space
they occupy is simply filled with gray halftone).
The first aim is achieved by caching for each
StandardSystemView open in the current proj
its deselected stat... This bitmap is not used iew is
active, only when is deselected. The bitmaps d
whenever a view is de-emphasised, and are d do It
when the project is exited or a snapshot sav print it rwise, a
vast amount of space would be occupied by b ile it in f views
which were off-scrllen. put
When a villw is Slllected, the cached bitmap i et redraw
the view if available, otherwise the default display mechanism
is used.

145

to be compiled. The latter must contain the definitions
of classes and methods; that is, it must have been ob-
tained by a fileOut,

copy name
which allows the name of the selected file to be copied
into a text buffer (this is the equivalent of the copy
function in a text window),

rename
the selected file to be which allows the name of

changed. The name of a new
a file that already exists,

file must not be the name of

remove
which allows the selected file to be destroyed.

When the name of the top window does not correspond
to any existing file, the central window contains a
list, whose only element is the name entered in the top
window, together with a menu whose options are:

copy name
which allows, as before, the name of the selected file
to be copied into the text buffer,

rename
which allows the selected file to be renamed,

new file
which allows a new file to be created whose name will be

146 Smalltalk-80

the selected name
new directory

which allows a new directory to be created whose name
will be the selected name.

The bottom window is a text window; it contains the
text of the selected file in the central window if the
option 'get contents' has been used in this window. The
menu offered is the one generally offered in this type
of window, but it contains three additional options,
namely:

file it in
which allows
interpreting
that is, this
files,

put
which writes

the selected text to be compiled by
it as text defining classes and methods,
text must be in the format of the external

the text in the bottom window to the
selected external file,

get
which replaces the text in the bottom window with the
text from the selected file.

Other Windows 147

19.4 Graphics editors
The Sma1ltalk system has two graphics editors that allow
a form to be drawn. Such forms are instances of the
class Form (see chapter 15) or of one of its subclasses.

All the entities displayed on the screen are forms
(drawing, cursor, character font) and can therefore be
edited graphically.

19.4.1 The Form Editor
This editor consists of two windows, one containing the
form to be edited and the other a graphics menu from
which the user selects the functions required to draw on
the form. To edit a form with this graphics editor
necessitates sending it the message edit. The figure on
page 146 illustrates the graphics editor.

To select an option
places the cursor on the
button on the mouse.
follows:

from the graphics menu the user
option and presses the red

The options in this menu are as

~
~
~
~
~
~

allows selection of the pattern that
serve as the paintbrush. This pattern
obtained by designating a rectangle on
screen.

will
is

the

indicates that the paintbrush is to be copied
at the position indicated by the mouse as soon
as the red button is pressed.

indicates that the paintbrush is to be copied
at the position indicated by the mouse as long
as the red button is pressed.

indicates that the paintbrush is to be copied
along the line defined by two presses on the
red button.

allows a curve to be drawn with the paint-
brush.

allows a rectangle to be filled with the
selected pattern.

indicates that paintbrush overwrites the
background when it is applied.

indicates that the paintbrush is ORed on to
the background.

indicates that paintbrush is XORed on to the
background.

148 Smalltalk-80

indicates that paintbrush is ANDed on to the
background.

allows part of the drawing to be edited with
the bit editor (see next section).

initialises the fill colour with a white pat-
tern.

initialises the fill colour with a light grey
pattern.

initialises the fill colour with a grey pat-
tern.

initialises the fill colour with a dark grey
pattern.

initialises the fill colour with a black pat-
tern.

allows the horizontal grid to be used.

allows the vertical grid to be used.

allows the minimum number of points between
two lines and two columns of the grid to be
set.

allows the edited form to be output to an
external file.

allows a form to be read in from an external
file.

The menu linked to the yellow button has two options,
namely:

accept
which allows the existing drawing form to be replaced by
the one currently shown on the screen,

cancel
which replaces the drawing on the screen with the
original edited drawing.

19.4.2 The Bit Editor
There is a second graphics editor called by the message
bitEdit which allows access to each pixel of the draw-
ing. In this case, the drawing is enlarged and each
pixel is represented by a square of 8 x 8 points. The
figure below shows an example of the use of this editor.

Other Windows

I• I• • •• •• •
·~··~· . •• •• • • . ·I· ·I·. . . .

•••••• • • • •I •I • • • •••
• • • • • • • • I • • • • • • • •
• • • • • • • • • • • • rl'. • • • •
I • • • • • • • • • •I • • • •
. ~.

• •I •• I • • ~
: ··~·111 •• 1. ~.. :·:. : • :

•• I• 1 ••••••• ••• ~~·.,.1··· ••
• • • • • I • • .I •••••••••• 1 .. ·I·· ••••••••

• • • • •II ··I ••
I • ········I 1.. _,. . I··· ~·· 1 ···~··~·· • -... • • • •• •I •••••

·····~···~· ~lOIII I •Ill • ••

149

This view is made up of two subviews, one giving
access to the enlarged drawing and the other which lets
you choose to draw in either black or white. The menu,
controlled by the yellow button, is the same as that
offered by the editor edit. This editor is generally
used for small size forms; for example, it can be used
to create a new cursor:

Cursor new bitEdit

20 Management of User Events

In order to interact with the Smalltalk system, the user
can use two different devices - the keyboard and the
mouse. Any alteration to the state of the keyboard or
the mouse is called a user event. The user events that
are possible are:

- a movement of the mouse,
- the pressing of one of the mouse buttons,
- the striking of a key on the keyboard.

Within the Smalltalk system there are several classes
that define methods for detecting and managing user
events. Because only one user may interact with a Small-
talk system at once, these classes have only one in-
stance.

20.1 The class InputState
The class InputState, which is a subclass of the class
Object, interfaces Smalltalk with the hardware that de-
tects user events. There is in the system one instance
of this class which at any time represents the status of
the keyboard and the mouse. This class has a class vari-
able called InputProcess, which references the process
reading the status of the keyboard and the mouse; this
process is an instance of Process (cf chapter 13).

20.2 The class InputSensor
The class InputSensor, which is a subclass of the class
Object, interfaces between the user and the instance of
InputState that represents the status of the keyboard
and the mouse. It has a class variable called Current-
InputState, which references the instance of the class
InputState. This class supports the methods that allow
the keyboard and the mouse to be tested.

Because there is only one keyboard and one mouse,
this class only has one instance that is referenced by
the global variable called Sensor. To test the status of
the keyboard or the mouse, messages have to be sent to
the global variable Sensor. The messages understood by
Sensor are:

anyButtonPressed
returns true if one of the buttons on the mouse is
pressed,

150

Management of User Events 151

noButtonPressed
returns true if none of the buttons on the mouse is
pressed,

redButtonPressed
returns true if the red button on the mouse is pressed,

yellowButtonPressed
returns true if the yellow button on the mouse is
pressed,

blueButtonPressed
returns true if the blue button on the mouse is pressed,

waitButton
waits for one of the buttons on the mouse to be pressed
and returns the cursor position,

waitNoButton
waits until none of the buttons on the mouse is pressed
and returns the cursor position,

keyboardPressed
returns true if one of the keys on the keyboard has been
pressed,

keyboard
waits until a character is struck on the keyboard and
returns this character,

keyboardPeek
reads a character from the keyboard queue without
removing it from the queue,

keyboard Next
reads a character from the keyboard queue and withdraws
it from this queue,

cursorPoint
returns the current cursor position,

cursorPoint: aPoint
places the cursor at the position given as argument,

currentCursor
returns the current cursor,

currentCursor: aCursor
replaces the current cursor by the argument aCursor.
For example:

Sensor waitButton.
Display reverse.
Sensor waitNoButton.
Display reverse

reverses the screen as soon as one of the mouse buttons
is pressed and keeps it in this state until the button
is released.

21 Model-View-Controller System

In the preceding chapters we have met several different
window types in the Smalltalk system, each designed to
solve a particular problem. The programmer can also
build special windows for his own individual applic-
ations. We recall that a window specifies a part of the
screen in which interaction takes place between the user
and the application.

In this chapter we shall see how interactive appli-
cations in the Smalltalk system are constructed and how
to build new ones.

Within Smalltalk all interactive applications are
built to the same plan, called the MVC system. The app-
roach is based on the following three entities:

- the object on which the work is to be done,
- an output interface that serves to present this

object to the user,
- an input interface that allows interaction with the

object or with its representation.
In the Smalltalk system, the object on which the work

is to be done is called the model, the output interface
is called the view, and the input interface is called
the controller.

Whenever the model is changed, its representation
must be updated. For this updating to be automatic, a
dependency must be established between the view and the
model that it represents. The concepts of dependence
were examined in chapter 7 on the class Object.

In addition to the dependency of the view on the
model, the view and the controller must be aware of one
another and aware of the model on which they are to
work.

The basic classes that allow views and controllers to
be defined are the classes View and Controller. These
two classes are subclasses of the class Object. The
relationships between a model, its view and its con-
troller are shown in the following figure.

21.1 The class View
The instances of the class View are windows. Two of the
instance variables of this class are model and con-

152

Model-View-Controller System 153

troller, which refer respectively to the model and the
controller assigned to the view.

When several objects are to be represented in the
same view, the view can be divided into several
subviews. Thus, a hierarchy of views is defined, since a
subview is a completely separate view. To implement this
hierarchy each view has a list of subviews and one
superview. The following figure shows the relationships
between models, views and controllers in the case where
a view is made up of several subviews.

21.1.1 The class WindowingTransformation
The coordinates of a view may be defined in several co-
ordinate systems:
- in its own coordinate system,

in the coordinate system of its superview,
- in the coordinate system of the screen.

In order to move from one coordinate system to an-
other, simple geometric transformations are used.

The class WindowingTransformation is a subclass of
the class Object whose instances serve to represent the

154 Smalltalk-80

geometric transformations consisting of a translation
and a scaling factor. The two instance variables of this
class are scale and translation. These geometric trans-
formations will be used to change coordinate system in a
view.

The messages that allow new geometric transformations
to be created are:

identity
which returns a transformation without translation and
with an enlarging factor of l,

scale: anEnlargingFactor translation: aTranslation
which returns an initialised geometric translation with
the arguments of the method,

window: awindow viewport: aViewport
which returns a transformation to move from
rectangle aWindow to the rectangle aViewport.
method is the one that constructs the transformation for

the
This

passing the coordinates of a view to the coordinates of
its superview.

The messages that can
WindowingTransformation are:

applyTo: aPoint

be sent to the instances of

which returns the point obtained by applying
geometric transformation to the point aPoint,

applyinverseTo: aPoint

the

which returns the point obtained by applying the inverse
geometric transformation to the point aPoint,

compose: aGeometricTransformation
which returns a new instance of WindowingTransformation
obtained by composing the receiver and the argument
aGeometricTransformation.

21.1.2 Instance variables of the class View
The instance variables of the class View are:

model
which is the object represented by the view,

controller
which is the controller that allows interaction with the
view or with the model,

superView
which is the superview of the view,

sub Views
which is an instance of OrderedCollection containing the
subviews of the view,

transformation
which is an instance of WindowTransformation allowing
transfer from the coordinate system belonging to the
view (given by window) to the coordinate system belong-
ing to the superview,

viewport
which is a rectangle giving the coordinates of the view

Model-View-Controller System

expressed in the coordinate system of the superview,
window

155

which is a rectangle giving the coordinate system of the
view,

displayTransformation
which is an instance of WindowTransformation allowing
transfer from the coordinate system belonging to the
view (given by window) to the coordinate system of the
screen,

borderWidth
which may be a number, a point or a rectangle, giving
the width of the border that encloses the view,

borderColour
which is a motif giving the colour of the border,

insetDisplayBox
which is a rectangle expressed in the screen coordinates
representing the interior rectangle of the view (the
view without its border),

insideColour
which is a motif giving the background colour of the
interior of the view,

bounding Box
which is the minimum rectangle expressed in the view co-
ordinates containing the view and its subviews.

The following figure recapitulates the different co-
ordinate systems in which the position of a point can be
expressed and the transformations that allow transfer
from one system to another.

0@0

display Transformation

transformation

100@10

0.8@0.8

1@1

800@9001 024@ 1024

The coordinates belonging to a view are indicated
inside the view and the coordinates of that view within
its superview are shown outside.

156 Smalltalk-80

21.1.3 Messages understood by instances of View
The class View, which is the basis of the entire window-
ing system, supports a large number of messages. These
messages are divided into several categories which are
examined in the following sections.

Manipulation of views and subviews
addSubView: aView

adds the argument aView to the list of subviews of the
receiver,

addSubView: aView align: aPoint with: anOtherPoint
adds the argument aView to the list of subviews of the
receiver, by fixing the viewport such that the point
aPoint, expressed in the coordinate system of aView, is
located at the point anOtherPoint, expressed in the
receiver's coordinate system,

addSubView: aView below: aPoint
adds the argument aView to the list of subviews of the
receiver, by fixing the viewport such that the origin of
the view aView is located at the point aPoint, expressed
in the receiver coordinate system,

firstSubView
returns the first subview of the receiver,

lastSubView
returns the last subview of the receiver,

removeFromSuperView
removes the receiver from the list of subviews of its
superview, if it exists,

removeSubView: aView
removes the argument aView from the list of subviews of
the receiver,

resetSubViews
removes all the subviews from the list of subviews of
the receiver,

superView
returns the superview of the receiver,

superView: aView
replaces the superview of the receiver by the view given
as argument,

topView
returns the main view of the hierarchy of views con-
taining the receiver,

isTopView
returns true if the receiver has no superview,

release
before removing a view, one must also remove the
dependence of this view in relation to the model,
together with all the dependencies of its subviews; this
is the function of the message release.

Model-View-Controller System

Access to coordinate systems
displayBox

returns the rectangle containing the receiver,
insetDisplayBox

returns the rectangle interior to the receiver,
window

returns the coordinate system of the receiver,
window: aRectangle

157

replaces the coordinate system of the receiver by that
given as argument,

window: aRectangle viewport: anOtherRectangle
replaces the coordinate system of the receiver and the
coordinates of the receiver within its superview by the
coordinates given as argument,

viewport
returns the coordinates of the receiver expressed in the
coordinate system of its superview,

boundingBox
returns the minimum rectangle containing the receiver
and its subviews,

containsPoint: aPoint
returns true if the point given as argument is within
the receiver.

Access to the controller
controller

returns the controller assigned to the receiver,
controller: aController

replaces the controller of the receiver by the control-
ler given as argument,

defaultController
returns a new controller which is a default instance of
the class.

defaultControllerClass
returns the class of the controller.

Access to the model
model

returns the object represented by the receiver,
model: anObject

replaces the object represented by the receiver by the
object given as argument,

model: anObject controller: aController
replaces the object represented by the receiver and the
assigned controller by the objects given as argument.

Display
borderColour: aMotif

replaces the motif that provides the border colour of
the receiver by the motif given as argument,

borderWidth: aWidth

158 Smalltalk-80

replaces the width of the receiver border by the width
given as argument,

clear: aMotif
fills the area of screen occupied by the receiver with
the motif given as argument,

clearinside
fills the interior of the receiver with the motif given
by the instance variable insideColour,

clearinside: aMotif
fills the interior of the receiver with the motif given
as argument,

display
displays the receiver border, the receiver itself, and
its subviews,

displayBorder
displays the receiver border,

flash
makes that part of the screen occupied by the receiver
flash,

highlight
inverts that part of the screen occupied by the receiv-
er,

insideColour
returns the motif that defines the background colour of
the receiver,

insideColour: aMotif
replaces the background colour of the receiver by the
motif given as argument.

The class View has several subclasses which allow
different types of object to be represented (text,
forms, list, etc). Interaction varies, according to the
object represented; it is therefore necessary to assign
a specific controller to each view. All its controllers
are defined in subclasses of the class Controller.

21.2 The class Controller
The class Controller is a subclass of the class Object.
Defined in this class are the basic operations for
controlling interactions and locating the active con-
troller.

21.2.1 Instance variables of Controller
This class has three instance variables:

model
which is the object to be interacted with,

view
which is the view representing the model,

sensor
which is a reference to the global variable Sensor, the
only instance of the class InputSensor; use of such a
reference saves time in locating this object.

Model-View-Controller System 159

21.2.2 Messages understood by
The messages supported by the

controlActivity
finds the subview of the view
which requires control and
assigned to this subview,

control Initialize

instances of Controller
class Controller are:

assigned to
activates

the receiver
the controller

this message is sent to the receiver when the latter has
just been activated, thus allowing certain parameters to
be set,

control Terminate
this message is sent to the receiver just before the
latter is deactivated, thus allowing certain parameters
to be restored,

control Loop
loops for as long as the view assigned to the receiver
contains the cursor, in order to discover which of the
subviews wishes to take control (perhaps none),

startUp
this message is sent to a controller to activate it; the
method sends to the controller the messages control-
Initialize, controlLoop and controlTerminate.

isControlActive
returns true if the view is to retain control,

model
returns the object with which the receiver is interact-
ing,

model: anObject
replaces the object with which the receiver interacts by
the object given as argument,

view
returns the view assigned to the receiver,

view: aView
replaces the view assigned to the receiver with the view
given as argument,

release
removes the references of the receiver to the view and
the model.

To activate a controller, the message startUp must be
sent to it. The startUp method is written as follows:

startUp
self controlinitialize.
self controlLoop.
self controlTerminate.

The methods controlinitialize and controlTerminate
are redefined in the subclasses of Controller. For ex-
ample, for the class ScrollController, which controls
scrolling in a text window, these methods cause the
scrollBar to appear on the left of the view when the
controller is first activated and disappear at the end.

160 Smalltalk-80

The controlLoop method is written as follows:
control Loop

[self isControlActive) whileTrue:
[Processor yield.
self controlActivity)

When the cursor moves from one view to another, it is
necessary to be able to change the active controller in
order to interact with the view on which the cursor is
located. There is within the Smalltalk system a class
called Contro1Manager whose task is to control the act-
ivation of the different controllers.

21.3 The class Contro1Manager
The class ControlManager is a subclass of the class
Object. The instance of the class ControlManager which
controls the controllers at any given moment is refer-
enced by the global variable called ScheduledContro11-
ers.

Its instance variables are:
scheduledControllers

which references the list of controllers that may be
activated; this list further contains an instance of
ScreenContro11er which controls the screen apart from
any window,

activeController
which references the active controller,

activeControllerProcess
which references the process connected to the active
controller; a new process is executed every time that
the active controller changes,

screenController
which references an instance of the class ScreenControl-
ler that controls those parts of the screen not occupied
by a window.

When there is no longer an active controller, the
instance of ControlManager referenced by Scheduled-
Controllers decides to which window it should hand over
control.

If there is no window that wishes to take control, it
hands control to the screen as soon as the user presses
the yellow button on the mouse.

Each project contains a collection of windows and is
directed by an instance of the class ControlManager that
belongs to it. When a project is changed, the control-
Manager of this project is still referenced by the
global variable ScheduledControllers.

When the controller of a window is activated, it will
decide itself whether it is to retain control or hand it
to one of the subviews of the window.

21.4 The class MouseMenuControl1er
The class MouseMenuController is a subclass of the class

Model-View-Controller System 161

Controller. The instances of this class handle mouse
events. The instance variables of this class are:

redButtonMenu
which is a PopUpMenu that appears whenever the user
presses the red button,

redButtonMessages
which is an array of symbols corresponding to the
messages that will be sent to the coLtroller if one of
the menu options assigned to the red button is selected,

yellowButtonMenu
which is a PopUpMenu that appears whenever the user
presses the yellow button,

yellowButtonMessages
which is an array of symbols corresponding to the
messages that will be sent to the controller if one of
the yellow button menu options is selected,

blueButtonMenu
which is a PopUpMenu that appears whenever the user
presses the blue button,

blueButtonMessages
which is array of symbols corresponding to the messages
that will be sent to the controller if one of the blue
button menu options is selected.

If no menu is to be assigned to a mouse button, the
instance variable containing the menu corresponding to
this button will be set to nil.

The messages understood by the instances of the class
MouseMenuController are:

redButtonMenu: aMenu
redButtonMessages: anArrayOfMessages

allows initialisation of the red button menu and list of
messages,

yellowButtonMenu: aMenu
yellowButttonMessages: anArrayOfMessages

allows initialisation of the yellow button menu and list
of messages,

blueButtonMenu: aMenu
blueButtonMessages: anArrayOfMessages

allows initialisation of the blue button meru and list
of messages,

redButtonActivity
this message is sent to the receiver when the red button
is pressed,

yellowButtonActivity
this message is sent to the receiver when the yellow
button is pressed,

blueButtonActivity
this message is sent to the receiver when the blue
button is pressed,

For the preceding three messages, if there is a menu
assigned to the button, then the menu is displayed for

162 Smalltalk-80

as long as the button is held down. When it is released,
if one of the options was selected, the corresponding
message is sent to the receiver.

Almost all the controllers are instances of Mouse-
MenuController or of its subclasses, because almost all
of them use the mouse.

The two important subclasses of this class are:
ScrollController

whose instances allow control of the scrollbar that
appears to the left of windows that require scrolling,

StandardSystemController
whose instances allow screen windows to be manipulated
(movement, changing size, closing, etc.).

21.5 The classes StandardSystemView and StandardSystem-
Controller

These two classes implement the basic mechanisms that
allow windows to be defined and controlled in the most
general sense.

A window in the Smalltalk system is made up of a
rectangle defining a part of the screen, surmounted by
another rectangle containing the name cf the window.

We have already seen how a window may contain
subwindows which may themselves contain other windows.
The window located at the top of the hierarchy, again
called topView, is generally an instance of the class
StandardSystemView. Only these windows may be deactivat-
ed or reactivated by the ControlManager.

The class StandardSystemView is a subclass of the
class View. The additional messages supported by this
class are:

label
returns the name of the receiver,

label: aString
replaces the name of the receiver by the string given as
argument,

labelDisplayBox
returns the rectangle containing the name,

reverseLabel
inverts the name of the receiver,

expand
changes the size of the receiver interactively,

minimumSize
returns the minimum size of the receiver that is used
when beginning to interact with it,

minimumSize: aSize
fixes the minimum size of the receiver,

maximumSize
returns the maximum size of the receiver that is used
when beginning to interact with it,

maximumSize: aSize

Model-View-Controller System 163

fixes the maximum size of the receiver.
The class StandardSystemController is a subclass of

the class MouseMenuController whose instances generally
control the windows that are instances of the class
StandardSystemView. It has two class variables, namely:

ScheduledBlueButtonMenu
which is the PopUpMenu that is assigned by default to
the blue button for all instances of this class,

ScheduledBlueButtonMessages
which is an array of messages sent to the receiver
according to the command selected from the menu assigned
to the blue button.

It has an instance variable called status which pro-
vides the status of the controller. The different poss-
ible states of a window are:

open
which is the status of the controller when interaction
with the designated window is begun,

closed
which is the status of the controller when the desig-
nated window is closed (it is no longer visible on the
screen),

active
which is the status of the controller when the desig-
nated window is active (that is, when the user can
interact with this window),

inactive
which is the status of the controller when the desig-
nated window is no longer active.

To open a window, the message open must be sent to
its controller.

21.6 Text-scrolling windows
When a section of text is too long to appear in a window
in its entirety, it is only possible to display part of
it, while allowing access to the remainder using a
scrollbar.

The control mechanisms for the scrollbar are imple-
mented in the class ScrollController which is a subclass
of the class MouseMenuController.

When a window has a scrollbar, the latter is only
visible when the cursor is located within the window.
Before making the scrollbar appear, the ScrollController
saves the area of the screen that will be covered by the
scrollbar in an instance variable called savedArea. When
the ScrollController makes the scrollbar disappear, it
redisplays the form contained in savedArea.

In the Smalltalk system the scrollbars are used in
two types of window:

- text-editing windows

164 Smalltalk-80

- windows for selecting an element from a list (see
figure below).

Oat;
ltiijUhiiiiQI·
Tim;

The two subclasses of the class ScrollController that
allow management of these two types of view are the
classes ParagraphEditor and ListContro11er.

21.6.1 Text-editing windows
We have seen that, in order to represent sections of
text on the screen, we may use instances of the class
DisplayText. To present a text in a window, it also has
to be formatted; that is, there has to be automatic
control for moving to a new line when a line is filled
or a word will not fit on the current line. The objects
that allow formatted text to be produced are instances
of the class Paragraph.

21.6.1.1 Paragraphs
The class Paragraph is a subclass of DisplayText, whose
instances responds to certain additional messages.

A paragraph may be created from a section of text or
from a string of characters by sending them the message
asParagraph, for example:

'this is a string of characters' asParagraph
returns a paragraph that represents the receiver.

As the text of a paragraph is formatted, there are
several ways of putting this text in shape, and the
messages that allow choice of page layout are:

centred
which allows the text to be centred on a line,

justified
which allows the text to be aligned on the left and
right margins,

leftFlush
which allows the text to be aligned on the left margin;
this is the default option,

rightFlush
which allows the text to be aligned on the right margin.

When the size of a text window changes (for example,
with the option frame via the blue button), the text
formatting of the text in this window must also be
changed. There is a message that allows a section of
text to be reformatted, namely:

recomposeln: aRectangle clippingBox: anOtherRectangle
which recalculates the page layout for the paragraph, so

Model-View-Controller System 165

that the lines will fit into the limits of the argument
aRectangle and the display is restricted to the argument
anOtherRectangle.

The controllers that allow a paragraph to be edited
are instances of the class ParagraphEditor, which is a
subclass of ScrollController. These controllers respond
to a significant number of messages which the user has
no need to access; these are therefore not described in
this chapter.

In a text-editing window, the trio model-view-contr-
oller is made up of:

- a section of text or a string of characters for the
model,

- an instance of View or of one of its subclasses,
which displays the paragraph created from the model, for
the view,

- an instance of ParagraphEditor or of one of its sub-
classes for the controller.

21.6.1.2 StringHo1der StringHo1derView
StringHo1derContro1ler

These three classes make up a trio of model-view-
controller that allow the text of the model to be edited
in a text-editing window.

The class StringHo1der is a subclass of the class Ob-
ject, whose instance variables are:

contents
which is the string of characters that is edited,

is Locked
which is a boolean that indicates whether the text of
the view is the same as that of contents.

The class StringHo1derView is a subclass of View. One
of its instance variables, called displayContents, ref-
erences the paragraph that represents the formatted text
of the model. The instances of StringHolderView are not
main views (main views are generally instances of
StandardSystemView), but simply subviews.

The class StringHo1derContro11er is a subclass of the
class ParagraphEditor which allows the paragraph assign-
ed to the model to be edited.

21.6.2 Lists
Lists are views which contain one or more lines of text
and from which it is possible to select a line. For
example, lists may be found in the four windows at the
top of a browser; these allow access to the categories,
classes, protocols and methods.

The MVC trio assigned to the control of a list con-
sists of:

- an object that may in certain cases be considered as

166 Smalltalk-80

a list,
- a view that is an instance of a subclass of ListView,
- a controller that is an instance of a subclass of

ListController.
The subclasses of ListView and ListController that

allow any lists to be manipulated are SelectioninList-
View and SelectioninListController.

The object which represents the model may be any ob-
ject that responds to the messages that cause the system
to:

- return the selected element
- change the selected element
- return the list of all elements
- return a menu assigned to the centre button which

allows action on the elements in the list.
The name of the messages that will cause the above

functions to occur will be given to the view at the time
that it is created. Views of this type are rather
special, because their model may belong to any class;
they are said to be 'pluggable' views.

To create a view of this type, a message consisting
of the following various selectors must be sent to the
class SelectioninListView:

on: anObject
printitems: aBoolean
oneitem: anOtherBoolean
aspect: aspectMessage
change: changeMessage
list: listMessage
menu: menuMessage
initialSelection: selectionMessage

which returns an instance of SelectioninListView whose
model is the argument anObject.

The argument aBoolean determines if the text of the
view must be obtained by sending the message printString
to all the elements in the list or if these elements are
already strings of characters.

The argument anOtherBoolean determines if the list
contains one and only one element.

The argument aspectMessage is the message that will
be sent to the model to access the element selected from
the list.

The argument changeMessage is a message to an argu-
ment that will be sent to the model to change the
selected element.

The argument listMessage is the message that will be
sent to the model to access the list of elements.

The argument menuMessage is the message that will be
sent to the model to have a menu assigned to the centre
button.

The argument selectionMessage is the message that

Model-View-Controller System 167

will be sent to the model to access the element selected
at the start.

21.6 Example
The following review example shows how to construct an
application that will allow a list of curves to be
manipulated in one window, while the selected curve is
represented in a second window, as shown below.

[:ili+2]
[:II 50+(40°((115) >In))]

IIIJPMQ@iipliGii@Miilll

Entar a curve as a block

The equation of a curve may be represented by a block
with one argument. The orientation of the axes in the
view is that normally adopted in mathematics. The scale
goes from 0 to 100 along the abscissa and the ordinate.
To implement this application, only two classes are re-
quired, as shown below.

Ca t egory Browser

- -- - ----
------------ modifying

hiiiiTJ§!ij aCCQSSing
CurvelistView ------------------------

- class
... ordC~rl!dColh;!ction variableSubclass: #Curv11List

ins tanci!Variablc!Namlls: 'slllllctedCurvll •

classVariabi!!Namas: "
pooiDictionari11s: "

ca tC~gory: 'Exampl11'

168 Smalltalk-80

The class Curvelist is a subclass of Ordered-
Collection whose elements will be the strings of char-
acters that provide the equations of the curves.

Category Browser

displaying
Curvelist updating

l1~!1.,_!1:1~il~iClJI!!!'fAD_i_al1ill!llj!••l------------

class
,.View subclass: #CurvelistView

instanceVariableNames: "
classVariableNames: "
pooiDictionaries: "
category: 'Example'

The class CurveListView is a subclass of View which
simply serves to redefine the method displayView that
allows a curve to be displayed.

To open a curves window it is simply a question of
evaluating the following expression.

The first method to be written is the method for cre-
ating a window. The text of this method appears in the
window below.

Model-View-Controller System

1 topVIow listVICIW subVItw 1
topView .. Stand•rdSySttlf\Vitw ntw.
topVIew ln,/deColor. form whitt; bordtrW/dtl'l: 1; window: (D • 0 extent: 1

Q 1); labG1: ·curvo Rot '.
listYiaw • Selec:tlonlnUstView

on: a.CuneUst
prlnmems: r.a.tn
ontltorn: false
a,.pact: laltc:UidCurvt
change: ltsolectadCur¥o:
list: #'CUt"YtUn

Menu: If CYtvtMenu
lnitlaiSotection: lsolectodCurvo.

llnview window: (0 • 0 extent : 1 4t 0.3); borderWidth: 1.
subViaw .. salt new.
subViaw lnsidCIColor: Form wtl:itt; bordor'WidU'I: 1; w indow: (0 e 100 oxtQnt:

100. -100)
viewport: (0 • 0.3 uttnt : 1 e 0.7); model: &CurnUst.

topViow &.ddSubVIcllw: listViow; addSubView: subView.
topViaw controller open

The window is made up of three views:
a main view which is an instance

SystemView; the coordinates of this
window:) range from 0@0 to 1@1,

of
view

169

Standard-
(given by

- a subview (an instance of SelectioninListView) which
allows the list of curves to be represented and manip-
ulated; the coordinates of this view in its superview
are 0@0 and 1@0.3,

- a subview (an instance of CurveListView) which is the
view in which the selected curve is drawn; the co-
ordinates of this view in its superview are 0@0.3 and
1@1. The coordinates belonging to this view range from
0@100 to 100@0, which represent a conventional (math-
ematical) coordinate system (the axis of the abscissas
from left to right, and the axis of the ordinates from
bottom to top).

To create the instance of SelectioninListView, it was
necessary to give the messages that will be sent to the
model in order to access the list of curves; new, the
methods that correspond to these methods must be
defined. These methods will be defined within the model,
namely ListCurve.

The method curveList allows access
elements of CurveList; here, this list

to the list of
directly consists

170 Smalltalk-80

of the receiver, as shown in the figure below.

Category Browser

------------~---------l curvel1st modifying
I1C!JIIIt!IIIIIITIZ4~!~flill!•••ll1f§~!iJ33~41"'E111ihii!t+ll•••l curveMenu
CurveUstView - - -- -- Sl!ll!ctedCurve

.furvelist
'~'self

class

selectedCurve:

The method curveMenu returns a menu (instance of the
class ActionMenu) which is a subclass of PopUpMenu
including an additional instance variable which refer-
ences the list of messages assigned to the menu options.
If no line is selected, the menu returned only includes
the option to add a curve to the list. If a curve is
selected from the list, the menu returned includes three
options, allowing a curve to be added, removed, or the
selected curve to be altered.

Category Browser

1---------l ------------
modifying curv.,Ust

~~~~S!'D'ili~#~!~Bill•••lllf~-«~4~4~4~i,~'~"b·••••l 
CurveUstView 

curveMenu 
selectedCurve 
s"l11ctedCurve: 

class 

.fUrveMenu 

SI!IG!ctl!dCurve isNil 
ifTrul!: [1'ActionMenu labels: 'add' selectors: #(add)] 
iffals11: [1'ActionMenu 

lab.,ls: 'add\r.,mov.,\modify' withCRs 

lines: #( 1 2) 

se111ctors: #(add remove modify)] 



Model-View-Controller System 171 

The method selectedCurve returns the variable called 
selectedCurve (see below). 

Category Browser 

modifying curv2List 

~~~~ilti!J•i~J'~i§J~!~Li~l!l!llllllllliiJf!~:'-~9-~·-~f!~~j~~~t~-~--~-~-~ CUrVQMQOU 
Curv2ListView

class

1electedCurve
~sl!ll!ctedCurvl!

se lectedCurve

The method which allows a different curve to be
selected is described below. Note that sending the
message changed to the receiver has the effect of
updating the view; in fact, it should be recalled that
there is a dependence between the model and its view,
and therefore any alteration of the model is signalled
to the view.

modifying curv2List

lll~iji!JIIJf~j§~!~h~l!l!lllllllllllf~·'~3~i#~~~1~1s~U~~IIIIIIcurveManu
Curvi!LiHVii!W SI!II!Ctl!dCUrvl!

class

JelectedCurve: acurve
Sl!ll!ctl!dCurv" <- aCurvl!.

s2lf changed

se l ec~edCurve:

There are two protocols in the class CurveList: the
first, which contains the access methods, has already
been described; the second contains the methods for
manipulating the list.

To add a curve, its curve must be input in the form
of a block; this block must have an argument which,
during evaluation, will take the different values of the
abscissa.

The class FillinTheBlank allows text in a window to

172 Smalltalk-80

be captured; the window closes automatically when the
capture is completed by using the accept option on the
middle button or <return>. The expression

self changed: #selectedCurve
redisplays the list.

Category Browser

1-------1
@ili@!Li
CurveUstView

c lass

.fdd

1 textBiock 1

lijmlll'Ji ...
accessing modify

ni1!mOVQ

textBiock .. FilllnTheBiank request: 'Enter a curve as a
block'.

"!If add: textBiock.
self se lectedCurve: nil.
s11lf changed: #salectedCurva

The following method allows a curve to be removed
from the list.

Category Browser

r-;-~-~-~-~-;-~-;-~;;~·Gmf~·~·'~~~~~·~llllll,add (";+'''f4§!J1 acc~Bss ing modify
CurveUstView remove

class

Iemove
self remove: selectedCurve.
self selectedCurve: nil.
self changed: #selectedCurve

To alter a curve, a window needs to be opened on the
text of the selected curve; then, once the text has been
altered, the selected curve is replaced by the new text.

All the methods of CurveList are written; all that
remains is to write the instance methods of
CurveListView. The first of these methods is very
simple, since it involves redefining the message
update:. Remember that this message is sent to all the
dependents of an object when the latter receives the
message changed:. Here, any alteration of the model

Model-View-Controller System 173

Category Browser

------------ ------------
- -------- .. . add

I!J111D!~i accessing .
CurvelistYiew ------------ remove
------------ ------------

class

JOOdify
I textBiock I
textBiock +- FilllnTheBiank request: 'Enter a curve as a

block' initiaiAnswar: salactadCurva.
self at: (self indexOf. selectedCurve)

put: textBiock.
s11 lf selectedCurve: nil.
self changed: #selectedCurve

(that is, the list of curves), must be result in a
redisplay of the view.

Category Browser

Curve List

class

,!'Pdate: aMessage
salf displayYi01w

u date:

The method that displays the interior of a view is
called displayView. Here, this method must be redefined
in order to display the curve within the view.

The method begins by erasing the interior of the
view, since if there is a selected curve it draws it.
The first task to be done is to transform the string of
characters that represents the curve into a block; to do
this, the text of the curve must be evaluated.

The pen can then be placed on the first point and be
made to draw straight lines between all the following
points. The transformation called displayTransformation
must be applied to all the points in order to transfer
the coordinates of the view to the coordinates of the
screen.

174 Smalltalk-80

This example illustrates how it is possible to
construct graphics applications quickly, using but a few
classes and methods. It will be noted that some methods

1 tliiilxtBiock block bic 1

salf c lliila. r lnsidil .

(tU!xtBiock + modCil!l sliilllliilcUiildCurvlliil) notNil
ifTrug:

[block + Compihiilr nlliilw
liilvalua.tu: t&xtBiock
in: nil
to: nil
notifying: nil
iffa.il: [).

bic + Ptiln naw tra.mo: insotOisplaySox.
bic pla.co: (disprayTransformation .. pplyTo: 0 jjl (block va.luo: 0)).
1 to: 100 do: [:i 1 bic goto: (displayTransforma.tion a.pplyTo: i &! (block

va. luo: i)) roundod]]

serve to redefine existing methods, which is a feature
often found in Smalltalk, because an application is
often defined by the differences it has in comparison
with an existing application (differential programming).

This example is also typical of what might be an
application prototype.

The constraints imposed on such prototypes are as
follows:

- shorter realisation time
- ease of development
- minimum operation; that is, there is no need to wait

for the complete realisation of the prototype before
running those parts already defined.

The MVC system is fundamental to Smalltalk, because
it provides a methodology for breaking down graphics and
interactive applications. Given that there are more than
30 subclasses of the class View, as well as more than 30
subclasses of the class Controller, it has only been
possible to discuss the main classes in this chapter.

Index

@ 1 96
[1 15

1 22

A

accept, 30
activeProcess, 92
add:, 68
addFirst, 77
addLast, 77
addSubView:, 156
again, 2 8, 127
allinstances, 44
and, 111
applyTo:, 154
Arc, 88
arithmetic, 59
Array, 81
ArrayedCollection, 81-82
arrays, 14
asciiValue, 57
asDisplayText, 107
Association, 71
at:, 34, 72
at:put:, 34

B
Bag, 71
Behavior, 41
binary message, 16
BitBlt, 114-115
Bit editor, 148-149
bit manipulation, 65
bitmap, 26
Bitmap, 105
black, 108
BlockContext, 91-92
blocks, 18-20
blueButtonActivity, 161
border:, 108
borderWidth:, 157
boundingBox, 155
browsers, 28, 129
ByteArray, 83

c

calendar, 54
cascades, 18
category, 48, 130
changed, 3 7
Character, 31, 57
characters, 14
character strings, 14
Circle, 114
class, 10-12, 31
Class, 12, 40, 47
ClassDescription, 12, 47
class methods, 11
classes, 7, 10-11, 131
clearinside, 158
close, 89, 120
code window, 136, 143
coerce, 63
Collection, 67-70
comment, 48
compilation, 49
contains, 103
containsPoint:, 103
contents, 84
Control-C, 143
controlActivity, 159
controlinitialise, 159
controller, 152, 157
Controller,l52, 158
controlLoop, 159, 160
ControlManager, 160
controlTerminate, 159
conversions, 56, 62
copy, 28, 32, 33, 127
corner:, 100
cornerBy:, 102
CurrentinputState, 150
Cursor, 112-113
cursorPoint, 151
cut, 28, 127

175

176 Index

D
Date, 54
deepCopy, 3 3
debugger, 30, 142
defaultControllerClass,

15 7
Delay, 93
dependencies, 36-37
destForm, 114
detect:, 69
Dictionary, 71-74
display, 6
displayAt:, 21, 106
displayOn.at:clippingBox:

rule:mask:, 112
Display, 113
DisplayMedium, 107-110
DisplayObjecte, 105-106
DisplayScreen, 112
DisplayText, 196-107
displayTransformation, 155
dist., 97
do:, 69
doesNotUnderstand:, 22
dolt, 28, 128

E
edit commands, 127
enumeration, 64
equality, 33
equivalence, 33
erase, 111
error, 35
expandBy:, 102
explain, 137
extent:, 21, 100
ExternalStream, 88-89

F
false, 19
file "changes", 128
file "sources", 128
filein, 144
file list, 27
fileout, 144
FileDirectory, 89
fileNamed:, 89
FileStream, 50, 89
fill:rule:mask:, 109
FillinTheBlank, 171
findFirst, 76

findLast, 76
first, 74
firstSubView, 156
flash:, 113
Float, 48, 59, 64
follow:while, 112
fork, 91
Form, 21, 110-112, 147-148
format, 136
Fraction, 48, 59, 64
frame, 116
fromDisplay, 110
fromUser, 110

G
get contents, 144
goto:, 117
graphics editors, 147
grid:, 97

H
halftoneForm, 115
halt, 143
height, 101, 106
hierarchy, 46, 132

I
IdentityDictionary, 74
ifTrue:ifFalse:, 19
includes:, 69
includesKey:, 73
indexOf:, 74
InputSensor, 150
InputState, 150
insetBy:, 102
insetDisplayBox, 157
inspect, 139
Inspectors, 139-141
Instance, 7, 9, 43
instances, 43-45, 67
Integer, 48, 59, 64
interface, 118
intersect:, 102
intersects:, 103
Interval, 80-81
isControlActive, 159
isEmpty, 95
isKindOf:, 31
isMemberOf:, 31
jsNil, 34

K
keyboard, 151
keyword messages, 16
keys, 72

L
label, 162
LargeNegativelnteger, 48,

59
LargePositivelnteger, 48,

59
last, 74
lastSubView, 156
Line, 114
LinkedList, 79-80
lists, 165
ListController, 164, 166
ListView, 166

M
Magnitude, 53
mathematics, 60
max:, 53
maximumSize:, 162
menus, 26, 119, 120-121
merge:, 102
messages, 6, 15, 21, 35
Metaclass, 12, 40, 50
metaclasses, ll
methods, 8, 21, 25
millisecondsToRun:, 56
min:, 53
minimurnSize:, 162
model,l52, 157
mouse , 2 6 , 118
MouseMenuController,

160-162
motif, 107
multiple inheritance, 50
MVC, 152

N
name, 48
new, 21, 43
newFileNarned:, 89
next, 84, 95
nextPutAll:, 84
nil, 23, 34
notNil, 34
now, 56

Index

Number, 48, 59
numbers, 13

0
Object, 31
objects, 6
oldFileNamed:, 89
on:, 85
open, 89
OrderedCollection, 37,

77-78
origin, 100, 101
offset, 106
over, lll

p

padTo:, 88
Paragraph, 164-165
ParagraphEditor, 164
paste , 2 8 , l 2 7 , l 4 0
Path, 113-114
peek, 85, 95
Pen, 115-ll 7
perform:, 36
pixel, l 05
Point, 96-99

177

PopUpMenu, 119
PositionableStream, 85-86
primitives, 25, 38
prinit, 28, 128
printString, 34
priority, 17, 92, 93
proceed, 142
Process, 91
Processor, 92
Processor-Scheduler, 92-93

protocol, 129, 134
pseudo-variables, 23

Q
quit, 27

R
raisedTo:, 16-17
Random, 48
readFrom:, 110
ReadStream, 87
ReadWriteStream, 88
receiver, 16, 24

178 Index

Rectangle, 99-104
redButtonActivity, 161
reject:, 69
release, 159
remove:, 68, 73
removeFirst, 78
removeLast, 78
rename, 130
responds To:, 31
restore display, 27
resume, 92
reverse, 110, lll
rever seDo: , 7 7
rounding, 62
RunArray, 83

s
save, 27
savedArea, 163
ScheduledControllers, 160
ScreenController, 160
scrollbar, 122
ScrollController, 162, 163
select:, 69
selectors, 16, 42
SelectionlnListController,

166
SelectionlnListView, 166
self, 23
Semaphore, 94
Sensor, 150-151
SequenceableCollection,

36, 74-77
Set, 71
shallowCopy, 32
SharedQueue, 95
showWhile:, 112
signal, 94
size, 34
skip, 86
skipTo:, 86
Smalllnteger, 31, 48, 59
Small talk, 10
someinstance, 44
SortedCollection, 79-79
sourceForm, 114
spawn, 130
StandardSystemController,

162-163
StandardSystemView,

119-120, 162-163

startUp, 159
status, 163
storeString, 35
Stream, 84-85
String, 81
StringHolder, 165
subclasses, 10
subViews, 154
super, 24
superc1ass, 10, 40, 46
superView, 154
suspend, 92
Symbol, 31, 83
symbols, 14

T
terminate, 92
terminateActive, 92
tests, 42, 61
Text, 42, 83
TextStyle, 107
Time, 54
timesRepeat:, 64
to:, 81
today, 54
topView, 156
transcript, 30
true, 19
truncateTo:, 97
truncation, 62

u
unary messages, 16
under, 111
undo, 28
update:, 37

v
value, 16
values, 72
variables, 9, 15

class, 9
global, 10
indexed instance, 9
named instance, 9
pool, 10
temporary, 22

View, 152-153, 154-158,
168

view, 152
vitual machine, 92

w
wait, 94
waitButton, 151
whileFalse, 19-20
whileTrue:, 19-20
white, 108
width, 101, 106
window, 26, 118, 157
with:, 87
WindowingTransformation,

153-154

Index

workspace, 27, 127-128
WriteStream, 87

X
x, 21 96

y

yield, 92

179

y, 21, 96
yellowButtonActivity, 161

