Dan Shafer
Dean A. Ritz

Practical Smalltalk
Using Smalltalk/V

With 48 Illustrations

This book has been scanned by Adrian
Leinhart and OCR by Stéphane Ducasse
and Tudor Girba.We thanks Dan Shafer
for giving this book to the community.

Springer-Verlag
New York Berlin Heidelberg London
Paris Tokyo Hong Kong Barcelona

Dan Shafer
Redwood City, CA 94062
USA

Dean A. Ritz
Palo Alto, CA 94301
USA

Library of Congress Cataloging-in-Publication Data
Shafer, Dan
Practical Smalltalk : using Smalltalk/V / Dan Shafer. Dean A. Ritz.
. cm. Includes
index. ISBN 0-387-

97394-X

1. Smalltalk/V (Computer program language) I. Ritz. Dean A. H.
Title.
QA76.73.859S53 1991
005.13'3-dc20 91-327

Printed on acid-free paper.

© 1991 by Dan Shafer.

All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer-Verlag New York, Inc. 175 Fifth Avenue, New York, NY 10010,
USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with
any form of information and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed is forbidden.

The use of general descriptive names, trade names, trademarks, etc., in this publication, even if the
former are not especially identified, is not to be taken as a sign that such names, as understood by the
Trade Marks and Merchandise Marks Act, may accordingly be used freely by anyone.

Typeset by Production Services, Redwood City, California.

Printed and bound by R.R. Donnelley & Sons, Harrisonburg, Virginia.
Printed in the United States of America.

987654321

ISBN 0-387-97394-X Springer-Verlag New York Berlin Heidelberg
ISBN 3-540-97394-X Springer-Verlag Berlin Heidelberg New York

This book is dedicated
by Dan Shafer
to
Bill Gladstone Super-
Agent and Super-Friend
and
by Dean Ritz

to his Brothers, Keith and Mike

Preface

This is a book about what we believe may well be the Computer Programming
Language of the 90s: Smalltalk. No, you're not about to be subjected to yet
another sales pitch for Object-Oriented Programming (OOP) and the lan-
guages that support that approach to software design and construction. If
you've purchased this book, you're already sold on OOP and probably at
least to some degree on Smalltalk as well.

As we looked at the available book titles about Smalltalk programming
when we started this project, we noticed that those books as well as
documentation for Smalltalk products, provided very good introductory
information. But the level of detail was such that these materials did not
really help the reader to see easily how real-world applications could be
constructed in Smalltalk. Yet we realized, too, that once you have a
Smalltalk environment in your hands, the natural thing to want to do is to
build something useful and interesting. Helping you understand how to
build applications is the sole focus of this book.

Who Should Read this Book?

This book is specifically aimed at people who are interested in learning to
build real-world applications using Smalltalk/V (and, more specifically,
Smalltalk/V 286). To some extent at least, it picks up where the Smalltalk/V
tutorial leaves off, although it also includes a bit of refresher material that
extends some of the information in that tutorial as well. We assume that you
are already sold on OOP and on Smalltalk/V and that you are familiar with
the basic programming concepts contained in the Smalltalk/V tutorial. We
do not assume that you are a professional programmer.

You will benefit most from this book if you work through the projects it
contains. But Smalltalk code tends to be quite readable; if you don't have
ready access to a system running Smalltalk/V, you can still gain some
insights into the design, coding techniques, and strategies that will make you
a better Smalltalk programmer.

vii

viii

Practical SmallTalk

What Should You Expect To Learn?

Obviously, we expect you to make a reasonably serious time commitment
to learning OOP and Smalltalk/V. Why should you do this? What's in it for
you?

In brief, we expect that by the time you finish this book, you will learn how
to handle the following programming-related tasks in Smalltalk/V 286 (and,
by extension, in other flavors of Smalltalk/V as well):

* how to organize your classes into hierarchies that make them easier to
reuse and extend

 where and how to find reusable classes in the Smalltalk/V class library

* how to design and implement projects related to all of the key concepts
in Smalltalk/V, including simulations

You will do all of this by following through the book from start to finish as
we take you through the process of learning the Smalltalk/V environment,
tools, libraries, and techniques, on a practical level.

What Does this Book Cover?

This book is divided into 11 chapters, some of which may be longer than you
are used to seeing in computer books. With the exception of Chapter 1, it
follows a careful organization of background and theory followed by a
specific project for you to build that reinforces and extends the concepts in
the preceding chapter.

Chapter 1 is a brief look at the Smalltalk/V environment. It encom-
passes an overview of the Smalltalk/V tools, some emphasis on the
Class Hierarchy Browser (CHB) and the Disk Browser, an introduc-
tion to the use of the Debugger, and a discussion of how to customize
the Smalltalk/V environment to make it more compatible with your
style of programming and design. Some of the material in this chapter
reviews information found in the Digitalk tutorial, and some of it is
new material.

Chapter 2 focuses on the Smalltalk language itself. The language is, of
course, just one of the tools in the Smalltalk/V environment. This
chapter looks at basic Smalltalk/V syntax, outlines some of the
important classes in the Smalltalk/V class library that we'll be dealing

Preface ix

with in this book, and points out some key programming concepts that
are either glossed over or not covered in detail in the Digitalk manuals.

Chapter 3 puts the material in the first two chapters to work in the first
of five projects around which the book is centered. In this chapter,
you'll build a small project that extends the Smalltalk/V environment
by adding a simple but useful application to the system and demo
menus. This application is called the Prioritize” it helps you to rank
and sort through a list of choices you enter. You'll see how to design
this application and become comfortable with the idea of modifying
the Smalltalk/V environment. Many programmers coming to Smalltalk
from other languages and approaches find a difficult psychological
barrier in the fact that all of the programming you do in Smalltalk
entails changing the environment itself. This chapter will help you
over that hurdle and build a useful application in the process.

Chapter 4 turns our attention to the development processes involved in
designing and creating Smalltalk/V applications. As you'll see, pro-
gramming in Smalltalk is a little like peeling an onion. There are
several approaches to programming, none of which is the best and all
of which may actually be used in creating a single application.

Chapter 5 will then demonstrate the simplest approach to programming
in Smalltalk/V as you build a small counter project. While simplistic
in execution, this project requires that you understand the basic use of
the Model-Pane-Dispatcher (MPD) triad that is at the core of all
Smalltalk/V interactive applications.

Chapter 6 then exclusively focuses on this triad and examines the key
role played by the MPD interactions. The most useful aspect of this
chapter lies in the triage it performs on the relatively complex and
extensive set of classes and methods that comprise the MPD architec-
ture. By defining what is important for you to learn and understand,
and differentiating it from what you can simply take for granted, this
chapter will greatly accelerate your ability to grasp the MPD concepts
that are crucial to successful Smalltalk/V programming. We'll take
apart the ListPane class to see how the MPD architecture is imple-
mented in Smalltalk/V's class libraries.

Chapter 7 then puts the MPD triad to work by helping you build a new
type of pane, specifically a new sub-class of the ListPane class that
allows the user to select more than one item from the scrolling list it
contains. You'll see how this list requires the use of the MPD triad.
We'll also describe the interaction between this list pane and a
standard one that shows the user's selections as they change.

x Practical SmallTalk

Chapter 8 tums our attention to the graphic world of Smalltalk/V. This
language lives in an inherently graphic environment. Even on systems
which do not feature a built-in graphic user interface, Smalltalk/V
provides it. In this chapter, we'll look at the basic graphic concepts:
forms, drawing primitives, and animation. Along the way we'll take
a brief look at some of the mathematics involved in all graphic work.

Chapter 9 puts some of these basic graphic techniques to work as you
build your fourth Smalltalk/V project, a graphing tool. This project
was designed and constructed specially for this book by Morton
Goldberg. You'll see the incremental development approach and
understand how the graphic aspects of the program are used both to
create the interface for the user and to generate the display of data. This
chapter concludes with an enlightening discussion of how to extend
this little example project into a more fully featured application.

Chapter 10 does for the text world of Smalltalk/V what Chapter 8 did
for the graphic world. It explores Smalltalk/V text editing concepts,
including the TextPane, TextEditor, and TextSelection classes and
how they are used.

Chapter 11 provides you a chance to try out your knowledge of the
textual aspects of the language and environment by building a flexible
extension to Smalltalk/V's built-in methods of prompting users for
textual responses. You'll learn how to design, build, and extend a
dynamically modifiable blank form generator.

What This Book is Not

This book does not attempt to do any of the following:

* persuade you that OOP is important, efficient, effective, or indispens
able. We believe it is all of these things, but other writers have been
touting this technology for a long time and many of them are better at
such writing than we are.

* teach you basic OOP concepts. You should understand classes,
methods, inheritance, encapsulation, polymorphism, and other key
OOP ideas, at least minimally, before you attempt to read this book.
Ifyou don't, then the Digitalk documentation provides some excellent
background in the subject. There are numerous other books dedicated
to teaching OOP.

» compare OOP or Smalltalk to other programming methodologies. If
you are an experienced programmer, you can draw your own analo
gies as you progress through the book. Those conclusions will be more

Preface xi

valid than any we might suggest because they are yours and are based
on your experience. If you are not an experienced programmer, then
you p. ibably neither care how Smalltalk and OOP compare to these
other approaches nor have the background to understand the differ-
ences if we took the time and space to list them.

Some Notational Conventions

As with any programming book, this one adopts certain notational and
syntactic conventions to make readability easier. Here are the most impor-
tant of those conventions.

* All class names are printed in bold type except in section headings,
which are already bold and where they are usually evidently class
names from their context.

All method names are printed in italic type, including in section
headings.

* We use a special font to reproduce program listings. It looks like this:
sample code

* We try to differentiate between elements of the Smalltalk language
and environment that are peculiar to Smalltalk/V and those that are
more generic and could be considered applicable regardless of the
dialect of the language you choose. We use the term "Smalltalk/V" to
mean that the subject being discussed is either unique to Smalltalk/V
or implemented differently than in other versions of the language.
Where we use the term "Smalltalk," we refer to the broader context of
the language of which Smalltalk/V is but one (albeit the most widely
used) implementation.

Contacting the Authors

We always enjoy hearing from people who have bought and read our books.
Whether you want to tell us how much you enjoyed it and how much you
learned, point out weaknesses, complain in general, or just exchange ideas
about Smalltalk and OOP, you can reach us in any of several ways.
Electronic mail is your best bet; we read and respond to electronic messages
practically daily. You can reach Dan Shafer on CompuServe (71246,402),

Xii

Practical SmallTalk

MCI Mail (DSHAFER), or CONNECT (DSHAFER). If you want to drop us
a line, Dan's address is 277 Hillview Ave., Redwood City, CA 94062.
That's not too reliable, though; we may even move by the time this book is
printed!

Dean Ritz is on the move as this is being printed, so if you have something

specifically to say to him, your best bet is to send it through Dan Shafer using
one of the above approaches.

Acknowledgments

The authors gratefully acknowledge the assistance of many people whose
input, insights, and occasional interrogations helped shape this book.
Among the more important people in this regard are:

Adele Goldberg, Stephen Pope, and several other people whom Dan
met at ParcPlace Systems and who were responsible for his early
Smalltalk education.

Dave Wilson, an OOP fanatic who contributed greatly to Dan's under-
standing of objects and their proper role in the universe (which Dave
believes, of course, is everywhere!).

Timothy Randle, who spent many hours with Dean discussing OOP and
Smalltalk and reviewing designs for some of the programs in this
book.

Morton Goldberg, who spent a great deal of time reviewing the early
chapters of this book and who designed and built the graphing
application in Chapter 9.

Richard Szabo, Dean's good friend who first introduced Dean to
computer science and demonstrated how something potentially so
annoying could be so interesting.

Charles A. Rovira and Martin Shapiro, who reviewed portions of the
manuscript, helped Dan over some Smalltalk rough spots and encour-
aged the project all without having to deal with Dan face to face,
thanks to the miracle of CompuServe!

John Sellers, who painstakingly read and commented on a late draft of
the manuscript and made several extremely helpful and insightful
suggestions.

Dan Goldman, Barbara Noparstak, Mike Anderson, Mike Teng, and
the rest of the gang at Digitalk, who put up with delays, repetitive
questions, panic and other modes of human behavior that no self-
respecting publisher should have to put up with. In addition, both Jim
Anderson and George Bosworth were positive, encouraging, and
enthusiastic in their support for this project from the first discussion
about its possibilities.

xiii

xiv Practical SmallTalk

The Editorial Staff at Springer-Verlag treated the project with care
and enthusiasm.

Don and Rae Huntington of Production Services, who typeset the
book, tolerated more than a few quirks in the authors and the
manuscript, painstakingly proofread the copy, and in general
made the book look and read as well as it does.

We've omitted dozens of other people whose support and encourage-
ment, inspiration and help, have made this an enjoyable and, we trust
you'll agree, successful project. Thanks to one and all!

Contents

Preface

Acknowledgments

1 The Environment J

Introduction..

An Overview of the Environment
Using the Class Hierarchy Browser

Templates in the CHBccocveieniiieieeeeeeeeeen

Removing Classes via the CHB............ccccoovvircierienreeenee.
The Smalltalk/V IMagecccccveveverienieieeeeeeeee e
Using the Disk BrOWSET........cccccveierieriinieieeeeeeeeere e
Using the Other BrOWSEISccccveveriererieierieeeeeeiese e
USING INSPECLOTS ...ttt eens
USING WOTKSPACESeuvieeeeeieiiriieeieieie sttt see et see e
Using the DebUgEer.........cccevvvirieiieiecieeeeeeee e

2 The Smalltalk/V Language
Introduction...
Review of Basic Smalltalk Syntax

vii
xiii

O O I3\ N BN —

11
12

17

Message-Passing Syntax.........ccceeceeeeeeereneseenienieneneenieneens
Method-Definition Syntax........cccceeceeeverereseeseenieneneeeeeens

Summary

OF SYNEAX..eevieiieieieceeee et

The Essential ClasSesooviveuviiiiiieieiiiieieeeeeeee et

The Collection ClasSES........coovuveiiveueieiiieiieeeiieee e
DiSPALCHET ...

Form.......

DiSplaySCreenc..ooevieeirerinieieeneeeeeneee e

Magnitud
Menu......

Prompter
Rectangle

€ CLaASSES ittt

17
17
18
19
20
21
23
23
23
23
23
25
25
25
26
26
26
27
27
28

XV

xvi Practical Smalltalk

SEIEAM....cuviiiiiieretire ettt esnene 28
StringMOodelc.oovieieiiiceeee e 28
TextSElectionc.covevieiiiririeieee et 28

3 The First Project: A Prioritizer 29
INErOAUCTION ..ottt 29
Project OVEIrVIEWocveieieeiieeieieie et e 29
Designing the Project.......ccoceeeriviecierenieieceeeeeeee e 30
Building the Project) eeteteeteeeetetente et eteteteeteeneentenen 30
Class PrOMPLErc.ceveieiieieieierieeeeee e 31
Creating a Prompter........coceecievenieeecieneseeeeieese e 32
Sorting the User's List......... e etee e e e e e a———eeea——eeeaa—reeeaaaeeaas 34
Displaying the Result..........cccocereninieiieniieieeceee 36
The Finished Prioritizer Methodcccoovveiecieniinenienee 37
Adding Prioritizer to the Menus..........ccceeevveverienieneeeenens 38
Demo Menu Modification.........coevereeeereneneneeneneneneeneenenn 38
System Menu Modification..........cccceeveeeerienveeeneneseeeennen 40
Sprucing Up the Applicationccceevevevierenenieeereeeeeeenes 42
Changing the Prompter.........ccoceeevieienenenieeeeeeeenen 43
Consolidating the Codeccecveeerieieceereeeee e 4
Using the Debugger, Part 2...........ccecevvvieieneneeeeeese e 46
4 Programming Techniques 49
INErOdUCTION ...ttt 49
Why Smalltalk/V Feels Differentc.ccccevervrvevieneninieenee. 49
Peeling the Onion.........cccveiererieieiereseeeeee e 50
WHhere t0 BEZINTccooieieieierieieeeseece et 51
What Should the Application Do?..........ccceeveviriecieneneeeeeneen 52
Objects and Their Responsibilities..........ccecererircvenierieneeeennne 53
What Do Objects Need to Know?.........cccoevvvecienenreeenennn. 53
How Do Objects Collaborate?cccevervrvereeneenenvenene 54
Starting With Class Diagrams..........ccocceeevvrvecieneneevennne 54
Creating ODJECTS.eoverrieieierierieeteteie e eteteste st enreae e eneeneenes 55
Subclassing the Class ObJectccoeveeveriereriecierienieennes 55
Subclassing Other Classes........cccovvrieiereneeiecierieseeeeeenns 57

The Subclassing Process........ccocveeereeieeieneneeieenieeeeeene 57
Modifying Behavior of Chosen Classcceceeveviveeenennee. 58
Creating and Using Abstract Classescceecervreverierieneeeeneenns 59
The Purpose of Do-Nothing Methods..........cccceeevvreeennen. 60
Identifying the Right Class.........ccccceviiirienienienieieeeseeene 60
Adding Methodscocoeieierinieieeeeeee e 61
The Process of Adding a Method..........ccccvvveieciennneennnnen. 62

Avoid Adding Methods to System Classesc..c.cceueueeee. 62

5 The Second Project: A Simple Countercceccvveevereerereenennn. 65

INtrodUCION. ..ot 65
Project OVEIVIEWccevieeeieieiesiieieieiesieees ceerteeeeeeeeeneesseeeeneas 65
A Quick Overview of Model-Pane-Dispatcher 66
The MOdel.....ccooiiniiiiiinireicseeeeeeetees e 67

ThEe Panec..ooevvveeeiiiiii e o y eerreeenns 67

The DiSpatChercceverieieieieceeeeeee e 68
What's Really Going on Here?cccocvvveiecienenenienen. 68
Designing the Projectccevvvieiecienenieeeeeeeeee e 69
Dividing the Responsibilities..........ccecerereerverierienereenenne. 69
Defining the Classccccevvrieierereeieieieeeeeeeeee e 70
Defining the Main Windowccceceeeervneeieneneseenensn. 70
Defining the Subpanes..........cccceecveeererireecieneseeeeeeee . 71
Displaying the Windowcccecvererinieiieieneseeeeiese e 73
Creating a Single Method for Window Definition 73
Writing the Methods for SubPane Interaction............c.cccueeeee. 74
Methods to Create a Counter..........oceeeeeveereeeveneeneeseenenn. 76
Testing the COUNLET........ccccvvieierierireieeieeeeee e 77
Making the Window Smaller..........cccovvreievenininieieeneeeene 78
Inspecting a Running Counter............ccceeveeeeveneerieneenensn. 80
Removing the Counter Classcceoveveeeierienenieieieneeeeeenens 81
The Complete Counter Project LiSting.......cccccvvveeverierenvevennnns 81
6 The World of MPD ..ottt &3
INErodUCION ..ot &3
There's So Much Going on Here!cccceeervvinienienenieeene, &3
TopPane Methods Youll Need.........cccoevvirienienenieieeneeeene 84
The new Method....................... ereeeeer—ee e e —ee e e ——eeeantreaaanes 84

The label: Method.........cccccoviveniiiinininiiineceneeeeee 85

The addSubpane: Methodccccovvvevieeenieieeeeeeen 85

The minimumSize: Method............ccoeevvninenenninincnnenn. 86

The initWindowSize Method............cccccveninenenninineneenn. 87

The rightlcons: and leftlcons: Methods............cccoevvuvevennnnen. 88
SubPane Methods Youll Need........ccccoevevveninenennincncneeenn 89
The model: Methodcccooveeivinininiinninecneeee 89

The name: Method.........c..ocoveviinininiinniceceeee 90

The change: Methodccocoeeveeevieieieeeeeeeeeen 90

The framingBlock: andframingRatio: Methods...................... 91
Creating Rectangles.........ccoovvveieriereeieceeseeeeee e 92
Rectangles and Subpanesccccoeceeevevevenienieneneeeeenee. 93
Pane MENUScc.cocvevieniinieieniencneeeeeeeeereresre et 94
Obtaining a TextPane's Contentscccccevveeverrereeseenennn. 96

The Only Model Method Youll Need........coccovvvieieneneneennee. 96

xviii Practical Smalltalk

Dispatcher Methods You'll Need........cccoeoveeieviniecieniereciees 97
The scheduleWindow Method.............cccoeovviriecienenineenee. 97
The open Methodcocoveieieiiiieieeeeeeee e 97
Standard Use of Dispatcher Methodsccccecvervrieienene 97
7 The Third Project: Creating a New Pane Type 99
INtrodUCtiON.oiviieiciriiec e 99
Designing the Projectccocvvevircieeienereeeieeeeeee e 99
Problems Addressed by ListPane...............cccccoecvereeeuennene. 100
Responsibilities of ListPane.............cccccoecveveveieeiiieiennnne. 101
Problems to be Addressed by MListPane.......... e 101
Responsibilities of MListPane.............c..ccccoveeeeiireeennnnne. 102
A Note About Responsibilities..........ccecerervrcveriereneenennn. 103
Building the Test Application.........ccocceeeeeverienieeeeieereeeeeene 103
Defining and Initializing Instance Variables...................... 103
Opening the Application Window..........ccceevevierenennennnne. 106
Connecting the Two Panescccoeceeeevevieceesieneneeeene 108
Creating and Constructing MListPane...............c..cccoeu...... 110
Building MLISIPARe.ccooeeeeiieieieeeeeeeeeee e 111
Relevant MListPane Responsibilities...........c.ccecervreerennens 111
Clearing selection and selections as Needed......................... 112
Formatting and Unformatting Selections............c.cceueenene. 114
Adding and Removing Elements of selections.................... 115
Preserving the Original List..........coceeeverinciesieneneeeeene, 115
Interpreting User Input for Selecting and De-Selecting
Elementscccoeirininieniiininicicinenceeeenesceeeeaene 118
Providing the Model With User's Selections 121
The Complete LiStNg.......ccevvvreieierieneeieieiene e seeeeneens 122
An Alternative Approachccceceeeeverircieseneeeeeese e 126
8 The Graphic World 129
INErOdUCION ..ot 129
Basic Graphic CONnCeptscovvrverieriereeieierieneeeeeesie e 129
The Class POIRLccccoveeiiiiiiiniieiiiieeeeeeee e, 130
The Class Rectangleccocceeceecieceieniaieeseeieieen, 131
The Class FOFMcceveiiiiineieiieeecee e 132
Drawing in Smalltalk/Vcccoooioininiieeeeeee e 134
The Class BitBltccccvcimineoiiiiinineeseeeeee e, 135
The Class Pen.......c.coeveivinineiiiienereee et 137
The direction: Method............cccccvininennininineinncreeeens 139
The turn: Methodccocviiiniinininiennccceene 140
The place: Method..........ccoeveieeierieieieeeeeeeeee e 140
The home Method...........ccoiviviininineninneeerceeeene 140
The g0: Method.......cocveviiiieieieeeceeeee e 141
The goto: Methodcccvvieieriinieieeee e 141

Class GFaphPanecccocvvevceeeiieecieeeieeeieeeieeeieens 141

Contents xix

9 The Fourth Project: A Graphing Application 143
Introductionccccceeeeviviiinineenenennn, ettt e e e e a—————————aaa 143
Designing the Application.......c..cecveeviieriienciieeiie e e 143

The SUDPANES.....ccveeeeiiieiieciieciie ettt e 144

The Class PIOtWinAOWcccoeveeviiiiiieiieiieeieeeeeeen 145
Building the Application: Stage One........cccceeceeeceevceeneeneennenne. 145
The open Method..........cccvviviieeiieeiieeieeie e 145

The initWindowSize Methodcccoocvevieiiinieniiiieceen, 146
Methods for the Text Pane........cccoceevveiiiniiniiniiieieeieee, 147
Methods for the Graphing Pane...........ccceevveveiveeiieenneenne. 148
Demonstrating the First Version......... ccceceeeevveeceecieenenns 148
Building the Application: Stage TWO.....cccceevvevierieneenieeieenenn 149
Plotting the Plots' Argumentsccccceeeeveeevveerveenreennnennn 150

The initialize Methodcccoeviviiiiiiiiiiieieeeeeee, 151
Drawing the Bars.......c.ccocveeviiiiiiiniieciieeiee e 152
Defining Graph Selection Methods.........ccoeceevievieriennennne. 155
The clearPlot Method........ccoceviieiiiiiiniiiecece e 155

The stringfrom: Method..........ccccoevevieeciieeciiieieeeeeee e 156
Demonstrating the Second Version..........ccccecvvevcveenrieecieeennieenns 156
The Complete Listing of Second Version...........cceeeenneeee. 158
Building the Application: Stage Threecccceevuvevveerveeceeencnns 161
User Selection of Graph Argumentscceeevveeeiveennneens 161
Changing the plotMenucc.ccccveevvieeiieiiieiiieeeen, 162

The optionPicker Method...........cccccoevveveiieeciieiiiieiieerie e 162

The barFill Methodcocoeviiiiiiiiiieeeeee e 163

The barSpacing, barWidth, and factor Methods 164

The promptFor:default:validateWith: Method........................ 165
File-Based Data Retrieval and Storage..........ccccocvevevveeeieeennnenns 166
The Modified dataMenu Methodcocceviiviiniineennnnne. 167
Thefileln Methodcoovveviiiiciiieiieeieeee e 167
ThefileOut Methodccccoeevveeiiiiiiieieeciieeee e 168
Redrawing the Plot on User Demand..........ccccceeeeiienennen. 169
The Complete LiStiNg.......cccveeerieeeiieeriieerieeeiie e eiee e e 169
10 The Text World 177
INtrOAUCTION ..ottt e 177
Behind the Text in Smalltalk.........ccccooieviienienieniiieeeeeceee, 177
The Class TexXtPanecccoicueiieiieiieiieeeseee e 179
Methods for Appending TeXt......cccoeeveeeieeiieeniieieeeeeeene, 179
Methods for Scrolling the Textccceeevieeeiieviierieeereeee, 179
Methods Related to Selection of TexXt.......ccceevververivenieenen. 180

The Class Text EdItOFccueveereeiieeieeieeeeeeeeieeeeeeeee e 180
Tracking the Status of TeXt.....ccccocveverieeiiieeiieeieeie e 181
Putting Special Characters in TeXt.......ccccoevervierceirniinciennene 181
Zooming the Pane..........ccccceeeeiiiiiiiieiieiicciee e 181

The Class StringModel....................cccoeevieeiieiiiaeiieiiieeieeieeenn, 182

xx Practical Smalltalk

Information-Gathering Methodscccccevvecveveneniniennnns 182
Searching Methodsccocveeiereninieeeeeeee e 183
Editing Methods.........cceoeriiiirieieieeeieeeeeeee e 183

The Class CharacterScannerc.cceceeeeeceeveeneneeceeieenenns 183
Methods to Control Appearancecccceveeveeeerieneeceennns 184
Methods to Display TeXtccccevererierierienieeieiere e 184
Methods to Blank Portions of the Paneccccveveennneene. 185

11 The Fifth Project: A Form Designer 187
INErOdUCION ..ot 187
Project OVEIVIEWcoveiieiieieieie ettt neas 187
Designing the Project........cocveeeririecienereeeeieeeeeeee e 188
Statement of PUIPOSE.......ccvvveierieriieieieeceeeeee e 188
Defining the ObJectscccvvveierieriieieierere e 189
Object Responsibilitiesc.cceevverieeieierenireieieeseeeeeenen 189
General Approach..........cccoeceecieeerieiecerese e 190
Knowledge Neededccoooveieieniieieieeeeceeese e 191
Building the Projectceceeeririeieerieeeeeeeeeeee e 191
Creating the New Classesceevererierieniereeeenienieneeeeneens 192
Skeletal Interaction Methods..........ccoceceveneneneincncnencnnen. 193
Building the Test Applicationccccceevvvveveceerenieneeeenne. 198
Writing Methods to Place Sub-Panes...........cccoocvvveeverenvncennen. 200
Installing the Text Panes for Each Editable Field....................... 203
Modifying Undesirable Behavior in the Superclasses 206
Adding Menu Capabilities.........cccecvreerierererieierieseneeeenns 210
Formatting the Name Fields.........ccoccoeeninincieneneneeienee. 211
Creating a More Complex Test Application.........c..cccceeue. 213
Disabling Scrolling in the GraphPane..........c..cccccvvvrurnenee. 214

An Alternative Approach.......cccoeceeeveverveieneneneeeeseseeeeeenes 215
Complete Source Code........covririeeienerenieieeseeeeeese e 216

1

The Environment

Introduction

In this chapter, we will look at the various tools that make up the Smalltalk/V
programming environment. We will examine the Class Hierarchy Browser,
Disk Browser, Inspector, Workspace, and the Debugger. We include some
tips that help you make more effective use of the Smalltalk/V programming
tools as you develop applications.

The documentation that comes with Smalltalk/V 286 (and the other
flavors of Smalltalk/V as well) contains detailed instructions on the use of
these tools. We won't attempt to duplicate that information in detail here.
Rather, our focus will be on two aspects of each tool: an overview of its use
(condensing information contained in the documentation in greater detail)
and tips and hints about its use that don't appear in the documentation and
that only arise from experience using the environment.

An Overview of the Environment

Any productive object-oriented development tool consists of three interre-
lated elements:

* tools that facilitate use of the language (editor, browser, debugger, etc.)
« the language itself (compiler)

« the class libraries that give the programmer access to the operating
system, user interface, and other elements of program design

This chapter focuses on the first issue: tools. Chapter 2 reviews and provides
some insights into the Smalltalk language as embodied in Smalltalk/V. The
rest of the book uses these tools and the language in conjunction with the
most important and useful classes in the class library to construct some
interesting applications.

2

Practical Smalltalk

Most of the tools you'll find useful in the Smalltalk/V 286 environment are
windows. All windows have certain things in common, including:

* a title bar containing the title of the window and providing a handle for
the direct manipulation of the window

* one or more panes of various types
* pop-up menus associated with each pane

* optional icons that allow you to do things like close, collapse, zoom,
or resize the window

Some windows also include buttons on which you can click with the mouse
to change the state of things in the window. For example, the Class
Hierarchy Browser (at which we'll look closely in a moment) has two
buttons labeled "instance" and "class" that let you decide which type of
methods you want to examine for the selected class.

Another behavior that all Smalltalk/V windows exhibit may take you
some time to get accustomed to. You can only type in a window when that
window is the topmost and active window. That's not too surprising if
you've had any experience with Microsoft Windows or the Apple Macin-
tosh. Some other windowing environments differ slightly in this behavior
(e.g., UNIX X Windows). What may come as a surprise, though, is that the
cursor must be physically located inside the window for you to edit its
contents. If you are accustomed to shoving the mouse pointer out of your
way as you type, you'll have to unlearn that behavior; Smalltalk/V 286 will
simply beep at you if you attempt to type into a window that does not contain
the cursor.

Your Smalltalk/V environment automatically includes one window, the
Transcript, when you launch the system. This window cannot be closed or
collapsed but it can be zoomed and resized as well as moved. You will quite
often instruct your Smalltalk methods — particularly while you are devel-
oping and debugging them — to place information into the Transcript
because you can be sure it will always be around and because displaying
information there is relatively easy.

Using the Class Hierarchy Browser

Most experienced Smalltalk/V programmers always have at least one copy
of the Class Hierarchy Browser open (or collapsed but accessible) in their
environment. This window is used so frequently in Smalltalk programming
that we'll shorten references to it and call it the CHB so you won't get tired
of reading (and we won't get tired of typing) Class Hierarchy Browser.

Chapter 1 The Environment 3

Figure 1-1 shows the Class Hierarchy Browser as it appears when you first
open it in Smalltalk/V. This window has five panes. The class list pane in
the upper left lists all the classes in your current Smalltalk/V image. The
names of classes which have subclasses are followed by ellipses. The
method list pane in the upper right lists the methods associated with the
selected class.

Notice that when you first open the CHB, no class is selected, so the
method list pane is empty. Immediately below the method list pane are two
sub-panes that look and act like buttons. One is labeled instance and the other
is labeled class. Selecting one of these panes results in the instance or class
methods of the selected class being shown in the method list pane. Finally,
there is a larger pane at the bottom of the window that is a text editing pane
where the source code of the selected method or class definition will appear.
You can edit the text here; in fact, this is the place you will do most of your
Smalltalk/V programming.

If you are working with code from two or more classes at once, you will
find the most efficient way of setting up your environment will probably be
to open a separate CHB for each class with which you are working. Each
time you change the class you' ve selected in the upper-left list pane, you will
lose the focus on the method you were editing before you made the change.
This is quite often inefficient/Since Smalltalk/V lets you have a theoreti-
cally unlimited number of CHBs open at one time, multiple browsers will
become a frequent part of your Smalltalk/V programming experience.

Remember from your Smalltalk/V tutorial work that you can also open a
CHB with a specific focus, that is, a CHB that not only opens on a specific

Boolean. ..
ClassBrouser

Collection. ..

EI olovPalattes “]S—tgﬁEE __] class
bject subclass: #ClassHierarchyBrowser

instanceVariabhleManes:

'originalClasses hrousedClasses selectedClas:
classVariabhleNames: **
poolDictionaries: *’

Figure 1-1. Typical Class Hierarchy Browser

Practical Smalitalk

class but one that contains a limited subset of the total Smalltalk/V class
hierarchy. You do this by evaluating the following expression (probably in
your Transcript or your Workspace):

ClassHierarchyBrowser new openOn: (Array with: <className> with:
<className>...)

You will, of course, substitute the name(s) of the class(es) you wish to be
contained in the CHB for the <className> place markers in the above line
of code.

Templates in the CHB

Any time you create a new element of the Smalltalk/V environment in the
CHB, you will be presented with a template for that definition in the lower,
text-editing pane of the CHB' s window. Figure 1 -2 shows you the template
for the creation of a new method, which is one of the most common
operations you'll perform. Similarly, a relevant template appears if you tell
Smalltalk/V through the CHB that you want to create a new class.
These templates are often useful in helping to remind you of the things that are

required and expected in defining new Smalltalk/V objects.

bounceBo.l 1

demoMenu

D 1 reu::tury
DiskBrouser
D ispatcher

hMa

{ temporaries |
statemants

Figure 1-2. New Method Template in CHB

Chapter 1 The Environment 5

Removing Classes via the CHB

As you work with a Smalltalk/V image (see below), you will occasionally
want to "clean it up" by removing classes you created for some experimental
purpose but no longer need. Doing so is easy by means of the CHB .provided
there are no instances of the class lying around the image. We find this is
often a source of confusion even to Smalltalk/V programmers with some
experience.

If you create an instance of a class — for example, by sending the class the
message new and assigning the result to a global variable — and then try to
delete the class, Smalltalk/V won't let you. Instead, it will present you with
a walkback with the message "has instances" (see Figure 1-3),

Smalltalk/V, through its automatic process known as garbage collection,
removes from the image any object that is not referred to by some other
object in the system. So the has instances error indicates that you have
created an instance of the class in question and cannot delete the class
because these instances depend on it.

You can find out what instances Smalltalk/V finds for the class you're
trying to delete by sending the alllnstances message to the class. For ex-
ample, if you try to delete a class you created and named Counter, you can
find out what instances of it exist by typing the following line in the
Transcript or Workspace, selecting the text, and selecting show it from the
pane menu:

Counter alllnstances

Clazs Hisrarchy Browser

ClassBrowser initUindowSize
ClamHlararcluDrmcr

Countar clazs(C l“s)))movel’rolﬂg‘stﬂ
T C lasaH il exarchyBrowser?) resmoveSubCla:
m‘: ClaxsH lararchyBrowser(Oh_j act) >>parforu
n

LiztPane{Pane)>>poplip: at

£ ListPane(Pana)>>poplip:

T AListPanatlSubPane) > performiienu
aTopPane dy ¢ 4ge lactor{Diapatcher))>processFuncti
LiztSelector{Bcrol 1Dispatcher)ddprocess)
LiztSelactar(Dispatcher))>procesaley:

Figure 1-3. Walkback with "Has instances" Error

Practical Smalltalk

Then you need to type a line in the Transcript or Workspace removing the
class affiliation for each of these references. If, for example, the above line
revealed that you had created a new counter at some point called MyCounterl,
you could do something like the following:

MyCounterl := String new

After doing this for all of the objects that reference the class you wish to
remove, you can then return to the CHB and remove the class.

A more effective way to accomplish this task in one step (if you are sure
you want to remove all instances of a particular class so that you can change
its definition or remove it) is to evaluate the following expression:

Counter alllnstances do: [reach |
each become: String new]

This expression transfers all the references (pointers) to each instance of
Counter to an empty string.

The Smalitalk/V Image

We have mentioned the concept of an "image" in Smalltalk without
explaining it. On one level, an image is a simple and basic concept. It can
be thought of as the current environment that contains all the compiled
methods and all of the instances of active objects.

Whenever you run Smalltalk, you work with an image. You can only work
with one image at a time. As you develop applications, you may well have
occasion to store more than one image on your disk, particularly as you wish
to back up previous work or operate on different versions of the same
application or even create other applications. Each separate application,
unless they are to be delivered together for some reason, is a separate image.

One of the most helpful and interesting aspects of an image is the Changes
Log. This log keeps track of all the changes you make in an image. It should
be saved each time you save the image itself. You must keep the change log
with its associated image, since they are bound logically but not physically.
It is a common mistake to use a change log with the wrong image.
Eventually, of course, this portion of the image can become quite large. You
can reduce the size of your image by evaluating the following expression:

Smalltalk compressChanges

Chapter 1 The Environment 7

When you evaluate this expression, Smalltalk/V clears out all of the contents of
the change log except for the latest copy of each new or changed method. It also
removes class definitions and writes a new image file automatically.

You can save even more disk space by compressing the entire source file,
which is logically also part of the image. Do this by evaluating the following
expression:

Smalltalk compress Sources

Evaluating this expression creates an entirely new source file for all methods
in the system, using the most recent copy of the source code for each method.
It then empties the change log and automatically writes a new image to the
disk. The result, then, is a new base system with which to work.

Using the Disk Browser

You can open a Disk Browser any time you wish simply by selecting the
browse disk option from the system pop-up menu. You can have multiple
instances of Disk Browsers open in your environment at a time (typically,
you may have one for each disk that is currently in use).

The Disk Browser (see Figure 1-4) has two list panes in its upper portion.
The leftmost one contains the directory of the disk and the subdirectory
currently being viewed. The rightmost one contains a list of all the files in
that directory or subdirectory.

dar... comevnts. in

CP-. - counter.cls
S SR - == [oad . 5t

dannotes. txt
Eirectory by name dashbord.cls

hject zubclass: #Counter
instanceVariableNamas:
‘count digits mines ht wd scammer zeros outB
classVariableNames: *’
poollictionaries: ** ?

fCounter class methods ¥

Figure 1 -4. Typical Disk Browser

Practical Smalltalk

The bottom pane is a text editing pane where the contents of the selected file
appear unless the small list pane that acts as a button just below the directory
list pane is activated with the right mouse button. In that case, a popup menu
appears (see Figure 1-5) and the user selects the order in which he wishes
to examine the current directory. The directory, with complete file informa-
tion, then appears in the text editing pane in place of specific file contents.
Clicking on the name of a file in the rightmost list pane displays that file's
contents. If a file has more than 10,000 characters in it, Smalltalk/V notifies
you of that fact with a line at the top of the text editing pane and shows you
the first 2,000 and the last 8,000 characters. (You could, of course, change
these limits since the source code for the browser is available to you in the
system.)

One excellent use for the Disk Browser, by the way, is note-taking during
program development. You can create a new file in the Disk Browser by
selecting the create option from the popup menu in the rightmost list pane.
Then you can edit this file any time you like. You can save the contents of
the file by selecting the save option from the text editing pane's popup menu.

You can manage most of your DOS file environment from inside a
Smalltalk/V Disk Browser. In fact, we know several Smalltalk program-
mers who do just that, essentially "living" in Smalltalk/V 286 and handling
their entire user configuration and file structure from within the program-
ming environment. You can create, remove, print, rename, copy, edit, and
even change the system file mode attributes from within the Smalltalk/V

date order dannotas txt
nans orderl {dashhord.cls
size order
bject subclass:
instanceVariab lel'lmnas
count digits nines ht wd gcammer zeros outh
clasgVariableNawas: **
poolDictionaries: ** ¢

fCounter class methods ?

Figure 1-5. Disk Browser With Directory Style Popup

Chapter 1 The Environment 9

Disk Browser. (Of course, you can't run other DOS applications from inside
Smalltalk/V 286, so you can only handle operating system and Smalltalk-
related activities this way.)

Using the Other Browsers

There are two other types of browsers in Smalltalk/V for which you may find
occasional use. They are most useful when you are "playing detective" and
trying to find a particular class or method in the Smalltalk/V hierarchy.

The first browser is a Class Browser that lets you browse a particular class.
You can create such a browser by sending the message edit to any class or
by choosing the browse option from the class list pane of a CHB after having
selected a class.

You can also open a Method Browser that lets you examine and edit a
particular method that may be implemented in more than one class in the
system. You create such a browser by choosing a method name in a browser
and selecting either senders or implementors from the menu of the upper-
right pane. In either case, you will be presented with a browser that lists all
of the methods that send (or implement) the particular message in which you
can view the source code of the methods.

Quite often, you will find that creating a series of these browsers, looking
first at classes, then at methods, then at implementors and senders of
messages, can give you a very complete picture of how a particular class
operates or how a specific method propagates throughout the hierarchy.

Using Inspectors

Next to the CHB, the most useful window in the Smalltalk/V 286 environ-
ment is the Inspector. You'll use inspectors primarily during the process of
debugging your Smalltalk/V applications.

While a CHB (or other browser) lets you look at a class or method as it
represents a part of the Smalltalk/V image and hierarchy, an inspector lets
you examine the contents of the instance variables of a particular object or
instance of a class.

Actually, you can do much more than merely examine contents with an
Inspector. You can also change these contents. In addition, you can even
compile and execute expressions in the text pane of an Inspector with the
save menu option in that pane.

10 Practical Smalltalk

To open an inspector, you can either send the inspect message to an object
or choose inspect from the popup menu of the Debugger's list pane that
shows the instance variables of a selected object. Figure 1-6 is an example
of this usage of the inspector.

Here, we created a walkback by pressing Control-Break. (You should
know that you can press 'Control-Break' at any time so that you can inspect
what is going on in the system at any place in your development.) By
choosing debug from the walkback's popup menu, we opened the Debugger.
Then, as you can tell from Figure 1-6, we choose the inspect option from the
middle list pane at the top of the Debugger window after selecting self'in that
pane. Then we were presented with an Inspector window (the topmost
window in Figure 1-6) and chose to examine the value of an instance
variable called inPanic. You'll be happy to know that it contains the value

false, meaning that we were not in panic when we pressed Control-Break.

You can examine the value of any other instance variable in the inspector.
This is often insightful as you debug your programs because the failure to
assign a correct or inappropriate value to an instance variable is one of the
most common sources of Smalltalk/V programming errors.

(An instance variable is a piece of data associated with each instance of a
particular class. If a class defines an instance variable called, for example,
name, then every time you create an instance of that class, it will have an
instance variable called name. Like all variables in all programming lan-
guages, instance variables have values associated with them. Generally, you
can both read and write these values.)

[N] : Class l-li.urarchu Brc_mser Z)oyd |

— 1ini nineS iz
igi {User I/F} Control break

Proceas clam=)’controlBreakInte r
Process class(0bject)))pert
lazsl

suspendAct ive
TSuspend
the highest prio
if any., Called
disabled and Curim e
antaread in proper waiting gueue.™

! forcingBlock firstTine §
forcingBlock := [1.
firzstlime .= true.

R R TET PR

Figure 1-6. Inspector Opened from Debugger

Chapter 1 The Environment 11
Using Workspaces

We will use workspaces quite frequently in this book, so it's a good idea to
get comfortable with how they are created and used right at the outset of your
work here.

You can think of a Workspace as a blank slate that you can use as a free-
form text editor for any purpose. The Transcript that we discussed earlier is
just a special case of a Workspace. You can only have one Transcript
window open in your environment at any one time. As we mentioned earlier,
the system forces you to have one open. But you can have from zero to a
theoretically unlimited number of Workspace windows in your environment.

To create a new Workspace, you just choose open workspace from the
system popup menu. Smalltalk/V will give you a new, empty Workspace
window (see Figure 1-7) with the name "Workspace."

Notice that a Workspace has only one pane, a large text-editing pane, and
a title bar with some icons and a label. You can move, resize, collapse, zoom,
and close a Workspace. You can freely edit in the pane as well, but
remember that this pane is a Smalltalk/V text-editing pane, so word wrap is
not available. You'll have to press the carriage return when you want lines
to end.

If you close a Workspace that has some text in it, you'll be asked (see
Figure 1-8) if you want to discard the changes or not.

We usually give a Workspace a new label after we open it, naming it in
such a way that we can determine its purpose at a glance. Then when you
save the image next time, this Workspace stays available until and unless
you close it after saving its changes or telling Smalltalk/V to discard the
modifications.

] ~ Class Hierarchy Brouser Z)(O)Ed]

Uoriepace GA]Ee)

RitR1] |class

Figure 1-7. A New Workspace

12 Practical Smalltalk

I@ Class Hierarchy Browser B[EE
Object

fActor.
ﬁctarsrl.lnsavad Changes:
Bahav: don’ t discard changed tax'l: !

Figure 1 -8. Closing Workspace With Changes

One good use of a Workspace is to create a Workspace, call it something like
"Useful Stuff," and place into it code fragments for carrying out useful,
frequently needed tasks. For example, when we described earlier how to
identify all instances of a particular class you are trying to delete, you could
have placed that code in your chosen Workspace. The next time you need
to delete a class and get the "has instances" error, you can select the "Useful
Stuff Workspace, change the name of the class involved, select the
expression and do it without having to remember what command to use. If
you take this approach to the use of a Workspace window, be sure to
comment the code fragments so you' 11 be able to remember later why you' ve
stored them so carefully. (You can use the Disk Browser, discussed below,
to create a text file that contains these pieces of information. These files are
normal DOS files and can be saved, renamed, deleted, etc. This is in many
ways a better solution than using a Workspace for this purpose.)

Using the Debugger

The Debugger is one of the richest tools available to you as a Smalltalk/V
programmer. It combines the functions of a debugger, browser, and inspec-
tor into one immensely useful tool. You will undoubtedly get to know this
set of windows much more intimately than you had hoped before you have
finished building your first complex application. We'll find frequent uses
for the Debugger walkback and main window throughout the book. In this
section, we'll take a look at its general use and contents. Then in Chapter 3
we'll take a look at some of its limitations as we see it in use in debugging
our first Smalltalk/V project.

Chapter 1 The Environment 13

There are four ways for the Smalltalk/V Debugger to be invoked:
* by the system encountering an error condition
* by the user pressing Control-Break
* by sending the message halt to any object
* by Smalltalk encountering a method for which the programmer has set
a breakpoint

We'll look in this chapter at the use of the Debugger in all but the last two
situations.

Whenever an error occurs in a Smalltalk/V application, the system creates
a Debugger Walkback window. This walkback has two aspects that interest
us: its label and its pane contents. The label provides the message that
triggered the error condition (in most situations, at least) and the pane shows
us the list of messages that have been processed in the current processing
chain. The last method executed always appears on the top; as you go down
through the list, the messages sent or methods called are less and less recent.
(To be precise, this pane contains a nested list of all calls that are currently
being executed.) The list represents the most recent portion of the message-
passing chain for the currently executing method. It obviously includes
many messages that your code does not originate or deal with and leaves off
some with which your code did deal.

Let's deliberately create an error that will produce a Debugger Walkback.
In the Transcript (or in a Workspace), type the following nonsense code:

al +6

Now select and do it. You'll get a Debugger Walkback like the one shown
in Figure 1-9.

When the Debugger Walkback window appears, you can do two things
with it: you can close it or you can open the Debug window by selecting
"debug" from the pane pop-up menu. You can close it either by clicking its
close icon in the upper left corner of the title bar or by choosing resume from
the pane pop-up. In most cases, you'll probably open a Debug window.
Occasionally, the Debugger Walkback's label and the message list are
sufficient for you to see quickly what has gone wrong. In that case, of course,
you can simply dismiss the Debugger Walkback, fix the offending code, and
resume your work.

Generally, the first entry or two on the message list are not very useful.
They usually present the messages that deal with the error-handling process
itself. As such, they don't provide a lot of insight into what is happening with
the code that has gone awry.

14 Practical Smalltalk

[Smalltalk/V Transcrip(Z)0)]
Ja' - 6

YAt gt under

string(Object)>>error:

ring(Object)>>doesMotUnderstand:
Undef ined0hject>>Doit

Figure 1 -9. Sample Walkback

Bring up the Debugger window for the Walkback we just created by
choosing debug from the pane pop-up. Select the second method in the
upper left pane. The resulting Debugger window is shown in Figure 1-10.
The Debugger window has six panes, two of which look and act like
buttons. The top left pane reproduces the message list from the Debugger
Walkback window unless the "breakpoints" pane below it is selected, in which

“"Create a walkback window describing an
with the error message aString in the ug
Process
gqueuelalkback: aString
nakellserIF: CurrentProcess islUserlF
resunahle: false

Figure 1-10. Debugger Window

Chapter 1 The Environment 15

case it lists all of the methods for which breakpoints have been set. (We'll
have more to say about breakpoints and Debugger execution shortly.)
When you select a method from the upper-left pane, the next pane to the
right displays the receiver of that message as its first line and then all of the
temporary (i.e., local) variables associated with the method. Selecting one
of these variables, in turn, results in its current value being displayed in the
right-most pane. In Figure 1-10, we selected the first method from the
method list and Smalltalk/V selected the receiver, self, for us. We can see that
self (which is Smalltalk/V shorthand for the object that is the receiver of the
message) has a value of ‘@', indicating that it is a string. So now we know what
object the current message is being sent to. What is the message itself?
Clicking on the second entry in the variable list pane doesn't tell us much.
When we do that, the rightmost pane displays the rather cryptic a Message,
but we can investigate further. Click the right mouse button on the
aMessage entry in the variable list pane and choose inspect from the re-
sulting pop-up. (That's not too hard; inspect is the only choice!) This opens
an Inspector on aMessage so we can see its real contents. (You can also open
an Inspector simply by double-clicking on the variable's name.) When the
Inspector appears, the leftmost pane has the name of the receiver — again,
self— as its first entry. Click on the second entry, selector, and you'll see
the actual message (see Figure 1-11) being sent is the addition operator, +.

SnalltalksV framt:rip 23

Figure 1-11. Inspector Opened from Debugger Window

16 Practical Smalltalk

Now we 're getting somewhere. We know that the addition message has been
sent to a string object called 'a' and that the string object (not surprisingly)
doesn't understand the message. If this error had arisen during execution of
a method rather than from the manual execution of a message from the
Transcript, we could go back to the Debugger window at this point, find the
offending code, and fix it.
To summarize the Debugger's basic use, then, you will typically follow a

procedure that resembles the following:

1.
2.

A Walkback will appear, indicating an error has arisen.

Unless the error is obvious from the Walkback itself, you'll select
debug from the Walkback's pane menu.

In the resulting Debugger window, you'll examine potentially mean
ingful methods from the leftmost pane, typically starting two or three
messages down the list to get past the methods that deal with error-
handling.

. At some point, you'll have a likely suspect for the source of the error.

You can then open an Inspector on a specific variable or argument
associated with that method.

Inspecting the values of the variables will probably ultimately lead to
an insight that reveals the error.

There are some kinds of errors that the Debugger just can't handle. We'll
take a look at one of these situations in Chapter 3.

2

The Smalltalk/V Language

Introduction

Having examined the programming tools of Smalltalk/V 286 in Chapter 1,
this chapter focuses on the other two major components of the environment:
the language and the class library. The first part of this chapter will review
the basic syntax of the Smalltalk/V programming language. While much of
this material duplicates information contained in the Smalltalk/V 286
documentation, it capsulizes the syntax of the language in a way that we
hope you' 11 find useful. The second part of this chapter will discuss the major
classes in the Smalltalk/V 286 class library. By "major," we mean the
classes with which you must be most concerned in a huge percentage of your
programming work.

At the end of this chapter, then, you should be more comfortable with the
syntax and structure of Smalltalk/V, and be better equipped to program in it.

Review of Basic Smalltalk Syntax

Everything that happens in a Smalltalk/V application happens as a result of
a message being sent to an object which supports a method of the same name
as the message. Seen from the broadest perspective, Smalltalk/V program-
ming consists of defining objects with methods where some of the methods
send messages to other objects.

Syntactically, we can look at Smalltalk/V at two levels: that of the
message-passing process and that of the method-execution process.

17

18 Practical Smalltalk

Message-Passing Syntax

All messages in Smalltalk/V have the same basic syntax. The receiver of the
message — i.e., the object to which the message is being sent — appears
first, followed by the message. To open an Inspector window on the class
DemoClass, for example, you send this message:

DemoClass inspect.

The receiver, DemoClass, is passed the message inspect. In effect, the class
is told, "Inspect yourself." This order of expression is opposite that used in
traditional programming languages and is one of the most frequent sources
of confusion to Smalltalk/V programmers who have experience in other
languages. The temptation is to write the above line as "inspect DemoClass"
because you are accustomed to having the commands first and the data
structures on which they operate second. This is the natural sequence of
verb-object in English declarative sentences as well.

The message you pass to an object can consist of a single word (as in
inspect) or of a series of words (keyword). Whether there is one or a number
of these elements, it is called the selector. By convention, a keyword that
ends with a colon expects to have an argument associated with it, while one
without a colon does not expect an argument. You might have multiple
arguments associated with a selector. This results in quite long message
names like this one:

labelArray:lines:selectors

You should recognize this as a single message selector consisting of three
keywords, each of which requires an argument. The message name will
appear as shown above when you examine it in the CHB or in another
browser. Each colon is a signal to you as a programmer that you need to
supply an argument, and to the language compiler that it should expect to
find one there.

There is one other type of message that requires an argument but has no
colon notation. This type of message is called a binary selector. The clearest
examples of such a selector are the math operators like the addition sign (+).
The following line of Smalltalk/V code sends the message "+" to the object
6 and passes the argument of 4 in the process:

6 + 4.

You can evaluate expressions from any place where you can edit text, such
as a Workspace or the Transcript or from within a method definition. To
send a message from a Workspace or Transcript window, you type the
message, select it, and then choose either do it or show it from the pane menu.

Chapter 2 The Smalltalk/V Language 19

The choice of whether to select do it or show it can seem unimportant but it
isn't. For example, if you type the above addition message into the Tran-
script, select it, and then choose do it from the menu, nothing appears to
happen. In fact, Smalltalk/V carries out your instruction by adding 6 and 4.
But you didn't tell it to do anything with the answer, so it didn't. Select the
same message and choose show it from the pane menu and the answer
appears in the pane.

You will often find it necessary to send a series of successive messages to
the same object. In this case, you can avoid repeating the name of the
receiver object by using message cascading. Each message sent to the same
object is followed by a semicolon until the final message is sent. The entire
cascaded message group is terminated with a period like any other Smalltalk
message.

Method-Definition Syntax

When you define a new method, whether you do so in the CHB or another
browser or in a Workspace or Transcript window, you will follow the syntax
shown in the code sample below:

messagePattern

"Comment describing message"
[primitive number]
[[temporries]]
expressionSeries

The messagePattern includes the method selector and the variable names
used to refer to arguments in the method. It therefore defines how to phrase
a message you wish to send to this object to cause this method to execute.

The comments are optional, but the template for defining a new method in
the CHB includes them and they are strongly recommended by experienced
Smalltalk/V programmers and designers. Something brief that describes the
purpose of the method will suffice. (In fact, it could be argued that if your
method requires copious comments to explain it, it is probably too mono-
lithic and large. You should probably consider breaking it into smaller com-
ponents that are easier to describe because they are single-purpose and focused.)

You will seldom have need to identify a primitive number in your meth-
ods. Primitives in Smalltalk/V are low-level routines that carry out funda-
mental computer operations (such as addition, file saving, and logical
comparison). You can directly invoke one of these primitives by putting a
line like this in your method definition:

<primitive: 58>

20 Practical Smalltalk

The primitives pre-defined by Smalltalk/V are described in an appendix to
the Smalltalk/V documentation.

(Incidentally, you can also create new primitives in Smalltalk/V. In that
case, your primitives are not referred to by numbers like the system
primitives. Rather they will have a name you have assigned to them and will
be invoked using that name.)

If your method uses any temporary, or local, variables, they must be
defined at the beginning of the method. Such variables are placed between
two vertical bars (created with the shifted backslash on the standard IBM PC
keyboard) and separated from one another by spaces if more than one is needed.

The expressionSeries portion of the method definition is the part of the
code that actually performs some operation when the method is invoked.

Let's take a look at a typical Smalltalk/V method to see how the various
pieces (with the exception of the primitive) look and behave. Open a CHB
if one is not already opened and choose the class Magnitude. If the name
is followed by three dots (indicating it has hidden subclasses), double-click
on it to open the list of subclasses. Now choose the subclass called Integer.
Scroll down its method list and pick the ged: method. Examine the code in
the text-editing pane.

You can see from the code listing that the gcd: method takes an integer as
an argument. Since it is a member of the class Integer, its receiver must also
be an integer value (or a subclass of Integer). The comment tells you that
this method returns the greatest common denominator of the receiver and
the argument (i.e., the largest number that can be divided into both of them
without a remainder).

Notice that this method defines three temporaries called a, v, and r. If you
examine the expression series that makes up the executable portion of the
method definition, you'll see that all of these variables are used.

Chances are you've never seen this method definition before, but just by
reading the source code, you can tell what it does and how to use it. How do
you think you could use this method in the Transcript to find the greatest
common denominator between the numbers 12 and 18 ? It' s easy, right? Just
type the following line, select it, and choose show it from the pane menu:

12 ged: 18

Smalltalk/V returns the value 6, which is the largest integer number that can
divide into both 12 and 18 evenly.

Summary of Syntax

The complete syntax of the Smalltalk/V language is, of course, more
complex than what we have just described. But this explanation gives you

Chapter 2 The Smalltalk/V Language 21

enough information to use the language with facility. Nitty-gritty details are
discussed in the Smalltalk/V documentation.

The Essential Classes

Smalltalk/V 286 comes equipped with more than 100 classes and nearly
2,000 methods. (Other flavors of Smalltalk/V have different numbers of
classes and methods, and all versions come with classes associated with
such activities as tutorials that are not technically part of the system.) As you
build applications, acquire code from other sources, and work with the
environment, the number of classes and methods can grow quite substan-
tially. If you had to be familiar with all of these classes and methods, you
might arguably never be confident as a Smalltalk/V programmer.

Fortunately, you can safely ignore many of the classes that exist in the
Smalltalk/V class hierarchy because they are either used primarily by the
system or have such esoteric functions that the likelihood you'll ever need
them is reduced. In this section, we'll identify the classes with which you
will want to become most familiar and comfortable as you begin your
exploration of Smalltalk/V.

We won't supply a great deal of information about each class in this list.
The Smalltalk/V documentation from Digitalk contains detailed descrip-
tions of all classes and methods and we will demonstrate many of these
classes in even greater detail when we use them to build our six projects later
in the book.

Figure 2-1 shows you the entire Smalltalk/V class hierarchy. Those
classes we consider essential to your effective use of Smalltalk/V are shown
in boldfaced type in the figure.

It is a tribute to the compactness with which Smalltalk/V's class library is
defined that even with the process of elimination we've undertaken, there
remain 54 classes with which you will have to have at least a nodding
acquaintance to undertake most of the programming work you'll do in this
book and in the real world of Smalltalk program development. (In reality,
you will probably deal with a subset of these 54 classes for any particular
application. But because our intent in this book is to give you broad exposure
to Smalltalk programming, we have chosen a broad subset of the total class
hierarchy to discuss in varying levels of detail.)

We will look briefly at each of these classes, presenting them in the order
in which they appear in Figure 2-1. In each case, we'll describe briefly the
purpose of the class and, where appropriate, the types of applications in
which it might be used. We will also refer you to the chapter in this book
where the class is discussed in greatest detail. (Recognize, however, that
sometimes this level of detail is not great because we can focus our attention
on a small number of methods in a given class for our purposes.)

22 Practical Smalltalk

Object
Behavior
Class
MetaClass
BitBit
CharacterScanner
Pen
Animation
Commander
Boolean
False
Truce
ClassBrowser
ClassHierarchyBrowser
ClassReader
Collection
Bag
indexedCotllection
FixedSizeCollection
Array
CompiledMeathod
Bitmap
BytoArray
FileHandle
Interval
String
Symbol
OrderedCollection
Process
SortedCollection
Set
Dictionary
IdentityDictionary
MethodDictionary
SystemDictlonary
SymbolSet
Compiler
LCompiler
Context
HomeContext
CursorManager
NoMouseCursor
DeletedClass
DemoClass
Directory
DiskBrowser
Dispatcher
GraphDispatcher
PointDispatcher
ScreenDispatcher
ScrolDispatcher
ListSelactor
TextEditor

Figure 2-1. Smalitalk/V Class Hierarchy Showing Essential Classes

PromptEditor
TopDispatcher
DispatchManagar
DisplayObject
DisplayMedium
Form
BiColorForm
ColorForm
DisplayScreen
ColorScreen
DOS
File
Font
lcon
InputEvent
Inspector
Debugger
Dictionarylnspector
Magnitude
Association
Character
Date
Number
Float
Fraction
Integer
LargeMNegativelngeger
LargePositivelneger
Smallinteger
Time
Menu
Message
Pane
SubPana
GraphPane
ListPane
TextPane
TopPane
Pattemn
WildPatten
Point
ProcessScheduler
Prompter
Rectangle
Semaphore
Stream
ReadStream
WriteStream
ReadWriteStream
FileStraam
TerminalStream
StringModed
TextSelectlon
UndsfinedObject

Chapter 2 The Smallfalk/V Language 23

Object

You will only sub-class this class. You never create an instance of the class
Object, which is an abstract class that defines behavior common to all
objects in the Smalltalk/V class hierarchy. We will not explicitly discuss this
class and its contents in the book; rather, you will learn about this class as
you sub-class it to create your own special classes for applications and projects.

BitBIt

This class is used in graphics programs and operations. Its purpose is to
provide a mechanism by which bits representing an image can be moved
from one place to another. We will make use of this class in Chapter 8.

CharacterScanner

The CharacterScanner class plays a key role in text-based applications. Its
role is to translate characters from their standard ASCII code representa-
tions to bitmapped images representing the appearances of the characters on
the screen. We will discuss this class in Chapters 10 and 11.

Pen

This class is a subclass of the class BitBIt. It enables you to create a drawing
implement that can be instructed to move, draw lines and shapes, and erase
its trail as it moves. If you are familiar with the programming language
Logo, this class lets you emulate the turtle graphics that made that language
so popular and well-known. We will study this class in greater detail in
Chapter 8.

The Collection Classes

One of the largest groups of classes with which we will work in this book
and which form an important core of classes for your Smalltalk programming
experience are the many subclasses of the abstract class Collection. Loosely
described, a Collection is a basic data structure used to store objects in

24 Practical Smalltalk

groups. They may be stored in any of several forms, sorted or unsorted,
paired with other key objects or in unary fashion.

(We should point out here that Collection is one of several classes in
Smalltalk that are described as abstract classes. An abstract class is simply
a class that is defined as a place to organize and collect common behavior
among other classes. You almost never create an instance of an abstract
class. Its purpose is not to provide a class definition that is useful to
instantiate but rather to provide a convenient place for behavior common to
other, more useful classes. You'll see more precisely what we mean as you
study several abstract classes later in this chapter.)

The three main subclasses of the class Collection are:

* Bag, in which duplicate elements are allowed to gather and the
elements of which are stored in no particular order.

* IndexedCollection, in which duplicate elements are allowed to gather
but the elements of which are either stored in some pre-determined
order (i.e., sorted) or are at least accessible by an integer index (from
which this subclass derives its name).

* Set, in which no duplicate elements are allowed and the elements of
which are stored in no particular order.

The class IndexedCollection, in turn, has two main abstract subclasses:
FixedSizeCollection and OrderedCollection. The first subclass consists
of a group of different classes distinguished by the fact that when you create
a new instance of one of them, you must give it a size and that size then
remains fixed for the life of the object. Instances of class OrderedCollection,
on the other hand, can shrink or grow dynamically as needed. Among the
several subclasses of the class FixedSizeCollection are:

* Array, which is a collection which can contain a mixture of any
variety of object types.

* String, which is a group of characters in an indexable sequence. We
don't usually think of strings as collections of individual characters
from a programming standpoint but Smalltalk/V maintains consis
tency even at this detailed level.

* Symbol, which is a subclass of the class String consisting of guar
anteed unique sequences of characters of which the system makes
special use.

The most important subclass of the class Set is Dictionary. You can think
of a Dictionary as a Set of Associations. An Association is a pair of objects:
a unique key (usually a symbol, but can be any object) and a value (any
object). A Dictionary has an Association for each key. Each key in turn has
a value which may or may not be unique. This description corresponds to a

Chapter 2 The Smalltalk/V Language 25

real-world dictionary in which you look up words (keys) to determine their
definitions (values). The keys are the words themselves, arranged alphabeti-
cally in the dictionary.

We will use various members of the class Collection and its subclasses
throughout the book.

Dispatcher

The various members of the class Dispatcher are responsible for dealing
with user input via the mouse and keyboard. Dispatchers are part of the impor-
tant model-pane-dispatcher (MPD) triad that is the focus of Chapters 6 and 7.
Smalltalk/V defines several subclasses of the abstract class Dispatcher,
the most important of which for our purposes are the following:

* GraphDispatcher, which deals with events in graphic panes.

* ScreenDispatcher, which handles events that take place outside any
window or pane (i.e., on the background of the Smalltalk/V environ
ment or desktop).

» TextEditor, which specializes in text-editing input (character input,
editing commands, etc.).

» TopDispatcher, which is always associated with an instance of the
class TopPane and is therefore responsible for handling events di
rected not to a particular subpane but to the window as a whole.

Form

All drawing in Smalltalk/V graphic applications involves bitmapped dis-
plays. The class Form holds these bitmaps and contains behavior to initialize
and manipulate them. We'll take a close look at this class in Chapters 8 and 9.

DisplayScreen

This sub-class of the class Form is a special bitmapped object whose size,
shape, and other characteristics are hardware-dependent. You'll often use
this class as the target for messages when you wish to show bitmapped
images on the Smalltalk/V screen. We learn some of these techniques in
Chapters 8 and 9.

26 Practical Smalltalk

Magnitude Classes

Like the class Collection which we discussed above, the class Magnitude
has many subclasses and many important uses in Smalltalk/V. We'll use
instances of this class and its subclasses throughout the rest of the book.
The class Magnitude itself is an abstract class where objects that can be
compared, counted, and measured are grouped together. The major
subclasses of the class Magnitude are as follows:

» Association, which can be used to define objects made up of key/
value pairs. (See the discussion of the class Dictionary in the section
on Collection classes above.)

* Character, which defines the behavior of all characters in the system
(i.e., those objects represented by ASCII codes from 0 to 255).

* Date, which represents a particular day and which can be used to
manipulate months, days, days of the week, years, weekdays, week
ends, and other calendar-related activities.

* Number, an abstract class where all types of numeric values are
managed. This class includes the basic behavior for all numbers of
several types, chief among which are Float (numbers expressed as
IEEE double-precision floating-point values), Fraction (numbers
expressed as one number divided by another), and Integer (whole
numbers with no decimal or fraction parts).

» Time, whose instances are a particular time and which is used to
manipulate time-related objects, in this case objects containing infor
mation about hours, minutes, seconds, and fractions of seconds.

Menu

The class Menu contains all methods required to create, display, and
respond to the user's interaction with popup menus in your Smalltalk/V
applications. All menus other than the System Menu are associated with a
pane; as a result, the class Menu is discussed when we talk about the MPD
triad in Chapters 6 and 7.

Chapter 2 The Smalltalk/V Language 27

The Pane Classes

The class Pane is an abstract class which provides a place for windows
(referred to in Smalltalk/V as instances of the class TopPane or simply as
"top panes") and the panes these windows contain (more accurately referred to
as sub-panes, all of which are members of the class SubPane) to be defined.
There are three types of sub-panes, each of which is a sub-class of SubPane:

* GraphPane, which can be used to display graphic and drawing
elements.

 ListPane, which displays scrolling lists of one-line entries from
which the user can select one element.

» TextPane, which is a text-editing pane in which text can be displayed
and manipulated.

All Smalltalk/V windows — including those generated by the system as
well as those you build in your programs — consist of one and only one
instance of the class TopPane and one or more instances of the SubPane classes.

Point

The class Point describes the operations that can be performed on objects
that are composed of a pair of x-y coordinate values defining a point on the
display. Points are important for our purposes primarily in defining the
locations of SubPane objects in windows (Chapters 6 and 7) and in graphics
(Chapters 8 and 9).

Prompter

You will find frequent use for instances of the class Prompter in your
Smalltalk/V programming. A prompter is a small window that asks the user
a question and waits for a response to be typed. In fact, a prompter is a

28 Practical Smalltalk

window with one instance of the class TextPane. The user must supply a
response to the question that appears as the label of the prompter before the
prompter can be dismissed. Thus a prompter is equivalent to what is referred
to in windowing environments as a modal dialog. Unlike most modal dia-
logs in other environments, however, a prompter accepts only one type of
input (text).
We will create instances of the class Prompter at several places in our

programming throughout this book.

Rectangle

An instance of the class Rectangle describes a rectangular area either by
defining its upper left and lower right corners (i.e., absolute location of both
coordinates) or by describing its upper left comer and an extent (length and
width) for the rectangle.

Rectangles are used most often in graphics (Chapters 8 and 9) but also have
some significance in defining the sizes and relative positions of subpanes in
a window (Chapter 6).

Stream

In the world of Smalltalk/V, streams are pathways for information, used to
handle input and output. The class Stream contains methods that define
such things as the current position of the read/write operation in the stream,
adding information to itself, or returning some portion of its contents to a
requesting object, and relocating the position of the read/write operation.

You can define streams to be read-only (using instances of the class
ReadStream), write-only (with WriteStream) or read-write (with Read-
WriteStream). This last class, in tumn, has subclasses for files (FileStream)
and the display (Terminalstream).

Although we make occasional use of various kinds of I/O streams in other
places, the main discussion of streams in Smalltalk/V takes place in Chapter 10.

StringModel

The class StringModel plays a key role in text editing as it acts as the holder
for the text being edited as well as providing some of the most common
editing behavior to be applied to that text. We look at this class and its
behaviors in Chapters 10 and 11.

3
The First Project:
A Prioritizer

Introduction

In this chapter, we will build our first Smalltalk/V project. Applying the
lessons learned in Chapters 1 and 2, we will design and construct a small
application, make it accessible from the System Menu and from the Demo
Menu, and test it. Then we will see how to make more effective use of the
Smalltalk/V environment by consolidating some code. As part of this
project, we will also learn to understand more of the capabilities of the
Smalltalk/V debugger. We will work with the following classes in this
chapter:

¢ SortedCollection
* Prompter
¢ DemoClass

* ScreenDispatcher

In addition, we'll create our own class called Prioritizer.

Project Overview

The project we will build in this chapter is called Prioritizer. It is a handy
little program that lets you type in a list of items in any order, then helps you
through the process of ranking these items from the most important to the
least important (or from most expensive to least expensive, or by any other
ranking criterion you want to use). In other words, rather than using the
conventional "greater than" or "less than" comparisons of mathematics that
are built into some of Smalltalk/V's classes, the Prioritizer uses the user as
the comparison operator,

29

30 Practical Smalitalk

We encounter decisions in virtually every aspect of our lives. You've
probably heard the expression, "Everything is a trade-off." The Prioritizer
application will help you focus trade-off decisions between or among two
or more alternatives by forcing you to look at each possible alternative's
relative value when compared to other choices.

Designing the Project

Viewed at its simplest level, the Prioritizer application converts an instance
of the class Collection to an instance of the class SortedCollection. We have
placed some additional design constraints on it so that we end up with a
design that requires that the finished application have several components.
Specifically, we need to build components to:

 prompt the user for individual items to be prioritized

* ask the user to rank pairs of elements in the list, answering for each pair
the question "is this one greater than (more important than) this other
one?"

* display the resulting sorted list
» make the Prioritizer application accessible from the System Menu

» make the Prioritizer application accessible from the Demo Menu

Clearly these last two are not mandatory. But we do need some way to keep
the Prioritizer application in the environment and accessible to us when we
want it. We are going to discuss how to add it to both menus so that you can
see what the process of doing so looks like. Then at the end of the chapter,
we're going to put the Prioritizer application into a more logical, permanent
home, and in the process remove some unnecessarily duplicated code.

Building the Project

We will begin the construction of the Prioritizer project by building some
of its key elements in the Workspace and testing them iteratively. When we
have these pieces working, we can then copy and paste them into a single text
pane as we define the Prioritizer as a method in its own right.

Let's work with the tasks in the order in which we listed them above. This
means that we will first build a Smalltalk/V routine to get the user to give
us a list of items to prioritize. We'll need a way to ask the user a question,

Chapter 3 The First Project: A Prioritizer 31

get the user's response, and add the response to a growing list of items t|at
we can later sort according to the user's instructions.

In this case, the classes we will use derive quite naturally from our
description in the previous section of what the program should accomplish.
(This is not always the best way to approach a Smalltalk project, as we will
see in Chapter 4. In fact, this is a fairly procedural approach. Later projects
in this book will take a more object-based approach to design.) We need to
find Smalltalk/V classes that let us pose questions to the user and accept the
user's responses. Looking through the Smalltalk/V Class Library diagram
of Chapter 2, you can probably pick out a likely candidate or two. As it turns
out, we will use an instance of the class Prompter for the user interaction.

Class Prompter

A Smalltalk/V Prompter is a small window with one TextPane that poses
a question to the user in its top line, or header, area, and allows the user to
type in an answer in the bottom. Figure 3-1 shows a typical Prompter.

Read the brief description of the Class Prompter in the manual. You will
quickly be able to see that it contains three different class methods for
prompting the user for a response:

N . Class Hier

Ohjre ""
Actor. ..
ActorsMonitor. ..
Bebavior. ..
BitBlt...
Boolean. ..
ClassBrowser

Eﬁl subclass: B0bject
instanceVariableNames: '*
classUariableNanes:

* RecursionlnError Dependents RecursiveSet
poollictionaries: **

Figure 3-1. A Typical Prompter

32 Practical Smalitalk

* prompt: default:
* prompt:defaultExpression:

» promptWithBlanks:default:

Since we don't want Smalltalk to evaluate (or compile and execute, which
is the same thing) the user's answers (we just want the strings), we can
eliminate the second of these methods from our list of candidates. The
first and third alternatives are nearly identical. A careful reading of the
descriptions reveals that the promptWithBlanks. default: method is going to
keep any leading and trailing spaces the user inadvertently types into the
prompter's window. Since that's unimportant here, we'll use the simpler
prompt .'default: method instead.

So now we know we'll handle the user interaction via an instance of the
class Prompter and that we'll use its prompt . 'default: method to get the
user's list of items to prioritize.

There is very little else to the Prompter class, so we can leave it for the
moment and go on to the next class for building our Prioritizer application.

Creating a Prompter

Open a new Workspace in your environment and type the following code
into it:

| anotherltem |

anotherltem : = Prompter prompt:
'Something to prioritize? (or leave blank) '
default: ' ' .

“anotherltem

Select all of this text and select show it from the pane menu. The result
should look something like Figure 3-2.

Q) Hue e @)@

anntherl]

ropronptl

onecthing to priacitize’s (
+r

= hlank)

Figure 3-2. Creating a Prompter in the Workspace

Chapter 3 The First Project: A Prioritizer 33

When you enter some text into the Prompter and press Enter, Smalltalk/V
will display your entered text in the Workspace. (This points out an
important aspect of Smalltalk programming. We can execute code frag-
ments to help us understand a problem or choose an approach to its solution.)

Let's take a quick look at what this code fragment does.

The first line sets up a local variable called anotherltem in which to store
the user's entry. We chose that name because we know that in the final
application, the user will be entering more than one item and we wanted to
make the code readable.

The next expression uses the prompt:default: method of the class
Prompter as described above to put the question into a Prompter window
with no visible default answer.

The last line of code returns the value of the user's entry into the Prompter.

Returning the item entered by the user is obviously not our objective. We
need to create a new object in which each of the user's entries can be stored.
What kind of object should this be? It must be able to hold more than one
object at a time, so it should be some kind of Collection (i.e., an instance of
Collection or one of its subclasses). This class has three direct descendant
classes: Bag, IndexedCollection, and Set. Since the order of the elements
is not important during the process of collecting them from the user, we
don't need a class that has indexed behavior already associated with it to
store the objects.

Deciding whether to use an instance of class Bag or an instance of class
Set is straightforward. Bags can have duplicated elements, sets cannot. In
our case, if the user enters the same value into a list of choices to be
prioritized, it is probably unintentional. So we want to make sure that the
resulting list has only one entry for each choice the user wants to rank. We
will therefore use an instance of class Set.

If we simply define a new local variable to hold the accumulating list of
objects and then modify our earlier listing to include the ability to keep
adding to this set, we will encounter an obvious problem: how do we get the
process to stop?

As you can see, we have already anticipated that we need a way for the user
to indicate that the last entry has been made. We chose to let the user simply
leave the Prompter blank — i.e., press the Enter key without entering any text
— as a signal that the list is complete. Now we need to add the code to handle
this situation. This will be a simple conditional test. If the user's entry is blank,
then we are done; until the user enters a blank, we keep processing by posing
new Prompters and asking the user for yet another item to be prioritized.

Here is the complete code for constructing and displaying a set of choices
entered by the user:

I items anotherltem I
items := Set new.
[(anotherltem := Prompter prompt:
'Something to prioritize? (or leave blank)'

34 Practical Smalltalk

default: '') = ''] whileFalse: [items add: anotherltem].
Nitems

Select all of this text and then choose show it from the pane menu. The result
should look something like Figure 3-3 after you have entered a few answers
and pressed the Enter key when you've finished your entries. Note that
Smalltalk/V indeed retums a set. You might want to enter a duplicate value
just to verify that a set performs as advertised.

Sorting the User's List

Since we will have more than one item in the list of objects to be sorted, we
know that there's a good chance we will be dealing with one of the sub-
classes of the class Collection. A perusal of the Class Library diagram
reveals the existence of a class called SortedCollection that at least sounds
like it should do what we want.

A quick reading of the description of this class proves our intuition to be
right. Note that any instance of this class has access to a block of code known
as the sortBlock. This block of code takes two arguments and returns the
Boolean #rue if the first argument is higher in the sort order defined by the
block than the second, false if it is not. Smalltalk/V defines a default sort
block that sorts information in ascending alphabetical order.

Since this kind of binary comparison — "Is x > y?" — is exactly the kind
of behavior we've determined we want in our Prioritizer, we have a clear-
cut choice of class to use for this aspect of our project's behavior.

As it turns out, this is the only aspect of the class SortedCollection we need
to use in our project. Later in the book, you will see that we make frequent
and more extensive use of this class and its other powerful methods.

1 itewz anotherlten |
items = Set new.
[{anotherItem := Prompter prompt:
' Sonething to prioritize? (or leave blank)’
default: '*) = ''] whileFalse: [itens add! aw
“items
| Set(! programming’ Turiting’ ‘Y slecping’ ' exercisig

Figure 3-3. Set Returned by Prompter Interaction

Chapter 3 The First Project: A Prioritizer 35

Another interesting possibility might occur to you during the course of
designing the Prioritizer application. You could simply add a prioritizer
method to the class SortedCollection rather than making it a separate
method in the classes whose menus we wish to use to access the method. But
to do so would be inefficient because, as you can see from reading the
description of the class SortedCollection, elements are sorted as they are
added to an instance of this class. This would result in a complete sort each
time an element was added to an instance of the class and another forced by
the operation of the prioritize method. The user would be forced to compare
some items over and over again. This is obviously a poor use of the user’s time.

Now let's add the sorting capability to our code. To do so, we need to
define a block of code called a sortBlock that will define how the items are
to be sorted. This block of code will then execute for each pair of items in
the set called items and return an instance of class SortedCollection that we '11
call result.

For our first attempt at defining this sortBlock, we'll use another method
of the class Prompter. Note that it has a method called prompt Default-
Expression: which, instead of simply returning the user's response as a
string, evaluates it first. Since the sortBlock must return a Boolean value (its
job, after all, is to compare two values in a collection for sorting purposes),
we want Smalltalk to accept the user's input and evaluate it to a Boolean #rue
or false expression.

In your Workspace, delete the last line of the previous code (the line that
returns the value of items), and add a new local variable, result, to the list at
the beginning of the code fragment. Now add the following code after the
block of code following the whileFalse: method call:

result: =SortedCollection sortBlock:
[:a :b | Prompter prompt:
'Does ', a printString,
'have a higher priority than ',
b printString, '? (Enter true or false) '
defaultExpression: 'false'],
result addAll: items. * result.

(We'll take a look at fas printString method in a moment.)

Select the text and show it. Enter two or three items to sort and then press
the Enter key to signal the end of the list. Now when you are asked if an item
is greater than another item (see Figure 3-4), you can either press the Enter
key to leave the answer false or you can select the default answer and type
true. (Be sure you use all lower-case letters in either case or an error will
result.) When you have supplied answers for all of the pairs of values you
entered, Smalltalk/V will return the value of result in its sorted order, ac-
cording to your rankings.

36 Practical Smalltalk

AT I.:_-:ll.ll_:r__:

wnnblen e resalt
|I||lnr:‘:': tpvisgranr gt B o0 Bigher preboa ity thon s leepiogt s

ol
le: = MR VY { I Y T YOG R I I EER S PY IR T TR W AT RN B

[TYIREEIETES W1 PRTH 2
. TR T N1 S A SRR TTTIN
1 T

tere toe o Lalae)’

Figure 3-4. Prompter Asking for Ranking

The language used in the prompter is not very natural. We would expect to
answer "Yes" or "No" to the question, not "true" or "false." But the
sortBlock must yield a Boolean result and in Smalltalk/V, a Boolean can
have only two values: true or false. We could let the user enter other answers
and then translate them into the Boolean value to which they correspond, but
that would require several additional lines of code. Since we plan to change
this user interface later, we won't do that.

(Asking the user to type in an answer of true or false is not very elegant.
It is also not in keeping with Smalltalk/V's design. What we really want to
do is allow the user to click on a response in a different kind of prompting
mechanism. Later in the chapter, we'll fix this problem. For now, we simply
want to get the Prioritizer working. This is quite often the order in which you
will carry out your Smalltalk/V program design and construction.)

Displaying the Result

There are a number of places we can display the results of the execution of
Smalltalk/V programs. Perhaps the most common, particularly in a simple
application like the Prioritizer, is the Transcript window. We put text and
symbols into the system Transcript window by sending strings to the special
system global variable called, appropriately enough, Transcript.

As a convention, we often use the technique of message cascading we dis-
cussed in Chapter 2 to send a series of messages to a particular object, in this
case the Transcript.

Recall that result contains an instance of class SortedCollection when we
are finished sorting it according to the user's instructions. How do you
display the contents of an object of this type? Because Transcript is an
instance of the TextEditor class, you should look up this class in the
Encyclopedia of Classes in the Smalltalk/V documentation and determine
how to display elements in an instance of this class. Doing so reveals that the
method nextPutAll: is the likely candidate. Note, though, that this method

Chapter 3 The First Project: A Prioritizer 37

requires that it be passed a string as an argument. We have defined result to
be an instance of the class SortedCollection. How are we going to convert
it to a string?

The answer turns out to be simple but not so easy to find by exploring the
Smalltalk/V class library. Every member of the class Object — which is to
say, every object in the environment, since all objects are ultimately
descended from the class Object — knows how to respond to the system
method printString. This method is defined in the description of the class
Object as answering a string that is the ASCII representation of the receiver.
Applying this method to result, then, returns a string that is the ASCII
representation of that collection.

Add the following code to the end of your Workspace:

Transcript cr; show: 'Your priorities are:' ;cr;
nextPutAll: result printString.

This code fragment displays the value of result in a way that is not very
acceptable. We can take advantage of the fact that the class Collection, of
which SortedCollection is a sub-class, understands the iterative operator
do:. So we can have Smalltalk show each element of the sorted list on a
separate line by changing the last line of the above code fragment so that the
entire Transcript-displaying portion of the code looks like this:

Transcript cr; show: 'Your priorities are:' ; cr.
result do: [:element | Transcript show: element; cr] .

The Finished Prioritizer Method

Now that we've built and debugged this new method, we need to give it a
name and find it a home. We'll call the method prioritize. For the sake of
completeness, and to allow you to double-check your code before we proceed,
here is the complete listing of the Prioritizer method as it has been defined:

prioritize
"This method collects a bunch of items into an instance
of Set, then lets the user sort them, placing the result
into an instance of SortedCollection."
I anotherltem items result |
items := Set new.
[(anotherltem := Prompter prompt:
'Something to prioritize? (or leave blank) '
default: ")=''] whileFalse: [items add: anotherltem].
result := SortedCollection sortBlock:
[:a :b | Prompter prompt: 'Does ', a printString,

38 Practical Smalitalk

'have a higher priority than ',

b printString, '?'

defaultExpression: 'true'].
result addAll: items.
Transcript cr; show: 'Your priorities are: ' ; cr. result
do: [:element I Transcript show: element; cr]

Now we just need to have a place or places to store the code. Specifically,
we need one or more classes to which to add this method. Since we have
determined as part of our design that we want to be able to invoke the
prioritizer from the System menu and from the Demo menu, we will add this
method to the appropriate classes to make this happen. The next section of
this chapter describes how to do this.

Adding Perioritizer to the Menus

Adding the ability to call this application from the System and Demo menus
does not require not sub-classing an existing Smalltalk/V class, but rather
modifying existing Smalltalk/V code. (Note that, as a rule, directly modify-
ing the library sources in Smalltalk/V is not a good programming approach.
This is because any changes you make here will have system-wide effects.
However, because of the way Smalltalk/V implements the menus with
which we want to work, this is the only reasonable means we have of
modifying their behavior.)

Be sure to keep your Workspace intact while you complete this chapter.
It might be a good idea to save your image at this point. We'd recommend
that you then re-label the Workspace (call it "Prioritizer" or something else
you'll associate with this program), then collapse it out of your way. During
initial program development, many Smalltalk programmers find they keep
several Workspace windows around their desktops.

Demo Menu Modification

Let's first add our prioritizer application to the Smalltalk/V 286 Demo
menu. This gives us a convenient place from which to show off our work to
our friends and it turns out to be a convenient way to learn how to work with
existing menus. Then when we move to adding the Prioritizer to the System
menu, we'll have very little new skills to master.

To create any menu, we simply create an instance of the class Menu and
give it at least two arguments: a list of labels, or values, to display; and a
corresponding list of selectors, or methods, to execute. These lists have a

Chapter 3 The First Project: A Prioritizer 39

one-for-one correspondence. Optionally, we can divide the list of labels into
groups with lines by supplying a /ines: argument.

Open the Class Hierarchy Browser and select the class DemoClass. No-
tice that it has an instance method called demoMenu. We're going to modify
this menu so that it shows our Prioritizer and runs it when the user picks the
new menu option.

Adding the Prioritizer to the menu is simple. Here is what the demoMenu
method looks like before we begin working on it:

demoMenu
"Answer the menu for the receiver. " "Menu
labels: (' exit\dragon\mandala\multi mandala\ ',

' multi pentagon\multi spiral\bouncing ball') withers.

lines: #(1 4)
selectors: # (exit dragon mandala multiMandala
multiPentagon multiSpiral bounceBall)

It is important to note that there is a direct correspondence between the order
of the labels in the menu and the order of the selectors to which they
correspond. The first label, exiz, invokes the first item in the list of selectors,
which happens to have the same name (but it could have had another name).
To add our new method to this class, we '11 just modify the contents of the
argument of the labels: keyword, adding our label at the end. Then we'll add
the name of our method to the array of selectors associated with the menu.
We'll also add a dividing line between the bouncing ball entry and our
prioritize entry by adding the number 9 to the lines: array. Edit the code in
the CHB to look like this:

demoMenu
"Answer the menu for the receiver." “Menu
labels: (' exit\dragon\mandala\multi mandala\ °,

'multi pentagon\multi spirall\bouncingballYprioritize') withers.
lines: #(1 4 9)
selectors: # (exit dragon mandala multiMandala

multiPentagon multiSpiral bounceBall prioritize)

Save this code and then run the demo by selecting run Demo from the system
menu. Notice that the Prioritizer now appears as its own menu item at the end
of the Demo menu, separated from the bouncing ball option by a line (see
Figure 3-5).

To make the Prioritizer available to the class DemoClass, you'll need to
store its code in the class. To add it to the class, follow these steps:

40 Practical Smalltalk

exit
walking line|
dragon
manda la
manda las
pentagons
spirals
ellipses
ball
prioritize

Figure 3-5. Modified Demo Menu

1. Select the Workspace in which you've stored the code temporarily.
Select and copy all of the code in the Workspace.
Open the CHB and select the class DemoClass.

Select new method from the method list pane menu.

S

Select all of the text in the editing pane and then choose paste from the
pane window. (Note that you should not use the Backspace key here
because doing so will cause the deleted text to replace the code stored
on the Clipboard.)

6. Choose the save option from the pane menu.

The prioritizer can now be run directly from the Demo menu.

System Menu Modification

Before we can modify the System Menu to show our Prioritizer project, we
must find out how the System menu gets activated. As it turns out, this
requires some detective work.

You might first try bringing up the System menu and then pressing Ctrl-
Break to force the Debugger to open. This should give you some idea where
you are in the system at the moment. But you'll find that this approach yields
no useful information (for reasons that will become clear in a moment).

Another way to locate a method that you are having trouble tracking down
is to see if you can find something that is called by the method. We already
know that the demo menu is activated from the System Menu, so let's open
the CHB on the class DemoClass and look at the demoMenu method. Select

Chapter 3 The First Project: A Prioritizer 41

it in the CHB and then choose senders from the pane menu. You will notice
that there is only one method that sends the demoMenu message and that
method is 7un, also in the class DemoClass. Select the run method and again
examine its senders. The result is shown in Figure 3-6.

As you can see, only one of these senders is of interest. The class
ScreenDispatcher is the only one that sends the runDemo method, so we
can now be sure that this is where the System Menu itself is coded. Using
the Class Library diagram, locate the class ScreenDispatcher. Open the CHB
on this class and browse through the instance methods. You won't find
anything that sounds particularly useful. Click on the "class" button beneath
the pane containing the list of methods and take a look at the class methods.
There are two. The first one that sounds promising is systemMenu. Select
this method and you can see that it's not very helpful. It only has one line
and that line refers to something called a ScreenMenu.

So let's look at the other class method, initialize. (We do this because, after
all, the system menu is around from the startup of Smalltalk/V, so it is just
possible that it is set up in the process of initialization.) Sure enough, there's
some code that looks like it might be helpful. Here's the entire method:

initialize

" Private - Initialize the system menu."

I aString I

BackupWindow

ifTrue: [

aString := 'dos shell\speed/space\exit

SmalltalkXbrowse disk\open workspace\browse classes\redraw
screen\save image\run demo' withers]

QN

Process class>>queuelalkback: nakelserIF: resumab
Screenlispatcher?>runDemo
DispatchManager)>schedule:
DispatchManager?>resume
DispatchManager?>cycle

s

Figure 3-6. Senders of run Message

42

Practical Smalitalk

ifFalse: [
aString := 'dos shell\speed/space\exit
Small talk\browse disk\open workspace\browse classes\redraw
screen\save image\run demo' withers] . ScreenMenu = Menu
labels: aString lines: #(379)
selectors: #(dosMenu speedSpace exit openDiskBrowser
openWorkspace openClassBrowser redraw save runDemo)

Now the systemMenu method makes more sense. It simply returns the
ScreenMenu created by this initialize method.

From our experience with the Demo menu, we can already see what we
have to do. Just add the label prioritize at the end of the aString assignment
statements, and after the runDemo entry in the selectors: array. Save the code.

Now we need to copy the prioritize method from the Workspace into the
class ScreenDispatcher as a new method. Follow the same steps as above
when we copied it into the class DemoClass, changing the class with which
you work. Finally, save the method.

Before you can run this new method of the class ScreenDispatcher, though,
execute the following line of code from the Transcript or a Workspace:

ScreenDispatcher initialize.

This causes the ScreenDispatcher to re-initialize itself, which is neces-
sary because we need to add the new menu, which is something
ScreenDispatcher does only when it is initialized since this menu normally
doesn't change during processing.

You can now demonstrate the prioritizer from either the System menu or
from the Demo menu. The basic functionality of the prioritizer is now set
and we could go on to the next chapter at this point. But we promised some
final clean-up, so let's take care of that before we move on.

Sprucing Up the Application

We will do two things to clean up the Prioritizer application before we consider
ourselves done with it for the moment. First, we'll change the somewhat
ugly true-false prompter with which we ask the user to rank each pair of
choices in the list. Second, we'll remove the necessity of having two copies
of the code around in our image by creating a new class for the Prioritizer
application and removing the old code which will no longer be needed.

Chapter 3 The First Project: A Prioritizer 43

Changing the Prompter

We used an instance of the class Prompter to create both of the user interac-
tion components of our prioritizer. The problem is that a prompter can only
do one thing: pose a question and let the user type in an answer (or accept
a supplied default response). We'd like to allow the user to click on the
words "Yes" and "No" as the means of providing information about a given
choice that we've placed into the Prioritizer.

Although prompters only allow the user to type a response, there is a user
interface component on which the user is accustomed to clicking to provide
a response to the system. This object is, of course, the pop-up menu. Such
objects are instances of the class Menu, which we will work with to create
our new Yes-No confirmation interface for the user.

Everything else about the way we deal with asking the user to sort the list
of choices remains the same.

We will create a new method for the class Menu that pops up a menu with
two choices: Yes and No. We will call the method confirm:. It will take as
an argument the question we wish the user to answer. Note that by not hard-
coding this question, we make this a general-purpose method. That, of
course, is a key objective of good object-oriented design.

Open a CHB on the class Menu, select the Class button, then new method
from the pane menu in the method list pane, and type in the following code:

confirm: queryString
"Returns Boolean true for Yes, false for No." |
label Imp tempMenu response | labelTmp := queryString,

.."\Yes\No*. tempMenu : = Menu
labels: labelTmp withers
lines: #(1)

selectors: (Array with: true with: true with: false) .
“tempMenu popUpAt: Cursor offset.

In line four of this method, we concatenate the question passed to the method
when it is called with the labels "Yes" and "No" to form the contents of the
pop-up menu. Note that the question itself, contained in queryString, ap-
pears as part of the menu and, in Smalltalk/V, may be selected by the user.
Because of that, we have to supply a selector for the top line of the menu even
though it is unlikely that an experienced user of a mouse-and-menu-based
system would actually choose the question as a response. The backslashes
in the labels: argument are item separators that are converted to carriage
returns when the string containing them is sent the withCrs message.

44 Practical Smalltalk

The labels: argument provides a string whose backslashes (\) were con-
verted to carriage returns, and the next line places a dividing line after line
1 of the list of labels (i.e., after "Yes"). The selectors: argument provides a
value of true as a result of the user selecting either the question or the first
answer, "Yes," an& false as a result of selecting "No." Notice that we set up
the selectors explicitly as an array. If we didn't do this, the method would
not return the Boolean values #rue or false, but the symbols #true and #false.
The sortBlock would not know what to do with a non-Boolean response and
an error would result.

The last line of the method tells our tempMenu instance of class Menu to
pop up where the cursor is located. The caret (A) before the statement makes
this the return value of the method.

Now let's make a slight change to the prioritize method to use this new
approach to the user interface. Move your CHB view to the prioritize method
in the class DemoClass. Change the line that assigns the sorted list to the
instance variable result so that it reads as follows:

result := SortedCollection sortBlock:
[:a :b I Menu confirm: 'Does ', a printString,
' have a higher priority than ', b
printString, '?'].

No other changes are required to the method. Save it and then make the same
change to the prioritize method in the class ScreetiDispatcher. You can now
test each of these methods. You'll see that the pop-up menu shown in Figure
3-7 now appears when you ask the user to sort the list of choices. The user
simply uses the mouse to click on one of the responses. If for some reason
the user clicks on the question, your method assumes the response is the
same as "Yes." (You could, of course, either make this selection mean "No"
or even have a different method that would execute if the user makes this
choice. Our decision to make it an affirmative response is purely arbitrary.
By changing the first element of the array in the selectors: argument of the
setup of the new menu, you can have this selection do whatever you like.)

Consolidating the Code

In creating our prioritizer application, we have replicated this code in two
different classes. We did this for the sake of simplicity in building our first
project, but we would be remiss if we left it this way. So let's remedy that
situation by creating a new class to consolidate this duplicate code. Then we
will simply call this method from the classes DemoClass and Screen-
Dispatcher rather than having the code itself reside in each of those classes.

Chapter 3 The First Project: A Prioritizer 45

Figure 3-7. Modified Prioritizing Pop-up Menu

First, let's get the code for the prioritizer method that we have just created
and copy it onto the clipboard. Open the CHB, select either the DemoClass
or the ScreenDispatcher class, and then the prioritize method. Select all of
the text of the method in the text editor window and choose copy from the
pane menu. Now select the topmost class, Object, and choose add subclass
from the pane menu.

You will be asked to name the new subclass of the class Object. Type in
"Prioritizer" and press Enter. Next, you'll see a somewhat obtuse pop-up
menu asking you to define the type of sub-class you wish to create. Don't
worry now about what it means, just choose the "subclass" option. The class
description needs no modification, so with the new class selected in the
CHB, select new method from the empty method list pane (the upper right
pane). A template for a new method appears in the text editing pane. Select
all the text of this template and choose paste from the pane menu. (Be careful
not to hit the Backspace key or you'll lose the data in the copy buffer.)

To be consistent with Smalltalk/V conventions, we're going to rename our
method run so that it will actually sound like it does what we're going to ask
it to do from the other classes from which it is called.

Select the method's name, prioritize, and change it to run.

Choose save from the pane menu. (Be careful not to hit the Backspace key
or you'll lose the data in the copy buffer.)

With the method in place in its own class in the hierarchy, we can now
modify the prioritize method in the two classes from which we call it:
DemoClass and ScreenDispatcher. The process is the same for both classes.

Move to the class in the CHB, select theprioritze method, select all of the
code in the text editing pane except the name, (and, optionally, the comment)
press the Backspace key to delete it, and type in the following line of code:

Prioritizer new run.

This line of code creates a new instance of the class Prioritizer and then
executes the 7un method we just defined.

(All classes know how to make new instances of themselves, so we don't
need to define a new method unless we want to do something other than what
it inherits for new behavior.)

Since we haven't reversed any of the changes we made to the menus in the
DemoClass and ScreenDispatcher classes, we can still invoke the Prioritizer
application the same way as before. Test it and prove it for yourself.

46 Practical Smalltalk

Using the Debugger, Part 2

In Chapter 1, we examined the use of Smalltalk/V's debugger. Since you'll
be spending more of your time in the debugger than you probably want,
we'll take a more adventuresome look at its use here.

You encounter one of the most trying aspects of Smalltalk/V program-
ming and its debugger when you generate a walkback window that refers to
a message you didn't send in your methods. Trying to sort through such bugs
can be a frustrating experience. But if you understand that there are some
kinds of errors with which the Debugger is not going to be terribly helpful,
you can save yourself some frustration.

To demonstrate, open a Workspace (you can use the one we created earlier
in this chapter or a new one) and type in the following code exactly as shown:

I anotherltem items 1

items := Set new.
[anotherltem : = Prompter prompt:

'Something to prioritize? (or leave blank) '

default: ' ' = "] whileFalse: [items add: anotherltem]
~ items

Notice that we have omitted a set of parentheses inside the first block. In the
prioritize method as we implemented it in this chapter, there is an opening
parenthesis inside the square bracket and another just before the equal sign
near the end of the block. This has the effect of forcing the execution of the
prompt.default: expression before the comparison of the = operator.
Select this code and show it. You' 11 get a walkback with the error message:

"isEmpty" not understood

Where did that come from? We didn't use the isEmpty method anywhere in
our code. The first thing you'll probably do, then, is to choose debug from
the walkback's pane menu. By stepping back through the stack in the
Debugger, you will find the expression aString isEmpty highlighted in the
text editing pane (see Figure 3-8).

The local variable list pane (the middle of the top panes of the Debugger
window) contains an entry for alist, so select it. In the rightmost pane,
notice that its value is the Boolean value true. How in the world did a string
variable end up with a Boolean value? This is clearly the source of the
problem.

Beyond this clue, though, the Debugger doesn't seem to offer much
additional hope for solving the bug. We have to use some of our own logic
here. Since the problem is the inappropriate use of a string (by having a
Boolean value assigned to a variable designed to contain a string), let's first
see where we use strings in our code.

Chapter 3 The First Project: A Prioritizer 47

Answer a Point describing the position of
replacement character. Inform the text p
of the change."
! newlines line endOfReplacement stream nonelet
self axtendIo: alext3election corner.
(aString isNil or! [(EEDISIITEERREITGRN1)
ifTrue: ["zelf deleta: aTextSelectionl.

..... Y S PP BN W YRS Tl I DS PR

Figure 3-8. Debugger Highlights Offending Code

The prompt:default: method requires two strings, one for the question to be
posed and one for the default. Examining our code, the first string appears
correct. The null string associated with the default: argument also appears
correct, but we notice that it could be interpreted to mean that this null string is
equal to another null string. This would obviously produce the Boolean result
true, so this part of the code becomes immediately suspect.
In other words, it appears that the key expression may be interpreted as

follows:

[anotherItern := Prompter prompt: !
something to prioritize?' default:

("="y]

when what we really wanted is:

[(anotherItem := Prompter prompt: *

something to prioritize?' default:
u):v v]

Further examination reveals that we have indeed created a problem here. We don't
want to compare the default value of the string with the null string; rather, we
want to compare the user's response to the null string. The user's response is
stored in the local variable anotheritem, so we clearly need to isolate the
response from the comparison.

In technical terms, we have created an order of operations error. The
equality (=) comparison operation was being carried out before the creation of the
string to which the comparison was to be made. The result was a nasty little bug.
Put the parentheses where they belong and the code fragment executes without
error. (You can examine the order of evaluation by putting a self halt message in
the beginning and then use the Debugger to single-step through the code.)

4

Programming Techniques

Introduction

In this chapter, we will take a look at high-level programming and design
issues that will make your work in Smalltalk easier and more effective.
We'll start with a discussion of why object programming in general and
Smalltalk/V programming specifically "feel" different from conventional
procedural programming. Then we'll discuss the "onion peeling" process
that characterizes all computer programming to one degree or another and
see how Smalltalk makes that process more robust and easier to manage.
Next, we'll examine the two main means by which you will accomplish
application development in Smalltalk/V: creating objects and adding
methods.

Why Smalltalk/V Feels Different

People who approach Smalltalk programming with a background in other
programming languages often express a sense of disorientation and even
frustration on their first encounters with this new environment. "It's like
another planet," some will say. "I just can't seem to get started" is another
often heard complaint.

Our experience indicates that for the most part these comments and
feelings reflect the fact that Smalltalk programming — and, in fact, object-
oriented programming in general — really is qualitatively different from
conventional programming. A short example will serve to focus our think-
ing on the fundamental reasons for this.

If you have a background in a conventional programming language like C
or Pascal, for example, you might approach the process of learning a new
implementation of your favorite language by trying to write a straightfor-
ward piece of code using the new tool. Let's say that you have a favorite
sorting algorithm that helps you both learn the new tool and discover some

49

50 Practical Smalltalk

of its potential inherent weaknesses. So you write the code and test it.
Conceptually, what you really do is you start with an algorithm (the sorting
code) and you pour some data into it (the test data which will be sorted).

Now if you try to approach Smalltalk/V with that same approach, you're
going to feel like you have indeed traveled to another planet. But if you think
not about pouring data into an algorithm but instead focus on creating an
object that is inherently sortable and then giving it the ability to sort itself,
you'll be able to make the transition.

In other words, the emphasis is not on the separation of data and method
but on the very opposite: their tight integration with one another.

Peeling the Onion

Solving any puzzle has at least a faint resemblance to the process of onion-
peeling. You strip away outer layers of information, much of which serves
only to distract you from your real objective. Then you reach progressively
lower and deeper layers of the onion until finally you reach its core. Along
the way, you find useful and some not-so-useful parts of the onion.

Programming is puzzle-solving. Regardless of the programming language
being used, the hardware on which the program will eventually be run, or the
program's ultimate purpose, programming bears a resemblance to onion-
peeling. You begin with a broad understanding of what you want the
program to accomplish and with a fundamental grasp of the tools available
to attain that goal. Then through a series of successive approximations, you
gradually hone your tools and your skills with them as you focus more
intently on the problem. You identify small pieces that can be dealt with and
you master them. (The order in which these processes occur may vary, of
course, depending on the programming methodology you adopt. That
doesn't make the work any less like onion-peeling, it just results in more or
fewer tears in the process.)

Object-oriented programming is even more like onion-peeling than other
kinds of programming. This is particularly true when you are working in the
Smalltalk/V system. As we saw in Chapter 2, there are families of classes
and sub-classes, sometimes extending as much as five layers deep. Associ-
ated with each class is a collection of instance and class methods and the
code that makes the class and its instances behave as they do. Finally there's
the source code, where you can read comments and the source listing itself
to determine what the method does and how it does it. Sometimes, you have
to take all of these steps to get to the point where you are ready to begin a
Smalltalk/V programming assignment.

Chapter 4 Programming Techniques 51

Beyond this organizational hierarchy, there is a behavioral or message-
passing hierarchy that becomes visible any time you are trying to analyze
what is going on in a system rather than just in one class at a time. We've
seen how the Debugger in Smalltalk/V provides us with a list of currently
executing methods. Because applications reuse existing components,
messages are passed back and forth between objects you've created and
objects that exist in the Smalltalk/V class library. Tracking through that
maze can sometimes be quite a challenge. That's why Digitalk supplies so
many helpful tools with Smalltalk/V, including the Debugger which is quite
revealing when you know how to use it.

Boiled down to its essence, the onion-peeling in Smalltalk programming
can be looked at as learning how to decide when to do what.

What we hope to do in this brief chapter is to help you peel the Smalltalk/V
onion a little more efficiently.

Where to Begin?

If all programming in Smalltalk consists only of creating objects and
associating methods with them, how do you know where to start? How can
you determine what objects you need to create? How do you know how to
divide up the methods among all the objects available to you? In short, how
do you know what to implement?

There are, as you might expect, no easy and universal answers to these
questions. But we can offer some general guidance that you will find useful
again and again as you create Smalltalk applications.

The process of deciding where to begin with a Smalltalk programming
task can be described as posing and answering four basic questions:

» What do I expect my application to do? (Or, expressed in more object-
oriented terms, "What behavior do I expect my application to ex
hibit?")

* What objects are needed to represent my application's components?
* What is each object's responsibility?
* What must each object "know" about itself?

* How do the objects in my application collaborate with other objects?

Let's take a brief look at each of these questions to glean some ideas for how
to answer them.

52 Practical Smalltalk

What Should the Application Do?

Obviously, this question is one you have to ask yourself regardless of which
language or programming methodology you're using. It is essential to good
software design.

But in an OOP system like Smalltalk, the way you phrase the answer to this
question can be useful. Think about describing your application's behavior
in an English-language sentence (unless, of course, your native language is
not English, in which case you should use a human language you under-
stand!). It may take more than one sentence to describe your application if
it is complex. That's fine.

When you have refined your sentence description of your application, you
have already gone a long way towards constructing the class diagrams that
we'll talk about shortly. The nouns in your sentence are candidates for
objects to be created. The verbs are candidates for methods. For example,
if you wanted to construct a Smalltalk application that would enable the user
to click on some buttons to increment or decrement a counter, you might
write a sentence like this:

This application consists of a counter that starts out with a value of zero
and then lets the user change its value by clicking on buttons to increment
or decrement it by one each time.

In fact, we'll build just such an application in Chapter 5. This sentence has
the following nouns:

* application
* counter

* value

* user

* buttons

* time

Not all of these will be converted to objects as it turns out. But all of the
objects we create in our application are on this list. Similarly, the verbs in
the sentence are:

* consists

* starts

* lets

* change

* clicking

* increment

* decrement

Chapter 4 Programming Techniques 53

Again, not all of these verbs will translate into methods in the finished
application, but all of the methods that appear in that application are either
on this list or grow out of it and an understanding of how user interaction is
implemented in Smalltalk/V.

Obviously, you can go a long way toward a workable starting point for a
design of a Smalltalk application with this simple approach.

Objects and Their Responsibilities

Once you've come up with a list of the candidate objects of which your
application may be composed, you need to look at each object and ask
yourself what responsibility it will have in the application.

Staying with our counter example, we know we're going to have a counter
application object which retains a numeric value and displays that value to
the user, updating the display each time the value changes. So we can define
an object whose responsibility is to re-display the value each time it changes.
The object also obviously needs to know how to add and subtract values
from the value.

Other objects might include buttons whose behaviors consist of being able
to detect when they have been the subject of the user's mouse-click and
sending some information about that fact to another object. You can
probably surmise, too, that we'll need a window of some sort to hold all of
these various objects.

In this simple application, there is a clear line of demarcation among
objects. That is not always the case. When it is not, you will spend some time
during the design of your application looking for common or similar
behaviors among various objects and combining them into other classes.

What Do Objects Need to Know?

Each object will probably have to have some information about itself so that
it can carry out its behavior. The counter object, for example, can't
increment or decrement its value unless it knows the value at all times. These
things that an object must know about itself provide a starting point for a list
of instance variables to be defined for the object.

Sometimes these lists are quite long, but most often an object only needs
a few pieces of information about itself to behave as expected.

54 Practical Smalltalk

How Do Objects Collaborate?

You don't build Smalltalk applications in a vacuum. Indeed, it could be
argued (and often is) that a key difference between programming in an OOP
environment like Smalltalk and developing programs in more traditional
systems and languages is the holistic nature of the application. Your objects
interact with other objects in the system even when this interaction is not
entirely obvious to you.

Any time you use a system method, subclass an existing Smalltalk/V class,
or engage in activities that are characteristic of the Smalltalk/V system (such
as menu usage or window creation), you are using classes and objects that
you did not create and of which you may be only vaguely aware, if you are
aware of them at all.

Particularly when it comes time to create a run-time version of your
application, you need to be aware of these interactions and collaborations if
you are going to be successful in completing your application.

Starting With Class Diagrams

The whole process of programming in Smalltalk/V becomes much easier
when you approach it systematically. Our personal favorite methodology
for doing this is the class diagram. (Class diagrams are the invention of
David A. Wilson, who used the technique for several years in teaching OOP
before writing the article, "Class Diagrams: A Tool for Design, Documen-
tation, and Testing" in the January/February 1990 issue of the Journal of
Object-Oriented Programming.) A class diagram (see Figure 4-1 for a
sample) defines a class name, the instance variables associated with it, and
the methods or behaviors it must have to support its responsibilities.

Creating and modifying the diagram is often facilitated by thinking about
the problem you are trying to solve. Attempt to come up with a written or
verbal description of the problem. When you have done so, identify all of the
nouns in the sentence(s) that describe the problem. These are candidates for
objects. Now identify all the verbs; these are candidates for methods.

Not every element needed in every application will lend itself to this
approach, of course, and you'll have to experiment with and modify it for
yourself, but it may serve to help you get the design process started in a
reasonably usable direction.

When you've created a rectangle in the class diagram for each object
you've identified, you are ready to start finding common behaviors and
creating a class or class hierarchy to support these common threads. When
you find you've created two or three or more objects that all seem to need
to be able to do the same thing (even if they are using different algorithms),
group them together. Consider giving them a common ancestry by creating
an abstract class (a process we'll discuss shortly).

Chapter 4 Programming Techniques 55

Prompter
exBlock
reply
eveliaring
withBlenk
hidderdrec:
replyFPone

acceptReply-from:
cancelPrompter
evaluating:

Ioen,
prompt:default:
reply

Yepy:

wathBlank:

Figure 4-1. Sample Class Diagram

Creating Objects

As we have said, all Smalltalk programming consists of extending an
existing Smalltalk class library by creating new classes, and adding methods
to these classes.

When you are refining the behavior of a class or extending its capabilities,
or adding to its "knowledge" of itself (i.e., instance variables), it might be
time to create a new class. When you create a new class, the first thing you have
to do is decide which class to subclass, since all new classes you create are going
to be subclasses of some Smalltalk class, even if it is the class called Object.

Subclassing the Class Object

Your first impulse will probably be to define your new class as a subclass of the
top Smalltalk/V class, Object. Every class that comes in the Smalltalk/V class
library is a descendent of Object and since every class has to have a parent, or
"superclass", this is the easiest way to approach the need for subclassing.

56 Practical Smalltalk

Classes created as subclasses of Object inherit a good bit of behavior,
though it is fairly generic behavior. Most of the instance methods of the class
Object relate to object management (see Table 4-1) or provide basic,
generic behavior that your objects will typically override or supplement.
(Don't worry if many of the terms and concepts in the table are unfamiliar
to you; we will discuss them throughout the book where they are appropriate.)

Table 4-1. Object-Management Methods of Class Object

Instance Method Purpose
allDependents Identify all of the objects that are defined
as "dependents" of the receiver
allReferences Identify all references to the receiver in
the system.
become: class Change the identity of an object.
copy Identify the receiver's class Copy
deepCopy the receiver
Copy the receiver and make copies of all
doesNotUnderstand: of'its instance variables
error: Used in error handling Used in error
halt handling Force a Walkback window from

implementedBySubclass @ method

Initiate a Walkback because a subclass
doesn' t implement a message that it should

inspect implement
isKindOf: Open an inspector on the object
Test whether the receiver is an instance of
a particular class or of any of its sub-
isMemberOf: classes
Test whether the receiver is an instance of
isNil a particular class
notNil Test whether the receiver is nil
Test whether the receiver has any value
release other than nil
Disconnect all dependents of the receiver
respondsTo: from the receiver
Determines if the receiver responds to a
particular message (inherited by the re-
shallowCopy ceiver or implemented in its class)
Copy the receiver without copying its
species instance variables
Return a class that is similar to (or the
same as) the receiver
yourself

Answer the receiver

Chapter 4 Programming Techniques 57

Other behavior associated with the class Object involves such activities as
printing or displaying the object's value, support for the dependency
mechanism (see Chapter 5), and forcing the sending of messages to the object.

Subclassing Other Classes

If you can find a class in the Smalltalk/V class library that exhibits some of
the behavior you desire or that at least provides some kernel of your desired
functionality, you can create a subclass of that class rather than Object. Obvi-
ously, this means that the newly created subclass inherits all of the behavior of
the class you've chosen and all of its superclasses including Object.

For example, if you want to create a new class that contains behavior for
dealing with a new type of aggregate of elements (such as a new dictionary
with special capability), you would probably look first to the class Collection
or one of its subclasses to see which one seems to offer the most support for
the behavior you wish the object to exhibit. Having identified such a class,
you can create your own subclass of it using the method outlined below.

The Subclassing Process

The step-by-step process for creating a subclass of an existing Smalltalk/V
class, whether the class came with the Smalltalk/V library or is one you
added, is quite simple:

1. In the CHB, find the class you wish to subclass and select it.
2. From the class list pane popup menu, choose add subclass.

3. Give the new class a name in the prompter that appears.
4

. For most classes, you will need to tell the system (see Figure 4-2)
whether the subclass is a normal subclass, a variableSubclass or a
variableByteSubclass. The first type contains pointers to named
instance variables. The second contains pointers to both named and
indexed instance variables. The third contains bytes and is seldom used.

5. Make any modifications needed to the class definition template in the
text editing pane.

6. Select save from the text editing pane popup menu.
The new class is now selected and ready for you to add your first method,

following the steps outlined in the preceding discussion. From this point on,
the new subclass is treated exactly like any other class in the library.

58 Practical Smalltalk

fAc
Behavior. ..
BitBlt...
Boolean...
ClassBrowser

nil subclass: #0hject
iInstanceVar iabhleNanes: *’
classVariableNanes:
* RecursionlnError Dependents RecursiveSet
poolDictionaries: '’

Figure 4-2. Defining Subclass Type for Class Object

Modifying Behavior of Chosen Class

Subclasses usually override one or more pieces of inherited behavior (which
is the primary reason they are created). To make this process of subclassing
accessible, you need to understand how to select and modify methods. These
methods will fall roughly into three categories: those you should ignore,
those you should consider modifying, and those you should replace (or
override) completely.

* Ignore methods unrelated to the functionality you are adding to the
system via your new subclass and that don't need to deal with any
instance variables introduced by the subclass.

» Extend methods that are useful as far as they go but which need
supplemental behavior added to them, perhaps because of new in
stance variables introduced by the subclass.

* Replace methods whose names and behavior you wish to use but
whose implementation is not appropriate for your class.

Those methods that fall into the second category are dealt with by the simple
expedient of defining a method of the same name in your subclass, carrying
out the supplemental activities, and then sending the message to the
superclass version of the method with a line like this (assuming the method
you're overriding is called doMethod):

Chapter 4 Programming Techniques 59

...your new code...
“super doMethod

The effect of this line is simply to tell Smalltalk/V, "Use the doMethod
method found in the superclass of the receiver." In other words, Smalltalk/V
will carry out your special processing and then use the inherited version. It
is also possible, of course, to execute the superclass method first and then
carry out the specialized processing in your method of the same name. But
you must understand the implications of this. Including this code ensures a
consistent return value, but it may in some circumstances have the effect of
entirely undoing the work your method is designed to accomplish. As a basic
rule, you should be sure to return a consistent value in keeping with the
inherited version of the method you are overriding.

If the behavior embodied in the method in the superclass is just not
appropriate to the new class you're defining, simply define a new method
to override the behavior exhibited by the ancestor class(es). This includes
disabling behavior completely; if there is a message in the superclass that
you simply do not want your objects to respond to, you can't just ignore its
existence in the superclass. Instead, you must define a method that does
nothing (or something harmless and invisible) and give it the same name as
the method you wish your class to ignore. Note that if you find yourself with
a great many methods that fit this description, you may wish to re-think your
design. You may have not chosen the best class to subclass for your project.

Creating and Using Abstract Classes

An "abstract" class in Smalltalk is a class that is not intended to have
instances. It exists for the sole purpose of grouping together related behav-
iors that will be exhibited by objects created from its "concrete" subclasses.
But that whole definition is a bit too abstract, so let's take a look at a specific
example.

The class Collection is an abstract class. You would never create a new
object and call it an instance of Collection.

An abstract class is a repository for behavior that is shared by all instances
of all its subclasses. In the case of the class Collection, for example, behavior
that all collections need to know how to do is defined. These activities
include such things as:

* adding, deleting, and retrieving elements of the collection

* iterating over all of the members of a collection, executing a block of
code for each element

« displaying or printing itself in some useful way

60 Practical Smalltalk

Many of these methods as they are defined in the abstract class Collection
either do nothing or return an error indicating that the method should be
implemented by a subclass. For example, the method add: in the abstract
class Collection might do nothing but send the message implementedBy-
Subclass to the receiver (self) and return the result. In other words, the add:
method is so specific to the type of collection that we cannot generically
implement behavior that will apply to all types of collections. (Of course,
many methods in abstract classes do implement real behavior.)

The Purpose of Do-Nothing Methods

You might be tempted to ask, "If these methods don't do anything or, worse
yet, generate errors if I don't implement them in my subclasses, then why
are the methods defined at all?" The answer relates to the general purpose
for which abstract classes exist. We've said that abstract classes exist only
to gather together behavior that is common to all their subclasses. Another,
perhaps more illustrative way of saying this is that abstract classes define
"policies" (i.e., what all subclasses and their instances must know how to do
if they are going to be members in good standing of the abstract class) while
concrete classes (i.e., all those that are not abstract) define the "mechanism"
for carrying out the policy.

Seen in this light, the add: method in the class Collection tells you as a
Smalltalk/V designer that if you create a new subclass of this class, you must
be sure that it knows how to respond to the add: message. It sets a policy:
all members of this class know how to deal with the message add:. It is up
to your class to implement this method any way it wants (including, of
course, ignoring it by defining an add: method that does nothing). You
cannot ignore it without generating a Walkback.

Identifying the Right Class

A difficult part of programming in Smalltalk by these last two approaches
we've examined is identifying the class to subclass — whether that class is
abstract or concrete. How do you go about this?

There are no hard and fast answers. This is part of Smalltalk programming
that lends itself to a great many stylistic differences among programmers.
We know Smalltalk developers who apply the following techniques:

* examine abstract classes for desired behavior, then critically analyze
a candidate abstract class' subclasses

Chapter 4 Programming Techniques 61

* use the Method Index in the Smalltalk/V documentation to find a
method that sounds like it does something they'd expect the class for
which they are looking to know how to do and then examining that
class' definition in the Encyclopedia of Classes in the same manual

* make it a subclass of object and, after implementing some of the
application, move it as appropriate

* ask other programmers in their group or circle of colleagues

Ultimately, there is no substitute for a solid working knowledge of what's
in the Smalltalk/V class library. One of the main purposes of this book is to
familiarize you with the most often used and important elements of that
library so that you have a base from which to begin your own explorations.

You can rarely expect to find a class that is coded with all of the behavior
you want. (If this does happen, think how easy your job has become!) Look
for a class that has a reasonable amount of behavior dealing with things you
expect your class to understand. When you find such a class, dig in and start
programming. If your search doesn't yield perfect results, you can build your
own class and later make it a subclass of a class you later identify as useful.

In Chapter 5, we'll take a close look at a practical example of how to
approach this problem.

Adding Methods

The simplest approach to programming in Smalltalk is to find a class that
makes a good "home" for the behavior you're trying to add to the system and
simply define a new method for that class. You saw this method used in
Chapter 3 when we created the prioritize method and added it to the classes
DemoClass and ScreenDispatcher. This process is the easiest because:

* You don't have to know very much at all about the class involved and
its overall behavior. In fact, you could even just grab an arbitrary class
and stick the new method into it if it was a stand-alone method (i.e.,
one that didn't depend on that object's other behaviors). We should
note that this would rot be good programming practice, but it illus
trates the point that you need not always have an in-depth understand
ing of a class before adding a new method to it.

* Adding a new method is a relatively simple process. We'll provide a
step-by-step instruction list shortly, just for reference.

It is easy to "undo." Thus you can use it to experiment with a new
method approach without committing yourself to careful tracking of
potential changes to the image.

62 practical Smalitalk

The Process of Adding a Method

Here is the process of programming in Smalltalk/V by adding a method to
an existing class:

1. Identify the class to which the new method should be added. Ideally,
you'll find a class which contains at least some related functionality
and which may be in a "good" position in the hierarchy (i.e., its
subclasses would make good use of the method as well).

2. Find the class in the CHB and move to the method pane.
3. In the method list pane, choose new method from the popup menu.

4. In the text editing pane, enter the source code for the new method. You
will generally do this, of course, simply by editing the template
Smalltalk/V provides for you. But on occasion you will have previ
ously typed the method code into the Transcript or a Workspace
window. In that case, you can simply copy it from that window and
then select the entire method template in the text editing window of the
CHB and paste the copied method over the template.

5. Select save from the text editing pane's popup menu.

That's all there is to the process. Your new method can now be invoked by
a message being sent to the class or an instance of the class.

Avoid Adding Methods to System Classes

Adding a method to an existing class is so simple and straightforward, you
might wonder why you just don't handle all of your Smalltalk/V program-
ming this way.

If you are adding a new method similar to one which already exists, select
the existing method, edit its name to the new method name, and then edit and
save the code. When we made our first pass at implementing the prioritize
method in Chapter 3, for example, we simply added it to two classes. It did
not affect other objects in those classes in any significant way, only altering
their menus (which is a relatively unintrusive change). Similarly, it did not
depend heavily on those classes and their other methods.

It is also wise to consider creating a new method by adding a method to an
existing class only if the new method is going to be added only one place.
In Chapter 3, when we had implemented the prioritize method in two dif-
ferent places, we concluded that we should consolidate the code. To do so,
we abandoned the strategy of simply adding the method as a functional piece

Chapter 4 Programming Techniques 63

of code to two different classes, opting instead to create a new class to hold
the method and then sending the prioritize message to that class from the
other places in the system where we wanted the functionality available.
However, this was feasible because we did not need to inherit anything from
these two classes. Inheritance sometimes forces the duplication of code. In
addition, if a new method needs to be added in several places, it may be an
indication that it is being inserted at the wrong position in the class
hierarchy.

Finally, you should probably not decide to undertake programming by
adding methods to existing classes if you are going to have to add several
new methods to one or more existing classes to make your design work.
That's probably an indication that you'll be able to build a more specialized
object, so you should create a new class to hold all of the related pieces of
behavior. This is not, however, to say you should never build an application
by adding many methods throughout the system. That approach is some-
times appropriate; it just isn't often the right technique from the standpoint
of reusability.

In other words, before you decide to create a new bit of functionality for
your Smalltalk environment by adding a new method to an existing class,
make sure it is singular and isolatable. If that's the case, you're probably safe
handling the task by addition of a method. Otherwise, this is not the most
effective or robust means of Smalltalk programming.

5
The Second Project:
A Simple Counter

Introduction

In our first project, the Prioritizer of Chapter 3, we added methods to existing
classes as our primary programming method. At the conclusion of that
process, we saw how to create a new class with a single method and then use
that class as we would any other supplied in the class library. It would, of
course, be somewhat unusual for us to have a Smalltalk/V application that
consisted of one class with one method.

This chapter extends our work with Smalltalk/V as we build another
application, this time beginning by creating a new class. The application is
purposely kept small so that we can concentrate on the details of design and
programming methods that you can use on all of your Smalltalk program-
ming projects rather than on the details of how the application itself works.
Though small, the project is functional and it forms the kemel of something
that could be far more useful.

In this chapter, you'll also learn how to use an Inspector to observe what
is happening in a running application.

Project Overview

This project involves creating a counter. Recall from Chapter 4 that we
described this project in one sentence that served there as the starting point
for our design. We said the project would consist of a counter that starts out
with a value of zero and then lets the user change its value by clicking on
buttons to increment or decrement it by one each time. Figure 5-1 is a sketch
showing how the finished application should look. If the user clicks on the
portion of the pane that looks like a button labeled "increment," the counter
will increase the value by 1. If the user clicks on the "decrement” button, the
counter will decrease the value by 1.
That's all there is to the project. Let's dive into seeing how we might

design it.

65

66 Practical Smalitalk

— —
0&:/”7’5&
INCREMENT .
BurToN | \aLue
| OF
DeCRemenT| (ouprep
BurtTron

Figure 5-1. Sketch of Counter Project

A Quick Overview of Model-Pane-Dispatcher

The heart of all interactive Smalltalk/V applications lies in understanding
the interactions of windows and their elements (panes and subpanes in
Smalltalk/V parlance) through dispatchers and models. This trio is collec-
tively referred to as the model-pane-dispatcher paradigm, or MPD for short.
In this chapter, we will examine the concepts involved in MPD in just
enough detail to build our application. Chapter 6 provides an in-depth look
at this important topic.

We begin with a brief overview of MPD. If you are already comfortable
with the basic concepts of MPD from your work with the Smalltalk/V
tutorial, you should feel free to skip this section.

A windowed application in Smalltalk/V typically involves the use of three
classes (or groups of classes):

* the model class, which defines the application object and which you
can almost always think of as the application class

+ the Pane class

* the Dispatcher class

Chapter 5 The Second Project: A Simple Counter 67

Generally speaking, you can focus your concerns on creating the model
class and with supporting the Pane class protocol, which is the secret to your
application's interactivity.

The Model

The purpose of the model is to represent the underlying information
depended upon by the other objects in the application. Normally, this
consists primarily of the graphic user interface associated with the applica-
tion.

The model class is also responsible for the activities listed below. You can
see why we said earlier that the application and the model are almost always
the same object. These are tasks you normally associate with an application:

* saving the current state of the window and the application, generally
by tracking instance variables

* creating new panes
* initializing the contents of panes

* carrying out communications between panes and synchronizing the
activities of all the panes in a window

* defining optional menus for the panes

One significant issue that appears when we talk about the model class is the
concept of dependencies. Various elements of your Smalltalk/V application
are dependent on other elements. For example, in our counter application,
what is displayed as the value of the counter is dependent on what the user
has instructed the application to do to that value. Because of this dependency
relationship, we establish a connection between the buttons that the user
clicks on to change the value and the pane in which the value is displayed.

The Pane

You will make extensive use of the behavior of the Pane class in your
Smalltalk/V applications, so you must understand how panes and subpanes
work and interact. Smalltalk/V provides a complete set of pane-building
blocks and you generally use them just as they are supplied. The class Pane
has two immediate subclasses: TopPane and SubPane. An application
window always has one and only one instance of TopPane. Its purpose is

68 Practical Smalitalk

to control the actions of all of its subpanes in relation to the window. (If an
application has more than one window, as we will see in Chapter 6, each
window has an instance of TopPane.) There are three types of subpanes

available in Smalltalk/V:

* text subpanes that support the display of and allow the user interaction
with text

* list subpanes that display (optionally) scrolling lists of one or more
items

* graphics subpanes (GraphPanes) which best support graphical infor
mation

Unless you are defining a new type of pane (which we will demonstrate in
Chapter 6), you will generally not need to do anything with these classes
other than to create instances of them with specific characteristics peculiar
to your program.

In our counter application, we will see that we have the requisite TopPane
and two subpanes, one to handle the button-like behavior with which the
user interacts and one to display the current value of the counter.

The Dispatcher

Every pane and subpane has a unique instance of a dispatcher associated
with it. You don't need to do anything to create this instance and for all
practical purposes you can ignore it. Its only purpose is to gather input
events (i.e., keyboard and mouse actions) from the user and pass them on to
the pane that should process them.

Generally speaking, the only interaction you have is with the Dispatcher
associated with the TopPane in your window and even then all you do is
send it a message to tell it to start working. Since this is "canned" code, you
don't even need to understand what is happening at this point unless you are
simply insatiably curious about it.

What's Really Going on Here?

This whole MPD interaction discussion may seem a bit mysterious to you.
In fact, you may be tempted to accuse us of arm-waving, of saying, in
essence, "This is top hard, so just ignore it and trust us."

This behind-the-scenes activity is desirable and supportive, but until you
get used to the idea and learn to trust Smalltalk to do exactly what it says it
will do, you can get a bit paranoid about using it. As we hope you'll see

Chapter 5 The Second Project: A Simple Counter 69

before this chapter is over, writing interactive Smalltalk/V programs is easy
once you gain a little trust in the system.

Designing the Project

This is a single-window application. That window consists of three components:
* a button-like object for incrementing the counter's value
* a button-like object for decrementing the counter's value

* aplace to display the current value of the counter

Before we can begin writing the code for this project, we need to answer the
following questions:

* How can we divide up the responsibilities of this application among
the model, pane, and dispatcher portions of the design?

» What type of user interface objects support our desired button-like
behavior?

Dividing the Responsibilities

From the sketch we made of the application window (see Figure 5-1), we
know that the subpanes and their automatically associated dispatchers are
going to be responsible for detecting the user's click on a button-like object,
and for displaying the value of the counter after any change. The model,
then, is responsible only for two basic tasks:

* It must keep track of the value. For this purpose, it is relatively
apparent we should use an instance variable. All classes are capable
of storing values in instance variables.

* It must coordinate the activity between the button-like objects and the
pane where the value is displayed. Since MPD behavior is defined in
the class Object, all classes know how to handle these tasks.

Essentially, then, we've seen that we don't require any particularly special-
ized behavior of the class we are going to create for our counter application.
Because of this, we do not need to look for a class to subclass. Instead, we
can create our new class as a sublcass of Object.

70 Practical Smalltalk

Defining the Glass

We begin, as we generally will, by defining a new class with which to
associate the behavior and the application. To do this, activate or open the
CHB, select the top-level class, Object, and then select add subclass from
the pane's popup menu. When you are asked for the name of the class,
answer Counter.

Now edit the class definition appearing in the text pane in the CHB. Merely
add the instance variable value to the definition. Save the class definition.

You are now ready to begin adding methods to your new class, starting
with the method that will define the main window for the application.

Defining the Main Window

Our Counter application will have a single window with two subpanes. The
main window, as we have already seen, will be defined as an instance of
TopPane and will be given certain characteristics in the process. Here is the
basic code involved:

aTopPane := TopPane new
model: self; "self will be a Counter because code is in Counter"
label: 'Counter'; rightlcons: #().

In almost every case that you'll experience as a Smalltalk/V programmer,
the model associated with a pane—whether a TopPane as here or a SubPane
as we' 11 see in the next section—is the application object that also initializes
the application. Using Smalltalk/V notation, we refer to this object using the
Smalltalk special variable self. This simply means in this case that the
Counter application is the model with which the pane will interact.

It is optional to put a label on a TopPane. On the other hand, subpanes do
not have labels.

You can request that Smalltalk/V 286 put icons to the left or right of the
window label with the methods called leftlcons: and righticons:. By default,
Smalltalk/V 286 puts a close icon in the upper-left corner of the window and
three icons — one for zooming, one for collapsing, and one for resizing —
in the upper-right corer of the window. In our case, we've decided not to
deal with the issues of redrawing the window if the user resizes or zooms it,
so we've supplied an empty array as an argument to the rightlcons: message.
Because we haven't specifically supplied any leftlcons: message, the win-
dow will, by default, have a close box icon.

As we'll see in Chapter 6, there are other things we might frequently want
to do as part of the process of defining the TopPane for our application model
window. But in this case* what we have described will suffice.

Chapter 5 The Second Project: A Simple Counter 71

Defining the Subpanes

We need two subpanes, as we've already seen. One subpane has the
responsibility for displaying the current value of the counter. The other
subpane allows the user to interactively change the value of the counter by
adding or subtracting 1 from the counter's current value. This latter subpane
could consist of a single pane containing both increment and decrement
commands, or buttons, or it could consist of two separate panes, each of
which would handle one of the commands.

Let's work on the first subpane. It has a simple assignment, so it shouldn't
be too hard to implement. Of the three types of subpanes we have available,
it should be clear that we don't need a ListPane since there is only one value
for the counter at any given point in time. That leaves us with a decision
between a TextPane and a GraphPane. We could actually choose either
one as it turns out. There are advantages and disadvantages to each.

A TextPane will be simpler to work with primarily because placing
information into such a subpane is much more straightforward than using
graphic-related commands associated with the GraphPane. On the other
hand, using a TextPane means we can't stop the user from editing the
contents of the window, though we could still protect the value of the counter
if the user did make a direct change to this subpane's contents. This would
not be good user interface design in a real-world application but since
creating such an application is not our intent here, that is not a significant
factor in the decision.

On the other hand, using a GraphPane makes the value displayed
uneditable. But displaying information in such a pane requires more careful
understanding of graphic procedures, which are inherently more complex
than methods for displaying text.

In the interest of simplicity, then, we'll create the part of the window that
displays the counter's value as a TextPane.

Here is the code we'll use to create the TextPane that will hold the value
of the counter. An explanation of each line follows the listing.

aTopPane addSubpane: (TextPane new model: self;
name: ttvalues; framingRatio: (3/4 @ O corner:

1@1)).

We have previously created the instance of TopPane called aTopPane.
Here, we send this instance the message addSubPane: along with an argu-
ment that describes the subpane to be added. This description consists of
four lines. The first creates a new instance of TextPane and the remaining
three lines are cascaded messages sent to this instance. The second line
defines the pane's model to be the Counter application by using the keyword

72 Practical Smalltalk

self'as described earlier. The third line gives this new pane a name, values.
(The pound sign before the name causes Smalltalk to treat the word "values"
as a symbol rather than as a variable. Its omission would result in an error.)
This name gives us a label by which to refer to this pane later when we want
to update it. It also acts as the message selector the pane will send to the
model to get the data to display in this subpane. The final line tells
aTopPane what portion of its total area to allocate to this new TextPane.
We are allocating 1/4 of the total area by starting this window's horizontal
position 3/4 of the way across the width of the aTopPane. (Don't worry at
this point about how this calculation is carried out and what it means. We'll
spend a good bit of time in Chapter 6 discussing this issue.)

In the other subpane we want to create we will put the commands from
which the user will select what to do with the value of the counter. As we said
earlier, we could implement these button-like objects as two separate
subpanes or as one subpane containing both commands. In the interest of
keeping the design of the window as simple as possible, we'll use a single
pane to hold the button-like objects labeled increment and decrement. Since
this subpane will hold multiple objects and since we want the user to be able
to select either (but not both) of them, this subpane should be a ListPane.

Another reason for selecting ListPane as the type of subpane to carry out
this responsibility is that this type of pane exhibits the behavior we need.
Look at the ListPane class in the Dictionary of Classes in the Smalltalk/V
documentation; it is described as having button-like behavior. The class
behaves in such a way that, "when one of the strings in the collection is selected,
either the selected string or its index in the list is passed to the application model
for further processing." Sounds like what we need, doesn't it?

Here is the code that we'll use to create this new subpane. An explanation
follows the listing.

aTopPane addSubpane: (ListPane new model: self;
name: #cmds; change: #cmds:; framingRatio: (0
@ 0 extent: 3/4 @ 1)).

The only part of this subpane definition that is different from the TextPane
subpane we saw earlier is the addition of the fifth line, which defines a
change: method for this subpane. We obviously need such a method, since
we want the user's interaction with this subpane to modify the contents of
the TextPane. This links the subpane and the model more closely together
and requires that we define a method that we can use to notify the text pane
of changes in this subpane. The argument to the change: message is the
selector for the message that the ListPane will send to the model when the
ListPane is clicked.

Chapter 5 The Second Project: A Simple Counter 73
Displaying the Window

Now that we've defined both of the subpanes that make up the window as
well as its required TopPane instance, we're ready to ask Smalltalk/V to
display the window. This requires a standard line of code, which looks like this:

aTopPane dispatcher open scheduleWindow

The dispatcher message is sent to the aTopPane. This returns the identity
of the pane's dispatcher. This dispatcher is then sent the open message, which
opens and activates the window but does not yet display it. It can then
receive and process the scheduleWindow message, which shows the win-
dow on the display and makes it active. So in this one line of code, we open
the window on the display and make it the currently active window. (Again,
we'll go into the specific functions in this line of code in Chapter 6.)

Creating a Single Method for Window Definition

Generally, your Smalltalk/V applications will have a single method that
takes care of defining and creating their windows. By convention, this
method is called the open method. (Optionally, it may be called openOn:
when you wish to pass an argument to the method when you open a new
window.) We can assemble all of the code we've written so far into this
method, which will then appear as follows:

open
"Create a two-pane window for the Counter application" I
aTopPane I
aTopPane := TopPane new

model: self; label:
'Counter'; right Icons:
#(). aTopPane
addSubpane: (ListPane
new model: self; name:
#cmds; change: #cmds:;

framingRatio: (0 @ 0 extent: 3/4 @ 1)) . aTopPane
addSubpane: (TextPane new model: self; name:
#values;

framingRatio: (3/4 @ 0 corner: 1 @ 1)).
aTopPane dispatcher open scheduleWindow

74 Practical Smalitalk

(You may have noticed that we reversed the order of the ListPane and
TextPane portions of this method. In this particular case, the order in which
they appear is insignificant, but the code is somewhat more readable if the
panes are defined in the order they appear in the window, left to right and
top to bottom.)

Writing the Methods for SubPane Interaction

As a result of the code we have written to create the Counter's application
window, we can see that we need to write several other methods:

* cmds, where the list of commands that will make up the contents of the
ListPane will be defined

* cmds:, which will contain the code for the method that notifies the
TextPane when the contents of the ListPane have changed (i.e., when
the user has made a selection in the ListPane)

* values, where the TextPane can get text to display

Just by their descriptions, the code that makes up these methods is fairly easy
to envision.

The c¢mds method must simply define what the command options will be.
Here is the code for this method:

cmds
"Answer the list of valid commands" "#
(increment decrement)

This method simply returns an array that contains two symbols that are the
labels to appear in the ListPane. If you ever wanted to change the labels in
the counter, then, all you'd have to do is change this method.

Similarly, the cmds: method will translate the user's selection (which
we'll pass to the method as an argument) into the appropriate method to be
invoked. Here's the code for this method:

cmds: userSelection
"Perform the command selected by the user"
Self perform: userSelection

Chapter 5 The Second Project: A Simple Counter 75

Ifthe user selects the word increment in the ListPane, then the message cmds: in-
crement will be sent to the Counter application. It will then invoke this
method and discover that it should send the increment message.

Finally, the values method simply handles the display of the current value
of the counter. Since we are using a TextPane for this purpose, we need to
tell the counter's value to print itself in a way that the TextPane can un-
derstand. A reading of the description of the class TextPane in the Ency-
clopedia of Classes reveals that it deals with an indexed collection of strings.
The value contains an integer value, so we have to find some way to display
it as a string.

Fortunately, Smalltalk/V's Object class contains a method called
printString which all objects understand. This method returns a string
representation of the receiver. So the method to display the current value of
the counter is simple:

values
"Answer the value of the counter in the TextPane"
~value printString

We still don't have any real interaction between the two subpanes. The
cmds: method sends either the increment or the decrement message, where
the actual updating of the value of the counter takes place. These methods
should, in turn, notify the Counter application (or model) that the counter's
value has changed. Let's look at these two methods at one time:

increment
"Add 1 to the value of the counter"
value : = value + 1. self changed:
lvalues

decrement

"Subtract 1 from the value of the counter"
value : = value - 1. self changed: #values

The final line in each of these methods takes care of "broadcasting" the fact
that the value of the counter has changed. It sends to the model (represented
by the keyword self) the message changed: with the argument Ivalues. This
message, inherited from the class Object, tells the model to notify all de-
pendents (e.g., the ListPane) that something has changed. Subpanes inherit
behavior that tells them to refresh themselves from the model if the
argument is their name. As we have seen, we associated this name with the
TextPane, so that pane responds to that change. The dependents are notified
by sending them an update: message with the argument /values.

76

Practical Smalltalk

Methods to Create a Counter

We have now written methods to create a two-pane window in which the-
value of a counter is displayed, and in which the user can click on button-
like objects (actually, entries in a ListPane) to add or subtract 1 from that
value. We've also coded the interaction between the two panes.

The only thing left to do now is to provide a way for the user to create and
initialize a new Counter object. This will require two methods: one which
we'll call new that will allow the user to create a new Counter object and one
called initialize that will give that Counter object its initial value of zero.

In the Method Index in the Smalltalk/V 286 documentation, you can tell
at a glance that the method called new is supported by every class in the
Smalltalk/V system. Examine the places where it is implemented and you'll
find in every case it is a class method rather than an instance method. Think
about that for a moment and the logic will be apparent. You can't send the
new message to an object and ask it to create itself because the object doesn' t
exist until you create it. You see the problem. The reason for this is that a
class is really a factory for creating instances. The new method requests that
a class create an instance of itself. So we'll define new as a class method (also
referred to in some Smalltalk literature as a meta-method) in the class Counter.

To do so, just click on the class button in the CHB and then select new
method from the method pane popup menu. Then enter the following code
in the text pane:

new
"Create a new counter"
A e ele e
super new initialize

We call the new method of the class Object by sending the message new to
the object super, which always holds the name of the receiver class'
superclass. We do this because we are redefining the new method but we
need the basic behavior of the new method to do so. Then we send the
initialize method to this newly created object. We haven't yet coded the
initialize instance method, of course, so let's do so now. Here's the code:

initialize
"Initialize the value of the counter to 0"
value := 0

The first time the TextPane is displayed on the screen, it queries the model
for text to display. Because the model (our application) is initialized to 0,
that is what the TextPane displays. (Note that if we didn't initialize value,
we would not be able to add 1 to it later — a fairly common mistake.)

Chapter 5 The Second Project: A Simple Counter 77

It is interesting to note that we could have accomplished our purpose here
without writing a new class method if we had made the open method a class
method instead of an instance method. Then we could have avoided having
to send two messages to create a new Counter object. But the approach used
in the text makes the creation, manipulation, and initialization of a Counter
object clearer than combining some or all of these functions into one class
method. As you gain more experience as a Smalltalk programmer, you may
wish to circumvent this clarity in the interest of efficiency of coding.

Testing the Counter

It seems like we've defined everything we need to create, initialize, and
manipulate a new counter object, so let's test it. To do so, we're going to use
another technique that you'll find useful as you build Smalltalk applica-
tions. We could simply test this application by typing the following line into
the Transcript of a Workspace:

Counter new open

But then every time we want to test the behavior of a Counter, we'd have to
type the same text again. Furthermore, when someone else comes along and
wants to create a new Counter, they'd have to rummage around through our
methods and, by inspection, figure out how to invoke our application. Good
programming technique dictates that we find a better way.

We recommend that for all applications you build, you create a class
method called example that will create and initialize an instance of the
object. Go ahead and do this now for the class Counter. (If you can't re-
member exactly how to create a class method, go back and review how we
did it when we built the new method, above.)

Here's the code for this method:

example
"Demonstrate the creation of a new Counter"
Counter new open

Now go to the Transcript and type:
Counter example
The result should probably look something like Figure 5-2. If you click on

the labels increment and decrement a few times, you'll see that the value of
the counter displayed in the TextPane changes accordingly.

78 Practical Smalltalk

Smalitalk/U Transcript
PlotUindowZ wew open.

Canner 1
Simulatid T

SereenDispat

Figure 5-2. A New Counter Object

If you will follow this practice for all of your applications and other classes
(other than abstract classes), you'll find that your projects become self-
documenting to some degree. Anyone who wants to know how to create a
particular object can simply find the name of the object and send it the
example message.

Making the Window Smaller

There is only one problem with this application: the window is far too large
for the application. This is because we're letting Smalltalk/V use its default
initial window size for the window rather than taking control of that process.
Let's do a little investigating and see if we can figure out how to make the
window initialize itself to a more reasonable size.

Since the TopPane is responsible for the display and management of the
entire window, let's take a look at its methods in the CHB.

Select TopPane in the CHB (you may have to open the Pane class to do
so0) and scroll through the method names. Nothing sounds like its job would
be to set up an initial window size, does it? Where else could this value be
set? How about the class TopDispatcher since all instances of class TopPane
will have such an object associated with them? Select TopDispatcher in the
CHB and scroll through the method names. Sure enough, there's a method
called initWindowSize. Select it and note the code:

initWi ndowSi ze

"Private - Answer default initial window extent"
~Display extent * 2 // 5

Chapter 5 The Second Project: A Simple Counter 79

Without going into details on what the extent of a window is, suffice it to say
that this method opens a window that occupies approximately 2/5 of the
screen's total area.

While you're looking at this code, copy it and then go back to the class
Counter and create a new instance method. Select all of the text in the text
pane and choose paste from the popup menu. Now experiment with the
fraction (2/5) until you get a size you like. We found that 1/5 was a good size
with which to work, but you should feel free to refine that. At 1/5, the
window looks like Figure 5-3.

It may not be clear to you why this process of creating an initWindowSize
method worked. The TopDispatcher uses the default initWindowSize method
when it encounters a pane that does not respond to that message itself. Since
Counter had no such method, its TopDispatcher was simply using the
default window size supplied by that method. By overriding that behavior
with a custom version of the method, we overcame the limitation of that
method and gave our application a window size with which we were happy.

This concludes the creation of our Counter project. Considering that this
application creates a multi-pane window with which the user can interact,
overrides the default system size for a newly created window, updates its
contents on demand, and goes away when asked, it didn't take much code
to create it, did it?

Now let's look at the promised new debugging aid before we wrap up our
work in this chapter.

Smalltalk”Y Transcript 2]
PlotUindouwZ new open.

Camner = (CanningMonitor new).
SimulationViewer examplel: Canner.

|ScreenDispatcher initialize.

Connlter

Figure 5-3. Smaller Initial Window for Counter

80 Practical Smalltalk

Inspecting a Running Counter

There will be many times in your experience as a Smalltalk/V programmer
when you' 11 want to run an application while you watch what happens to its
instance variables. Sometimes, this will enable you to spot an insidious bug
faster than you can without such a capability. Other times, it will simply give
you insight into code perhaps written by another person.

To do this, you need to open an Inspector on the application. The problem
is, you can't usually open an Inspector except from the Debugger or by
typing a command into the Transcript or a Workspace. While a program is
running, these options are not readily available. So we trick Smalltalk/V into
creating a Walkback by inserting a salt method at an appropriate point. To
see this in action, follow these steps:

1. Inthe CHB, select the class Counter and then select its initialize method.

2. Change the initialize method to read as follows (note the period after
the first line):
value :=0.
self halt "for demo debugging purposes only"

3. Now save this modified form of the initialize method and go back to
the Transcript.

4. Type Counter example in the Transcript or a Workspace. When the
counter begins to appear, you'll see a Walkback labeled "halt encoun
tered."

5. Select debug from the popup menu in the Walkback. You'll be shown
the usual Debugger window.

6. Select the label self in the receiver pane (the middle pane across the top
of the window) and then select inspect from that pane's popup menu.

7. An Inspector opens on the Counter object that is presently executing.
Position and size it conveniently.

8. Go back to the Debugger window and select resume from the frame
popup menu.

9. The Counter window appears, with the value of 0 in the TextPane as
expected.

You can now use the increment and decrement selections in the ListPane
to manipulate the value of the counter. Any time you wish to inspect the state
of the program, just select the Inspector window and choose any of the
instance variables in the left ListPane. Its value will then appear in the right pane.

Chapter 5 The Second Project: A Simple Counter 81

With the Counter object, this is not terribly revealing or exciting, but the
technique is one you'll undoubtedly want to remember.

Be sure when you are finished with your inspection experiment that you
remove the halt from the initialize method. Removing the period at the end
of the remaining line is optional but good form.

Removing the Counter Class

Hopefully, you've found the process of creating, testing, modifying, and
debugging the Counter class helpful and enlightening. However, unless
you intend to build something more interesting using it as a base, you
probably want to remove the class from your image before you save the
image again. Instructions for removing a class are in Chapter 1.

If you wish to save your work somewhere for later review but don't want
it cluttering up your Smalltalk/V image, you should file it out. Simply select
the class name Counter in the CHB's class hierarchy list pane, then choose
the file out option from the pane menu. Smalltalk/V creates a text file called
COUNTER.CLS that you can later read, print, or even edit and file back in
if you wish.

The Complete Counter Project Listing

In every chapter where we present a full program for you to create and
execute, we'll reproduce the entire listing of that application at the end of the
chapter. This gives you a central place to look at the code, compare it to your
work, and retype it if you come back later after having removed the class.

Object subclass: “Counter
instanceVariableNames: 'value'
classVariableNames: ''
poolDictionaries: "'

"Class method"
new
" "
Create a new counter
~ super new initialize

" Ihstance methods”

cmds
"Answer the list of valid commands"
Mt (increment decrement)

82 Practical Smalltalk

cmds: userSelection
"Perform the command selected by the user"
self perform: userSelection

decrement
"Subtract 1 from the value of the counter"
value : = value - 1. self changed: #values
increment
"Add 1 to the value of the counter"
value : = value + 1. self changed:
lvalues
initialize

"Initialize the value of the counter to 0"
value := 0

ini tWindowS 1 z e
"Private - Answer default initial window extent"
~"Display extent * 1 // 5 "Your value may vary here.

open
"Create a two-pane window for the Counter
application" I aTopPane I
aTopPane := TopPane new
model: self ; label: '
Counter'; rightlcons: # ()
. aTopPane addSubpane:
(List Pane new model:
self; name: #cmds;
change: #cmds:;
framingRatio: (0 @ 0 extent: 3/4 @ 1))
aTopPane addSubpane: (TextPane new model: self;
name: #values;
framingRatio: (3/4 @ 0 corner: 1 @ 1))
aTopPane dispatcher open scheduleWindow

values
"Answer the value of the counter in the TextPane

“value printString

6

The World of MPD

Introduction

As we saw in Chapter 5, the model-pane-dispatcher (MPD) triad is central
to Smalltalk/V programming. In fact, it is safe to say that you will probably
never write a Smalltalk/V application that doesn't include the use of MPD.
This chapter takes a closer look at MPD in an attempt to answer the
following questions:

» Ofall of the classes and methods involved in the classes that make up
MPD interaction, which ones are essential to understand and use, and
which can you safely ignore?

* How can you identify and use the protocols of MPD to promote
pluggability?

Our goal, then, is to perform a sort of triage on the MPD world so that you
can concentrate your focus on the important points and set aside what
otherwise looks like a hopelessly complex portion of Smalltalk/V program-
ming. Our experience has been that many Smalltalk/V programmers stumble
over MPD as they attempt to implement their first serious application.

This chapter will take a look at the various methods you'll need to
understand before you can apply MPD design and interaction to your
Smalltalk/V applications. It provides the groundwork for understanding
MPD in general and the work we'll do in Chapter 7 in particular.

There's So Much Going on Here!

Smalltalk/V window interaction involves instances of three families of
classes:

* your own application class (the model)
* Pane

* Dispatcher

83

84 Practical Smalltalk

A quick perusal of the Encyclopedia of Classes in the Smalltalk/V 286
documentation reveals that just these last two classes involve 15 classes with
a combined total of nearly 175 instance methods, to say nothing of dozens
of instance variables and class methods.

Let's see if we can cut this forest down to a manageable size. We'll focus,
by the way, on non-graphics applications (i.e., those that don't draw
anything on the screen other than windows and their subpanes). In Chapter
8, we'll take a look at how to construct a graphic application in Smalltalk/V
and then we' 11 add a bit more complexity to the amount of MPD with which
you should become familiar. But since many applications are fundamentally
non-graphic once the windows and menus are accounted for, you may find
yourself never needing the graphic-related MPD classes and methods.

TopPane Methods You'll Need

Of the more than 20 methods included in the class TopPane, you need to be
aware of only seven. In fact, you will often use only three of them. The three
most often used are:

* new

* label:
* addSubpane:

The other four important TopPane methods are:
* minimumsSize:
o initWindowSize
* rightlcons:

* leftlcons:

Let's take a look at each of these methods in turn.

The new Method

The new method in the class TopPane is actually inherited from the class
Pane. While most of the methods we'll examine in this chapter are instance
methods, new is a class method. In essence, it says to the class, "make a new
instance of yourself."

Chapter 6 The World of MPD 85

Only very rarely will you do anything to this method. It will be adequate
for your needs; all you have to do is to send the new message from your
application to the TopPane class. This is how you create a new window for
your application.

You will almost always assign the return value of new to a temporary variable
declared in the method where the new message was sent to TopPane. This
gives you a way to send to the instance the messages that add subpanes and
handle other window processing. In most cases, you'll probably name the
method that contains the TopPane new expression either open or openOn.
depending on whether it has any arguments associated with it.

The label: Method

Every window in Smalltalk/V may have a label associated with it. If you
define a label for the TopPane of the window, the label will appear centered
in the title bar of the window. If the title is too long for the title bar, it will be
truncated on the right and as much of it as possible will be shown in the title bar.
The argument passed to the /abel: method should be a string (i.e., a series
of characters enclosed in single quotation marks). Here is an example of its use:

label: 'Counter'

Given that the label is optional, you may wonder why we placed it among
the most common methods for you to learn. It is quite unusual to create a
Smalltalk window without a label. There are occasions when you wish to do
s0, but you should generally provide a label for the window in the absence
of a very strong design reason for not doing so. The user may want to know
the purpose of the window long after it's been opened. An unlabeled
window is clearly less identifiable than one that is clearly labeled as to its

purpose.

The addSubpane: Method

A TopPane without any subpanes can do only what an instance of TopPane
is capable of doing. In other words, it does nothing of particular interest.
Even a single-pane window must have at least one subpane. You add
subpanes to a TopPane with the addSubPane: method. Since you generally
create these subpanes as you insert them into the TopPane, you should not
be surprised to find out that the general way this process works is exempli-
fied by this code fragment:

86 Practical Smalitalk
a topPane addSubpane: (ListPane new. . . arguments)

Of course, you'll use whatever temporary variable you've used to hold the
name of the TopPane instance in place of our a7opPane and you'll sub-
stitute the kind of pane you want to create where we've used the name of the
ListPane class. But the format is the same regardless of those two differences.
A quick perusal of the various windows defined in the Smalltalk/V
environment reveals that every use of the addSubPane: method appears more
complex than we've just described. This is because the newly added
SubPane is generally sent a series of cascaded messages to give it the
desired characteristics. We'll get to some of the most important of those
messages in the next section when we discuss the important implementation
aspects of subpanes.

The minimumSize: Method

Any window that can be resized by the user should define a minimum size
to which the user will be allowed to shrink it without collapsing it com-
pletely. If you don't define this method in your TopPane description,
Smalltalk/V will use the default, which defines a window's minimum size as
24 by 32 pixels.

You will often want to define a window's minimum size in terms of the
font(s) being used in its pane(s) while keeping in mind the minimal amount
of information that the user will find useful as he interacts with the window.
For an example of this, select the class ClassHierarchyBrowser in the CHB
itself and examine its openOn: method. Use the text pane popup menu to
choose next menu and then search and find the reference to the minimumSize:
method. You should see something like this:

minimumSize: 20 * SysFontWidth @ (10 * SysFontHeight)

Here Smalltalk/V defines the minimum size of the CHB's window to be no
narrower than 20 times as wide as the width of a character in the font being
used to display its contents, and no shorter than 10 times that font's height.
If you try to reduce the CHB to as small a size as possible, you'll end up with
a size something like that shown in Figure 6-1. If you count the characters and
allow for the borders of the subpanes, you'll find out that the CHB is indeed
20 characters wide, and 10 lines high, at its smallest possible size.

You can also define a window's minimum size in terms of other objects that
describe rectangles in Smalltalk/V. We will have more to say about this
subject later in this chapter when we discuss how to describe the sizes of the
subpanes within a TopPane instance.

Chapter 6 The World of MPD 87

Dbject subclass: #C4

instanceVariableN,
‘value *

classVariableName;

Figure 6-1. Minimum Size of the CHB Window

In the Counter class we defined in Chapter 5, we did not allow the window
to be resized, so we could safely ignore this method. If you create windows
that are not resizable, or if the minimum size of the window is immaterial
to your design, you can omit calling this method when you initialize your
TopPane instance.

The initWindowSize Method

You'll recall from Chapter 5 when we constructed our Counter class that
we found Smalltalk/V's default initial window size to be too large for our
purposes. To change that default size, we wrote an instance method called
initWindowSize that returned a rectangle that was smaller than the one
defined by Smalltalk/V as the default.

Most Smalltalk applications you construct will have an initial window size
which is optimal. As a result, you will quite often write your own version of
this method to establish that initial size appropriately.

This is one of the more interesting and obtuse of the important MPD
methods we'll examine. At first glance, it would seem to be one of those
methods that calls for an argument; in other words, you'd expect its name
to be initWindowSize: with the initial window size supplied as a argument.
This would seem at first glance to be more Smalltalk-like.

But it turns out that this method is implemented not in the TopPane class
(which your instance of TopPane would inherit and where a direct setting
of the value would therefore be logical) but rather in the class TopDispatcher,
as we saw in Chapter 5. Remember that in Chapter 5 we opened a CHB on
the class TopDispatcher and examined its initWindowSize method. We
discovered that it sets up a default size that was too large for our purposes,
but that was as far as we investigated the situation.

Since the comment in initWindowSize clearly says that it returns a value
rather than setting it, the question is, "How does the window's initial size
actually get set from the information returned by this method?" The answer,

88 Practical Smalltalk

obscurely enough, lies in the class Dispatcher's open method. Use the CHB
to examine this method and notice the following lines:

size := (pane topPane model respondsTo: MnitWindowSize) if
True: [pane topPane model initWindowSize] ifFalse: [self
topDispatcher initWindowSize]

This code makes use of the respondsTo: method defined in the class Object
and therefore understood by all objects in the environment, to determine
whether you have implemented an initWindowSize method in your appli-
cation. If you have, then Smalltalk/V uses that method to define a value. If
you haven't, it uses the value returned by the initWindowSize method of your
application's TopDispatcher. That's how the default is used whenever you
fail to override it with your own definition of this method.

The righticons: and leftlcons: Methods

One of the strong suits of the MPD capability in Smalltalk/V is the relative
ease with which you can give your windows behavior that would take
significant amounts of code to program if they didn't exist in the library.
Icons represent a substantial part of that capability. Smalltalk/V defines
icons with the names and functions shown in Table 6-1.

Note that you can use these icons in ways other than those defined by
Smalltalk/V if you want to do so, by identifying and overriding the methods
that respond to the user's click on the icons.

Table 6-1. Predefined Icons In Smalltalk/V

Icon Name Teon Purpose

closelt Allows the user ta close the window. Generzlly appears in upper left comner
title bar.

collapse Allows the user to collapse the window to a title-bar-only size with only the
collapmse icon visible in the title bar.

hop In the Debugger, used to execute the pext expresticn in a process that is being
debugged.

jump In the Debugger, used to all instructions t the present one snd

esize Allews the user to resize the window using the current upper left comer as an
anchar point.

skip _— In the Debugger, used to the next expression in the selected method of
up to the next breakpoint, whichever it encountess firat.

ZOOm Allows the user to zoom a window's text pane countents s they occupy the
entire scoeen.

Chapter 6 The World of MPD 89

If you don't supply either a rightlcons: or a lefilcons: method in your
TopPane definition, then Smalltalk/V will populate the title bar with a close
icon on the left side of the title and icons for zoom, resize, and collapse on
the right side of the title. You can eliminate all of the icons on the right side
of the title bar as we did in the Counter class in Chapter 5 by sending our
TopPane instance the message:

rightlcons: #()

The argument is an array of symbols which specify the names of icons to be
included.

SubPane Methods You'll Need

Among the main subpanes — specifically the classes SubPane, ListPane,
and Text-Pane — there are some 60 methods. We'll focus attention on
seven of these, six of which are applicable to all types of subpanes and one
of which applies only to TextPane objects. The seven methods you'll need
to know are:

* model:

* name:

* change:

* framingBlock:
* framingRatio:
* menu:

* contents

The last, contents, is the one that is applicable only to instances of the class
TextPane. All the others are relevant to all types of subpanes, including
instances of GraphPane, whose details we delay until Chapter 8. Let's
look at each of these methods in turn.

The model: Method

The model: method is required for using any SubPane. It is commonly used
in this form:

90 Practical Smalltalk
aSubPane model: self

where self refers to the application object.

This is because it is rare to find a case where the model for a given subpane
is different from the application model itself. Since self refers to the appli-
cation throughout its execution, and since each pane is generally dependent
on the application for its contents and behavior, self is almost always the
right argument to the model: message.

The name: Method

The name: method is required and always takes as an argument a symbol that
is the name of a method which the pane uses to obtain its contents from the
model. This symbol is also used as the name of the SubPane instance. We
saw this in Chapter 5 in the Counter class where the ListPane instance
received the following message:

name: #cmds

and our model included a method called cmds which contained the follow-
ing code:

cmds
"Answer the list of valid commands"
*# (increment decrement)

For our Counter application, the contents of the ListPane are determined
by sending the model the cmds message. In this case, a simple two-element
array is returned. In other examples we'll see throughout the book, more
complex methods may be invoked by this same process to give panes highly
complex and dynamic behavior.

The change: Method

Whenever a change in a subpane's contents are global in scope—i.e., affect
at least one other pane in the window — you must define a change: method.
This method takes a single argument, a symbol that must be the name of a
message that the pane will send to the model to indicate that its contents are
changed. (As we'll see shortly, the model must then use its changed: method
to deal with the change.)
Again, in the ListPane of our Counter class from Chapter 5, we find the

following pair of Smalltalk/V program elements:

Chapter 6 The World of MPD 91

change: #cmds:

cmds: userSelection
"Perform the command selected by the user"
userSelection == #increment ifTrue: [self
increment. “self]. userSelection == ttdecrement
ifTrue: [self decrement]

The increment and decrement methods, in turn, adjusted the value of the
counter and then used the changed: message to cause the model to broadcast
that change to the TextPane by using that pane's name, values.

There are several variations on the changed: message in Smalltalk/V. Each
of these variations makes it possible to add arguments to the message to be
more detailed or explicit about the changed.: process. For example, you can
use changed:with: to add a second argument. In that case, you will use a
corresponding update:with: method. Similarly, there artchanged:with:with:
and changed:with:with:with: messages with corresponding update:with:
with: and update:with:with:with: messages

Figure 6-2 depicts the entire interactive process that transpires when a user (or, for
that matter, the programitself) changes the contentsofapaneinawaythathasaglobal
effect.

The framingBlock'. and fromingRatio: Methods

Perhaps the trickiest part of defining a subpane in a Smalltalk/V application
is calculating its relative size and position with respect to the total window.
The framingBlock: and framingRatio: methods have this responsibility.
Both of these methods take an argument which evaluates to a rectangle. The
difference between them may be summarized as follows:

* framingBlock: returns an absolute rectangle, leaving your application
in control of its size and location.

* framingRatio: returns a rectangle proportional to the enclosing
TopPane and whose proportions will be maintained when the window
is resized. Its size is therefore relative to the size of the enclosing
TopPane and is not within the direct control of your application,
which has essentially delegated responsibility for the window size to
another element of the application.

Every subpane you define must use one of these methods (but not both) to
describe its size and location within the window.

92 Practical Smalltalk

User Changes
Pane Contents

Sto;
Does Pane Have g No Pmm‘;i,,g

change: method? Change

Yes

Execute Method
Referred to in
parameter to

change: method

Eventually, another
method must
implement the

changed: method

Send update:

niessage to all

panes listed in
changed: method

Affected pane(s}
update contents
" accordingly

Figure 6-2. MPD Interaction Summarized

Creating Rectangles

Simply saying that each subpane occupies a rectangular area defined by
either aframingBlock: message or aframingRatio: message doesn't tell you
how to define a rectangle. As it turns out there are numerous ways of
accomplishing this, depending on what basis you want to use for determin-
ing the size of the subpane.

A rectangle is defined by two related instances of the class Point. In-
stances of the class Point, on the other hand, have two instance variables,
an x (or column) coordinate and a y (or row) coordinate. Smalltalk refers to
points with a notation that looks like this:

Chapter 6 The World of MPD 91
15 @ 23

Conceptually and to maintain consistency of the language, Smalltalk
defines this construct as sending the @ message to the first integer (in this
case, 15) with the second integer argument (here, 23) as an argument.

To create a rectangle, we generally send either the extent: or the corner:
message to a point, passing along another point as an argument. Smalltalk/V
then creates the appropriate rectangle. Thus a statement like this:

15 @ 23 extent: 30 @ 45

creates a new rectangle with an upper-left corner 15 pixels to the right and
23 pixels down from the upper-left corner of the screen, with a width of 30
pixels and a height of 45 pixels. This same rectangle could be created by this
statement:

15 @ 23 corner: 45 @ 68

Rectangles and Subpanes

It would be unwise to use these absolute-address techniques for creating
subpanes in a resizable window because they wouldn't be able to adjust to
the window's change in size by the user. Their positions would be fixed on
the screen in absolute row-column coordinate terms and they would not
understand intuitively how to move. In other words, they would not act like
subpanes of the window's TopPane object.

That's where framingBlock: md framingRatio: come in. They allow you
to define rectangles relative not to the entire display but to the window in
which their subpanes exist. Thus when the user moves the window, the
subpanes' understanding of where they are located on the screen's bitmap
adjusts automatically. By this simple expedient, Smalltalk solves for you the
otherwise very complex issue of keeping track of a window and all of its
elements as it is dragged about on the display by the user.

Recall from Chapter 5 that when we defined the two subpanes in our
Counter class window, we used a framingRatio: approach that looked like
this for the ListPane where the commands increment and decrement were
displayed:

framingRatio: (0 @ 0 extent: 3/4 @ 1))
and like this for the TextPane where the counter displays its value:

framingRatio: (3/4 @ O corner: 1 @ 1)) .

94 Practical Smalltalk

The first of these lines created a rectangle that started in the upper-left comer of the
TopPane (at a point that is the "Oth" position across and the "Oth" in height) and
extended 3/4 of the way across the width of the TopPane as well as the entire height
(as indicated by the whole number 1 rather than a fraction for the second part of the
argument to the extent: message). The second line then specifies a rectangle that starts
3/4 of the way across the TopPane's width and at the top of the pane (thus the 0 for
the second part of its starting point) and extended the rest of the way across and down
theareaofthe TopPane(wW chisthemeaningoftheargument?7 ~ @lmafiramingRatio:
message).

The size and location of a SubPane within a TopPane are always relative,
that is, they are recalculated each time the window is resized. The
framingRatio: message provides a rectangle by which the system calculates
the coordinates. You just sit back and let the system do all the work. If you
use framingBlock: instead, you supply the code for the calculation. This
code takes the form of a block (thus the name of the method) that takes a
single argument. This argument is the rectangle of the window (excluding
the title bar). Your code can do whatever it likes to calculate a rectangle for
any SubPane that usesframingBlock: so long as your other SubPanes take
this method of resizing into account. Your block of code must return a
rectangle.

Pane Menus

If you want a pane to have a special popup menu, you define this menu with
the menu.: method as part of the subpane's definition. Note that a TextPane
has a default popup menu that allows for menu-driven editing of the text
contents of the subpane. You can add to this menu, completely replace it, or
simply default to it.

The argument to the menu. message is a symbol that is the name of a
method of the model that returns or contains the menu definition. The
following code fragment from the CHB will clarify what we mean. Here is
a portion of the code that defines the selector ListPane in the CHB (the right-
most subpane across the top of the window):

menu: #selectorMenu

You would therefore expect to find a method named selectorMenu among
the CHB's instance methods. It is indeed there and it looks like this:

Chapter 6 The World of MPD 95

selectorMenu
"Private - Answer the selector pane menu"
Menu
labels: 'remove\newmethod\senders\implementors ' withers
lines: Array new
selectors: # (removeSelector newMethod senders implement or s)

In creating almost any Smalltalk/V menu, you'll use the same technique,
namely sending the class Menu the message labels: lines .'selectors: as shown
above. These three elements of the selector have the following roles:

* labels: takes as an argument a string that lists the names of the menu
items as they will appear when the user pops up the menu. Note the
combined use of backslashes to separate items from one another in the
string and the withCrs message, which replaces each occurrence of a
backslash with a line-feed character.

* The argument to /ines: is an array of the line numbers of those menu
items that should be separated from the next item by a horizontal line.
In the case of the selector pane menu above, all four items appear as
part of one, uninterrupted menu, so an empty array is supplied as the
argument. (This is required since you cannot simply omit /ines: from
the message.) To see how this works, edit the selectorMenu method in
the class ClassHierarchyBrowser so that the /ines: argument line
looks like this:

lines: #(123)

Now select a method in the selector pane and pop up the menu. Notice
the horizontal lines after each entry. Be sure to return the CHB to its
original condition before you save your image.

* The final element in the selector takes an array as an argument as well.
This array is a list of message selectors (or message names), each
corresponding to an entry in the menu itself. If the user selects the first
entry in the menu, the first selector in this array will be executed (i.e.,
that message will be sent to the model). You can now see how you
could easily modify the behavior of a popup menu. Just change the
selector associated with that menu's entry in the Menu definition and
Smalltalk/V would send your new message to the model instead of the
original whenever the user selected that menu option.

96 Practical Smalltalk

Obtaining a TextPane's Contents

The last of the subpane methods we'll look at is contents. As we said earlier,
it applies only to instances of TextPane. Its use is quite straightforward. It
always retumns the entire contents of the TextPane. You can then do what-
ever you like with the contents. (For example, you might write them to a file,
change some characteristic, etc.)

The Only Model Method You'll Need

Your application is the model, of course, and that means that it uses a great
many methods. But in terms of its interaction with the MPD world, your
model really only needs to deal with one method: changed..

There are actually several variations on this method's theme. They are as
follows:

* changed
* changed:
* changed:with:

o changed:with:with:

The only difference among these four versions of this method is the number
of arguments they take. You'll choose which of them to use based on how
much information you need to pass to the various panes when a change
occurs that you are interested in broadcasting to the model's dependents.

If you use the changed:with: method, it takes as an argument the name of
the method to be executed. If you use the changed-with:with: method, it takes
as its first argument the name of the method to be executed and as its second
argument an argument that this called method requires. In other words, the
changed:with: method is used when the method being called requires no
arguments and the changed.:with:with: method is used when the method
being called requires an argument.

In the Counter class example of Chapter 5, recall that the increment and
decrement methods both sent the model the changed: message when the user
selected one of the entries in the ListPane. In each case, the changed:
message was adequate because the only argument needed was the name of
the subpane (in the example, the subpane called values) that had to be no-
tified of the change.

Chapter 6 The World of MPD 97

Dispatcher Methods You'll Need

We could argue that you really don't need to understand any of the messages
implemented by the class Dispatcher and its subclasses because as a rule
you'll simply use these messages without needing to know much about what they
do. However, both for the sake of completeness and because they are
interesting, we'll look at the two Dispatcher methods you will use in virtually
every Smalltalk/V application you build. We'll also look at the structure of
the statement in which these messages are usually sent to describe briefly how
you might want to change it for some specific purpose. The two methods we'll
examine are scheduleWindow and open.

The scheduleWindow Method

This method is sent to a dispatcher to make it a recognized part of the system as
an active window. The system scheduler is notified of the window's existence
and treats it accordingly. As you know, only one window can be active at a
time in Smalltalk/V, and whichever window is active is the one into which the
user's input will be entered for processing (provided the cursor is in the
window's boundaries). When you create a new window, it is usually because
you are ready for the user to do something to interact with your program, so you
will want your new window to be the active one.

Warning

If you attempt to open an unscheduled window, a fatal error may result.

The open Method

The open message is sent to a window to cause it to initialize and prepare to
appear on the display and to become the active window using its default size.

Standard Use of Dispatcher Methods

As you may recall from our discussion in Chapter 5, we generally end our
open (or openOn:) methods with a single line that looks like this:

98 Practical Smalitalk

topPane dispatcher open scheduleWindow

This has the desired effect of causing our new window to appear on the
desktop and become the active window. There are times when you need to
divide this line into two operations so that after you've opened the
TopPaneDispatcher, you can effect some other change in the window
before making it the active window, at which point you lose control over
some aspects of the window until the user interacts with it somehow. For
example, if you wanted to position the selection (i.e., the text cursor) at a
given point in the TextPane of a window before you made it active, you
would do so in three steps:

1. Open the dispatcher with the line:
topPane dispatcher open

2. Carry out your special subpane processing. For example, you might
have a line like this:

inputPane selectAfter: startPoint

where you've previously named the TextPane as inputPane and
defined the variable startPoint to contain a point within the
appropriate pane.

3. Activate the window with the line:

topPane dispatcher scheduleWindow

7
The Third Project:
Creating a New Pane Type

A Introduction

In this chapter, we extend our understanding of the MPD architecture
described in detail in Chapter 6 by using our knowledge of the class
ListPane as the basis for creating a new subclass called MListPane, which
allows the selection and de-selection of multiple items from a list.

We begin by explaining a new approach to the design of Smalltalk
applications. We will use this approach for the rest of the book, so it
is important that you understand what this methodology means and
how to apply it to your own designs. Once we have explained the new
design approach, we' 11 work through the construction of a small
application whose sole purpose is to help us solidify our
understanding of the ListPane.

Finally, we'll create the subclass MListPane and demonstrate its
use in a small application.

At the conclusion of the chapter, we present a postscript that
describes an alternate approach to this problem that is much more
direct and concise but which lacks one of the capabilities of the
project we build in this chapter.

A Designing the Project

The ListPane class supplied with the Smalltalk/V class library allows only
a single element in a list to be selected at a time. Selecting a new element
automatically de-selects any currently selected element. For some
applications, we may want to allow the user to make multiple selections
from the list and to invoke a single action that applies to all of them. For
example, in a Disk Browser, we might want to allow the user to select
several files to be printed or copied. There may also be times when we
would like to know which of a list of several selected items the user
selected most recently. None of this behavior is supported by the class
ListPane, so we will add it to our application by creating a new subclass.

In Chapter 3, when we created our first example application, the Prioritizer,
you'll recall that we took a strongly procedural approach to the design,
consisting of the following steps:

929

100 Practical Smalltalk

1. Get the data from the user.

2. Sort the data elements by querying the user about each pair of
alternatives.

3. Format and print the results of this processing in the Transcript.

Essentially, then, we designed the Prioritizer by building a mental model of
the way the program would process the information. We focused on the
process or flow of the operations. This was a perfectly acceptable way to
approach the design of such a simple application but in the real world of
OOP, we want to take a far more object-based approach to the design.

In the design of this application, then, we will adopt the following
methodology:

1. Identify the problems to be addressed by the application. What kinds
of behavior do we want it to exhibit? What kinds of objects does the
application need to represent and/or manipulate?

2. Assign responsibilities to objects. What responsibilities should each
object in the application have? What kinds of actions should they
represent or embody? What kind of knowledge about themselves and
their teammate objects must these objects have to carry out their
responsibilities?

We will first identify the problems addressed by the current ListPane class
and determine how it behaves. Then we will do the same for our MListPane
class. As is often the case in building a Smalltalk application, the very
activity of refining the responsibilities of the objects that make up the
application will clarify the process by which the various elements interact.

Problems Addressed by ListPane

We need to understand a number of things about the way the ListPane class
works (i.e., the problems it solves) before we can design and construct a
reasonable subclass to modify this behavior. These problems include:

* how to highlight a selection
* how to interpret user input to the pane as a signal to select an element
* how to handle scrolling

¢ how to interact with the model so that use can be made of the selection

Chapter 7 The Third Project: Creating a New Pane Type 101

Responsibilities of ListPane

Figure 7-1 lists the responsibilities of an instance of class ListPane with which
we are concerned.

The elements of the list that the ListPane displays are furnished by its
model.

Problems to be Addressed by MListPane

In addition to the problems that ListPane addresses, we need to pose some
additional assignments for the new class MListPane that we will design and
build. Specifically, we need to know:

» how to interpret user input with regards to multiple selections

* how to display multiple selections (i.e., indicate that more than one
item is selected and allow the user to see which element was the most
recently selected)

Present all elements
of list in scrollable
pane

Interpret user input
for selecting an item

Keep track of selected item

Inform model of changes in selection

Scroll to selected item

Highlight and unhighlight selection

Figure 7-1. ListPane Responsibilities

102 Practical Smalltalk

Responsibilities of MListPane

Figure 7-2 summarizes the responsibilities that the class MListPane will
have to be able to handle. Some of these responsibilities are slight modifi-
cations of those shown in Figure 7-1 for ListPane while others are new.

The last of the responsibilities in Figure 7-2 requires some explanation.
We need a way for our MListPane class to indicate selections that are
currently in the list of active elements (i.e., those that the user has selected).
We have chosen in our implementation to flag all currently active selections
in the list by preceding them with an asterisk. The most recent selection will
be highlighted, which is the behavior we inherit from ListPane. Figure 7-3,
then, shows what a list will look like if the elements called 102,103, and 105
have been selected, with 105 the most recently activated selection.

Interpret user input to select
and de-select item(s)

Keep track of multiple
selected items

Inform model of changes in
selections

Highlight and unhighlight
most recent selection

Format and unformat
past active selections

Figure 7-2. MListPane Responsibilities

Figure 7-3. Flagging Multiple Selections

Chapter 7 The Third Project: Creating a New Pane Type 103

A Note About Responsibilities

The link between the pane and the model is limited to a minimum number
of channels. The only things a ListPane can do with its model are query it
for a list of items to be displayed and inform the model when the selection
changes. (The ListPane determines when it will ask the model for a list to
display, though this action is often triggered by the model broadcasting a
changed message.) This clear delineation of responsibility is a key aspect of
object-oriented design and can result in objects that are easily reusable.

Building the Test Application

As we said at the beginning of this chapter, we delay the implementation of
our MListPane class to build a small application which confirms our
understanding of ListPane and provides us with a test case to use as we build
and test our MListPane class.

This test application will create a window with two subpanes, one a
ListPane and the other an MListPane. (Actually, we'll start with two
ListPanes since we haven't yet built the MListPane class. But to keep the
discussion focused and simple, we'll still refer to the second pane as an
MListPane. Later, when we convert it so that it actually is an instance of our
newly created class, we won't have to change all our terminology.) The
MListPane will hold a list of items and, before we're finished, will enable
the selection of multiple items in the pane. The ListPane will be responsible
for displaying a list of the items selected in the MListPane. If the user se-
lects an item that is displayed in the ListPane, we'll simply display it in the
Transcript.

We're ready to begin building the test application itself. Since it is an
application that doesn't depend on any particular inherited behavior, we'll
make it a subclass of the class Object. Open the CHB, select Object, and
choose new class from the pane pop-up menu. Name the new class ListApp.

Defining and Initializing Instance Variables

Since we've already described the behavior we expect of this application,
we can determine that this class needs two instance variables: one to hold
the items to be displayed in the MListPane and one to keep track of the items
displayed in the ListPane. We support this self-knowledge by defining two
instance variables, allltems and selectedltems. The former keeps track of all
of the items from which the user can choose in the MListPane; the latter

104 Practical Smalltalk

holds the list of currently selected items to be displayed in the ListPane. That
means that the object's definition, as you will edit it in the CHB' s text editing
pane, looks like this:

Object subclass: #ListApp
instanceV ariableNames:
'allltems selectedltems'
classVariableNames: " pool-
Dictionaries: ''

From what we already know about ListPane (based on our discussion in
Chapter 6 and earlier in this chapter), we can determine that the model for
a ListPane must support two key methods, one to return an Indexed-
Collection of strings to be displayed in the ListPane and another that takes
as its argument a new selection made in the ListPane. The names of these
methods are included in the ListPane, which sends these selectors as
messages to the model when it needs to invoke a corresponding action.
Since our ListApp must serve as the model to two different panes, it needs
to support these essential methods for both of them. The four methods it
must provide will be responsible for implementing the following behaviors:

* providing a list for the ListPane to display (we'll call this method
selectedltems)

* receiving a change in selection for the ListPane (singleSelection.)
* providing a list for the MListPane to display (allltems)

* receiving a change in selection for the MListPane (multipleSelection.)

The selectors for these methods are stored in their respective panes and
automatically sent to the model as determined by the panes.

Note that most Smalltalk programmers use the same name for the
accessing method of an instance variable as they do the instance
variable itself. If this confuses you, feel free to modify the method
names to something like getAUltems or getSelectedltems to
sharpen the difference between symbols used as methods and
instance variables.

Here are the listings for the four methods listed above. Note that, because we
don't yet have an MListPane class, we simply have the multiple-
Selection: method do nothing. This does not, however, mean that this

Chapter 7 The Third Project: Creating a New Pane Type 105

method has no value or can be omitted. It provides documentation for the
behavior we are planning to implement in our class.

selectedltems
"Return the IndexedCol lection that represents those items
selected in the MListPane of our application."
“selectedltems

singleSelection: index
"Just to show that the model and view are communicating we
print out some simple information in the Transcript. "

Transcript show: 'The single item ' , index printString ,
! was selected" ; cr.
self
alii terns

"Returns an IndexedCol lection of items
for use in the MListPane" “al II tems

multipleSelection: theSelections
"For now, this does nothing."

Since we need something for the allltems method to return, we should pro-
vide code to initialize this instance variable to some useful value. We'll
define an initialize method that will handle this process. As you can see from
the Smalltalk/V 286 documentation, ListPane deals with data in the form
of an indexed collection of strings. Since IndexedCollection is an abstract
class, we'll use the concrete class OrderedCollection to hold the strings for
ListPane. While we're at it, we should also provide an initially empty
OrderedCollection for the instance variable selectedltems. Initialize pro-
vides a place for both of these tasks:

initialize
allltems := OrderedCollection new.
100 to: 120 do: [ritem I allltems add: item printString]
selectedltems := OrderedCollection new.

The initial value for allltems will be a list of numbers from 1 00 to 1 20, which
is adequate for testing purposes and has the further virtue of allowing us to
see at a glance which line of the list has been selected. This may come in
handy during debugging.

106 Practical Smalltalk

Opening the Application Window

Now that we've got a method to initialize the instance variables for the
ListApp, it's time to focus on the open method that will create a window
(TopPane), add two subpanes (both of which are, for the moment at least,
ListPanes), and schedule the window. We'll discuss this code in several
segments, and provide a listing of the method in its entirety at the end of the
discussion.

The first chunk of code, below, creates an instance of TopPane, provides
a window label, and defines the window as having a minimum size of 20
characters in width and eight lines in height. Note that SysFontWidth and
SysFontHeight are global variables in the Smalltalk/V 286 system.

aTopPane := TopPane new.
aTopPane label: ' My TestApp';
minimumSize: SysFontWidth * 20 @ (SysFontHeight * 8) .

Now we need to create an instance of ListPane (which will eventually become
a new instance of MListPane). Here is the code that handles this
assignment:

theMListPane := ListPane new.
theMListPane model: self;
name: #alllterns;
change: ttmultipleSelection:;
framingRatio: ((1/2 @ 0) extent: 1/2 @ 1);
returnlndex: false.

In addition to creating a new instance of ListPane called theMListPane,
this code also sets up some important arguments for the pane.

The model: argument defines our instance of ListApp to be the pane's
model.

The name: argument is the name of a message selector that will be sent to
the model to invoke a method that returns the OrderedCollection of strings
the pane is to display. This method also gives the pane a name by which it
can identify itself, which is important because it enables the pane to respond
to a changed: message, as we'll see later.

The change: argument provides a selector that will be sent to the model
along with an argument to inform the model when the selection changes.

We have seen framingRatio: in detail before. It simply determines the size
of the pane in coordinates relative to the TopPane.

The returnindex: argument informs the pane to send the selection as a string
rather than the index of the selection when we inform the model of a change
in the selection. The default value for this argument is false, but we take this
step solely to make the code more readable.

Chapter 7 The Third Project: Creating a New Pane Type 107

The next chunk of code is nearly identical to the last one and requires no
further explanation. It simply adds the other ListPane (the one that stays a
ListPane even in our final application):

theListPane := ListPane new.
theListPane model: self;
name: #selectedltems;
change: ttsingleSelection:;
framingRatio: ((0 @ 0) extent: 12@1).

The final chunk of code in the open method simply adds the subpanes to the
TopPane and schedules the window:

aTopPane addSubpane: theListPane.
aTopPane addSubpane: theMListPane.
aTopPane dispatcher open scheduleWindow.

We can now test our ListApp by executing the following code in a Workspace
or in the Transcript:

ListApp new initialize open.

When we execute this code, a window with our two panes appears. One is
empty, the other contains our list of numbers (see Figure 7-4). We can select
an item from the right pane, but nothing appears in the other pane. This
shouldn't surprise you, since our definition ofinultipleSelection: doesn't do
anything yet. This also means we can't yet test selecting an item in the left
pane (the ListPane) either. But we'll get to those steps soon enough.

Swalltalk/VU Transcript

PlotWindowZ new gngs
]

SimulationVie I
ScreenDispatcher

Counter exanmple

Figure 7-4. Non-Functional ListApp Window

108 Practical Smalltalk

As we did in Chapter 5, we'll create a class method called example that will
facilitate our future testing of this application. Select the class button be-
neath the method list pane in the CHB, choose new method from the pane
pop-up menu, and enter the following code into the text editing pane:

example
"ListApp example"
self new initialize open.

We can now examine the listing of the entire open method so that you can
see it all in one place:

open
"Opens our test application."
I aTopPane thelListPane theMListPane I
aTopPane : = TopPane new.
aTopPane label: 'My ListAppl;
minimumSize: SysFontWidth * 20 @ (SysFontHeight* 8)
theMListPane := ListPane new. theMListPane model: self;
name: #alllterns;
change: tmultipleSelection:;
framingRatio: ((1/2 @ 0) extent: 1/2 @ 1) ;
returnlndex: false.
thelistPane := ListPane new.
thelListPane model: self;
name: #selectedltems;
change: ttsingleSelection:;
framingRatio: ((0 @ 0) extent: 1/2 @ 1)
aTopPane addSubpane: thelistPane. aTopPane
addSubpane: theMListPane. aTopPane
dispatcher open scheduleWindow.

Connecting the Two Panes

Now that we have the application developed to the point where it opens a
two-pane window and displays the initial list in the right pane, let's connect
the two panes so that a selection in the right pane will appear in the left. (The
method singleSelection: which we have already defined will take care of the
user selecting an element of the left pane's list.) We've already established
the necessary model relationships between the panes, so all we really need
to do is flesh out our multipleSelection: method so that it handles the current
capability of the ListPane. In other words, it needs to receive a single string

Chapter 7 The Third Project: Creating a New Pane Type 109

and place this string into an OrderedCollection so that the left pane can
display it. Here's the code to handle this assignment:

multipleSelection: theSelections
"Respond to the change in theM ListPane selection, and
broadcast to its dependents who respond to the aspect of
#selectedlterns to do what they need to do." selectedltems :=
OrderedCollection with: theSelections. self changed:
#selectedltems.

The first line of code in the above listing assigns to the instance variable
selectedltems the value of an instance of OrderedCollection of only one ele-
ment, namely the argument passed with the multipleSelection: message. (The
with: method is inherited by OrderedCollection from the class Collection.)

The first thing we need to do is to provide an instance of OrderedCollection
for the ListPane to display (since, as you'll recall, we defined the
selectedltems method for this pane to return an OrderedCollection). For
the moment, since we are not yet dealing with multiple selections, this
collection will have only one element in it. How do we create a collection
with one element? We examine the hierarchy of the class library starting
with OrderedCollection until we find a method in a superclass capable of
handling this task. When we get to the class Collection, we find the with:
class method that answers a collection of a single element. This is the
behavior we want; since it is inherited, we simply use it.

Next, we add the changed: message. This method is inherited by ListApp
from the class Object. It broadcasts to all dependents of the instance that a
change has occurred. Its argument is a argument that lets a dependent
determine whether and how it should respond to the change.

(Recall from our discussion in Chapter 6 that the very fact that we have
defined the ListApp as the model for this pane, the pane is automatically
defined as dependent on the model. We don't need to do any other explicit
programming to create this dependency.)

The argument of the changed: message is the symbol fiselectedltems. This
is significant since it corresponds to the name of the ListPane. Therefore,
the argument triggers the update to the ListPane that we expect.

After you change multipleSelection: as described above and save it, try
testing the ListApp one more time by typing into the Transcript or a
Workspace the following line and executing it with do it:

ListApp example.

Now the application is beginning to take shape. When you select an item in
the right pane, it displays in the left pane. If you select the item in the left
pane, a sentence prints in the Transcript (see Figure 7-5).

110 Practical Smalltalk

Snal Ttalk’V Transcrip

PlotUindowZ new openw,

ScreenDiaspatchar init
Counter exanple

ListApp examp e

s single item ’ 162’ uas selected

Cavmer = (Canming
SimulationViewser =

Figure 7-5. Interim Working Version of ListApp

Creating and Constructing MListPone

Our test case works. We have identified the behavior in ListPane that we
need to understand and have implemented it in our own test application.
Switching over to a new subclass of ListPane that does not override any of
the currently used methods shouldn't upset anything in the design, so we'll
create the MListPane class and then take another incremental step in
proving to ourselves that things are working as expected.
First, create the new class MListPane as a subclass of ListPane with the

following steps:

1.
2.

Open a CHB and select the class ListPane.

Select add subclass from the pop-up menu in the pane that lists the
classes.

. Name the new class MListPane.
. Select subclass from the next pop-up menu.
. In the template that appears in the text editing pane, modify the code

to look like this:

ListPane subclass: #MListPane
instanceVariableNames:
selections '
classVariableNames:
poolDictionaries:

. Save the change.

Chapter 7 The Third Project: Creating a New Pane Type 111

We have defined one new instance variable called selections. It will hold the
potentially several selections that the user has made in the MListPane of our
application. We also need an instance variable to keep track of the last item
selected, but we can see by looking at the class definition for ListPane that
it already has such an instance variable, called selection. We will simply use
that inherited variable rather than upsetting the apple cart by defining our
own new instance variable to handle the same task. (Another reason for doing
this is that ListPane will take care of finding, highlighting, and other house-
keeping functions as a result of this decision and its inherent behavior.)
Now let's test our application to be sure it still works with this minimal
change. Find the line in the open method in the class ListApp that looks like this:

theMListPane := ListPane new.
and change it to read as follows:
theMListPane := MListPane new.

Try out the application by typing into the Transcript or Workspace the line
of code that invokes the example method. Everything should work as before.
We have proven that we can create a new instance of MListPane and use
it in our application transparently.

Building MListPane

Now we start the more challenging task of building the MListPane class by
adding to it the behavior that we need in order for it to carry out its previously
defined responsibilities. We will identify the unique or new responsibilities
it has, find the methods in its parent class ListPane which deal with those
tasks, and override them in MListPane.

Relevant MListPane Responsibilities

We can identify the following responsibilities that our MListPane class must
handle that are different from those handled by ListPane:

* setting the instance variable selections to empty any time selection is
set to empty

+ formatting and unformatting string representations in the MListPane
as the user makes and un-makes selections

* adding elements to and removing elements from selections

112 Practical Smalltalk

preserving the original list of items as provided by the model (ex-
plained in detail later)

interpreting user input for selecting and de-selecting items

providing the model with the selections the user has made as a
collection of indexes or strings

Let's look at each of these responsibilities in turn and see how we implement
them in MListPane.

Clearing selection and selections as Needed

When the instance variable selection is set to empty, we must set our new
instance variable selections to be an empty instance of OrderedCollection.
Examining the methods in ListPane to find out where selection is set to nil,
we find numerous places where this takes place. Rather than overriding all
of these methods and having to deal with the two instance variables
separately, we've decided to write a new method called clearSelections
which will set both of these instance variables to appropriate empty values.
Another thing we notice as we go through ListPane looking at the places
where selection is set to empty is that in every case the code also sets the
instance variable currentLine to nil. So we add this to our method as well.
This leads to the following new method in our class MListPane:

clearSelections
selection := currentLine := nil.
selections := OrderedCollection new.

Now we can override the ListPane methods where this processing takes
place and replace the line in the ListPane methods that reads:

selection := currentLine := nil.
with:
self clearSelections.

This affects the close, restore, and update methods, which will now look
like this in their implementations in MListPane:

close
"Close the pane."
super close.
self clearSelections.

Chapter 7 The Third Project: Creating a New Pane Type 113

restore
self clearSelections.
super restore.

update
self clearSelections.
super update.

Note that if you examine the initialize method in the ListPane class, you'll
find that it does not set up selection to be nil. This was probably considered
unnecessary in that class since an untouched variable is bound to #i/ by default.
In our case, though, we must initialize selections, so to keep things consis-
tent and to make the code somewhat more readable, we'll override initialize
with a version that handles our selections:

initialize I

result I

result := super initialize,
self clearSelections.
“result.

Note that the placement of the super expression in relation to our
clearSelections message is significant. Normally, we place our
message send after the call to the super method because we want
the new method to return the same information as was returned by
the version of the method provided in our superclass. In this case,
though, we want to empty the selection and selections instance
variables before the pane is refreshed, so we place our message
sends first. We do this because it is important to return the expected
or same value as that returned by the inherited method. This also
explains why we go to the effort of saving the value in result.

It is also worth noting, as a design lesson for your own work in Smalltalk,
that if the original implementors of Smalltalk had handled this process of
selection identification by putting the line:

selection := currentlLine := nil.

in a separate method of its own, we would not have had to override it in three
other places. You should see this not so much as a criticism of the originators
of Smalltalk as you should take heart from the fact that even the people who
invented this language didn't do everything right the first time!

Save these new methods and run the ListApp example again. Everything
should work precisely as before. (This may sound like paranoia; after all, we

114 Practical Smalltalk

didn't make any significant behavioral change to the application in this
discussion. But sometimes even the tiniest changes have a surprising effect
on existing programs. We prefer frequent testing to protracted debugging
sessions later!)

Formatting and Unformatting Selections

When the user selects an entry in the MListPane, we need to add an asterisk
to the beginning of the string entry if it wasn't previously selected and
remove the asterisk if the selection was previously made. (We have previ-
ously decided that the user can de-select a list entry by clicking on an entry
the user had already made.)

MListPane inherits from ListPane an instance variable called /ist that
contains the IndexedCollection of the list. An instance of IndexedCollection
can reference its individual components by means of an index (which is, of
course, where the class derives its name). Using simple concatenation, we
can get the string that is located at the index where the selection has been
made and then add an asterisk to the beginning of that string. Here is the
method that handles this responsibility:

formatIndexedStringAsSelected: anlndex "Append an
asterisk [*] to the string in the list instance
variable inherited by MListPane from ListPane.'
list at: anlndex put: '*' | (list at: anlndex).

1

(Note the relatively long name of this method that describes with some
precision what it does. We recommend that meaning take precedence over
length to make your code more readable.)

The removal of the asterisk requires some logic testing. If there is no
asterisk in the first position of the string, we don't have to do anything
because ourformatindexedStringAsSelected: method will add the asterisk.
Here is the method that removes the asterisk if necessary:

unformatindexedStringAsSelected: anlndex

"Remove the asterisk [*] from the string

in the list instance variable inherited

by MListPane from ListPane." I theString

theStringLength I theString := list at:

anlndex. (theString at: 1) == $*
ifTrue: [theStringLength := theString size.
theString := theString copyFrom: 2 to: theStringLength.
list at: anlndex put: theString.].

Chapter 7 The Third Project: Creating a New Pane Type 115

Adding and Removing Elements of selections

When the user selects an element of the list in the MListPane, we must either
add it to the OrderedCollection selections if it is one that was not previ-
ously on the list or we must remove it from that collection if it was previously
there.

To add an element to an OrderedCollection, we have a number of meth-
ods from which to choose. A quick review of their operations, however,
reveals that the simplest of these — the method called, simply, add: — is
sufficient for our purposes. We also want to handle the formatting of the
display list using the methods outlined in the previous section. Here is the
code we'll use to add a newly selected element to the Collection being
displayed in the ListPane in our application:

addToSelections: anlndex
"Adds the index represented by anlndex to the
collection of selections, and formats the string
representation of the selection."
selections add: anlndex.
self formatIndexedStringAsSelected: anlndex.
“anlndex.

The code for removing an element from the list is similar. Examining the
methods available in the class OrderedCollection, we find that all of them
amount to over-kill. We need a simple removal of an indexed element, while
all of those defined in the class either work only with specific elements (as
do removeFirst and removeLast, for example) or are more complicated than we
need. In the superclass Collection, though, we find a simple remove: method
that appears to do what we want, so we'll use it. Here's where:

removeFromSelections: anlndex
"Removes the index represented by anlndex from the
collection of selections/ and unformats the string
representation of the selection."
selections remove: anlndex.
self unformatIndexedStringAsSelected: anlndex.
“anlndex.

Preserving the Original List

With all of the methods in the previous section, we alter the contents of the
list involved in the application. This destructive change to the list may not
be what we want, since this list is shared by the pane and the model. The

116 Practical Smalltalk

model probably considers this rude, and other methods outside MListPane
may depend on the model's state. Furthermore, it is bad manners to alter
directly the contents of an instance variable belonging to another class.

We examine the methods of the class ListPane to find out where the in-
stance variable called /ist is used and determine if the methods make a copy
of the list before using it or if they return the original list. We discover that
list is bound in several ListPane methods and that in no case does the system
make a copy of the instance variable. (Note that if the ListPane class had
been defined with a specialized method to handle this process, our applica-
tion would be simpler to write. We would then merely have to override that
method in MListPane. As it is, our new class will be much easier to subclass
in this respect than the original ListPane class from which we are working.)

To provide this behavior to our ListApp application, we override a num-
ber of methods of ListPane in MListPane.

There are two main copying methods defined in the Smalltalk/V system:
deepCopy and shallowCopy. The former copies a variable and all of its
elements while the latter copies only the receiver and not its elements. In this
case, we need to copy the strings as well as the list, so we use deepCopy.

In keeping with good design and the goal of reusable code, we define a
method setListFromModel which we can then use in various other methods
to take care of the copying process wherever it's needed:

setListFromModel
"Gets the list from the model and stores a copy
of it in the list instance variable. " list :=

(model perform: name) deepCopy.

The perform: method is Smalltalk/V's way of sending a message to an object
and returning the result of the message sent. It is a behavior exhibited by all
objects in the Smalltalk/V system since it is inherited from the class Object.
The above example sends the message name to the model and then sends a
deepCopy message to the result, assigning the output to the variable list.
The restore method in the class ListPane also modifies the list, so we need
to override it in MListPane. But we have already created an overriding
version of the method earlier. As we examine the method in ListPane, though,
we notice that it performs other processing that is dependent on the value of
list, so we have to create a more complex version of the overriding method:

restore
"Refresh the list from the model
and maintain the position in the list
without selecting it."

Chapter 7 The Third Project: Creating a New Pane Type 117

topCorner == nil

ifTrue: [topCorner = 1@1].

self setListFroinModel.

topCorner y > list size

ifTrue: [topCornery: (listsize max: 1)].
self clearSelections.

self refreshAll

Notice that this new method is a hybrid of our earlier version in MListPane
and code taken directly from ListPane.

There are two methods closely related to restore that we must similarly
override in MListPane. The new code for these methods is shown here; it
is self-explanatory in light of the discussion above.

restore WithRefresh: aString
"Refresh the list from the model
and keep the line equal
to aString showing and selected."”
self setListFromModel.
self restoreSelected: aString

restoreSelected
"Refresh the list from the model
and keep the old selection."”
self setListFromModel.
self refreshAll.
self boldLine: selection

The open method for the ListPane also sets the /ist and must therefore be
overridden in MListPane as follows:

open
"Private - Open the pane."
self setListFromModel.

Similarly, the update method in ListPane must be overridden because of its
use of /ist to refresh the list from the model:

update
"Refresh the list from the
model and display it." self
setListFromModel. self
clearSelections. topCorner :=
1@1. self refreshAll

118 Practical Smalltalk

We must override one remaining method. The searchForLineToShow: method
also makes use of the /ist instance variable. Be careful in working with this
method. Select the method name in the CHB and then select senders from
the pane pop-up menu, you' 11 see that this message is sent by restoreSelected..
A careful examination of the code for the restoreSelected: method shows
that it relies on the returned value of this method for its correct operation.
Thus if we simply override the searchFor-LineToShow: method we could
"break" the restoreSelected: method.

Further examination of the restoreSelected: code reveals that although
this method sets the value of the list, it accesses only the length of the list,
not its contents. So we can safely use super to handle this processing within
our overridden version of the searchForLineToShow: method, rather than
rewriting the method as we were forced to do in the methods above. Here is
the new code:

searchForLineToShow: anObject
"Override method inherited from List Pane."
I result I
result := super searchForLineToShow: anObject.
self setListFromModel.
“result.

Interpreting User Input for Selecting and De-Selecting
Elements

In ListPane, all of the interpretation of the user's input and the display of
the results of the user's interaction with the application are handled in
selectAtCursor. This method is complex as it stands; to override it with
another monolithic version capable of dealing with multiple selections
would require making extensive additions to a copy of the method. The
result would be code that would be difficult to read and maintain. So we take
advantage of the fact that we have to override this method anyway to make
the code simpler to deal with. We override selectAtCursor with a method
that unhighlights the current selection, then calls a new method to interpret
the user's input, and finally redisplays the pane's contents. Here is the
new version of selectAtCursor for MListPane:

selectAtCursor
"Handles interpreting and displaying the user selections."
"Set currentLine instance variable to the user's selection"
self findCurrentLine.

Chapter 7 The Third Project: Creating a New Pane Type 119

self topPane textModifled "Safety feature"
ifTrue: ["self].
currentLine isNil "Safety feature"
ifTrue: [“self] ifFalse: [
currentLine > list size
ifTrue: [“self]] . self
hideSelection. self
interpretSelection. self
refreshPane. model perform:
changeSelector with:
(returnlndex
ifTrue: [self allSelectionsAsIndexes]
ifFalse: [self allSelectionsAsStrings]).

If you compare this method with the method of the same name in the
ListPane superclass, you'll see that this version is much more straightfor-
ward and policy-oriented. That doesn't mean the original selectAtCursor
method was badly designed, only that as we found it necessary to add
complexity, it turned out to be easier to simplify the method and have it call
other methods than to attempt to squeeze all of the new functionality into a
single new version.

Notice that the overridden version of the selectAtCursor method calls three
new methods that are not part of the ListPane class: interpretSelection, all-
S electionsAsindexes, and allSelectionsAsStrings. Here are the listings for
those three methods:

interpretSelection
"Performs the interpretation of the user selection.
By having this as a separate method we can simplify the
nesting of ifFalse: and ifTrue because we can simply test
for a case, and return from the method when finished."
"The first selection made in the MListPane"

selection == nil

ifTrue: [“selection := currentLine].
"If the only item selected is selected again, it becomes
unselected." ((currentLine == selection) and: [selections
isEmpty])

ifTrue: [“self clearSelections]
"If we have made it here, selections must not be empty so. . ."

(currentLine == selection)
ifTrue: [selection := selections last.
“self removeFromS elect ions: (selections last)] . "The

new selection has nothing to do with the old selection, so
check on what it has to do with previous selections."
(selections includes: currentLine)

120 Practical Smalltalk

"Remove the selection from selections."

ifTrue: [self removeFromSe lections: currentLine] "A completely new
selection. Select iti"

ifFalse: [self addToSelections: selection. . *selection :=
currentLine].

allSelect ionsAsIndexes
"Return an OrderedCollection of indexes
representing selections in the pane."
I result |
result := selections shallowCopy.
result add: selection.
result

allSelectionsAsStrings
"Return an OrderedCollection of strings
representing the unformatted selections in the pane."
| result cleanList |
cleanList := self getListFromModel.
result :== OrderedCol lection new.
selections notEmpty
ifTrue: [selections do: [:anindex |

result add: (cleanList at: anindex)]] . selection notNil
ifTrue: [result add: (list at: selection)] . Aresult —

The allSelectionsAsStrings method, in turn, calls an as-yet-undefined
method called getListFromModel, which sounds like it ought to return
a copy of the list from the model. In fact, that's just what we'll define
that method to do:

getListFromModel

"Gets the list from the model and stores a copy of it in the list instance
variable." * (model perform: name) deepCopy.

Now that we've written a method that returns a copy of the list, we
can rewrite setListFromModel to use this new method, thus further
reducing the number of links between our pane and the model. This is
always a desirable design goal.

setListFromModel

"Gets the list from the model and stores a copy of it in the list instance
variable." list := self getListFromModel.

Chapter 7 The Third Project: Creating a New Pane Type 121

A Providing the Model With User's Selections

The last responsibility we've assigned our new class is that of providing the
model with the selections made by the user as collections of indexes or of
strings. This is determined in the selectAtCursor method when it references
the retumindex variable, as we explained when we began building our test
application, ListApp.

The allSelectionsAsindexes and allSelectionsAsStrings methods
described earlier carry out the bulk of the work here. They examine the
pane contents and return an appropriate value. We have also modified
selectAtCursor to deal with these new methods.

To demonstrate the use of this new approach to returning the r"*
information to the model, change the multipleSelection: method in the
class ListApp so that it gets an OrderedCollection rather than a String as
it does in ListPane. Here is the modified code for this method:

multipleSelection: theSelectionStrings
"Respond to the change in theMListPane selection, and broadcast that its
dependents who respond to the aspect of #selectedltems to do what they need
to do." selectedltems := theSelectionStrings. self changed: ftselectedltems.

With all these changes made, try out the modified ListApp and
experiment with the results. Figure 7-6 shows an example of the
experimental use of this application.

Smalltalk’V Transcript @@I

PlotWindowZ new open.

Cammer := (CammingMonitor new).
SimulationViewer g

ScreenDispatcher inif{

Counter exanmple

Figure 7-6. Completed ListApp Application

122 Practical Smalltalk

A The Complete Listing

Here is the complete listing of the code in this chapter, in file-in format.

Object: subclass: #ListApp instanceVariableNames :
‘allltems selectedltems ' classVariableNames: "'
poolDictionaries: "

IListApp class methods !
example
"ListApp example" self- new Initial i ze open!
!ListApp methods !

allltems
"Returns an IndexedCollection of items for
use in the MListPane"

~allltems!
initialize
allltems := OrderedCollection new.
100 to: 120 do: [:item I allltems add; item printString].
selectedltems := OrderedCollection new.
"self!

multipleSelection: theSelectionStrings
"Respond to the change in theMListPane selection, and
broadcast that its dependents who respond to the aspect of
ftselectedltems to do what they need to do." selectedltems
:= theSelectionStrings. self changed: f#selectedltems!

open
"Opens our test application."
I aTopPane thelistPane theMListPane I
aTopPane := TopPane new.
aTopPane label: 'My ListApp';
minimumSize: SysFontWidth * 20 @
(SysFontHeight* 8)
theMListPane := MListPane new.
theMListPane model: self/name:
ttallltems;
change: ftmultipleSelection:;
framingRatio: ((1/2 @ 0) extent: 1/2 @ 1) ;
returnlndex: false.
thelListPane := ListPane new.
thelListPane model: self;
name: f#selectedltems;
change: ftsingleSelection:;
framingRatio: ((0 @ 0) extent: 1/2 @ 1).
aTopPane addSubpane: thelistPane.
aTopPane addSubpane: theMListPane.
aTopPane dispatcher open scheduleWindow!

selectedltems
"Return the IndexedCollection that represents those items
selected in the MListPane of our application."

Chapter 7 The Third Project: Creating a New Pane Type 123

“selectedltems!

singleSelection: index
"To show that the model and view are communicating
we print out some simple information in the
Transcript. " Transcript show: 'The single item ' ,
index printString
' was selected' ; cr.
~elf! !

ListPane subclass: ftMListPane
instanceVariableNames:
'selections ' classVariableNames: "
poolDictionaries: ' ' 1

IMListPane class methods ! !

IMListPane methods !

addToSelections: anindex
"Adds the index represented by anindex to the
collection of selections, and formats the
string representation of the selection."
selections add: anindex.
self format indexedStringAsSelected: an-
Index. ' “anindexI

allSelectionsAsIndexes
"Return an OrderedCollection of indexes
representing selections in the pane."
I result I

result := selections shallowCopy.
result add: selection.
result!

allSelectionsAsStrings
"Return an OrderedCollection of strings
representing the unformatted selections in the pane.
I result cleanlList I
cleanlList := self getListFromModel.
result := OrderedCollection new.
selections notEmpty
if True: [selections do: [:anindex I
result add: (cleanlList at: anindex)]].
selection notNil

ifTrue: ::-si;", .dd: n”st at:
selection)]. “result!
clearSelections
selection := currentLine := nil.
selections := OrderedCollection
new!
close

"Close the pane."
super close.
self clearSelections!

formatIndexedStringAsSelected:
anindex "Append an asterisk [*] to
the string in the list instance
variable inherited by MListPane from
ListPane." list at: anindex

put: '*' , (list at: anindex)!

124 Practical Smalltalk

getListFromModel
"Gets the list from the model and stores a copy of
it in the list instance variable." * (model
perform: name) deepCopy!

initialize
I result I
result := super initialize.
self clearSelections.
*“result!

interpretSelection
"Performs the interpretation of the user selection.
By having this as a separate method we can simplify the
nesting of ifFalse: and ifTrue because we can simply test
for a case, and return from the method when finished."
"The first selection made in the MListPane"

selection == nil

ifTrue: [“selection := currentLine].
"If the only item selected is selected again, it becomes
unselected." ((currentLine == selection) and: [selections
isEmpty])

ifTrue: ["self clearSelections].
"If we have made it here, selections must not be empty so...
(currentLine == selection)
ifTrue: [selection := selections last.
'"'self removeFromSelections: (selections last)]
"The new selection has nothing to do with the old selection,
so check on what it has to do with previous selections."
(selections includes: currentLine) "Remove the selection
from selections."
ifTrue: [self removeFromSelections: currentLine]
"A completely new selection. Select it!"
ifFalse: [self addToSelections: selection,
“selection := currentLine]!

open
"Private - Open the pane."
self setlistFromModel!

refreshPane
"Refresh the display without changing the value of list,
as 1s done with the restore* methods."
self refreshAll.
self boldLine: selection!

removeFromSelections: anlndex
"Removes the index represented by anlndex from the
collection of selections, and unformats the string
representation of the selection."
selections remove: anlndex.
self unformatlndexedStringAsSelected: anlndex.
“~anlndex!

restore

"Refresh the list from the model and

maintain the position in the list

without selecting it." topCorner == nil
ifTrue: [topCorner := 1@1].

self setlistFromModel. topCorner

y > list size
ifTrue: [topCorner y: (list size max: 1)].

self clearSelections.

Chapter 7 The Third Project:Creating a New Pane Type 125

self refreshAll!

restoreSelected
"Refresh the list from the model
and keep the old selection."
self setListFromModel.
self refreshAll.
self boldLine: selection!

restoreWithRefresh: aString
"Refresh the list from the model
and keep the line equal
to aString showing and selected.
self setListFromModel.
self restoreSelected: aString!

searchForLineToshow: anObject
"Override method inherited from ListPane."
I result I
result := super searchForLineToshow: anObject.
self setListFromModel.
*result

selectAtCursor
"Handles interpreting and displaying the user selections."
"Set currentlLine instance variable to the user's selection"
self findCur rent Line. self topPane textModified "Safety
feature"
ifTrue: ["self]
currentLine isNil "Safety feature"
ifTrue: ["self] ifFalse: [
currentLine > list size
ifTrue: ["self]] . self
hideSelection. self
interpretselect ion. self
refreshPane. model perform:
changeSelector with:
(returnlndex
ifTrue: [self allSelectionsAsIndexes]
ifFalse: [self allSelectionsAsStrings]) !

selections
"Returns the current selections in the pane."
I allSelections I

allSelections := selections shallowCopy.
allSelections add: selection.
"allSelections!

setListFromModel

"Gets the list from the model and stores a copy
of it in the list instance variable." list :=
self getListFromModel!

unformatlndexedStringAsSelected: anlndex
"Remove the asterisk [*] from the string
in the list instance variable inherited
by MListPane from ListPane." I theString
theStringLength I theString := list at:
anlndex. (theString at: 1) ==
ifTrue: [theStringLength := theString size.
theString := theString copyFrom: 2 to: theStringLength.
list at: anlndex put: theString.] !

126 Practical Smalltalk

update
"Refresh the list from the
model and display it." self
setListFromModel. self
clearSelections. topCorner
:= 1@1. self refreshAll! !

An Alternative Approach

When we had finished the work on this chapter, Mike Anderson of Digitalk,
who handled most of the technical review on the manuscript, suggested that
we consider an alternate approach which, while eliminating one bit of
functionality from MListPane, was a much simpler approach to the single
problem of multiple selections. His solution, which does not allow us to
deselect items or to know by examination which item was selected last, is
nonetheless highly instructive.

He modified the ListPane method boldLine: so that it took a collection as
an argument rather than an integer that indexes the location of a single entry
in the pane. Along with other modifications shown in the listing that follows,
this approach results in fewer modifications than our approach. You will
benefit from studying it and its behavior in comparison with the MListPane
project we built together in this chapter.

Here's the listing for Anderson's MultipleSelectListPane project.

Project : MLP

Date : Nov 1, 1990
Time : 00:16:07
Classes :

MLPTest MultiSelectListPane

Methods :

Object subclass: ttMLPTest
instanceVariableNames:
'multiSelectListPane '
classVariableNames: ''
poolDictionaries: ''!

ListPane subclass: #MultiSelectListPane
instanceVariableNames: ' '
classVariableNames: ''
poolDictionaries: ''!

IMLPTest class methods ! !

Chapter 7 The Third Project: Creating a New Pane Type

IMLPTest methods

ClassCorranent

“'this class is creates a simple window
P
to test MultiSelectListPanes ' !

list
~# (one two three) !

labels: 'show selected"
lines: #()
selectors: # (showSelected) !

open
(TopPane new
addSubpane: (multiSelectListPane := MultiSelectListPane new

model: self; name: #list; change : # select : ; menu: ttmenu))
dispatcher open scheduleWindow!

select: aString!

showSelected I

stream I

stream := String new asStream.
multiSelectListPane selection do: [-.line I
stream

nextPutAll: line printString; nextPutAll:

', '] . Menu message: stream contents!

1

'MultiSelectListPane class methods ! !

'MultiSelectListPane methods !

boldLine: aCollection
"Private - Reverse the set of lines indexed by
aCollectoin in the receiver pane." aCollection do: [
:line I paneScanner reverse:
(self lineToRect: line)]!

graySelection
"Private - Change the visual cue of the selection to
reflect a deactivated window." selection do: [:line

I paneScanner gray:
(self lineToRect: line)]!

hideSelection
"Private - Turn off the reverse of the
selected items."
selection do: [:line I
paneScanner recover:
(self lineToRect: line)]!

initialize

127

128 Practical Smalltalk

super initialize.
selection := OrderedCollection new!

selectAtCursor

"Private - Set currentline to the line at the
cursor position." self findCurrentlLine. self
topPane textModified
ifTrue: ["self].
currentLine isNil
ifTrue: ["self]
ifFalse: [
currentLine > list size
ifTrue: ["self]].
super boldLine: currentLine.
(selection includes: currentLine)
ifTrue: [selection remove: currentLine]
ifFalse: [selection add: currentLine]. model
perform: changeSelector
with:
(returnlndex
ifTrue: [currentLine]
ifFalse: [list at: currentLine])!

"construct application"
((Smalltalk at: #Application ifAbsent: [])
isKindOf: Class) ifTrue: [
((Smalltalk at: #Application) forr'MLP')
addClass: MLPTest;
addClass: MultiSelectListPane;
comments: nil;
initCode: nil;
finalizeCode: nil;
startUpCode: nil]!

8
The Graphic World

Introduction

Smalltalk is a completely graphic environment. Its graphic nature has set it
apart from other PC languages. It should come as no surprise, then, that you
can control its graphic nature and create interesting and useful graphic
patterns. In fact, if you've ever run the demos that come with Smalltalk/V
286, you've seen some intriguing graphic effects available on a desktop
computer in a program which is not primarily designed to create graphics.

In this chapter, we're going to examine Smalltalk/V's graphic world in
some depth. We'll take a look at the basic concepts of graphic programming
as Smalltalk/V implements them. Then we'll examine the use of forms and
drawing primitives in the language, pausing in the process to look at the
basic mathematics involved in calculating and drawing graphic objects.
Wel'll also take a brief look at some of the ways Smalltalk/V 286 implements
and supports animation.

We'll accomplish our usual triage on the graphic classes, helping you
focus on the classes and methods that are important for you to understand
as you add graphics to your own Smalltalk applications.

All of this will prepare us for Chapter 9, where we will undertake the
design and construction of a highly graphic application.

Basic Graphic Concepts

Everything displayed on the Smalltalk screen — windows, lines, cursors,
even text characters — is composed of a series of dots (more technically
referred to as pixels, an acronym for picture elements) arranged in a pattern.
A line appears as a continuous vector of such dots whose color is black (on
a monochrome display) or any color contrasting with the background (on a
color display).

129

130 Practical Smalltalk

On a monochrome display, a bitmap defines a rectangular area of bits
where each bit has a value of 1 if the pixel represented by that bit is black
and 0 if it is white. Because of this method of representing graphic patterns,
Smalltalk is said to use bitmapped graphics.

An individual pixel within a bitmap is addressed as a point with an x
coordinate and a y coordinate. The x coordinate defines the point's column
(horizontal position) and the y coordinate defines its row (vertical position).
The coordinates may be stated relative to the entire area of the display or
relative to a specific pane, depending on the circumstances and the need.

A bitmap in Smalltalk/V is always contained in an instance of the class
Form or in one of its subclasses — BiColorForm or Color Form.

Rectangular collections of bits in a bitmap can be described as instances
of the class Rectangle, where the origin (upper-left corner) and either the
bottom-right corner or the size (height and width) of the rectangle are
known, with the latter two being expressed relative to the upper-left corner.

It is important to understand that instances of the class Point or Rectangle
are not displayable objects but simply represent positions and areas. The object
that actually holds the graphical image of points and rectangles is the Form.

The basic classes of graphic data representation and display, then, are
Point, Rectangle, and Form. Let's take a brief look at each of these classes.
(This subject is covered in some detail in the Smalltalk"286 Manual, so we
do not attempt a complete treatment here. If you want more information on
any of these subjects, refer to the manual.)

The Class Point

An instance of the class Point has two instance variables of interest: x and
y. As we have said, these represent, respectively, the horizontal and vertical
position of the point.

To create a new point, you send the @ message to an integer. (We saw
some of this in Chapter 6 when we studied how to define the size and relative
location of a subpane in a window.) You can create a point and then
interrogate it for its coordinates in a process depicted in Figure 8-1. Notice
that the point we create is never displayed; we have not given the point an
instance of class Form within which it can display itself.

You can perform a number of manipulations on instances of the class
Point. For example, you can add, subtract, or multiply two points or a point
and an integer value. If you use a point as the argument to any of these
messages, then the x coordinate of the point used as a argument is applied
to the x coordinate of the receiver. The y coordinates are treated similarly.
For example, evaluate the following expressions separately in a Workspace
or Transcript window with show it:

Chapter 8 The Graphic World 131

Smalltalk/U Transcripl
laPoint row columnl
aPoint = 150635.
row := aPoint x.
column = aPoint y.
Transcript show! (row printString}: cr.
Transcript show: (column printString):

Figure 8-1. Creating and Referencing a Point

(15@30+ (-1 @ -2)) x
(15@30) + ((l@-2)) y

The first expression should return the result 14 and the second should return
the result 28. Now try:

15 @30 + 13

You should get the point 28@43 as an answer. Since you supplied only a
single value rather than a point, Smalltalk/V adds the value to both the x and
y coordinates.

The Class Rectangle

One of the most useful things you can do to a Point is to create a Rectangle
with it. Any rectangle is defined by two points: its upper-left corner and its
lower-right comer. Thus, we can make a point into a rectangle by supplying
it with another point. There are two methods to handle this:

* corner:, which returns a rectangle whose upper-left corner is the
receiver of the message and whose lower-right corner is the coordi
nates of the argument, itself a point.

* extent:, which returns a rectangle whose upper-left corner is the
receiver of the message, and whose lower-right comer is calculated as
the sum of the receiver and the argument.

For example, the following two rectangles, taken from the Smalltalk/V 286
Manual, are identical:

132 Practical Smalltalk

1 @ 1 corner: 100 @ 100
I Q@1 extent: 99 @ 99

You can change (or define) the size and/or location of a Rectangle with either
of two methods: origin:corner: or origin:extent:. As you would expect,
these two methods operate quite similarly to corner: and extent: in the
Point class.

You can also shrink or expand a Rectangle in relative terms with the
insetBy: method. (Actually this method creates anew rectangle with the new
size.) This method takes a rectangle, a point, or a number as an argument and
reduces the coordinates of both coordinates in both directions accordingly.
Evaluate the following expression in a Workspace to see the insetBy: method
in action:

(1 @ 1 extent: (99 @99)) insetBy: 10
The result should be the rectangle defined as:
II @ 11 corner: 90 @ 90

Notice that the insetBy: method added 10 to the x and y coordinates of the
upper-left corner and subtracted 10 from the coordinates of the lower-right
corner. The effect, then, is a Rectangle that is shrunk from the original, or
inset on both corners by a specific amount.

There are numerous other operations you can perform on a Rectangle. These
are largely self-explanatory and described in the Smalltalk/V 286 documen-
tation, so we won't go into them in detail here.

The Class Form

So far, the graphics classes we've looked at have been somewhat abstract
(not in the sense that they are formally abstract Smalltalk/V classes, but in
the sense that we can't see them doing anything). Now we're ready to take
a look at the class Form, which you can think of as the canvas on which all
Smalltalk drawing takes place.

A Form is a subclass of DisplayMedium, which in turn is a subclass of
DisplayObject. Figure 8-2 depicts the hierarchical relationship of these
three classes and describes their functions briefly. As you can see, both of
the superclasses of Form are abstract classes. This may seem strange, but
this design makes it possible for Smalltalk/V applications to be quite
portable across machines with different types of displays.

Chapter 8 The Graphic World 133

)) Provides common protocol for
DisplayObject transferring rectangular blocks on a
DisplayMedium.

Provides methods for coloring and

DisplayMedium drawing borders around
rectangular areas

Contains the bitmap that is
Form displayed on the screen

Figure 8-2. Hierarchy of Class Form

To create a new Form, you can use the width:height: class method. For
example, evaluate the following line of code in a Workspace or the
Transcript. The result should look something like Figure 8-3.

(Form width: 100 height: 50) displayAt: 150 @ 150

Get rid of the rectangle by choosing redraw screen from the system pop-up
menu. Now change the color of the rectangle to black by sending the new
Form the reverse message:

(Form width: 100 height: 50) reverse displayAt: 150 @ 150

S b e bk e it

(Form width: 108 height: 58) dizplayat: 1580 @ 158

Figure 8-3. Sample Form Displayed

134 Practical Smalitalk

The result of executing this will look something like Figure 8-4. You should
restore your display after you've proven that this works.

You can display only part of a Form by using the displayAt:clippingBox:
message. This message takes a Point and a Rectangle as arguments. To see
the impact of this, enter the following expression in the Workspace and then
show it:

I aRect I

Forml := (Form width: 100 height: 50) reverse.

aRect := (150 @ 150) extent: 100 @ 50.

Forml displayAt: aRect origin clippingBox: (aRect insetBy: 20 @ 10)

A smaller black rectangle will be displayed at approximately the same point
on the screen as before. Its center will be at the same point, but its four
corners will have been inset from their original positions.

You should note, too, that both displayAt: and displayAt:clippingBox: are
inherited from DisplayObject which, as you'll recall, has responsibility for
moving rectangles of bits around within the display environment.

Drawing in Smalitalk/V

Now that you are familiar with the three basic graphic classes in Smalltalk/V,
let's look at the question of how drawing takes place in the system. To do
this, we need to look at three new classes:

« BitBIt, which is the fundamental class of all drawing operations.
¢ Pen, a subclass of BitBlt which creates visible lines in a Form.
* GraphPane, a subclass of Pane, that is associated with a Form.

Let's take a brief look at each of these classes and their important instance
variables and methods.

Figure 8-4. Sample Form Displayed in Black

Chapter 8 The Graphic World 135

The Class BitBIt

This class takes its strange-sounding name from the concept of a bit block
transfer and is usually pronounced "bit-blit" by experienced Smalltalk
programmers. As its full name implies, this class has as its primary
responsibility the transferring of blocks of bits from one area to another.
This simple-sounding process turns out to be quite complex because the
process of moving these blocks of bits around involves three important
ideas: rules, masks and clipping rectangles. As we will see, the message
called copy Bits actually carries out the transfer of the bits.

The Mask Form

The movement of a block of bits from one place to another involves the
careful combination of the characteristics of three different forms:

* the source form, where the bits to be moved are located before the
process begins

* the destination form, where the bits are to be moved

* the mask form, which contains information BitBIt uses to determine
the appearance of the bit block as it is transferred to (i.e. drawn in) its
destination form

The message that initializes all of the necessary instance variables in an
instance of the class BitBIt is destForm: ordestForm:sourceForm.. (There
is one other initialization message that sets up six other instance variables
but we won't be using it here and you will probably find little practical use
for it unless you are creating quite complex graphic applications.) Once a
BitBIt has been initialized, you define its mask form with the mask:
message.

Some of the interesting power and complexity of BitBIt manipulation lie
in the mask form. This form defines a "halftone," or pattern that produces
a gray or multi-color effect as the bits are transferred. On a monochrome
display, the mask has one of five pre-defined values:

* black

* darkGray
° gray

* lightGray

* white

As a BitBIt transfer takes place, the bits in the source form are first logically
ANDed with the bits in the mask form. A mask form is restricted to have a
height and width of 16 pixels. When the source form with which the mask

136 Practical Smalltalk

form is being ANDed is larger than 16 by 16 pixels, as is usually the case,
then BitBIt repeatedly tiles the mask form across the width and down the
height of the source form, performing a logical AND operation with each
16x16 area of the source form.

Type the following code into the Transcript and then do it to see what we
are talking about when we discuss BitBIt and its key instance variables:

I aForm I
aForm := (Form width: 100 height: 100).
(BitBlt destForm: Display sourceForm: aForm)
mask: Form lightGray;
copyBits.

Figure 8-5 shows what the screen should look like after you execute this
code. Note the light-gray rectangle in the upper-left corner of the display.

Clipping Rectangles

To avoid the possibility of drawing outside a window or other boundary, the
class BitBIt allows you to define a clipping rectangle that defines the area
in the destForm: within which your drawing operations such as copyBits
will be confined.

You have undoubtedly noticed that when you type or draw inside a pane
in Smalltalk, you do not have to do anything special to ensure that your
changes don't overrun the edge of the pane in which you are writing or
drawing. Smalltalk handles this clipping for you automatically.

When you create and manage your own panes and forms, you may need
to be concerned about preventing action in one part of a window from
overlapping into and affecting the appearance of other portions of the

RTLTTE I ST S T TR N

! aForm |
aForw = (Fors width: 188 haight: 184).
(BitBlt destForm: Display sourcelorm: aForw)
wazk: Form 1lightGray:
copyBite.

Figure 8-5. A BitBIlt With a Light Gray Mask Form

window.

Chapter 8 The Graphic World 137

This process is handled by the clipRect: message, which takes a rectangle
as an argument.

If you haven't deleted the code we used near the end of the previous section
to show how a mask form works, you can use that same code and add a new
line so that it now looks like this:

I aForm I

aForm := Form width: 100 height: 100.

(BitBlt destForm: Display sourceForm: aForm)
mask: Form lightGray;
clipRect: (20 @ 20 extent: 30 @ 30);
copyBits.

Figure 8-6 shows you how the screen should look when you select the above
code and do it. Notice that the light-gray mask form now appears in only a
part of the area (specifically within a rectangle defined with an upper-left
corner of 20,20 and a lower right corner of 50,50). This is because the
drawing process ordered by the copyBits message has been confined to the
clipping rectangle described in the line immediately before the copyBits
message is sent.

The Class Pen

Whenever you draw a line on a Smalltalk display, you do so with an instance
of the class Pen. This class is a sub-class of the class BitBIt which we have
just finished examining. When you create an instance of the class Pen and
then tell it to draw a line, it actually uses its BitBIt to copy from its source
form to its destination form at each position along the line you describe.

Since the drawing portion of a Pen — i.e., its point, or nib — is a source
form, you can change its size or its pattern by merely altering the form or its
associated mask form, as discussed above.

SN A TSN R TP Y

1 aFform 1

aForm = (Form width: 100 height: 100).

(BitBlt dest¥orm: Dizplay sourceForw: aForw)
mank: Form lightGray:
clipRect: (28 @ 20 extent: 30 @ 383
copyBits.

Figure 8-6. Using a Clipping Rectangle with a Form

138 Practical Smalitalk

Any instance of Class Pen keeps track, among other things, of its current
location, direction, and downState (i.e., whether it is drawing or moving
without leaving a trace behind).

We'll take a look at nine of the most useful methods in the class Pen in
some detail. We can divide these methods as follows:

 two methods that deal with the status of the Pen (i.e., whether it is
drawing or not)

* two methods that deal with the Pen's point, or nib

¢ five methods that deal with movement and location of the Pen

Methods Relating to Pen Status

There are two methods that relate to the status of an instance of the class Pen:
up and down.

Sending an instance of Pen the up message effectively stops drawing as
it moves around in response to other messages that relocate its position in
the form. Conversely, sending it the down message resumes drawing.

A new instance of the class Pen starts with its point down.

Methods Relating to a Pen's Nib

When you create a new instance of class Pen, you generally give the drawing
instrument a point, or nib, to use as a default. As you use the Pen, you may
wish to change its nib from time to time. As we indicated earlier, a Pen nib
is actually a source form used as the Pen draws lines during movement.

The defaultNib: method sets the size and shape of the nib of a Pen. It takes
an integer or a point as an argument. With no defaultNib:, Smalltalk/V
defaults to a nib of one pixel by one pixel in size. This is equivalent to
supplying 1 or the point 1 @ 1 as an argument to the defaultNib: message. If
you use an integer argument, Smalltalk/V creates a nib that is that integer
number of pixels wide and high. In other words, the command:

Pen defaultNib: 5.
is identical in effect to the command:
Pen defaultNib: 5@5.

Whenever the Pen draws, it uses its current defaultNib: setting. To change
the size of the nib, you must send another defaultNib: message with a new
integer or point value.

Chapter 8 The Graphic World 139

If you want to alter the source form the Pen uses to draw, then you send
it a changeNib: message. This message takes the name of a Form as an
argument and changes the nib of the pen to draw with that form as its new
source form. Note that the size and weight of the nib remain as set in the most
recent defaultNib: message, or at 1 @ 1 if no defaultNib: message has ever
been sent to the current instance of Pen.

Other characteristics of the lines drawn by the Pen are set with methods
inherited from Class BitBlt. These include mask: and destForm:. These
methods were discussed earlier when we described the class BitBIt.

Methods Relating to Pen Movement and Location

There are numerous methods in the class Pen that deal with the present
location, orientation, and movement of the Pen. We'll focus our attention on
the six most frequently used:

e direction :
e turn:
* place:

e home:

* go:
* goto:

Together, these five methods permit you to do most of the drawing you'll
want to do in all but the most sophisticated graphic packages in Smalltalk/V.

The direction: Method

The direction: method points the Pen in a specific direction. Its argument
is an integer with a value between 0 and 359. Figure 8-7 shows the main
compass points and their values in degrees as understood by a Smalltalk Pen.
Actually, the integer argument to the direction: message can be a value
outside the range of 0 to 359. But if you supply such a value, Smalltalk/V
adjusts it to fit within the arguments. For example, if you send an instance
of the class Pen a direction: 630 message, Smalltalk/V appears to subtract
360 from 630 and point the Pen in the same direction as if you'd supplied
a direction value of 270. In fact, what happens is that Smalltalk/V simply
rotates the Pen through the 360 degrees of the circle as many times as the
integer dictates. Similarly, a value of -15 for the direction: of a Pen results
in an actual direction of 345 degrees.

140 Practical Smalltalk

225 k1]

180 Q(380)

135 45

Figure 8-7. Pointing a Pen in a direction:

The turn: Method

To change the direction of the Pen relative to its present heading, use the
turn: method. Its argument is the number of degrees by which you wish to
change the direction of the Pen. It may be positive (for clockwise rotation)
or negative (for counter-clockwise rotation).

For example, if the current direction of the Pen is 135 degrees, send it the
message:

turn: 90

would result in a new direction of 225 degrees. No drawing takes place
during a turn.:.

The place: Method

The place: method takes a point as an argument and positions the Pen at that
point. No drawing takes place while the Pen is relocated from its present
position to the new point indicated by the place: message.

The home Method

You can place the Pen in the precise center of its destRect by sending it a
home message. Sending this message does not alter any other aspect of the
Pen, including, for instance, its direction.

Chapter 8 The Graphic World 141

The go: Method

To move the Pen relative to its present position, send it a go. message with
an integer as an argument. The integer tells the Pen how many pixels to
move in its current direction. For example, if the Pen is located at point 50
@ 50 in the Form in which it is drawing, and is pointed in direction 270 (i.e.,
straight toward the top of the screen) and you send it a message like this:

Pen go: 200.

then it will move 200 pixels straight up the screen. (Actually, its vertical
movement is adjusted depending oil the aspect ratio of the display, but that
is a nicety you can ignore for the moment.)

The goto: Method

You can achieve absolute movement of the Pen to a defined point on the
screen while drawing a line (if the Pen is down, of course) with the goto:
message. This message takes a point as an argument and moves the Pen from
its current position directly to that point in the current Form.

It is important to note that this kind of movement by nature overrides the
Pen's current direction setting if it is necessary to do so. The direction of the
Pen remains unchanged after movement with the goto: method, however.

Class GraphPane

Smalltalk/V defines a specific type of pane called a GraphPane. Its pur-
pose, as its name implies, is to accommodate drawing activities in much the
same way an instance of the class TextPane is designed to accommodate the
display and edit text.

You know that drawing in Smalltalk requires an instance of class Form.
An instance of class GraphPane is associated with a Form which contains
a backup of the bitmapped image shown in the pane. This allows the pane
to refresh its contents if, for example, they should be obscured by an
overlapping window.

This basic behavior of a GraphPane is the major reason for using a pane
rather than an arbitrarily defined Form for drawing.

The basic behavior and methods of panes we discussed in Chapter 6 and
worked with in Chapter 7 are valid for instances of class GraphPane as well.
Creating a graphic subpane requires the same basic syntax as that for
creating a text pane.

9
The Fourth Project:
A Graphing Application

Introduction

This chapter presents a graphic application which demonstrates the use of
many of the classes and methods we examined in Chapter 8. In the process,
you will get a chance to see a highly incremental approach to Smalltalk
programming in which we build the application in three distinct stages.

As with our previous projects, we will begin this chapter by describing the
application's purpose and operation. Then we will discuss its design in
terms of the Smalltalk/V class library and other considerations. Finally,
we'll construct the application in small segments, explaining each as we
proceed.

The program in this chapter was designed and developed by the authors in
conjunction with Morton Goldberg, who wrote the code and extended the
original concept into a more intriguing example than it would have become
without his efforts.

Designing the Application

This application will be a scaled-down version of a business graphing
package. It will lack some of the functionality and polish that a commer-
cially published program for converting business data into graphs would
have, but within its limited scope and purpose, it will give the user a good
deal of flexibility and control over the appearance of the graphs it produces.
The window of this application—which we will call Plot Window to keep
things simple — consists of two panes. One pane displays the data being
graphed. The other pane displays the graph itself in the form of a collection
of horizontal or vertical bars. The user can choose the orientation of the bars
(horizontal or vertical), their spacing, proportionality, and pattern (which
could be extended on a color display to specify the color of the bars).
Obviously, a more robust application would allow the user more types of graphs.

143

144 Practical Smalltalk

Data to be graphed can be entered directly by the user into the data pane
in the application window, or it can be read from a file. As you might expect,
then, data entered into the data pane can also be saved into a disk file.

Menus will provide the user with the capability to erase the plot, redraw
it, return to the Plot application's default settings, and edit (cut, copy, or
paste) data.

Figure 9-1 shows the basic structure of the application, with the window
showing its two subpanes and all of the application's menus.

TheSubpanes

As you can see from Figure 9-1, this application's window has two
subpanes. The one on the left is used to enter the data to be graphed. It is an
instance of class TextPane. The one on the right is where we graph the data.
It is an instance of class GraphPane.

Note, too, that the window has two icons in the upper-right corner: a resize
icon and a collapse icon. As you'll see when we build the application, we
define a minimum size for the window that means that the user can make the
plot window larger, but not smaller. We do this for two reasons. First, it is
useful for you to know how to maintain a minimum window size in case your
application would be difficult to run or unusable if its window were reduced
below a certain size. Second, we do it because our application is an example
of such a situation. If the user resized the window to be much smaller than
we initialize it to be, the bars of the graph could become so small as to be
meaningless. The differences in bar size between even relatively disparate
quantities could become invisible.

Plot Elinetbong

ik L al b
optionz ...
restore defaults

stretch facto
bar color

I winlth

pAr EPAC Ly

Figure 9-1. Basic Structure of Plot Application Window

Chapter 9 The Fourth Project: A Graphing Application 145

The Class PlotWindow

We create an entirely new class for this application, as you will usually do.
We call this class PlotWindow. Because this is a largely self-contained
application, we make it a descendant of the root class Object rather than
subclassing. Start by creating this class, editing the class definition template
to add the following instance variables: plotPane, plotSelector, factor,
barWidth, barFill, barSpacing, and barPen.

Building the Application: Stage One

As we indicated at the beginning of this chapter, we're going to develop the
Plot application using an incremental style. You may often find this
approach useful, particularly in situations where you wish to demonstrate to
someone (a customer or user, for example) how an application is going to
look before you've spent a lot of time and energy developing its more
complex behavioral methods.

When you take this approach, you need to decide how many stages to use
and how much functionality you'll incorporate at each stage. These deci-
sions tend to be somewhat arbitrary and application-specific, so we can't
give you a lot of guidance. The issues involved are basic computer science
concerns that are addressed in many other books. We can, however, say that
the first stage of an incremental development in Smalltalk should almost
always be one that produces a basic shell of what the application will
ultimately look like. It should have little or no functionality. Its purpose is
to demonstrate to a prospective user what the application looks like, what its
basic menu choices are, and how it will behave in the broadest sense of the
term.

We have chosen to develop this application in three stages:

1. Non-functional shell
2. Basic graphing capability, with most user options not yet incorporated

3. Inclusion of all user options

The open Method

As will often be the case in incremental Smalltalk program development,
we'll begin by creating the method that sets up the application window and
its subpanes. By convention, we'll refer to this as the open method. The code

146 Practical Smalltalk

for this method appears below. Other than the inclusion of an instance of
class GraphPane, there is nothing in this method you haven't seen in earlier
chapters, so we won't spend time describing it here.

open
"Open the Receiver. Define the pane sizes and behavior,
and schedule the window. "

I topPane I
topPane := TopPane new.
topPane

model: self;

minimumSize: self initWindowSize extent;
label: 'Plot Window'; rightlcons: #(resize
collapse) . topPane addSubpane: (TextPane
new model: self; menu: ftdataMenu; name:
#dataPane; change: #string:from:;
framingBlock:
[:box I box origin extent: 50 @ box height]) . topPane
addSubpane: (plotPane := GraphPane new model: self;
menu: #plotMenu; name: #plotPane:; framingBlock:
[:box I (box origin + (50 @ 0)) corner: box corner])
topPane dispatcher open scheduleWindow

The initWindowSize Method

As we saw in Chapters 6 and 7, most of the time we want to include an
initWindowSize method in any pane definitions we create. We are tying the
minimum size of the application window to its initial size, so we must create
a method to define that initial size. The code follows:

initWindowSize
"Answer the initial size for a receiver Window."
'M Display boundingBox insetBy: 30 @ 25)

Chapter 9 The Fourth Project: A Graphing Application 147

Since we plan on creating a window that occupies most of the screen's
display area, we inset it initially only a little from the top left corner of the
screen.

Methods for the Text Pane

The text pane where the data will be entered requires three basic methods,
as you can see from its definition in the open method above: dataMenu,
dataPane, and string:from:. We have seen the functional equivalents of
these methods before. The code for the three methods appears below:

dataMenu
"Answer the menu for the data pane. " "Menu labels:
'accept\restore\copy\cut\paste' withers
lines: #(2)
selectors: # (accept cancel copySelection cutSelection
pasteSelection)

dataPane
"Answer the initial data pane contents, ah empty string."

string: aString from: aDispatcher
"The data pane's contents have been changed, so change
the plot. Answer true."

Atrue
The menu for this pane will, in this preliminary version at least, allow the
user to choose from the options: accept, restore, copy, cut, and paste. We
will see that later we will decide (based, in a real-world situation, on the
customer's feedback in all likelihood) that we need to add other functions
to this menu. But for the moment, we'll leave the prototype in this state.

Notice that the change: method—named, in this case, string.:from:—does
nothing in this prototype version of the application. Later, we'll fill it in with
code that will result in it changing the plot when the data in the TextPane
changes.

For now, we just need to have the method present to avoid an error that
would otherwise arise if the user selected "Save" from the menu.

148 Practical Smalltalk

Methods for the Graphing Pane

From the open method, you can see we need to define two methods for the
GraphPane to avoid compilation errors and complete work on our semi-
functional prototype version of the Plot application: plotMenu (which de-
fines the menu for the pane) and plotPane: (which plays the usual role of a
name: method in a subpane definition). Here is the code for these two methods:

plotMenu
"Answer the menu for the plot pane."
“Menu
labels: 'erase\horizontal bar\vertical bar' withers
lines: #()
selectors: #(clearPlot setHorizontal setVertical)

plotPane: aRect
"Make a blank form the size of the screen. Display the form in
aRect on the screen. Answer the form." I blankForm I (blankForm
:= Form width: Display width height: Display height)
displayAt: aRect origin clippingBox: aRect.
~blankForm

Notice that the menu allows the user to erase the current graph or to choose
either a horizontal bar or a vertical bar.

The plotPane: method creates a new blank Form the size of the screen
(which is why you see the Display being used as a sizing reference). In
practice, we'll send the plotPane: message with a argument that is a rect-
angle. You'll see how this works when we flesh out the application later.

Demonstrating the First Version

In keeping with the principle we presented earlier, we'll define an example
class method for our new PlotWindow class. Like most such methods, it is
quite simple:

example
"Open a PlotWindow for demonstration purposes"
PlotWindow new open

Now we can demonstrate how this window will look and describe its
behavior by executing the following line of code:

Chapter 9 The Fourth Project: A Graphing Application 149
PlotWindow example

You can now display the two pane menus, show how the minimum size of
the window is constrained, collapse the window, and describe what will
happen when the menu choices are selected in the finished application. (Of
course, we haven't defined the methods that will be called when the menu
choices are actually made, so if you or the user inadvertently selects a menu
choice at this point, an error walkback will appear. Some prototype design-
ers would take our design a step farther and define dummy methods for all
of these menu choices. You can make this determination for yourself. It will
probably vary with the application and the nature of the user for whom the
demonstration is being presented.)

Incidentally, the menu options in the TextPane will work as expected,
since the methods they call are standard TextEditor methods. We'll learn
more about text editing classes and methods in Chapters 10 and 11. Another
thing you can demonstrate to the user is that an attempt to close the window
after the contents of the TextPane have been changed will result in a con-
firmation window being presented by Smalltalk.

For a prototype, this little application is reasonably demonstrable. You can
show the user the window and its subpanes, demonstrate its movement,
resizing and collapsing, examine the menu choices you've decided to
include, and show how data entry and editing will work in the TextPane. You
can also show the user a built-in safeguard against accidentally deleting
data. And yet you've had to write relatively little code to get this far.

We won't reproduce the entire listing of this prototype version of the
application here as we have done in earlier chapters. Instead, we will list the
next version's code in its entirety since that is the first one that will actually
do something when you run it.

Building the Application: Stage Two

In the second stage of our application construction, we will add the ability
to draw the bar graphs. We will also define and initialize some factors that
the user will later be able to adjust affecting the style, appearance, spacing,
and other characteristics of the graphing bars themselves. Finally, to make
the application complete, we will fill in the string:from: method that we need
to cause the graphing pane to update its contents in response to the user's
modifying the data in the TextPane.

150 Practical Smalltalk

Plotting the Plots' Arguments

Before we can write the methods that will draw the bars, we need to decide
what factors make up the size, appearance, and relative positioning of the
bars in a graph. Then we can determine which factors we want to control
within the application and which ones we wish to allow the user to modify.
That will give us the information we need to create an initialization routine
to set up default values for all of these variables and to write the bar-
generating methods horizontalBar: and verticalBar: to make use of these
variables.

Three of these values are relatively self-evident from an examination of
any bar graph. These are the width of each bar (which you can also think of
as the thickness of the lines), the spacing between bars, and the pattern or
color to use to fill in the bars. This last value, as you can probably guess from
our discussion in Chapter 8 about drawing in Smalltalk/V, will determine
the mask to be used for the Pen we create to draw the bars.

A study of data graphing techniques reveals one other characteristic of a
bar in a graph which we may wish to accommodate. We need some way to
control the scaling of the data in the GraphPane so that we can convey the
maximum amount of information to the user in the space available. Depend-
ing on the ranges of values the user enters, the scaling needs to be adjusted.
For example, if the user enters a series of values all within the range of 10-
50, and then later wants to plot a series of values ranging from 100 to 500,
we don't want the second plot to be 10 times as wide as the first (or,
conversely, for the first plot to be one-tenth as wide as the second). This
could result in either miniscule bars that are very hard to differentiate from
one another at low ranges so we can accommodate larger ranges or bars that
are so wide that getting to the ends so we can assess their relative sizes would
be cumbersome at best and impossible at worst.

To accommodate this need, we have chosen to use a stretch factor, which
is an integer by which we will multiply each of the data values to be plotted.

A quick examination of these four constraints on a bar graph reveals that
we probably want the user to be able to control them in all situations. In the
final version of the application, then, we'll devise a method to allow the user
to modify any or all of these characteristics from a popup menu without
having to modify the code of the application. For this version, however,
we're going to establish reasonable default values for all of these variables
and define a method to initialize them. This is, of course, preferable to "hard-
coding" the values directly in the bar-graphing methods, since it will make
it easier later to modify them either in the code (as we develop and
experiment with it) or from a menu (when we make that capability available

Chapter 9 The Fourth Project: A Graphing Application 151

to the user). We will, however, add the methods necessary to permit the user
to determine which type of graph to use.

The initialize Method

Now that we know what variables we need to accommodate, we can easily
write the initialize method that will set up the arguments for a bar graph
unless the user modifies any or all of them later.

We need to initialize one additional factor, namely the type of bar to be
drawn. We had already determined in the prototype to let the user choose a
horizontal or vertical bar. We're going to decide, quite arbitrarily of course,
to start out assuming the user wants to use horizontal bars.

Here, then, is the code for the initialize method:

initialize
"Initialize instance variables with default values."
plotSelector := #horizontalBar :
factor := 4. "stretch the data values by this much"
barWidth := 2 * SysFont height. barSpacing :=
SysFont height. barFill := Form gray. barPen := Pen
new mask: barFill

Notice that we use the system font' s height as the yardsticks by which to set
up default values for width and spacing of the bars. This is preferable to
hard-coding some value since it allows the display to be flexible depending
on the system and the font it uses. Also notice the last line of this method
where we create an instance of class Pen with which to draw the bars and
give it the mask value stored in the instance variable barFill.

The mere inclusion of this method and the definition of these instance
variables necessitate two other changes to our earlier code.

First, we have to declare these instance variables in the class defi-
nition. We've done this before, so we won't take the time to reproduce the
code here. As we go along in this development, you'll notice that we add
some other instance variables to the list as well. We'll point these out as they
arise; be sure to add them to the class definition.

Second, we must call this initialize method from somewhere in the open
method so that the initialization actually takes place. This simply requires
us to add a line anywhere in the open method that says:

self initialize.

152 Practical Smalltalk

Drawing the Bars

With the constraint variables defined, we are ready to write the methods that
actually draw the bars in the GraphPane. They are quite similar to one
another, so we'll take a close look at the horizontalBar: method and then
reproduce the verticalBar: method with little commentary. The drawing
process can be thought of as taking place in five steps:

1. Create a form in which the drawing will take place.

2. Define a pen with which to draw.

3. Loop through each data element, calculating and drawing each bar.
4

. Set up a backup Form where the GraphPane's contents can be stored
in the event the pane needs refreshing at some point.

5. Use copy Bits to cause the actual display of the graph as described in
Chapter 8.

Here is the code for the horizontalBar: method. We'll analyze its various
components with the above five-step process in mind.

horizontalBar: theData

"Draw a horizontal bar plot of theData, an ordered
collection of integers." I formxy 1
form := Form width: Display width height: Display height.
x = 0.y = 0. barPen
defaultNib: 1 @ (barWidth * Aspect) rounded/-
direction: O0; destForm: form. theData do: [:value
I

barPen place: x @ y. barPen

go: factor * value.

y =y + ((barSpacing + barWidth) * Aspect) rounded]

plotPane form: form. plotPane paneScanner copyBits

Creating the Form

The first executable line of code in the horizontalBar: method defines a new
Form the size of the display screen. We saw this approach in Chapter 8.

Chapter 9 The Fourth Project: A Graphing Application 153

Defining the Pen

Having created an instance of class Pen called barPen in the initialize
method, we now send this new drawing instrument a series of messages.

The first message sets the pen's defaultNib: to be one pixel high. The width
of the nib is calculated by multiplying the width of the bars defined in the
initialize method by the aspect ratio of the display, a value that is stored in
a special Smalltalk/V global variable called Aspect. (Note that this variable's
name begins with a capital letter to indicate that it is either a global or a class
variable.)

Next, we set the pen's direction to be 0, which, as we saw in Chapter 8,
means that it will begin drawing from left to right (or, directionally, to the
east) when it is moved.

Finally, we tell the Pen to use the form created earlier as its destination
Form.

Calculating and Drawing the Bars

We use a do: block to loop through the data in the instance variable theData
that is passed as an argument with the sorizontalBar: message. (We will see
shortly how this variable is determined from the values entered by the user
in the TextPane. This processing is handled by the string:from.: method that
is defined as this pane's change: method.)

For each entry in this variable, which is an instance of class
OrderedCollection, we place the pen at its next starting point, then use the
go: method to cause the pen to draw the bar. Finally, we relocate the vertical
position of the pen by incrementing the value of its y instance variable. Then
we repeat the process.

Notice that we use the stretch factor, which we stored in the instance variable
factor, to scale each element in the data collection as we draw it. Note, too,
that we determine where to place the pen for the next horizontal bar by
adding the spacing and width of the bars — factors that are set up in the
initialize routine — and then multiplying them by the aspect ratio of the display.

Setting Up a Backup Form

The next to last line in the horizontalBar: method uses the GraphPane
instance method form: to define the form declared at the first step in this
drawing process as the backup form for the GraphPane's contents.

Displaying the Bars with copyBits

The last line in the horizontalBar: method uses the copyBits message which,
as you know, is the method that causes the drawing to appear in the

154 Practical Smalltalk

destination form, in this case the GraphPane. Another function of this method
is to hide the cursor if it is in the GraphPane when the drawing takes place.

The verticalBar: Method

Now that we understand the horizontalBar: method, we can look at its
counterpart for drawing vertical bars. Here is the code for the verticalBar:
method:

verticalBar: theData

"Draw a vertical bar plot of theData, an ordered collection
of integers." I formxy I

form := Form width: Display width height: Display height. x
= 0.

y := form height.

barPen

defaultNib: barWidth @ 1;

direction: 270; destForm:

form. theData do: [: value I

barPen place: x @ y. barPen go: factor *

value * Aspect, x :=x + barSpacing +

barWidth] . plotPane form: form;

scrollUp: plotPane frame height - form height.
plotPane paneScanner copyBits.

There are, as you can see, relatively few differences between this method
and the horizontalBar: method we have just examined. We should, how-
ever, point out some of the differences.

We initialize the y value to the height of the form (which in this case is the
same as the height of the display) rather than to 0 because we want to start
drawing vertical bars not from the left of the screen but from the bottom of
the GraphPane.

Notice that we set up the defaultNib: for the pen slightly differently be-
cause we no longer need to adjust its dimension by the value of Aspect since
we are giving it an absolute vertical size of 1. Similarly, to get the pen to draw
from the bottom of the screen to the top, we need to set its direction to 270
rather than 0.

In the go: message, we now must take into account the aspect ratio of the
display to keep the bars proportional to the size and shape of the screen.
Similarly, we need not take into account this aspect ratio for the x position

Chapter 9 The Fourth Project: A Graphing Application 155

of the pen drawing the bars. So the last two lines of the do: block are slightly
different from the horizontalBar: method's last two lines.

Finally, there is a new line, second from the end of the method. It uses the
GraphPane method scrollUp: to scroll the pane's contents so that you can
see the bottom of the pane no matter how large the values being plotted
become. You can then use the standard scrolling techniques to move the
view around so you can see the tops of any bars that might be too high for
the pane's clipping rectangle.

Defining Graph Selection Methods

Remember from the discussion of the initialize method that we start the Plot
application with horizontal bars as the default plot type. We store this value
in an instance variable called plotSelector. The GraphPane menu invokes
two specific methods — setHorizontal and setVertical — which should
determine the plot type to use. These methods, then, must set the value of
plotSelector in accordance with the user's wishes. Here is the code for these
methods:

setHorizontal
"Change the plot type to horizontal bar"
plotSelector := tthorizontalBar:

setVertical
"Change the plot type to vertical bar"
plotSelector := #verticalBar:

The clearPlot Method

Another GraphPane menu method we need to create is the one that erases
the graph. This tums out to be surprisingly easy. No need to determine where
graphic objects appear and draw over them with some other pen. All we have
to do is define a new form for the pane that is the same size as the current
form's frame. Here's the code:

clearPlot
"Clear the plot pane by giving it a new blank form."
plotPane form: (self plotPane: plotPane frame)

156 practical Smalltalk

The string:from: Method

The last method we have to write for this stage of our application's
development is the string:from: method that handles the conversion of the
data into a usable form and creates a new plot with the resulting data. Recall
that in our prototype, we created a dummy version of this method. It is now
time to round it out. Here is the code:

string: aString from: aDispatcher
"The data pane's contents have been changed. Convert the
new data into an ordered collection of integers and make a
new plot. Answer true." I input data token [input :=
aString asStream. data := OrderedCollection new. [input
atEnd] whileFalse: [
token := input nextWord.
token notNil

ifTrue: [data addLast: token asInteger | |.

self perform: plotSelector with: data. “rue

This method takes the string that is its first argument and converts it to a
stream. The string is the data entered in the TextPane. We need it in a stream
form so that we can parse it and break it into its individual entries. There is
no way to parse a string directly, so we convert it to a stream first.

Next, we define an instance of the class OrderedCollection called data
which we will use to hold the parsed values.

We work our way through this collection an item at a time, adding each
new "word" (in this case, a number) to the end of the collection until we have
converted all of the elements of the stream to an OrderedCollection.

Finally, we use the perform.:with: message to instruct the model to carry
out the method whose name is presently stored in the instance variable
plotSelector with the OrderedCollection as its data argument. This, as we
have seen in examining the horizontalBar: and verticalBar: methods, ac-
tually generates the graph.

Demonstrating the Second Version

This version of the program is fully functional, so we can demonstrate all of
its capabilities.

Whether you use the example approach or just call the open method di-
rectly, create a new Plot Window. It should look exactly as it did during the
demonstration of the prototype earlier.

Chapter 9 The Fourth Project: A Graphing Application 157

Now enter a small number of values — we recommend you keep them in
the range of 1 to 125 for the moment because the stretch factor of 4 that
we've applied makes values larger than about 125 disappear off the right
edge of the pane.

After you have entered a few values, select the "accept" option from the
data pane's popup menu. A horizontal graph of the data elements using a
gray pen should appear in the GraphPane, similar to that shown in Figure
9-2.

Now you can choose the "erase" option from the GraphPane popup menu
and the graphing area will be clear. Choose "vertical bar" from this same
menu.

Put the cursor into the data pane and make some kind of a change to the
contents. You can leave the values the same by simply pressing the Return
key at the end of the list or you can edit one or more values. You can even
clear all the values out of the pane and enter new ones. As soon as you select
the "accept" option from the pane popup menu, the new vertical graph
should appear, similar to the one in Figure 9-3.

Figure 9-2. Sample Horizontal Bar Graph

R
15
38
28
0
48
[

Figure 9-3. Sample Vertical Bar Graph

158 Practical Smalltalk

You should also collapse, resize, move, and close the window to be sure
all of those built-in functions work as expected.

The Complete Listing of Second Version

Because this is a fully functional application now, and because you may
wish to stop with this version rather than building the somewhat more robust
and polished version we'll look at next, we reproduce here the complete
listing of the Plot application in its present incarnation. As usual, it is in
fileln format.

Object subclass: #PlotWindow
instanceVariableNames:
'plotPane plotSelector factor barWidth barFill barSpacing
barPen '
classVariableNames:
poolDictionaries: '' !

! PlotWindow methods !

clearPlot
"Clear the plot pane by giving it a new blank form."
plotPane form: (self plotPane: plotPane frame) !

dataMenu
"Answer the menu for the data pane."
~Menu labels: 'accept\restore\copy\cut\paste!
withers
lines: #(2).
selectors: # (accept cancel copySelection cutSelection
pasteSelection)!

dataPane
"Answer the initial data pane contents/ an empty string."

horizontalBar: theData
"Draw a horizontal bar plot of theData, an ordered
collection of integers."
I formxylI
form := Form width: Display width height: Display
height. x := 0. y := 0.

Chapter 9 The Fourth Project: A Graphing Application 159

barPen
defaultNib: 1 @ (barWidth * Aspect) rounded;

direction: 0; destForm: form. theData do: [
datum I

barPen place: x @ vy.
barPen go: factor * datum.
y =y + ((barSpacing + barWidth) * Aspect) rounded]
plotPane form: form. plotPane paneScanner copyBits!

initialize
"Initialize instance variables with default values."
plotSelector := #horizontalBar:.

factor := 4. "stretch the data values by this much"
barWidth := 2 «* SysFont height. barSpacing :=
SysFont height. barFill : = Form gray. barPen := Pen

new mask: barFill!

ini tWindowS i z e
"Answer the initial size for a receiver Window."
"~ (Display boundingBox insetBy: 30 @ 25) !

open
"Open the Receiver. Define the pane sizes and behavior,
and schedule the window." I topPane I self initialize.
topPane := TopPane new. topPane

model: self;
minimumSize: self initWindowSize extent;
label: 'Plot Window'; rightlcons: # (resize
collapse) . topPane addSubpane: (TextPane new
model: self; menu: #dataMenu; name:
ttdataPane; change: #string:from: ;
framingBlock: [:box I box origin extent: 50
@ box height]). topPane addSubpane:
(plotPane

160 Practical Smalitalk

GraphPane new model:
self; menu:
#plotMenu; name:
#plotPane:;
framingBlock: [:box I
(box origin + (50 @ 0)) corner: box corner])
topPane dispatcher open scheduleWindow!

plotMenu
"Answer the menu for the plot pane." "Menu labels:
'erase\horizontal bar\vertical bar' withers
lines: #(1) selectors: #(clearPlot setHorizontal
setVertical) !

plotPane: aRect

"Make a blank form the size of the screen. Display the form
in aRect

on the screen. Answer the form."

I blankForm I

(blankForm := Form width: Display width height: Display
height)

displayAt: aRect origin clippingBox: aRect.
"blankForm!

setHorizontal
"Change the plot type to horizontal bar."
plotSelector :=#horizontalBar: !

setVertical
"Change the plot type to vertical bar. "
plotSelector := #verticalBar: !

string: aString from: aDispatcher
"The data pane's contents have been changed. Convert the
new data into an ordered collection of integers and make
a new plot. Answer true." I input data token I input :=

aString asStream. data := Orderedcollection new. [input
atEnd] whileFalse: [
token := input nextWord.

token notNil
ifTrue: [data addlLast: token aslnteger]]
self perform: plotSelector with: data. “true!

verticalBar: theData

"Draw a vertical bar plot of theData, an ordered collection
of integers."

Chapter 9 The Fourth Project: A Graphing Application 161

I formxylI

form := Form width: Display width height: Display
height. x := 0.

y := form height.

barPen

defaultNib: barWidth @ 1;

direction: 270; destForm:

form. theData do: [:value I

barPen place: x @ y. barPen go: factor *
value * Aspect. x := x + bar Spacing +
barWidth] . plotPane

form: form;
scrollUp: plotPane frame height - form height.
plotPane paneScanner copyBitsl !

Building the Application: Stage Three

In this final stage of building the Plot application, we are going to add the
following functionality:

* user selection and alteration of the fill pattern, spacing, width, and
stretch factor for the bars, using a method of menus and sub-menus

« file-based data retrieval and storage

* more intuitive and usable re-drawing of the plot on user demand

These changes have nothing to do with graphics and you can skip building
this implementation of the application, if you choose. But if you are
interested in any of the above design issues, you may find the relatively
small amount of reading and the few code changes outlined in the rest of this
chapter interesting.

User Selection of Graph Arguments

As you'll recall, we have three graph arguments — fill pattern, spacing
between bars, and width of individual bars — the user should be allowed to
change. The process for these changes varies only in small details from one
choice to another, so we'll examine the first closely, then look briefly at the
remaining two.

There are many ways we could permit the user to indicate a desire to
change one of these characteristics of a plot. We could create one large
menu, for example, that listed all of the options in ruled-off groups. We
could design another pane for the window that would contain buttons with
which the user could activate these modifications.

162 Practical Smalitalk

But in the interest of extending our experience with Smalltalk to the
maximum possible extent, we're going to use a design here that we have not
seen before. We're going to show you how to build a series of menus that
appear to cascade from one another. Essentially, we'll add a new item to the
plotMenu that will generate a menu from which the user will pick the
characteristic to change. Depending on the user's choice on this menu,
another menu may appear from which the user can choose the desired value
for the option.

Changing the plotMenu

We're going to add three choices to the plotMenu method of our earlier
version of this application. The first of these changes will allow the user to
redraw the plot without having to change the data in the TextPane by
forcing an update of the GraphPane unless the data pane is empty. The
second will result in the menu of options the user can change. The last will
return all of the characteristics of a plot to their original default values, a
frequently desired alternative that will encourage users to experiment with
other settings because they'll know they can always return to the original
settings with a simple menu selection. Here is the code for the new
plotMenu method:

plotMenu
"Answer the menu for the plot pane. "
“Menu
labels: ('erase\redo plot\horizontal bar\vertical
barl,
Noptions ...\restore defaults') withers

lines: —-#(2 4) selectors:
(clearPlot newPlot setHorizontal setVertical
optionPicker initialize)

We will look at the newPlot method later. The initialize method is already
in place; this new menu alternative gives the user a direct way to invoke it.

The optionPicker Method

When the user chooses the "options..." entry in the new GraphPane menu,
we call the method optionPicker. This is the second-level menu we men-
tioned earlier. Here is the code for this method:

Chapter 9 The Fourth Project: A Graphing Application 163

optionPicker
"Display a menu displaying the variables which the user may
change. If the response is not nil, perform the method that
prompts for a new value for the selected variable." I menu I menu
:= Menu labels: ' stretch factor\bar color\bar width\bar
spacing'
withers
lines: #()
selectors: # (factor barFill barWidth barSpacing)
response menu popUpAt: Cursor offset for : Self
response notNil

This new menu presents the following choices to the user:
« stretch factor

* bar color (we use "color" rather than "pattern" because it is more
general)

* bar width

* bar spacing
The line which is third from the bottom is the workhorse of this method. It
packs a lot of power into a single line of code, thanks to Smalltalk/V's built-in

capability. The popUpAt.for: method takes a point and an object as
arguments and handles three tasks in one single step:

* displays the menu at the point
* passes control to the menu

« sends the user's response, or nil if the user doesn't choose a menu
response, to the named object

Note that we use the perform: method again. By now, you are undoubtedly
beginning to gain an appreciation for its power. Here, we use it to call the
method whose selector corresponds to the menu choice made by the user.

The barfFill Method

We begin our examination of the option-changing methods with the barFill
method which, as its name implies, lets the user choose the type of fill pattern to
use in drawing the bars in the graph. Here is the code for this method:

164 Practical Smalltalk

barFill

"Display a menu displaying the fill colors available for
bar plots. /fthe response is not nil, accept the selected
color." I menu response I menu :=Memu

labels: 'black\dark gray\grayMight gray' withers

lines: # ()

selectors: # (black darkGray gray lightGray) .
response : = menu popUpAt: Cursor offset,
response notNil

if True: [barPen mask: (Form perform: response) |

This method is practically self-explanatory. Again, we create a menu with
the alternatives for the colors or patterns we can use to draw bars. The user
makes a selection from this menu and we use the perform: method to define
the mask for our barPen object.

The barSpacing, barWidth, and factor Methods

The methods that change spacing and width of the bars in the graph as well
as the stretch factor by which data is scaled to the GraphPane are so similar
that it makes sense to present them together. The only difference among
them lies in the instance variable to which the user's response is assigned.

These methods present one problem that the barFill method did not. When
you provide the user with a menu of choices from which to respond to a
question, you pre-validate the user's answer. It is impossible for the user to
enter an invalid or illegal response. For example, in response to the barFill
method menu above, the user cannot answer "purple with green polka-dots."
However, in the case of the spacing and width arguments, we need the user
to provide a number because the program depends on this. We need a way
to ensure that the user enters a number. Not only that, we have to guard
against outlandishly large or small values that would result in unusable graphs.

To accomplish these purposes, we'll create a new method called
promptFor:default:validateWith:, which will ask the user for an entry,
provide a default value for the user to accept, and then validate the user's
input. We'll look at this method in the next section. For now, you can see
how it works in practice by examining these two methods:

barSpacing
"Prompt for a new value of the spacing between bars. If the
user's response is not nil, validate it. If it is not
valid, tell the user, otherwise accept it."

Chapter 9 The Fourth Project: A Graphing Application 165

barSpacing :-
self
protptFor: 'bar spacing’
default: barSpacing
validateWith:
[11 I ((ii isKindOf: Integer) and: [ii > 1]) and:
[11<16]]

bariidth

"Prompt for a new value for the width of bars. If the user's
response is not nil, validate it. If it is not valid, tell the
user, otherwise accept it." barWidth : = self

pronptFor: 'bar width'

default: barWidth

validateWith:

[11 I ((ii isKindOf: Integer) and: [ii > 2]) and:
[11 <507]

factor
"Prompt for a new value of the data stretch factor. If the
user's response is not nil, validate it. If it is not valid,
tell the user, otherwise accept it." factor := selt
proirptFor: 'data stretch factor'
default: factor validateWith:
[;i1 T (i1 1sKindOf: Integer) and: [ii>01]]

Notice that in each of these methods, we use the new prompting method,
with appropriate arguments, to ask the user for a new value for the
corresponding instance variable. The validation uses the isKindOf: method
to ensure that the entry is not only numeric but a whole number. It then
checks the range of the entry to be sure it is within reasonable limits.

The promptFondefault:validateWith; Method

Here is the code for the method we used with barSpacing and barWidth
above to prompt the user for an entry and validate the user's response:

pronptFor: aString default: anObject validateWith: aBlock
"Prompt the user to supply a new value for what is
described by aString. Present anObject as the default. If
the user's response is nil, answer anObject. If it is

166 Practical Smalltalk

not nil, validate it. If it is not valid, tell the user, and
answer anObject, otherwise answer the user's response." [
response | response := Prorrpter
prompt: 'Enter a new value for' , aString
defaultExpression: anObject printString.
(response isNil)
ifTrue: [“anObject].
(aBlock value: response)
ifTrue: [“response]
ifFalse: [Menu message:
response printString , ' is not a valid' , aString.
"anObject]

You may use this compact general-purpose method in your own programs.
It uses the Prompter class' prompt . default: method. We used other methods
of'this class earlier in the book, so it is no stranger to us.

Our new method is designed so that it takes three arguments. The first is
a string that is used to complete the user prompt "Enter a new value for" with
the appropriate characteristic or property you are prompting the user to
change. The second argument is a string that represents the default value that
will be used if the user doesn't alter it. The final argument is a block that this
method executes. The block must return a logical value (frue or false) so that
our new method can respond accordingly.

You can now see how the. barSpacing method works. It presents a
prompter with the label, "Enter a new value for bar spacing” and places the
current value of the instance variable barSpacing into the prompter as a
default response. If the user does anything but delete this default response,
then the method checks to ensure that the user's entry is a valid integer with
a value between 2 and 15. The barWidth and factor methods are functionally
identical.

File-Based Data Retrieval and Storage

The second major change we want to make to our Plot application is to allow
the user to store data elements in a disk file from which they can be retrieved.
To do this, we need to modify the menu in the data pane to offer the options
of loading and saving data from and to a DOS file, and we need to write the
methods that will handle the file input/output processing.

Chapter 9 The Fourth Project: A Graphing Application 167

The Modified dotaMenu Method

We only need to add two items to the menu that appears in the TextPane
menu. Here is the code for the method as it will now appear:

dataMenu
"Answer the menu for the data pane."
“Menu

labels:

('accept\restore' , '\file

inxXfile out' ,

"\copy\cut\paste') withers

lines: #(2 4) selectors:
(accept cancel

fileln fileOut copySelection cutSelection

pasteSelection)

The fileln Method

Here is the code for the method that will be called when the user indicates
a desire to file in some data previously stored in a file. (Note that you must
add dataPath to the list of instance variables for the class.)

fileln

"Prompt for a specification of a file containing data
offering the last file accessed as a default. Providing
the user responds with a non-nil, non-empty string, try
to open a stream on the path. If this fails, prompt again;
otherwise ask the data pane to file the data in. Finally,
mark the data pane as modified so the 'acceptlchoice on
the pane menu will respond." I path stream dataPath
dataPane I path := Prompter
prompt: "Enter a DOS path to a data file'
default: dataPath. (path isNil or: [path
isEmpty |)

ifTrue: [“self]
dataPath := path.
stream := File pathName: dataPath.
(stream size > 0)

168 Practical Smalltalk

ifFalse: [self fileln. ~self].
dataPane fileInFrom: stream, stream
close. dataPane dispatcher
modified: true

This code is fairly self-explanatory, particularly in view of its extensive
comment. We use the Prompter class' prompt:default: method to ask the
user for the name of the file to read. If the user has previously opened a file,
we have stored its name in the instance variable dataPath and offer it as the
default response. If the user answers with a possible file name, then we try
to open a stream on it. We check the size of the stream; if it is 0, then we know
that we have not been successful in opening the file for some reason and we
call the fileln method again to give the user a chance to recover from entering
a wrong file name.

Once we have a valid stream, we use the TextPane methodfilelnFrom: to
refresh the contents of the data pane with the contents of the file. Then we
close the stream.

The last line of the method is interesting. Recall from our earlier use of this
application in its second-stage incarnation that we had to make some kind
of editing change to the contents of the data pane before the "accept" menu
option would work. This is how the TextEditor "accept" method works. It
does nothing if the text hasn't changed since it was last used. If we load data
from a file, the TextPane will not see its contents as having been edited
because they have instead been replaced by other data without the user's
editing intervention. To get around that problem here, our method sends the
modified: message with a argument of frue to the TextPane's dispatcher.
The "accept” menu choice will now work as expected.

The fileOut Method

The method that writes information from the TextPane to a DOS file is
almost identical to the fileln method. Here is its code:

fileOut
"Prompt for a specification of a file to receive data
offering the last file accessed as a default. Providing
the user responds with a non-nil, non-empty string, open a
stream on the path and ask the data pane to file the data
out." I path stream I path := Prompter
prompt: 'Enter a DOS path to a data filet
default: dataPath. (path isNil or: [path
isEmpty |)

Chapter 9 The Fourth Project: A Graphing Application 169

ifTrue: [“self].
dataPath := path.
stream := File pathName: dataPath.
dataPane fileOutOn: stream, stream
close

This method is simpler than the fileln method because we don't have to
worry about not finding the file (we'll create it if it doesn't exist) and we
need not worry about whether the "accept" menu choice works since,
presumably, the user is filing information with which he is finished working,
at least for the moment. In every other respect, this method is identical to the
fileln method.

Redrawing the Plot on User Demand

Earlier, we saw that we added a "redo plot" option to the GraphPane popup
menu. We promised to write the corresponding newPlot method later. It is
now time to take care of this. Here is the code for the method:

newPlot
"If there is data to plot, plot it using the currently
selected set of plot arguments." plotData notNil
ifTrue: [self perform: plotSelector with: plotData]

This is a simple and straight-forward method. If the instance variable
plotData — which, you may recall, is created by the string:from: method
based on the contents of the TextPane—is not empty, then this method calls
the method whose name is presently stored in the instance variable
plotSelector, sending along the data as an argument. This causes the plot to
be redrawn. (Note that you must modify the String:from: method to use
plotData instead of data.)

This method makes it fast and easy for the user to change any of the
characteristics of the plot and see the results of the changes. This is a
significant improvement over the previous version in which the user had to
make a change to the bar type, then change the data and choose the "accept"
menu option from the TextPane menu just to redraw the graph.

The Complete Listing

Here is the complete listing of the final version of the Plot application, in
fileln format.

170 Practical Smalltalk

Object subclass: #PlotWindow
instanceVariableNames:
'plotPane dataPane datapath plotData plotSelector factor
'barWidth bar Spacing bar Pen ' classVariableNames: ''

poolDictionaries:

! PlotWindow methods 1

barFill
"Display a menu displaying the fill colors available for bar

plots. If the response is not nil, accept the selected

color." I menu response I menu := Menu
labels: 'black\dark gray\grayMight gray' withers

lines: #()
selectors: #(black darkGray gray lightGray).
response := menu popUpAt: Cursor offset, response
notNil if True: [bar Pen mask: (Form perform:
response)] !

barSpacing

"Prompt for a new value of the spacing between bars. If the
user's response is not nil, validate it. If it is not
valid, tell the user, otherwise accept it." barSpacing :
self

promptFor: 'bar spacing'

default: barSpacing

validateWith:

[:i1 T ((ii isKindOf: Integer) and: [ii > 1]) and:
[11 <161 1!

barWidth
"Prompt for a new value of the spacing between bars. If the
user's response is not nil, validate it. If it is not
valid, tell the user, otherwise accept it." barWidth :=
self
promptFor: 'bar width'
default: barWidth
validateWith:
[:i1 T ((ii isKindOf: Integer) and: [ii > 2]) and:
[i1 <507 1!

clearPlot
"Erase the plot pane by giving it a new blank form.
plotPane form: (self plotPane: plotPane frame) !

dataMenu
"Answer the menu for the data pane."
*Menu
labels:
('accept\restore' ,

Chapter 9 The Fourth Project: A Graphing Application 171

"\file inxfile out' ,
"\copy\cut\paste') withers
lines: #(24) selectors:
(accept cancel
fileln fileOut copySelection cutSelection
pasteSelection) !

dataPane

"Answer the contents for the data pane, initially an empty
string."

factor
"Prompt for a new value of the data stretch factor. If the
user's response is not nil, validate it. If it is not wvalid,
tell the user, otherwise accept it." factor := self
promptFor: 'data stretch factor'
default: factor validateWith:
[:i1 I (ii isKindOf: Integer) and: [ii >0]] !

fileln
"Prompt for a specification of a file containing data
offering the last file accessed as a default. Providing the
user responds with a non-nil, non-empty string, try to open a
stream on the path. If this fails, prompt again; otherwise
ask the data pane to file the data in. Finally, mark the data
pane as modified so the 'accept' choice on the pane menu will
respond." I path stream I path := Prompter
prompt: 'Enter a DOS path to a data file'
default: dataPath. (path isNil or: [path
isEmpty 1)
ifTrue: ["self]. datapath :=
path, stream := File pathName:
dataPath. (stream size > 0)
ifFalse: [self fileln. "self].
dataPane filelnFrom: stream, stream
close. dataPane dispatcher modified:
true!

fileOut
"Prompt for a specification of a file to receive data
offering the last file accessed as a default. Providing the
user responds with a non-nil, non-empty string, open a
stream on the path and ask the data pane to file the data
out." I path stream I path := Prompter

172 Practical Smalltalk

prompt: 'Enter a DOS path to a data file'
default: dataPath. (path isNil
or: [path isEmpty])
ifTrue: [“self]
dataPath := path.

stream := File pathName: dataPath.

dataPane fileOutOn: stream, stream
close!

horizontalBar: theData

"Draw a horizontal bar plot of theData,
collection of integers."
form :

an ordered
I formxy I

e= Form width: Display width height: Display height. x
:= 0. y := 0. barPen
defaultNib: 1 @ (barWidth * Aspect) rounded;
direction: 0; destForm: form. theData do: [
:value I

barPen place: x @ vy.

barPen go: factor * wvalue.

y .=y + ((barSpacing + barWidth) * Aspect) rounded]
plotPane form: form. plotPane paneScanner copyBits!

4
initialize
"Initialize instance variables with default values.

plotSelector := thorizontalBar:.

factor := 4. "stretch the data values by this much"

barWidth := 2 * SysFont height. barSpacing : =
SysFont height. barPen : =

Pen new mask: Form gray!
initWindowSize

"Answer the initial size for a PlotWindow. "
* (Display boundingBox insetBy: 30 @ 25) !

newPlot

"If there is data to plot, plot it using the currently
selected set of plot arguments." plotData notNil
ifTrue: [self perform: plotSelector with: plotData] !

open

"Open a PlotWindow. Define the pane sizes and behavior, and
schedule the window." I topPane I self initialize. topPane
:= TopPane new. topPane

model: self;

minimumSize: self initWindowSize extent;
label: 'PlotWindow';

Chapter 9 The Fourth Project: A Graphing Application 173

rightlcons: #(resize collapse)
topPane addSubpane: (dataPane :=
TextPane new model: self; menu:
#dataMenu; name: #dataPane; change:

ttstring:from: ; framingBlock:

[:box I box origin extent: 50 @ box height]) . topPane
addSubpane: (plotPane : = GraphPane new model: self; menu:
#plotMenu; name: ftplotPane:; framingBlock:

[:box I (box origin + (50 @ 0)) corner: box corner]).

topPane dispatcher open schedulewindow!

optionPicker
"Display a menu of the variables which the user may change. If
response is not nil, perform the method that prompts for a new

value for the selected variable. " i menu response I menu := Menu
labels: ' stretch factorXbar colorXbar widthXbar spacing' withers
lines: #()
selectors: # (factor barFill barWidth barSpacing) .
response := menu popUpAt: Cursor offset, response
notNil
ifTrue: [self perform: response] !
plotMenu
"Answer the menu for the plot pane."
“Menu
labels: ('eraseXredo plotXhorizontal barXvertical
bar' ,
Xoptions . . . \restore defaults') withers

lines: #(2 4) selectors:
(clearPlot newPlot setHorizontal setVertical
optionPicker initialize)!

plotPane: aRect
"Make a blank form the size of the screen. Display the form in aRect
on the screen. Answer the form." I blankForm I (blankForm :=
Form width: Display width height: Display height)
displayAt: aRect origin clippingBox: aRect.
“blankForm!

promptFor: aString default: anObject validateWith: aBlock
"Prompt the user to supply a new value for what is
described by aString. Present anObject as the default.

174 Practical Smalitalk

If the user's response is nil, answer anObject. If it is not
nil, validate it. If not valid, tell the user, and answer
anObject, otherwise answer the user's response." I response I
response := Prompter

prompt: 'Enter a new value for ' , aString
defaultExpression: anObject printString.

(response 1isNil)

ifTrue: [“anObject]

(aBlock value: response)

ifTrue: [“response]

ifFalse: [Menu message:
response printString , ' is not a valid ' , aString.
~anObject] !

setHori zontal
"Change the plot type to horizontal bar."
plotSelector := #horizontalBar:

setVertical
"Change the plot type to vertical bar."
plotSelector := ftverticalBar:

string: aString from: aDispatcher
"The data pane's contents have been changed. Convert the new
data into an ordered collection of integers and make a new

plot. Answer true." I input token I input := aString asStream.
plotData := OrderedCollection new. t input atEnd] whileFalse:
[

token := input nextWord,

token notNil
ifTrue: [plotData addLast: token aslnteger] 1].
self newPlot. “true!

verticalBar: theData
"Draw a vertical bar plot of theData, an ordered collection
of integers."
I form x y I
form := Form width: Display width height: Display height.

x = 0.
y := form height.
barPen

defaultNib: barWidth @ 1;
direction: 270; destForm:
form. theData do: [:value
I
barPen place: x @ vy.
barPen go: factor * value.
X := x + barSpacing + barWidth]

Chapter 9 The Fourth Project: A Graphing Application 175

plotPane

form: form;

scrollUp: plotPane frame height - form height.
plotPane paneScanner copyBits! !

10
The Text World

Introduction

In this chapter, we will look at the key classes involved in manipulating text
on the screen of a Smalltalk application. In one sense, text is graphic because
each character, symbol, and space is really made up of a collection of bits.
But in this chapter, we will focus on the text as a collection of characters that
has meaning in some context. This does not mean, however, that we will
ignore the bit-mapped image that makes up its appearance on the screen.
We will begin this chapter with an overview discussion of how text is
displayed, represented, and manipulated in Smalltalk/V. Then we'll take a
look at four of the six classes that play some role in the text world of
Smalltalk. As we discuss each class, we will point out important instance
variables and methods in addition to describing the overall role of the class
in the process of text management.

Behind the Text in Smalitalk

All editable text in Smalltalk/V is displayed in an instance of the class
TextPane. (Text which is not intended to be edited can be drawn onto any
graphical context including a GraphPane or the Display.) Identified with
this pane, text is represented as an OrderedCollection of Strings. Each
character in each string can be identified by a Point, whose x value is its
index within the string and whose y value is the index of the string in the
OrderedCollection. Thus the fourth character in the third string of the array
has a Point location of (4,3).

As we know from previous experience, it is easiest to display text in an
instance of TextPane. Associated with each such instance is an instance of
the class TextEditor. This latter class processes user interaction with the
pane, such as cursor movement, scrolling commands, menu requests, text
selection, and editing (copy, cut, paste, and related operations) commands.

177

178 Practical Smalitalk

It is assisted in this process by an instance of the class StringModel, which
actually carries out the editing operations. This whole process comes about
as a result of the fact that whenever you create a new instance of the class
TextPane it automatically gives you a TextEditor as its dispatcher, a
CharacterScanner (discussed below) as its pane scanner, a StringModel
as its textHolder and a TextSelection (also discussed below) as its selection.
These classes are automatically associated with any instance of the class
TextPane; you don't have to do anything to get them, all you have to do is
use them as needed.

Text is represented in Smalltalk in two separate but related ways. First,
every character has an ASCII value associated with it. This value is standard
across all computer systems that use it, which includes almost all desktop
and minicomputers. On all of these systems, for example, the ASCII value
64 always means a capital letter "A." ASCII values range from 0 to 255.
Second, every character in Smalltalk has associated with it a bitmapped
image that represents its appearance in the TextPane on the computer screen.
This bitmap depends on two major factors: the character's ASCII value and
the font in use (including its size and style, if appropriate).

Conversion between ASCII character codes and their bitmap equivalents
is handled by an instance of the class CharacterScanner, a subclass of the
graphic class BitBlt which we used in Chapters 8 and 9. The current font in
use on the system is stored in an instance variable of this class. The font is
used as the source form and the TextPane is the destination form. With that
information, you can see how the drawing of characters takes place in a
Smalltalk/V system.

Whenever users want to edit existing text in a TextPane, they follow the
Smalltalk paradigm of select-then-operate. In other words, they first select
the text on which they wish to perform some editing operation, then invoke
the operation, usually by selecting it from a menu but also possibly by other
means (e.g., typing to replace selected text rather than first cutting it by
means of a menu selection). An instance of the class TextSelection keeps
track of the beginning and ending points of the user's text selection, and
handles the non-editing manipulation of the text (e.g., its graying when the
user interface calls for selected text to be grayed, as when the window is no
longer active).

With this overview in mind, let's take a look at each of the classes that can
be involved in the display and editing of text in a Smalltalk/V TextPane. To
summarize, these classes are:

* TextPane

* TextEditor

e StringModel

* CharacterScanner
* TextSelection

* String

Chapter 10 The Text World 179

We will examine the first four of these classes in some detail. You will
seldom need to worry about the other two — TextSelection and String, so
we won't discuss their instance variables or methods.

The Class TextPane

We spent some time examining the class TextPane in Chapter 6 in the
context of the MPD paradigm and methods that are common to all types of
panes in Smalltalk/V. If you are unclear about the creation and management
of such panes, it might be a good idea to review Chapter 6 before proceeding
with this discussion.

In this chapter, we will focus on several methods that we did not explore
in Chapter 6 but which you may find useful when you create text-based
applications. Several of these methods will appear in Chapter 11 when we
build a data entry form class as an example of how to handle text-based
applications. Specifically, in this chapter, we'll look at methods that handle
the addition of text to the end of a TextPane's current contents, scroll the
pane's contents to show a designated portion of the text, and handle the
selection and de-selection of text in the pane.

Methods for Appending Text

The class TextPane defines two methods for adding text to the end of the
contents of one of its instances: appendChar: and appendText:. The first
takes a single character as an argument and places that character at the end
of the text in the pane. The second takes a string as an argument and places
its contents at the end of the text in the pane.

Recall that, since all text editing other than text entry is handled by other
classes in the Smalltalk/V text world, this class need only concem itself with
appending text to the current contents of the pane.

Methods for Scrolling the Text

There are two ways that a text-based application might want to alter the
scrolling status of a TextPane's contents aside from the user's direct
modification of the scrolling via the pane's built-in scrollbars.

First, we might want to scroll the text in the pane so that the end of the text
is visible. We may want to do this, for example, when we first open a pane

180 Practical Smalitalk

which already has some content and where the user's expected first desire
is to resume or begin entering text. To handle this, the class TextPane
provides \hQforceEndOntoDisplay method, which does what its name suggests.
Second, we may want to scroll so that currently selected text is visible in
the pane. This task is handled via the forceSelectionOntoDisplay method.

Methods Related to Selection of Text

There are two types of selection in a TextPane. The one we think of most
often involves the selection and highlighting of one or more characters in the
pane's contents. The second, less obvious selection, is called the gap
selection and arises when no characters have been selected. In that case, the
selection refers to the position of the I-beam cursor in the TextPane
indicating where the next character typed will be placed. To select text in
a TextPane, you can use one of three methods:

* selectAll, which, as its name implies, selects all of the text in the pane

* selectFrom:to:, which takes two points as arguments and selects all of
the text between those two points (where the points are the x-y
coordinates of a character as described earlier in the chapter)

* selectTo:, which extends an existing selection to the point provided as
an argument

To position the gap selection (which is the same thing as positioning the
I-beam cursor), you can use one of these three methods:

* select Afier:, which places the gap selection after the point supplied as
an argument

* selectBefore:, which places the gap selection before the point supplied
as an argument

* selectAtEnd, which places the gap selection at the end of the TextPane's
contents

The Class TextEditor

Since the purpose of the class TextEditor is to process user input, it is
seldom necessary for you to do anything to its methods other than use them.
Many of its methods, such as those that actually place text in the pane, are

Chapter 10 The Text World 181

used by other methods in the Smalltalk/V text world and you will be unlikely
ever to use these methods.

Still, there are five methods in this class that are worth exploring and
knowing something about. Two deal with keeping track of the status of the
contents of the pane, two deal with special characters you might have a need
to place in the text, and one deals with zooming the pane to full-screen size.

Tracking the Status of Text

It is often useful to know whether the contents of a TextPane have been
modified since they were last saved or since some other operation (such as
a database update) was performed. Smalltalk handles the automatic tracking
of this status for you but if your program needs either to know the status of
the text or to change it for some reason that is not being monitored by
Smalltalk, you can use the modified and modified: methods in class Text-
Editor to do so.

As you can tell by their names, modified returns a. Boolean value indicating
whether the contents of the pane have been modified since the last time the
text was saved, while modified: sets this value to be true or false depending
on the argument.

Putting Special Characters in Text

You can put a carriage return, a space or a tab at the end of the current
contents of a TextPane using the methods called cr, space, and fab. This is
a useful thing to be able to do when, for example, you are re-opening some
formerly saved text and need to place one of these characters at the end to
prepare the contents for further additions by the user or additional text to be
loaded from a file.

Zooming the Pane

You have undoubtedly noticed that a TextPane, unique among the sub-pane
types, can be zoomed so that its contents occupy the entire screen. You may,
for example, have been surprised early in your Smalltalk experience to click
on the Zoom icon in the Class Hierarchy Browser and see only the text pane
and not the entire window zoom to full-screen size.

182 Practical Smalitalk

In a case where you may wish to give the user the full screen in which to
edit text without requiring that the user zoom the pane manually, you can
send the pane the zoom message.

The Class StringModel

For the most part, you will find yourself calling on the methods in the class
StringModel as you build text-based applications in Smalltalk/V. Seldom
will you have to override these methods because their behavior is relatively
generic and in general encompasses the actions users expect when they edit
text in a TextPane.

A few of the methods of this class are interesting enough to spend a few
moments discussing. These methods can be grouped into the following
broad categories:

* information-gathering methods
* searching methods

* editing methods

Information-Gathering Methods

Some information about the contents of a TextPane may be useful to you
in designing and building text-intensive applications. The class StringModel
includes three methods that reveal data about the contents of the pane.

The lineAt: method takes an integer as an argument and answers the string
contained in the line indexed by that integer. Recall that a StringModel
holds its text in an array of lines.

You can find out how many lines of text are in the StringModel with the
totalLength method.

One particularly intriguing and potentially useful method is the
maxLineBetween:and: method. The two arguments to this method are both
integers that represent line numbers in the array of strings. The method
answers the length of the longest line between the two lines provided as
arguments. This would be useful, for example, in dynamically adjusting the
width of the TextPane to show all, or as much as possible, of the contents
of the pane's text lines.

Chapter 10 The Text World 183

Searching Methods

Two methods in the StringModel class are designed to search for a specified
string. The searchFrom:for: method takes a selection as its first argument
and a string, character, or text pattern for its second argument. It begins
searching from the end of the text selection until it finds the first instance of
the pattern in the second argument and then returns that matched selection
if it finds one. It returns nil if it fails to find a match.

To search in reverse in the pane, use the searchBackFrom:for: method,
which is identical to the searchFrom.for: method except in the direction in
which it conducts its search, and that it starts its search at the beginning of
the selection. Both methods search each line from left to right, however.

Editing Methods

There are three editing methods that are of possible interest to you if you are
building a text-based application. Most of the common editing operations
involve some combination of these methods. Earlier in the chapter we said
that most editing operations operate on a selection of text. That selection is
passed as an argument to these methods.

The delete: method deletes the text contained in the selection and leaves
the cursor positioned just before the selection's location.

The other two editing methods replace text, replace:withChar: replaces
the text selection supplied as the first argument with a single character
supplied as the second. The other method, replace:withText:, replaces the
selection with a string supplied as the second argument.

Both methods inform the TextPane of the change in contents and both
answer a point which describes the position of the last replacement character.

The Class CharacterScanner

Like the classes TextEditor and StringModel, you will rarely interact di-
rectly with a CharacterScanner. You will usually create a specific instance
of this class in a text-based application, but for the most part its methods
handle their processing in the standard, accepted way and therefore are
seldom candidates for your own specialized methods.

184 Practical Smalltalk

Five of this class' methods can be used to set up or modify its visible
characteristics, such as its foreground and background colors or the font it
uses. Four of its methods involve the display of text in the clipping rectangle
of the TextPane with which the CharacterScanner is associated. Another
two are available to enable you to erase some portion of that pane.

Methods to Control Appearance

When you want to initialize an instance of class CharacterScanner, you
can use one of two methods. The one we'll look at because it is the more
common of the two is initalize:font:. This method takes two arguments. The
first is the rectangle which you wish to become the clipping rectangle of the
scanner. The second is the font you want to use to display text within the
scanner's TextPane. (We discussed clipping rectangles in conjunction with
graphics in Chapter 8.)

Once a CharacterScanner has been created and initialized, you can
change the font it uses with the setFont: method or its color scheme with the
setForeColor:backColor: method. This method requires two colors as argu-
ments. When you initialize an instance of CharacterScanner, Smalltalk/V
defaults these values to black as the foreground and white as the background.

To invert some or all of the contents of the frame of the TextPane, you can
use the method reverse:. This method takes a rectangle as an argument and
reverses the color of the text within that rectangle. For example, if these
colors have not been changed since the CharacterScanner was initialized,
this method causes the text to appear to be white characters on a black
background. You can undo the effect of the reverse: method with the re-
cover: method. This method also takes a rectangle as its argument.

If you wish to change the font associated with a CharacterScanner, you
send it the setFont: message along with the name or other identifier of the
font you wish it to use. Since the system does not support multiple fonts in
a single TextPane, this message changes the font of all text already displayed
in the pane in addition to becoming the font in which all newly typed
information will be displayed.

Methods to Display Text

Of the four methods available to a CharacterScanner object to cause it to
display text, three are quite similar to one another and the fourth operates
slightly differently. The three similar methods are:

Chapter 10 The Text World 185

* display:at:
* display:from: at:
* display:from: to: at:

Since the last of these is the most robust, we'll begin by explaining it. You
can then see quickly how the other two differ. The display:from:to:at:
method requires four arguments. The first is the identifier of the string to be
completely or partially displayed. The next two arguments tell the
CharacterScanner the index positions in the string array at which to begin
and end the text to be displayed. The final argument is a point that defines
the location in the frame of the receiver at which the display of the string is
to start.

To display the entire string, then, you would use the first method since it
doesn't require a starting or ending position in the string. To display from
some point other than the beginning of the string to the end of the string, you
would use the second method.

The most common use of these methods is to replace a portion of a
displayed line with some other text. Since the present line or portion of the
line may not be the same length as the replacement text, the display.from:at:
method adds one bit of behavior the other two methods do not involve: it
blanks the rest of the line from where the display of the replacement text
ends.

This leads to the need for the fourth text-displaying method we'll examine,
show:from:at:. This method behaves the same as display.from:at: except
that it does not alter the other text in the string.

Methods to Blank Portions of the Pane

You sometimes wish to remove text from a TextPane display, perhaps without
affecting the contents of the stored text itself. To do this, you can use either
the blank:width: method or the blankRestFrom: method.

The first of these methods blanks all or part of a line by painting to the
background color a rectangle whose origin is supplied as the first argument
and whose width is calculated from the second argument, an integer. The
rectangle has the height of the current font.

If you want to blank the bottom portion of a frame starting at some specific
known row of text, you can use the blankRestFrom: method, which takes a
single integer argument. This integer is the row starting from which you
wish to blank the frame.

M
The Fifth Project: A
Form Designer

Introduction

In this chapter we will put into practice some of the theory of Smalltalk/V
text classes and methods we learned about in Chapter 10. This application

will also prove useful for inclusion in or use with other applications you may
build.

Project Overview

As we saw early in our exploration of Smalltalk/V, the primary built-in
means by which you can pose questions to the user and deal with user
responses is the class Prompter. This class, combined with the judicious
use of menus, provides means by which you can ask users to provide
information to the program. These answers can either be selections from a
pre-determined list (similar to a menu) or an editing rectangle in which the
user types a response, perhaps selecting an optional default answer supplied
by the program. /

This method of user interaction is severely limiting, because the user can
only see and respond to one question at a time. In some cases, users may wish
to change an earlier answer or plan later responses if they knew what other
questions they were going to be called upon to answer during a session with
the program.

The project in this chapter simulates a blank-form style of data entry that
allows your programs to pose a number of questions that require text
answers. The user can move around among the fields in the form and select
an "OK" or "Cancel" button to indicate that all answers have been provided
and may be processed by the program. Figure 11-1 shows a typical form that
might be created by an application using this project's classes. Since the

187

188 Practical Smalltalk

orm [

- _riéhqei-ﬁﬁjelo

Address:
City:
State:
Zip:
Phone #:

ICancel

Figure 11-1. Typical Form Created by Project

purpose of this project is to provide a framework for the creation of such
forms, no two forms will necessarily be identical.

Designing the Project

We will begin by stating the purpose of the program, then using that
statement to identify the objects the application will have to contain. Finally,
we'll determine the responsibilities of each of these objects in the applica-
tion.

Statement of Purpose

This application is given two arrays of strings as input. One array holds
questions, or name fields, which the user may not edit and which identify for
the user the type of input needed. The second array holds answers or entry
fields into which the user will type responses to the questions or labels.
Given this input, the application object will create a nonmodal (i.e., non-
preemptive) window in which the user can edit answers to all entries and
then use buttons to accept or cancel the answers provided.

We should note that this project is not an application per se. Rather, it is
a complex type of window (TopPane) which supports form-like properties
and behavior. The only real application we will build is a test application so
that we can demonstrate and test the project.

Since we are going to be focusing on the pane and its behavior and since
our objective is to create a form-like data entry interface project, we'll refer
to the new class we're creating as FormPane.

Chapter 11 The Fifth Project: A Form Designer 189

Defining the Objects

From the above description of this project, we can conclude that the
application requires the following objects:

* application

* window

« name (or question) fields which may not be edited by the user
* entry (or answer) fields which may be edited by the user

* buttons

Object Responsibilities

Let us now examine each of these objects in turn and define the responsibili-
ties we will assign to each.

Application Object Responsibilities

As is most often the case in Smalltalk applications, the application object
will act as the model to the window, which contains all of the fields. It will
also initialize our special type of window, which will automatically format
the fields and buttons correctly.

What may not be obvious from this brief description is that the application
object will not play its usual role of acting as a model to the sub-panes in the
FormPane window. We are creating a new type of TopPane with complex
behavior that emulates an electronic data entry form. We want the applica-
tion that uses this FormPane to be able to do so without any understanding
of the sub-panes and their behaviors.

This results in an intriguing design problem. The sub-panes need a model
and if we're not going to call upon the application object for this task, we
must decide on some other object to handle it. Your first inclination (which
matches ours) would probably be to permit the FormPane to be the model
to its sub-panes. However, you would find (as we did) that this approach
does not work. The Smalltalk/V MPD architecture we discussed in Chapter
6 makes the assumption that the model to any Pane will not be another Pane.
This requires us to create an object that will have the assignments of acting

190 Practical Smalltalk

as the model to the sub-panes and playing "go-between" or intermediary
between the sub-panes and the FormPane. As it turns out, this approach has
a major benefit: it allows us to divide the many methods of this project into
more refined categories (methods for the FormPane itself, and methods for
managing and interacting with its sub-panes).

We will therefore create a new object called Formintermediary. The role
pf this object is to act as a model to the sub-panes and to mediate between
them and their FormPane so this class will end up assuming most of the
knowledge that we might otherwise place into the FormPane class directly.

Window Object Responsibilities

The window object will be an instance of class TopPane. It will have two
basic responsibilities.
First, it will automatically calculate the correct placement for all of the
field and button sub-panes within its borders based on a number of factors.
Second, it will be responsible for informing the model of changes that take
place as a result of user responses.

Name Field Object Responsibilities

The name or question field objects have no responsibilities in this applica-
tion. Their only role is to serve as a guidepost to assist the user in data entry.
They are therefore entirely passive.

Since these fields are not going to be subject to editing, we can use a
GraphPane for them. As it happens, this class includes some behavior —
for example, scrolling — that is undesirable for our purposes. If, for
example, we allowed labels in the GraphPane to scroll, the alignment be-
tween the questions or labels and the fields into which their associated data
will be entered may be lost. We will have to override some of these methods.

Entry Field Object Responsibilities

The entry or answer field objects must support the editing of text by the user,
restoring to a default value if one is supplied, and zooming (to allow long
answers to questions without destroying the integrity and appearance of the
form).

General Approach

Based on the above analysis, we can see that we will create this application
by sub-classing TopPane for our FormPane class, giving the new class the
special behavior our project requires. The editable text fields (answer or

Chapter 11 The Fifth Project: A Form Designer 191

entry fields) can be created from the existing TextPane class we discussed
in Chapter 10. The "OK" and "Cancel" buttons can be created as one-item
ListPane objects just as the Counter project of Chapter 5 and the CHB itself
handle this task. The FormIntermediary class will be a sub-class of class
Object.

Knowledge Needed

The protocol for interaction between our FormPane and its model (our
application) will involve the application setting arguments for the FormPane.
This means that we must identify the knowledge our FormPane will re-
quire. These in turn become candidates for instance variables.

The FormPane needs to know one thing that is peculiar to our project. We
must add an instance variable to contain information about the instance of
the new Formintermediary class in handling its interaction with the sub-
panes. So we need a new instance variable called intermediary to contain
this information.

The rest of the specialized knowledge needed in our project can be placed
in the FormIntermediary class and consists of the following information
(or instance variables):

* formPane, which holds the name of the instance of FormPane to which
the FormIntermediary instance is attached or the FormPane itself.

* questionStrings, which we will create as an IndexedCollection of
strings that will hold the name or question fields.

* defaultAnswerStrings, another IndexedCollection of strings to hold
default answers for the entry fields where they exist.

* textFieldPanes, yet another IndexedCollection, this one containing
TextPanes representing the entry fields so that we can query them for
user-entered values when processing is complete and we must inform
the FormiIntermediary's dependents of the results of the data entry.

Building the Project

To build this project, we will have to take a number of steps. Their order is,
for the most part, insignificant, but dividing our work into these steps makes
it possible to get a prototype up and working quickly and then to modify its
various key behavioral characteristics individually.

192 Practical Smalltalk

The steps we will take are as follows (in the order in which we will discuss
them):

1. Create the new classes.

2. Write skeletal interaction methods for the new classes.

W

. Build a simple test application.
4. Write the methods to place the sub-panes in the FormPane.
5. Install TextPanes for each editable entry field.

. Modify undesirable behavior in our superclasses.

6
7. Add some capabilities at the FormPane menu level.
8. Format the name (question) fields.

9

. Write a more complex test application.

10. Disable scrolling in the GraphPane.

Creating the New Classes

We begin our construction of this project by building the two new classes
we've identified — Formintermediary and FormPane. To create
Formlintermediary, we'll sub-class Object. Find Object in the

CHB and sub-class it to create the new class by editing the new class
template furnished by Smalltalk/V so it appears as follows:

Object subclass: #FormIntermediary
instanceVariableNames:
! f ormPane questionStrings def aultAnswerStrings textFieldPanes '
classVariableNames: ' ' poolDictionaries: ' '

To create FormPane, find TopPane in the CHB and sub-class it to create
the new class by editing the new class template furnished by Smalltalk/V so
it appears as follows:

TopPane subclass: #FormPane
instanceVariableNames: *
intermediary '
classVariableNames: ' '
poolDictionaries: ' '

Chapter 11 The Fifth Project: A Form Designer 193

Skeletal Interaction Methods

With our two key classes constructed, our next step is to provide them with
minimal interactive functionality. By building only the basic methods that
support providing the FormPane with the collections of question and an-
swer strings needed to handle communication, we can get a first version of
the program working relatively quickly. This is almost always a sound
design idea, particularly when you are constructing an application of any
reasonable size.

As we saw briefly in Chapter 6, interaction among the components in a
Smalltalk/V program with its MPD model is made highly flexible by the
design of the system. This design does not use hard-coded message selectors
so that the means of interaction between elements of the application are pre-
determined. The selectors to be used for such tasks as informing a pane's
model of a change in the pane could have any names and accomplish any
additional purpose other than simple model notification. Naming and
providing these selectors can be thought of as setting arguments. Our project
needs to set a number of characteristics. These Include:

* label:

* addSubpane:
* rightlcons:

* leftlcons:

* open

* close

e model:

In addition, because of the somewhat unusual relationship among compo-
nents in our project, we will create two other methods normally associated
with sub-panes: name: and change:. These methods will perform for a
FormPane tasks similar to those they normally handle for a SubPane.
From this brief discussion, we can already see that our definition for the
class FormPane is not adequate because it does not include two instance
variables needed for this design, namely name and changeSelector to ac-
commodate the last need we discussed. A quick examination of the Ency-
clopedia of Classes or of the class TopPane in the CHB reveals that these
two methods are not inherited from the FormPane superclass. So you should
now open the class definition for FormPane and edit the definition to add
two more instance variables. The finished class definition should look like this:

194 Practical Smalltalk

TopPane subclass: ttFormPane
instanceVariableNames:
' intermediary name changeSelector
classVariableNames: ''
poolDictionaries: ' '

Now we are ready to write the first methods for the class FormPane. We'll
start, somewhat but not entirely arbitrarily, with an initialize method. (You'll
note that we frequently begin with an inherited method for our work even
though we know we'll ultimately be overriding its behavior. This points up
another advantage of OOP with a strong class library like Smalltalk/V's:
you get a good deal of default behavior that, while it may not be what you
ultimately desire, it gives you a place to begin with a working application.)
Here is the code for this first method:

initialize
intermediary := Formlntermediary new.
intermediary formPane: self, super
initialize

Notice that we place the super initialize line last in this initialize method.
This is a case where doing so is not only acceptable but preferable to the
somewhat more frequent approach of placing it first in an initialize method.
It is acceptable because our initialize method does nothing with the existing
instance variables of the superclass TopPane, so we need not guard against
their being initialized to some value other than the one we need in our
application. It is preferable in this situation because by putting this message
last in our initialize method, we ensure that our method returns the same
result as that which was returned before we created our own new class.

Notice in the second line of the initialize method, we send the newly created
FormPane object aformPane: message. We do this so that we can give this
object a name by which we can refer to it elsewhere in the system. Recall that
we defined an instance variable formPane in the class definition for
FormlIntermediary. We need to refer to the FormPane (which is a sub-
class of TopPane) several times throughout the application as we dynamically
work with its sub-panes and their contents. In the class Formlntermediary,
then, add the following method:

formPane: a FormPane
formPane := a FormPane

This will initialize the instance variable formPane appropriately when the
FormPane is created for an application.

The name: method will allow us to provide a selector to be used as the
name of the FormPane and also as a message to the model so it has a way
of retrieving information needed by the FormPane when it is opened. The
method named by this selector should be able to return an instance of the

Chapter 11 The Fifth Project: A Form Designer 195

class Association whose key is the collection of questions and whose value
is the corresponding collection of default answers or values. Here is the code
for the name: method:

name: aSelector
"Selector used as the name of the FormPane, and to get the
initial information displayed in the pane." name :=
aSelector

The change: method allows us to provide the name of a selector that will
serve as a message to the model to inform it of changes that take place in the
pane. The method named by this selector should be able to take an argument
that will be an IndexedCollection containing the values entered by the user
in the FormPane. Here is the code for this method:

change: aSelector
"Used as a message to the model to inform it of a change in the
FormPane. Must take an argument of the FormPane values. "
changeSelector := aSelector

Following the normal MPD paradigm, we now need to use our name selector
method to handle the initialization of the strings of questions and default
answers (questionStrings and defaultAnswerStrings). We cannot handle these
initializations from an initialize method because class TopPane initializes
all of its instances immediately after they are created. This would cause an
interesting problem here since FormPane is not in a position to be initial-
ized immediately after its creation; it lacks a name selector, a change
selector, and even a model. Therefore, we must find a place later in the
processing — after these selectors have been provided to the FormPane but
before the sub-panes are installed in the FormPane, to initialize these in-
stance variables.

We will create a special method to handle this task and separate it from the
open method that will normally set up a new FormPane because this makes
it easier to sub-class FormPane and to initialize these variables from other
places in the application if that were to become necessary. The effect is to
hide implementation detail, which, as we know, is an objective of OOP.

Here, then, is the code for the initializeFields method that will set up the
two arrays of strings for questions and default answers:

initializeFields
"Queries the model and informs the Formlntermediary."
I anAssociation I
anAssociation := model perform: name.
intermediary questionStrings: anAssociation key.
intermediary defaultAnswerStrings: anAssociation value

We also need to set the instance variables of a FormIntermediary instance,
so we add the following two methods:

196 Practical Smalltalk

questionStrings: indexedStrings
questionStrings := indexedStrings

defaultAnswerStrings: indexedStrings
defaultAnswerStrings := indexedStrings

As we have seen in our previous projects, a programming custom in
Smalltalk is to have an application that creates a TopPane — as most do —
explicitly install that pane's sub-panes. We can adapt that idea here and
include in the FormPane class a method with which it can configure itself.
Eventually, this method will have to become fairly complex as it calculates
the positioning of each of its potentially numerous sub-panes. For this first
pass at this important method, though, we'll design a minimal configuration
process that simply enables us to test its basic behaviors. Here's the method:

configureSubpanes
"Format the layout of the window's components."
self initializeFields.
self addSubpane: (ListPane new model: intermediary;
name: #okBull on;
change: #okButton:;
framingRatio: (0 @ 0 extent: (1/2) @ 1)). self
addSubpane: (ListPane new model: intermediary;
name: f#cancelButton;
change: ttcancelButton:;
framingRatio: ((1/2) @ 0 extent: (1/2) @ 1)

This method first calls the initializeFields method we just created. Then it
adds the two buttons — "OK" and "Cancel" — as single-element ListPane
instances. We use framingRatio: to make the sizes of the buttons relative to
those of the window. Later, we'll see that we need to change this approach
but for our first draft of the project, this technique is easier and certainly adequate.

These buttons need methods that will be invoked when the user clicks on
them. If the user selects the "OK" button, the button method will notify the
model of the user's responses. If the user clicks the "Cancel" button, no
update is needed. These methods will be part of FormIntermediary, since
we designed this class for this specific purpose. Also, this new class is the
model to these button sub-panes. Each of these methods requires an
argument, since all ListPane objects require arguments for their change
methods. Since our ListPane objects each have only one element, the
argument we pass is a mere formality and we will ignore its value.

The behavior of the "OK" button involves extracting the contents of each
entry field. The fields return their contents as strings, which are placed into
a collection before passing them to FormPane. Eventually, the FormPane
object will pass this information to its model, the application.

Here is the code for the method for the "OK" button:

Chapter 11 The Fifth Project: A Form Designer 197

okButton: dontCare
"Inform formPane of the values in the question/field subpanes.
As a model to a ListPane, it must take an argument of the
list index. We ignore it because the list only has a single item.
I result I
result := OrderedCollection new.
textFieldPanes notNil
ifTrue: [textFieldPanes do:
[:aSubpane I
result add: aSubpane contents]].
formPane takeResult: result

As you can see, this method is quite straightforward. The core of its behavior
is the do: construct that loops through all of the elements of the fextFieldPanes
and adds their contents to the OrderedCollection called result.

If the user cancels a FormPane, then we need to send the result nil along
to the model. Here is the code that will accomplish that:

cancelButton: dontCare
"Because the user has canceled, we provide nil as the result. The
model to formPane should know that nil indicates that no values
were changed, so use what it has as the default if desired.”
formPane takeResult: nil

Now we need a method for the class FormPane called takeResult: that deals
with the information passed to it by the FormIntermediary button methods
we just built. Here is its code:

takeResult: result
"Inform the model of the change and result."
model perform: changeSelector with: result,
self dispatcher close

The powerful perform: method takes care of handling the processing of the
result for us. The last line is a variation on a theme we see each time we create
a new TopPane. Rather than opening a dispatcher, this line closes it. (This
is the same method used to close a TopPane when the user clicks the
window's close icon.) This ensures that the process of closing the window
in our code will be identical to the processing Smalltalk/V undertakes.

Finally, before we have a working rudimentary project, we need to set up
methods in Formlntermediary that will inform the button ListPane
instances of their initial contents (i.e., give them their name labels if we think
of them as buttons). These methods are pretty simple:

okButton
"Label for the OK button."

198 Practical Smalltalk

cancelButton
"Label for the Cancel button.
~# (Cancel)

This completes our basic functioning project. Although it does not yet do
any of the TextPane processing that is eventually at the heart of our design,
it does enable us to build a test application which will provide a test case for
our implementation. That is our next task.

Building the Test Application

As will most often be the case with applications, we'll start by sub-classing
Object to create the application's class. Find Object in the CHB and sub-
class it to create the FormApp class. Edit the new class template provided
so that it appears as follows:

Object subclass: #FormApp
instanceVariableNames:
' questionStrings defaultAnswerStrings answerStrings '
classVariableNames: '' poolDictionaries: ''

Now let's add some methods to make our FormApp do something inter-
esting and useful. As we envisioned it earlier, a form application would:

* open a FormPane with some questions and some default answers

* be aware of the collection of actual answers and do something with it

Notice that this implies two separate collections for answers, one for the
defaults and one for the user's actual replies. It might seem logical to keep
just one collection, substituting the user's actual responses for default
answers as they are supplied. But that would be too inflexible. What if you
want to compare the user's actual answers with the default replies to see
what fields in a database need to be updated, for example?

We'll begin by adding our by-now-traditional example metamethod.
Remember that this must be a class method, while all of the others we'll
create here will be instance methods.

example

"FormApp example."

I aFormApp I

aFormApp := self new.

aFormApp openOn: # ('Name: ' 'Address: ' 'Phone #: ')
defaultAnswers: #('Fred' '123 Main Street' '900-976-4257")
label: 'Fill this form'.

aFormApp open

Chapter 11 The Fifth Project: A Form Designer 199

The key message in this method is openOn: default Answers :label:, which
takes three arguments:

« an array of labels or questions that act as prompts to guide user input
* an array of strings that are the default responses to those questions

+ a label that provides an overall prompt or title for the form

Next, let's build the openOn: method. (Its name follows the Smalltalk
convention for naming such methods when it takes an argument to specify
what is to be opened. If no argument were necessary, we would use the more
familiar open name.) Here is the code; it should be quite familiar to you by
now:

openOn: questions defaultAnswers: answers label: alLabel
"Open a FormPane with the specified questions, answers, and label."
I aFormPane I
questionStrings := questions.
defaultAnswerStrings := answers.
aFormPane : = FormPane new
model: self;
label: alabel;
name: #formlnfo;
change: #userResponse:;
yourself.
aFormPane configureSubpanes. aFormPane
dispatcher open scheduleWindow

The only new element here is the use of yourself in the last line of the cascade
of messages that creates aFormPane.We include that message to insure that
aFormPane gets bound to the instance created by the new message, rather
than simply assuming that change: will return the right object for our needs.
We notice in the above method that we called the name method for the
openOn: method forminfo. Here is the code for that method:

formlnfo
"Returns an association of questions and answers for the FormPane."
"Association key: questionStrings value: defaultAnswerStrings

We make use of the class Association here to set up a pair of parallel
structures (actually contained in one object) matching name fields and entry
fields. This device is clearly made to order for our need to keep the two lists
"in sync" with one another.

Like all programmers, we have a curiosity about the success of our
programming even before we're really ready to do anything with the output.
So in our FormApp application, we'll use the Smalltalk/V Transcript win-
dow to print the results of our data entry. Obviously, if we were writing an
application for some purpose other than testing, we would be doing some-
thing more useful with the user's entries in the FormPane, but the important

200 Practical Smalltalk

thing for our application is that we confirm that it retrieves the results
correctly. Here is the code for our userResponse: method:

userResponse: theStrings
"The method for the change selector as model for a FormPane."
theStrings isNil
ifTrue: [answerStrings := defaultAnswerStrings.
Transcript cr;
show: 'User selected Cancel. Defaults are used.']
ifFalse: [answerStrings := theStrings]. Transcript cr;
show: 'The responses are: '
printString); cr

; show: (answerStrings

Ready to test our work? (Hopefully, you've been saving the Smalltalk/V
image periodically. Now would be a good time to do it again.) Evaluate the
following expression in the Transcript or a Workspace:

FormApp example

The result should look like Figure 11-2. Try resizing the window and noting
what happens to the buttons' widths and heights. Try clicking on the
"Cancel" button.

Writing Methods to Place Sub-Panes

We are now ready to flesh out our form project by installing the GraphPane
for the question prompts and the TextPanes for the answers. Before we do
that, though, we need to pause to think about how we're going to position
all of the parts of a FormPane with respect to one another. When we do so,
the first thing we should notice is that we have a potential problem in the way
we've set up the two buttons for the project. Right now, the height and width
of the buttons are tied to the size of the pane. If the user resizes the pane, the
buttons resize both horizontally and vertically. This can result in a situation
where the height of the buttons becomes too small to read their contents.

Buz11talh /) Transcript

Figure 11 -2. First Pass at Test Application Execution

Chapter 11 The Fifth Project: A Form Designer 201

To solve this problem, we recall from our discussion in Chapter 6 that if
we want to specify a static height for a button (as is done, for example, with
the "class" and "instance" buttons in the CHB), we need to use a
framingBlock: rather than a framingRatio: as we have done in our first
version of the configureSubpanes method. The argument to framingBlock:
is a block of code which itself takes an argument. This argument in turn is
the interior frame of the window. Executing the block of code should retumn
a rectangle (in Display coordinates) which is then used to determine the
placement of the sub-pane. Modify the configureSubpanes method to read
as follows:

configureSubpanes
"Format the layout of the window's components." I
buttonHeight I self initializeFields. buttonHeight
:= ListFont height + 4. self addSubpane: (ListPane
new model: intermediary; name: #okButton; change:

#okBulton:; framingBlock: [:box I (box origin +
(0 @ (box height - buttonHeight))) corner: (box origin + ((box
width // 2) @ box height))]). self addSubpane: (ListPane new
model: intermediary; name: #cancelButton; change:
tcancelButton:;
framingBlock: [:box I (box origin + ((box width // 2) @
(box height - buttonHeight))) corner: box corner])

The two framingBlock: messages create rectangles that specify the position
of their sub-panes in Display coordinates. The height is calculated to be
static (box height - buttonHeight, which in turn is set to be four pixels larger
than the height of the font used in the ListPane) while the width is set up to
be proportional to the size of the FormPane.

If you now test the FormApp application, you will note that the buttons
maintain a constant height while adjusting their widths to the size of the

Swalltalk/V Tranacript (3]s

S TR I =) (0))]

[Cancal

Figure 11-3. Buttons with FormPane at Full Default Height
FormPane, as shown in Figures 11-3 and 11-4.

202 Practical Smalitalk

Sl 1talk/V Tramecript

Figure 11 4. Buttons with FormPane Reduced

Note that by choosing aframingBlock: approach for the two buttons in the
FormPane class, we also forced other panes that occupy portions of the
same static space to use aframingBlock: approach rather than aframingRatio..
You can see evidence of this by examining the code for the openOn: method
in the class ClassHierarchyBrowser. Note that the "Class" and "Instance"
buttons use theframingBlock: method to establish their size. As a result, the
method selector pane also uses this method, while the class and text panes
can useframingRatio: because they don't share the static space carved out
by the buttons. As we will see, we have the same situation in our FormPane.
We have already decided that we will use an instance of GraphPane for
the name fields in the left-hand pane of our application and instances of
TextPane for each data entry field in the right portion of the FormPane. We
will begin by creating the left-hand GraphPane first. We will add some
code to the existing configureSubpanes method of the class Formlnter-
mediary to set up this pane. The added code should be placed following the
line that gives a value to the variable buttonHeight. In addition, you must
add a new local variable to the method; the new variable is called portion.
Rather than reproduce the entire listing of the new configureSub-
panes method, we'll just give you the new portion but don't forget to add
portion to the local variable list in the second line of the method.

portion := 2/5.
self addSubpane: (GraphPane new) model: intermediary;
name: #questionsForm: ; framingBlock: [:box I box
origin corner:
(box origin + ((box width * portion) truncated @
(box height - buttonHeight)))]).

We need a method in Formlntermediary to support the name: selector.
Here is the code for that method:

questionsForm: aRect
"Self initializes. Must happen after theTopPane is bound
which is why we put this code here rather than in an initialize
method."
I aForm I
aForm := Form width: (aRect width)

Chapter 11 The Fifth Project: A Form Designer 203

height: (aRect height) .
aForm display At: aRect origin.
*"aForm

Save the image and try the test application again by executing
FormApp example

in a Workspace or the Transcript. You should be impressed with your work
so far! Even though the application isn't complete yet, it is beginning to take
shape and you can see how it is going to behave.

Installing the Text Panes for Each Editable Field

We're ready now to tackle a fairly difficult part of our assignment. We must
code a framing Block: method that uses variables intelligently because the
number of data entry fields that a FormPane must accommodate is not
known in advance. We want our methods to be as reusable as possible. As
you' 11 see, handling this assignment requires us to do some clever programming.
The work we want to do will be handled within the configureSubpanes
method of FormPane. But that method is already getting fairly long and we
can tell that the new code we're about to write will be (in the words of
software professionals) "non-trivial." So we'll add a single line to the
configureSubpanes method to invoke another method that will actually
handle the initialization of the multiple TextPanes needed to serve as entry
fields. That line looks like this:

self conf igureTextPanes: portion buttonHeight: buttonHeight.

Place the above line after the conclusion of the definition of the GraphPane
and before the code that sets up the "OK" button.

Now we need to write the conf igureTextPanes . buttonHeight: method. This
will be the trickiest method in our project.

If we stop and think for a moment, there are only two basic ways to write
a method that will create and place an arbitrary number of TextPanes in a
FormPane for us. One way would be to create hard-coded entries for an
arbitrarily large number of such frames and then use only as many of these
entries as we have data entry fields in the application. This is inefficient and
inflexible and hardly reusable. The alternative is to find a way to write a
single method that would use an indexing approach (i.e., setting an index
variable to 1 for the first pane, 2 for the second, etc.) and multiply an
incremental amount by this index value to calculate dynamically the
locations of all of the TextPanes.

Examine thcframingBlock: for the GraphPane in the configureSubpanes
method. Notice that it uses a local variable of the method — portion — as

204 Practical Smalitalk

part of its calculations. It might therefore seem logical for us to define a local
variable to be used by aframingBlock: method for the configure-TextPanes:
buttonHeight: method and increment it for each TextPane we create. But
we run into a technical problem if we attempt to approach the project this
way. It is impossible to reference the value of such a variable at the time the
TextPane is created. That is because we are only able to obtain the ultimate
(resultant) value of such a variable in Smalltalk/V. As a result, despite the
value of the index at the time each TextPane is created, all of the TextPane
framingBlock: executions would be bound to the value of that local variable
at the time its containing method (i.e., configureTextPanes:buttonHeight:)
completed its execution, not the value at the time each block is created.

We can get around this problem by using a separate method to create the
block rather than creating all of them in the middle of the execution of a
single method. This way, the local variable references from the block will
refer to the variable bindings at the time the method that created the sub-pane
was executed. By executing this new method once for each pane, we can
ensure that we have unique values for that variable and thus non-overlapped
placement of all TextPanes.

With that background, here is the method that will handle the configura-
tion of the TextPanes. Notice that it uses a custom approach to framing
block construction called textFramingBlock: buttonHeight . portion: quantity:.

configureTextPanes: portion buttonHeight: buttonHeight

"Configure the layout of the TextPanes, and provide the
collection of them to intermediary. Portion is the amount of
horizontal space used by the Graph pane, leaving (1 - portion)
for the TextPanes." I theTextPanes quantity I quantity :=
intermediary numberOf Entries . theTextPanes := OrderedCol lection
new: quantity. 1 to: quantity do: [:index I

theTextPanes add:

(TextPane new framingBlock: (self textFramingBlock: index

buttonHeight: buttonHeight

portion: portion

quantity: quantity) ;

yourself)] .
theTextPanes do: [:aTextPane I self addSubpane: aTextPane] .
intermediary textFieldPanes: theTextPanes

Now we can write the textFramingBlock:buttonHeight:portion:quantity:
method, whose code is reproduced below. Notice the use of comments to
describe the mathematical implications of each line of the method's code.

textFramingBlock: index
buttonHeight: buttonHeight
portion: portion

Chapter 11 The Fifth Project: A Form Designer 205

quantity: quantity

A[:box I (box
origin +
("dx" (((box width) * portion) truncated)
@ "dy" (((box height - buttonHeight) // quantity) *
(index -1))

)

corner:
box origin +
"dx" ((box width)

@ "dy" (((box height - buttonHeight) // quantity) *
index))

The somewhat unusual formatting of this method should also make its logic
easier to follow. If you read this alongside a conventional framingBlock:
method, you can see what this method does. It uses known quantities like
buttonHeight and portion and quantity to calculate the right placement for
the current TextPane. The index is used as a multiplier to define the top and
bottom locations of each TextPane's rectangle.

As you can see from the above methods, we must now supply two more
supporting methods to Formlntermediary. The first is textFieldPanes:,
which takes an OrderedCollection as an argument. The second is
numberOfEntries which simply returns the number of questions the appli-
cation is designed to ask. Here are those two methods:

textFieldPanes: anlndexedCollection
textFieldPanes := anlndexedCollection

numberOfEntries
“questionStrings size

Now when we try our test application again, we sense a bit more success.
Resizing it demonstrates the self-configuration characteristics of the sub-
panes. But we still have some problems to work out. For example, there is
an extra space between the bottom TextPane and the button due to our
truncation operation where we lose a partial pixel for each entry and the
accumulated effect is noticeable.

Your first impulse might be simply to switch from truncation to rounding,
but this won't fix the problem in all cases. If that process consistently rounds
down, the problem will persist. The best solution is probably to have the last
TextPane use the top of the buttons as its bottom coordinate rather than
calculating it from the top of the window with the truncation errors. Here is
a revised textFramingBlock:buttonHeight:portion:quantity: method that
handles this situation:

206 Practical Smalltalk

textFramingBlock: index buttonHeight: but tonHeight port ion: port ion quantity:
quantity
"Generate the framingBlock for the TextPanes. If the Text Pane is
the bottom one, indicated by the == test, then be sure it butts
up against the buttons (i.e. , use the alternate block) . " index.
== quantity if False: [*[:box| (box origin +
("dX" (((box width) * portion) truncated)

"dY" (((box height - buttonHeight) // quantity) * (index - 1))
) corner:

(box origin + "dX" ((box width)

@

"eV" (((box height - buttonHeight) // quantity) * index))

if True: [*[:box i (box origin +

("dX" (((box width) * portion) truncated)

@

"dY" (((box height - buttonHeight) // quantity) * (index - 1))
) corner:

(box origin + "dX" ((box width) @
)

"dy" (box height - buttonHeight))) 11

Testing our application now demonstrates that the problem is handled.

Modifying Undesirable Behavior in the Superclasses

If you experiment with the test application for a few minutes, you'll notice
that we still have some problems to resolve before we can consider ourselves
to have created a reusable project. Specifically, you'll find that:

* selecting the "OK" or "Cancel" button results in the system asking if
we want to save pane contents

* zooming of the FormPane always results in zooming only the first
TextPane

* default values don't appear in the data entry fields as expected

To address these problems, we're going to make the following changes to
the project:

+ disable the querying about saving changes
* disable zooming
« disable collapsing

» remove the FormPane's close box (to ensure the user exits the form
via one of our buttons)

« initialize the TextPanes to their default values

Chapter 11 The Fifth Project: A Form Designer 207

Disabling Query on Ending Interaction with FormPane

We need to determine where in the system the question about saving
changes originates. Since we know that the close method of the TopDis-
patcher class is the source of the action that closes the window, we begin
our search there. Use the CHB to examine the source code for this method.
Notice that it sends self a closelt message. Let's track down closelt. We can
find it in the class Dispatcher. Here is its source code:

closelt
"Close the receiver window and resume the
Scheduler main processing loop. " self
topDispatcher pane textModified ifTrue:
["self]. self closeWindow. Scheduler resume

As you can see, this method checks to see if textModified produces a true
result and, if it does, the method does not close the window. Clearly, then,
we need to find out how the textModified method works. Consulting the
Method Index in the Smalltalk/V 286 documentation, you can see that
textModified is implemented only in the class TopPane.

Examining its source code in the CHB, we determine that its purpose is to
query the user and return true if the user wishes to continue editing,/a/,se if
they wish to discard changes. Because we will force the user to use the "OK"
or "Cancel" button to terminate editing in our application, we can safely
assume that the answer will always be false because we will already have
processed the panes' contents.

Since FormPane is a subclass of TopPane, we can simply override the
textModified method with our own:

textModified
"The saving of modifications is handled by an alternate
mechanism, so ignore this one. "
~false

Disabling Zooming, Collapsing, and Closing

The most direct way to eliminate the possibility that the user will zoom,
collapse, or close the FormPane inappropriately is to remove the icons that
enable this behavior. We saw in Chapter 6 that the methods leftlcons: and
rightlcons: determine which icons will be available in a window.

We could simply handle the removal of these icons in our FormApp
instance when we create the FormPane and set some of its arguments. But
since we are going to want to do this for every application that uses
FormPane, it is better handled in the class FormPane directly.

Before we can remove the icons, we have to find out where they are now
being set. In the CHB, locate TopPane, select its lefilcons: method, and

208 Practical Smalitalk

choose "senders" from the pane pop-up menu to find out which TopPane
method sets the default value. We discover that the initialize method of Top-
Pane handles this assignment. This is fortuitous because we've already
overridden that method in our FormPane class. Recall that when we did
that, we sent the super initialize message first so that the return value from
the initialization would be consistent. Now we need to send that message last
so that our override of the icons isn't in turn overridden by the TopPane's
initialize method. But we still want to be sure that we return the same result
as if we had called the superclass' initialize method first. We accomplish
that by storing the result of that method call in a local variable. Here's the
code for the modified initialize method for FormPane:

initialize I
result I
result := super initialize,
intermediary := Formlntermediary new.
intermediary formPane: self, self
leftlcons: #() . self rightlcons: #
(resize) . """result

A quick test of the FormApp reveals that our changes have worked.

Putting Default Values into Editing Fields

The final change in our list is to initialize the TextPanes so that they display
the default answers when we open the pane.

We might start by simply locating a method that will add text to a
TextPane. As we saw in Chapter 10, the appendText: method handles this
assignment. Since we're starting with empty panes, appending the default
answers to the existing text would work just fine for our purposes.

This turns out, however, not to be an optimal solution. Why? Because we
really want to make use of the existing initialization mechanism for
TextPanes, which set up pane contents by the standard process of querying
the model. This is also the method by which a pane restores its original
contents; in our case, that means the default responses. So it makes eminent
sense for us to use this approach to our own pane content initialization.

To gain a better understanding of how and when a TextPane is initialized,
examine the open method of the class TopPane in the CHB. Notice that it
sends the open message to each of its sub-panes. Since we are interested in
TextPanes, we examine the open method of that class. Note that it performs
a self cancel.

The logic behind this approach is that the "cancel" menu item for a
TextPane reverts the pane to its original contents prior to any user editing.
Whether it is reverting to this value or setting it initially, the mechanism is
identical. The process involves simply setting the pane's contents to the
value provided by the model.

Chapter 11 The Fifth Project: A Form Designer 209

Now let's examine the cancel method of the class TextPane. Notice the
line that says in part:

string: (model perform: name)

If the model provides a selector to use for getting the pane';s initial value, the
cancel method uses it. The problem with this approach for our project is that
we wish to use the same method to initialize all of the TextPanes. But the
expression above does not let us know which TextPane we are addressing.
Thus this mechanism makes it impossible to know which defaultAnswerString
to provide.

As we can see, then, there are two ways for us to provide the initial value
for a TextPane. We can use the cancel method or we can set up a name
method in the TextPane's model. We'll do the latter.

Let's begin by subclassing TextPane to create a new class EntryTextPane
that supports informing its model of its identity. Open the CHB, choose
TextPane and then "new subclass" from the pane pop-up menu. Edit the
new class template so that it looks like this:

TextPane subclass: #EntryTextPane
instanceVariableNames: ''
classVariableNames: ''

poolDictionaries:

This class will have only one method, cancel. We set it up so that our model
can support either a name selector method or a cancel: method which takes
the TextPane as an argument. Here is the code:

cancel
"Private - Restore the last saved
version of the text."

name == #yourself
ifTrue: [textHolder string: model]
ifFalse: [
(model respondsTo: #cancel:) if
True: ['"model cancel: self]
ifFalse: [
textHolder
string: (model perform: name with: self)]].
self
topCorner: 1@1;
refreshAll

Next, we update the configureTextPanes:buttonHeight: method to set up
the name for the Entry TextPanes, so that it looks like this:

configureTextPanes: portion buttonHeight: buttonHeight
"Configure the layout of the TextPanes, and provide the collection of
them to intennediary. Portion is the amount of horizontal space used
ty the Graph pane, leaving (1 - portion) for the TextPanes."
I theTextPanes quantity 1
quantity := intermediary numberOfEntries

210 Practical Smalltalk

theTextPanes := OrderedCollection new: quantity. 1
to: quantity do: [:index I
theTextPanes add:
(EntryTextPane new framingBlock: (self textFramingBlock: index
buttonHeight: buttonHeight
portion: portion
quantity: quantity) ;
model: intermediary; "This line added"
name: f#defaultAnswer: /"This line added"
yourself)].
theText Panes do: [:aTextPane I self addSubpane: aTextPane] .
intermediary textFieldPanes: theTextPanes

Now Formintermediary obviously needs a default Answer: method so that
it can deal with the updating process established in the above method. Here
is the code for this new method:

defaultAnswer: entryTextPane
"Find the index of the entry, and extract the string of the same
index from the defaults."
~defaultAnswerStrings at: (textFieldPanes indexOf: entryTextPane)

This method uses the index that is tracking which entry field is being worked
with to retrieve the default answer from the defaultAnswerStrings, which was
initialized to be an Association so that we could retrieve its contents by
index value.

> Adding Menu Capabilities

Another modification we'd like to support to our new FormPane project is
to provide a custom popup menu providing some of the key functionality
that exists in TextPanes and TextEditors. We're going to make it possible
for the user to restore the pane's contents, to perform the standard editing
operations (cut, copy, and paste), and to zoom any individual TextPane in
conformance with the project design described earlier.

As we have seen in earlier projects, we can associate a popup menu with
a pane by setting its paneMenuSelector to a selector of a method supported
by the model. We'll add that capability to our configureTextPanes:button-
Height: method, just before the yourself line that signals the end of the
creation of the EntryTextPane instances. Insert this line in that place:

menu: #entryFieldMenu;

Before we create our menu, let's take a look at what is already available to
us in the way of default menus and behaviors. We look through the class
TextPane in the CHB to find the method that invokes a menu. The

Chapter 11 The Fifth Project: A Form Designer 211

performMenu method has possibilities, so we examine its code. Reading the
comment, we can see that we need to deal with the dispatcher class. As we
saw in Chapter 10, the dispatcher class for a TextPane is a TextEditor. We
browse through this class and look at its menu metamethod. It returns the
contents of StandardEditMenu. You may have noticed already that this
selector begins with a capital letter, meaning that it is most likely a global
variable. Select it and then choose "showlt" from the pane popup menu. We
find out it is not globally bound.

So we check the class definition and find that it is a class variable. Now
that we know what it is, we need to find out where it is initialized so we can
see what's in it by default. There are only a few metamethods to look at and
initialize turns out to be the right choice. By examining its code, we can see
that it defines a single menu, the last choice of which is "next menu" and
whose selector is misc. From our experience working with the system, we
know that this menu selection brings up a second menu and we want to
examine what's in it as well, so we look at the misc method.

Now we know what the selector names are that correspond to the various
menu choices that we want to include in our EntryTextPanes. Here is the
code for our method to be placed in the Formintermediary class:

entryFieldMenu
Menu

labels: 'restore\copy\cut\paste\zoom' withers
lines: #(1-4)

selectors : # (cancel copySelection cutSelection
pasteSelection zoom)

Run the test application and bring up the entry field menu to confirm that we
have indeed accomplished our objective. Selecting "zoom" now enables us
to zoom any selected EntryTextPane rather than just the topmost pane as
happened before when we chose the zoom icon in the window.

Formatting the Name Fields

At this point, our application is not yet displaying the prompt labels (name
fields) in the GraphPane. Since this is primarily cosmetic (i.e., it has
limited interactive functionality), we have saved this task to near the end of
constructing our project. The time has now come to handle this responsibil-
ity, however.

Look at the name selector in the GraphPane definition of our configure-
Subpanes method in the class Formlntermediary. Notice that it is questions-
Form:. This method now does nothing but set up the blank pane area. Let's
rewrite it so it looks like this:

212 Practical Smalltalk

quest ionsForm: aRect
"As the model of a GraphPane, this method supports the name
selector. By returning nil, it informs the GraphPane to use this
method when the window is -.refrained. " I aForm characterscanner
spacing theString I aForm := Form width: (aRect width)
height: (aRect height)
characterscanner : = Characterscanner new
initialize: (Display boundingBox) f ont : SysFont .
aForm displayAt : aRect origin.
spacing := (aRect height // self numberOf Entries)
1 to: (self numberOf Entries) do: [: index I
theString := (questionStrings at: index)
characterscanner display : theString
at: (aRect origin +
(4 @ ((spacing \\ 2) +
(spacing * (index - 1)))))].

Let's examine this code in some detail. It accomplishes two basic tasks:
1. renders a white background
2. draws text in the GraphPane

First, we create a new Form the same size as the pane:

aForm := Form width: (aRect width)
height: (aRect height)

Next we create a Character Scanner whose job (as you'll recall from
Chapter 10) is converting ASCII codes to bitmaps in the system font.
Because we will specifically position each string to be drawn, we can let the
CharacterScanner be set up to use the whole display:

characterscanner : = CharacterScanner new
initialize: (Display boundingBox) font: SysFont.

Now we display our blank background (blank because all Forms are blank
when they are created):

aForm displayAt : aRect origin.

Now for the real work. We iterate through the entries, asking the
characterScanner to display each string with consistent horizontal spacing
(4 pixels from the left) and with a calculated vertical spacing:

1 to: (self numberOf Entries) do: [: index I
theString := (questionStrings at: index)
characterScanner display: theString at:
(aRect origin +

(4 @ ((spacing \\ 2) +
(spacing * (index - 1)))))].

Chapter 11 The Fifth Project: A Form Designer 213

Any GraphPane's name method can return one of two values. If it returns
a Form, that form will be used by the GraphPane when it is resized. If the
name method returns #il, then it will ask the model to redraw the GraphPane
by sending the name selector as a message to the model. This is how we
arrange to have the area redrawn when the window is resized. In our case,
nil is the right answer, so the last line of the method returns that value.

Creating a More Complex Test Application

Our new project has a great deal of functionality. Let's design a somewhat
more complicated test application to demonstrate its powers more appropri-
ately. Here's the code for a new metamethod called example?2:

exairple2
"FormApp exanple2."
I aFormApp I
aFormApp := self new.

aFormApp openOn: # (' Name: ' 'Address:' 'City: 'State:' 'Zip:'
'Phone #: ')
default Answers: # (' Michael Angelo' '123 Main Street' ' Any town'
'CA' '12345" '900-976-4257")

label: 'Fill this form'.
aFormApp open

Try out this new example with the following line in a Workspace or the
Transcript. The results should look like Figure 11-5.

FormApp example2

Things are coming along quite nicely. In fact, we have only one remaining
problem and that is that the GraphPane's contents still scroll. We need to
disable that automatic feature of such panes.

ichael Angelo

Address: 123 Main Street
City:

State:

Zip:

Phove #: 5595764257
oK]Eancel

Figure 11-5. A More Complex Sample Application

214 Practical Smalltalk

Disabling Scrolling in the GraphPane

Before we can disable this scrolling behavior, we have to know how it gets
invoked in the first place. Clearly, a pane doesn' t scroll without an interpre-
tation of a user action of some sort. User actions are the province of
Dispatchers, so the first thing we need to know is what kind of Dispatcher
is associated with a GraphPane. Examine the defaultDispatcherClass
method of a GraphPane in the CHB. It indicates that a GraphDispatcher
plays this role.

Now we examine the GraphDispatcher class to see how it invokes
scrolling. We're in luck; it has only one method, processFunctionKey:.
Unfortunately, as we look at this method, nothing seems to invoke any
scrolling. So we examine the inherited version of processFunctionKey. in
the class ScrollDispatcher.

As we examine this code, we quickly conclude that all subclasses of
ScrollDispatcher inherit scrolling. We might therefore think that a good
way to eliminate scrolling would be to create a new subclass of
GraphDispatcher called, for example, NoScrollDispatcher. A careful
examination of this alternative reveals that it has some problems. To see
them, select the processFunctionKey: method for any of the Dispatcher
classes and select "implementors" from the pane popup menu. This opens
a browser on all implementors of this method and enables us to see how this
method in GraphDispatcher uses the one from ScrollDispatcher, which in
turn uses the method from Dispatcher.

We want most of this inherited behavior. All we really want to rid
ourselves of is the scrolling behavior. The best way to do this is to create a
NoScrollDispatcher class that is a subclass of Dispatcher rather than of
ScrollDispatcher. That way, the new class would not inherit the scrolling
capabilities to begin with and we wouldn't waste our time figuring out how
to override them.

In the CHB, select the class Dispatcher and create a new subclass, editing
the default template to appear as follows:

Dispatcher subclass: #NoScrollGraphDispatcher
instanceVariableNam.es: ' ' classVariableNames: ' '
poolDictionaries: ' FunctionKeys CharacterConstants '

Copy the processFunctionKey: method of GraphDispatcher into this new
class. The code should look like this:

processFunctionKey: aCharacter

Chapter 11 The Fifth Project: A Form Designer 215

"Private - Perform the requested function
from the keyboard or mouse. "
(SelectFunction == aCharacter or:

[EndSelectFunction == aCharacter])
if True: [“pane selectAtCursor] . SetLoc
== aCharacter ifTrue: [

Terminal mouseSelectOn

if True: [“pane selectAtCursor]] .

super processFunctionKey: aCharacter

Now we just need to subclass GraphPane so it will use our
NoScrollDispatcher as its dispatcher. We'll make this class a
NoScrollGraphPane. Open the CHB, select GraphPane and create a new
subclass, editing the resulting template so it looks like this:

GraphPane subclass: #NoScrollGraphPane
instanceVariableNam.es: ''
classVariableNames: ''
poolDictionaries: '

This new class will have only one method since its only purpose is to ensure
the proper Dispatcher is used:

defaultDispatcherClass
"Answer the default dispatcher
of a NoScrollGraphPane."
NoScroliGraphDi spat cher

Finally, edit the configureSubpanes method in the class FormPane so that
the one reference in it to GraphPane is changed to refer to a
NoScrollGraphPane.

Save the image and test to your heart's content. Everything works as
originally envisioned.

An Alternative Approach

We could have dealt with the scrolling problem of the previous section in a
completely different way. We could have defined a new class between
GraphPane and SubPane that handled all but the scrolling methods, which
we would place in GraphPane instead. That would have required a bit more
detail and knowledge and, for the purposes of this book, wouldn't have
added much to the discussion. Still, it is an alternative that you may want to
examine for your own interest.
There are almost always several ways to accomplish a particular objective

in Smalltalk.

216 Practical Smalltalk

Complete Source Code

Following is the complete source code listing of the project in this chapter.
TextPane subclass: #EntryTextPane

instanceVariableNames: ' '

classVariableNames: ''

poolDictionaries: ' ' !

!EntryTextPane class methods ! !

!EntryTextPane methods !

cancel
"Private - Restore the last saved
version of the text." name == #yourself
ifTrue: [textHolder string: model]
ifFalse: [

(model respondsTo: #cancel:)
ifTrue: ["model cancel: self]
ifFalse: [

textHolder
string: (model perform: name with: self)]].
self
topCorner: 1@1;
refreshAll!

Object subclass: #FormIntermediary
instanceVariableNames:
! formPane questionStrings defaultAnswerstrings textFieldPanes questionsForm
questionsScanner '
classVariableNames: ' '
poolDictionaries: '' !

IFormlntermediary class methods ! !
IFormlntermediary methods !

cancelButton

"Label for the Cancel button."
*# (Cancel) !

cancelButton: whoCares
"Because the user has canceled, we provide nil as the result. The
model to formPane should know that nil indicates that no values were

changed, so use what it has as the default if desired." formPane
takeResult: nil!

defaultAnswer

"comment" I I*defaultAnswerStrings at: (textFieldPanes
indexOf: self)!

defaultAnswer: entryTextPane
"Find the index of the entry, and extract the string of the same
index from the defaults." “defaultAnswerStrings at: (textFieldPanes
indexOf: entryTextPane)!

defaultAnswerstrings: indexedStrings

Chapter 11 The Fifth Project: A Form Designer 217

defaultAnswerStrings := indexedStrings

entry Fieldem

“Menu
labels: ' restoreXcopy \cut\paste\zoom" withers
lines: #(14)

selectors: # (cancel copySelection cutSelection
pasteSelection zoom) !

formPane: aFormPane
f ormPane : = aFormPane !

numberOf Entries
“questionStrings size!

okButton
"Label for the OK button. "

okButton: whoCares
"Inform formPane of the values in the question/ field subpanes. As a
model to a ListPane, it must take an argument, of the list index. We
ignore it because the list only has a single item. " I result I
result := OrderedCollection new.
textFieldPanes notNil
ifTrue: [textFieldPanes do: [:aSubpane I
result add: aSubpane contents]]
formPane takeResult: result!

quest ionsForm: aRect
"As the model of a GraphPane, this is this method supports the name
selector. By returning nil, it informs the GraphPane to use this
method when the window is refrained." I aForm characterScanner spacing
theString I aForm := Form width: (aRect width
height: (aRect height).
characterScanner := CharacterScanner new
initialize: (Display boundingBox) font: SysFont
aForm display At: aRect origin.

spacing := (aRect height // self numberOf Entries
1 to: (self numberOf Entries) do: [: index I
theString := (questionStrings at: index).

characterScanner display: theString at:
(aRect origin +
(4 @ ((spacing \\ 2) +
(spacing * (index - 1)))))]

questionStrings: indexedStrings
questionStrings := indexedStrings!

textFieldPanes : anlndexedCollection "Set the

instance variable." textFieldPanes :=
anlndexedCollection! !

Dispatcher subclass: #NoScrollGraphDispatcher
instanceVariableNames: ' ' classVariableNames:
' ' poolDictionaries:
'FunctionKeys CharacterConstants ' !

INoScrollGraphDispatcher class methods ! !

218 Practical Smalltalk

!NoscrollGraphDispatcher methods !

processFunctionKey: aCharacter
"Private - Perform the requested function

from the keyboard or mouse."
(SelectFunction == aCharacter or:
[EndSelectFunction == aCharacter])
ifTrue: ["pane selectAtCursor].
SetLoc == aCharacter ifTrue: [

Terminal mouseSelectOn

ifTrue: ["pane selectAtCursor]].

super processFunctionKey: aCharacter!

GraphPane subclass: #NoScrollGraphPane
instancevariableNames: ' '
classVariableNames: ''
poolDictionaries: ' ' !

!NoScrollGraphPane class methods ! !

!NoScrollGraphPane methods !

defaultDispatcherClass
"Answer the default dispatcher
of a NoScrollGraphPane."
“NoScrollGraphDispatcher! !

TopPane subclass: #FormPane
instancevariableNames:
'intermediary name changeSelector
classVariableNames: ' '
poolDictionaries: ' ' !

!FormPane class methods ! !

!FormPane methods !

change: aSelector
"Used as a message to the model to inform it of a change in the
FormPane. Must take an argument of the FormPane values."
changeSelector := aSelector!

configureSubpanes
"Format the layout of the window's components."
I buttonHeight portion I self initializeFields.

buttonHeight := ListFont height + 4. portion :=

2/5.

self addSubpane: (NoScrollGraphPane new model: intermediary;
name: #questionsForm:; framingBlock: [:box I box origin
corner:

(box origin + ((box width * portion) truncated
(box height - buttonHeight)))]).
self configureTextPanes: portion buttonHeight: buttonHeight.
self addSubpane: (ListPane new model: intermediary; name:
ttokButton; change: ftokButton:;

Chapter 11 The Fifth Project: A Form Designer 219

f ramingBlock: [:box I (box origin +
(0 @ (box height - buttonHeight))) corner:
width // 2) @ box height))]).

self addSubpane (List Pane new model: intermediary;
name: ttcancelButton; change: ttcancelButton:

((box width // 2) @
corner:

(box origin + ((box

framingBlock: [:box I (box origin +
(box height - buttonHeight)))

box corner]

conf igureTextPanes : portion buttonHeight : buttonHeight
"Configure the layout of the TextPanes, and provide the collection
of them to intermediary. Portion is the amount of horizontal space

used by the Graph pane, leaving (1 - portion) for the TextPanes." I

theText Panes quantity 1
quantity := intermediary numberOf Entries
theTextPanes := OrderedCollection new: quantity. 1
to: quantity do: [: index I theText Pane s add :
(Entry Text Pane new framingBlock: (self textFramingBlock: index
buttonHeight: buttonHeight portion: portion
quantity: quantity) ; model: intermediary; name:

#defaultAnswer : ; menu: ttentryFieldMenu;
yourself)
[:aTextPane I self addSubpane: aTextPane]

theTextPanes do:
theTextPanes!

intermediary textFieldPanes

initialize
I result I
result := super initialize.
intermediary := Formlntermediary new.

intermediary formPane: self. self
leftlcons: #() self rightlcons: #
(resize) . '""result
initializeFields
"Queries the model and informs the Formlntermediary."

I anAssociation I
model perform: name. intermediary

anAssociation :=
questionStrings: anAssociation key. intermediary def
aultAnswerStrings : anAssociation value!

name: aSelector
"Selector used as the name of the FormPane, and to get the

initial information displayed in the pane." name :=

aSelector!

takeResult: result
"Inform the model of the change and result."

model perform: changeSelector with: result.
self dispatcher close!
textFramingBlock: index buttonHeight : buttonHeight portion: portion quantity:
quantity
"Generate the framingBlock for the TextPanes. If the Text Pane is the
bottom one, indicated by the = test, then be sure it butts up against the

buttons (use the alternate block)

220 Practical Smalltalk

index == quantity
ifFalse: ["[:box I (box origin +
("dX" (((box width) * portion) truncated)

@
"dY" (((box height - buttonHeight) // quantity) * (index-1))
) corner: (box origin + "dX" ((box width)

@ "dy" (((box height - buttonHeight) // quantity) *
index))
) 1] ifTrue: [*[:box i (box
origin +
("dX" (((box width) * portion) truncated)
"dY" (((box height - buttonHeight) // quantity) * (index - 1))
) corner: (box origin + "dX" ((box width) @
"dY" (box height - buttonHeight))))]]!
textModified

"The saving of modifications are handled by an alternate
mechanism, so ignore this one." “false! 1

Object subclass: #FormApp
instanceVariableNames:
'questionStrings defaultAnswerstrings answerStrings
classVariableNames: '' poolDictionaries: '' !

v

!FormApp class methods 1

example
"FormApp example." I aFormApp I aFormApp := self new.
aFormApp openOn: #('Name: ' 'Address: ' 'Phone #: ')

defaultAnswers: #('Fred' '123 Main Street' '900-976-4257') label:
'Fill this form'. aFormApp open!

example?2
"FormApp example2." I aFormApp I aFormApp := self new. aFormApp openOn:

#('Name:' 'Address:' 'City:' 'State:' 'Zip:' 'Phone #: ')
defaultAnswers: #('Michael Angelo' '123 Main Street' 'Anytown' 'CA'
'12345"' '900-976-4257")
label: 'Fill this form'.
aFormApp open! !

!FormApp methods !

formlnfo
"Returns an association of the questions and answers for the FormPane."

Association key: questionStrings value: defaultAnswerstrings!

openOn: questions defaultAnswers: answers label: alLabel
"Open a FormPane with the specified questions, answers, and label.
1 aFormPane 1
questionStrings := questions.
defaultAnswerstrings := answers.

Chapter 11 The Fifth Project: A Form Designer 221

aFormPane := FormPane new
model: self;
label: alabel;

name: ftformInfo;

change: #userResponse:;

yourself.
aFormPane configureSubpanes. aFormPane
dispatcher open scheduleWindow!

userResponse: theStrings
"The method for the change selector as model for a FormPane."

theStrings isNil
ifTrue: [answerStrings
Transcript cr;
show: 'User selected Cancel.

ifFalse: [answerStrings := theStrings]. Transcript cr;

responses are: '; show: (answerStrings printString); crl

:= defaultAnswerStrings.

Defaults are used.']
show: 'The
1

IndeXx

#EntryTextPane, 209
#FormIntermediary class, 192
#FormPane class, 192
#NoScrollGraphDispatcher, 214
#NoScrollGraphPane, 215

@ message, 130

abstract class, 24, 54, 59, 60, 78
add subclass, 57

adding a method, 62
addSubpane:, 71, 84-85, 193
addToSelections:, 115
allDependents method, 56
alllnstances message, 5

allltems, 105

allReferences method, 56
allSelectionsAsIndexes method, 120-121
allSelectionsAsStrings method, 120-121
appendChar: method, 179
appendText method, 179

Array class, 22, 24

ASCII, 23, 34, 37,178,212
Aspect variable, 153
Association class, 22, 24, 26
back up, 6

Bag class, 22, 24, 33

barFill method, 163-164
barSpacing method, 165
barWidth method, 165

become: method, 56

behavior, 53

behavioral hierarchy, 51

binary selector, 18

BitBlt class, 22-23, 134-135, 178
bitmap, 130

black, 135

blank: width method, 185
blankRestFrom: method, 185

223

224 Practical Smalltalk

Boolean, 35-36
breakpoints pane, 14
broadcasting, 103
broadcasts, 110
browse
browse class, 3
browse disk, 7
browse option, 9
Class Browser, 9
Disk Browser, 7
Method Browser, 9
browse class, 3 browse
disk, 7 browse option, 9
button
buttonHeight: method, 204, 209
cancelButton, 197-198
okButton method, 197
buttonHeight: method, 204, 209 C
language, 49 cancelButton, 197-
198 cancel: method, 209 carriage
return, 11 cascading, 19
change: method, 89-90, 193-195,
changed message, 75, 103 changed
method, 96 changed: method, 75, 90,
96 changed:with: method, 96
changed:with:with: method, 96
changeNib: message, 139 Changes Log,
6-7 Character class, 22-23, 26
CharacterScanner class, 22-23, 178, 183
CHB, 3
Class Browser, 9 Class
Hierarchy Browser, 2-3 class
diagrams, 54 class hierarchy,
21 class libraries, 1, 17, 65
class list pane, 3 class
method, 56 clearPlot method,
155 clearSelections method,
112

clipRect: message, 137

close method, 112, 193
close, 89, 193

closelt, 207

closelt Icon, 88

cmds, 74

collapse Icon, 88-89

Collection class, 22-23, 26, 30, 33-34, 37, 59
compressChanges, 6

compressing source file, 7

concrete classes, 59-60
configureSubpanes method, 196, 201
configureTextPanes method, 204, 209
confirm: method, 43

contents method, 89, 96
Control-Break, 10, 13

copy method, 56
copyBits, 135, 152-153

comner: method, 93, 131

create option, 8

cursors, 129

darkGray, 135

dataMenu method, 147, 167
dataPane method, 147

Date class, 22, 26

debug menu option, 13, 16
Debugger, 12-16,46-47

debugging, 9

decrement, 75

deepCopy method, 56, 116
defaultAnswers: method, 199, 210
defaultAnswerStrings instance variable, 191, 195-19
defaultDispatcherClass, 214-215
defaultNib: method, 138-139, 153-154
delete: method, 183

Demo Menu, 29, 38

DemoClass class, 29, 44
dependents, 56, 96, 110

destForm:, 135
destForm:sourceForm:, 135
destination form, 135

Dictionary class, 22, 24, 26
direction: method, 139

Disk Browser, 7

Index 225

226 Practical Smalltalk

Dispatcher class, 22, 25, 66-68, 83,214
dispatcher method, 73, 97

Display class, 148

display:from:at: method, 185
display:from:to:at: method, 185
display At: method, 134, 185

display AtxlippingBox: method, 134
DisplayMedium class, 132-133
DisplayObject, 133

DisplayScreen class, 22, 25

do it pane menu option, 18-19

do: operator, 37, 153
doesNotUnderstand: method, 56

DOS file, 8, 12, 166

down method, 138

editing messages, 9

editing text files, 8

entryFieldMenu method, 211

error: method, 56

examining the value of instance variables, 10
example, 77, 108, 148, 198

example2, 213

extent: method, 93, 131

factor method, 164-165

file /O, 28, 166

file out option, 81

fileln method, 167

fileOut method, 168

FileStream class, 22, 28
FixedSizeCollection class, 22, 24
Float class, 22, 26
forceEndOntoDisplay method, 180
forceSelectionOntoDisplay method, 180
Form class, 22, 25, 130, 132, 134, 148
form: method, 153

FormAp class, 198
formatlndexedStringAsSelected:, 114
formlInfo, 199

formIntermediary, 190

FormPane instance variable, 191
FormPane method, 188

Fraction class, 22, 26

framingBlock: method, 89, 91, 93, 201
framingRatio: method, 89, 91, 93, 196, 201

from: method, 147

garbage collection, 5

gcd: method, 20
getListFromModel method, 120
go: method, 139, 141

goto: method, 139, 141

Graph Dispatcher class, 22, 25
GraphPane class, 22, 27, 71, 134, 141, 153, 190
gray, 135

halftone, 135

halt message, 13

halt method, 56, 80

home: method, 139-140

hop Icon, 88

horizontalBar: method, 152-153
image file, 7

image, 6

implementedBySubclass method, 56, 60
implementors, 9

increment, 75

IndexedCollection class, 22, 24, 33
initialize method, 151, 208
initialize, 76, 105, 194
initialize:font: method, 184
initializeFields method, 195
initWindowSize method, 78-79, 87-88, 146
inPanic, 10

insetBy: method, 132

inspect message, 10, 15

inspect method, 56

Inspector, 9, 16

instance variable, 10, 103
Integer class, 20, 22, 26

interprets election method, 119
isEmpty method, 46

isKindOf: method, 56, 165
isMemberOf: method, 56

isNil method, 56

jump Icon, 88

keyword, 18

label:, 84-85, 193, 199

labels: argument, 44
labels:lines:selectors: message, 95
leftlcons: method, 70, 84, 88, 193, 207

Index 227

228 Practical Smalitalk

lightGray, 135
lineAt: method, 182
lines, 129
ListApp, 104, 110
ListPane class, 22, 27, 71-72, 99, 100
Logo, 23
Magnitude class, 20, 22, 26
mask form, 135
maxLineBetween:and: method, 182
Menu class, 22, 26, 43
menu: method, 89
message, 17
@ message, 130
alllnstances, 5
changed, 75,103
changeNib:, 139
clipRect:, 137
edit, 9
halt, 13
inspect, 10,15
labels:lines;selectors:, 95
message cascading, 19, 36
message-passing hierarchy, 51
message-passing process, 17
message-passing syntax, 18
new, 5
reverse, 133
scheduleWindow, 73
update, 75
withCrs, 43,95
zoom, 181 Message class,
22 message cascading, 19, 36
message-passing hierarchy, 51
message-passing process, 17
message-passing syntax, 18
Method Browser, 9 method list
pane, 3 method, 17
method-definition syntax, 19
method-execution process, 17
minimumSize method, 84, 86
mListPane, 102-103, 110, 114
modal dialog, 27

model class, 66, 67, 83
model: method, 89, 96
model, 193
model-pane-dispatcher, 66
modified method, 181
modified: method, 181
MPD, 25-26, 83-98, 193
multipleSelection, 105, 109, 121
name: method, 89-90, 193, 195
new message, 5
new method, 3, 76, 84
newPlot method, 169
nextPutAll:, 36
notNil method, 56
nouns, 52
Number class, 22, 26
numberOffintries method, 205
Object class, 22-23, 55-56, 69-70
object, 17
okButton method, 197
open method, 73, 97, 108, 117, 145-146
open workspace, 11
open, 85, 193
openOn, 85, 97, 199
openOn: default Answers: label:, 199
option

browse option, 9

create option, 8

debug menu option, 13,16

do it pane menu option, 18-19

file out option, 81

optionPicker, 163

show it pane menu option, 19
optionPicker method, 163 order of
operations error, 47 OrderedCollection,
22,24,109, 115, 156 organizational
hierarchy, 51 origin:corner: method, 132
origin:extent: method, 132 Pane class,
22,26, 66-67, 83, 84 Pascal, 49
Pen class, 22-23, 134, 137-139
perform: method, 163 perform
with method, 156

Index 229

230 Practical Smalitalk

pixels, 129

place: method, 139-140

plotMenu method, 148, 162

plotPane: method, 148

PlotWindow class, 145

Point class, 22, 27,92, 130

popup At: method, 163

primitive, 19

printString method, 37, 75

Prioritizer class, 29, 37
processFunctionKey: method, 214
program design, 51

prompt:default: class method, 32-33, 47
prompt:defaultExpression: class method, 32
PromptEditor class, 22

Prompter class, 22, 27, 29, 31, 168, 187
promptFor: default: validate With: method, 165
promptWithBlanks:default: class method, 32
putting special characters in text, 181
questionsForm:, 203, 212
questionStrings instance variable, 191, 195-196
ReadStream class, 22, 28

ReadWrite stream, 22, 28

Rectangle class, 22, 28, 92, 130-132
redraw screen menu item, 133

reducing image size, 6

release method, 56
removeFromSelections:, 115

removing classes, 5

replace:withChar: method, 183

replace :withText:, 183

resize Icon, 88-89

respondsTo: method, 56, 88
responsibilities, 53

restore method, 113, 116
restoreSelected, 117
restoreWithRefresh: method, 117
resume, 13

reverse message, 133

rightlcons: method, 70, 84, 88, 193
save, 11

schedule Window message, 73

schedule Window method, 97
ScreenDispatcher class, 22, 25, 29, 44

ScreenMenu, 41

ScrollDispatcher method, 214
Scrolling, 179

scrollUp: method, 155
searchBackFrom:for: method, 183
searchForLineToShow: method, 118
searchFrom:for: method, 183
selectAfter: method, 180

selectAll method, 180
selectAtCursor, 118, 121

select AtEnd method, 180
selectBefore: method, 180
selectedltems, 105, 109
selectFromito: method, 180
selection variable, 112

selections variable, 112

selector, 18

selectorMenu, 94

selectTo: method, 180

senders, 9

Set class, 22, 24, 33

setFont: method, 184
setForeColonbackColor: method, 184
setHorizontal method, 155
setListFromModel method, 116, 120
set Vertical method, 155
shallowCopy method, 56, 116
show it pane menu option, 18-19
show:from:at: method, 185
singleSelection, 105

skip Icon, 88

Smalltalk dictionary, 6

Smalltalk syntax, 17-18

sortBlock code block, 34-36, 44
SortedCollection class, 22, 29-30, 34-35, 37
source file, compressing, 7

source form, 135

species method, 56

Stream class, 22, 28

String class, 24, 178

string: method, 147

string:from: method, 147, 153, 156
StringModel class, 22, 28, 178, 182
subclassing process, 57

Index 231

232 Practical Smalitalk

subclassing, 55, 57
SubPane class, 22, 27-28, 67, 71, 89, 193
subpanes, 28
super, 59
super expression, 113
superclass, 55
Symbol class, 22, 24
syntax, 17-19
sysFontHeight, 106
sysFontWidth, 106
System Classes, 62
System Menu Class, 26, 29, 38, 40-41
system pop-up menu, 7, 11, 133
takeResult: method, 197
template, 4
temporary variables, 20
TerminalStream class, 22, 28
text editing pane, 3,11
Text, 179
TextEditor class, 22, 25, 36, 149, 168, 177,178, 180
textFieldPanes instance variable, 191
textFieldPanes: method, 205
textFramingBlock:buttonHeight:portion:quantity: method, 204-205
textModified, 207
TextPane class, 22, 27-28, 71-72, 89, 168, 177-179, 209
TextSelection class, 22, 28, 178
Time class, 22, 26
title bar, 2, 85
TopDispatcher class, 22, 25, 78
TopPane class, 22, 25, 26-27, 67-68, 84, 87, 89, 106, 188, 193
totalLength method, 182
Transcript, 2, 5-6, 11, 36, 111
turn: method, 139-140
turtle graphics, 23
unformatindexedStringAsSelected:, 114
up method, 138
update method, 75, 113, 117
userResponse: method, 200
values method, 75
variableByteSubclass, 57
variables
Aspect variable, 153
defaultAnswerStrings instance variable, 191,195-196
examining the value of instance variables, 10

FormPane instance variable, 191
instance variable, 10
local, 20
questionStrings instance variable, 191,195-196
selection variable, 112
selections variable, 112
temporary variables, 20
textFieldPanes instance variable, 191
variableByteSubclass, 57
variableSubclass, 57
variableSubclass, 57
verbs, 52
verticalBar: method, 154 walkback, 10,
12-13, 16, 46, 56, 149 white, 135
width:Height: class, 133
Wilson, David A., 54
windows, 2, 26, 129 with:
method, 109 withCrs message,
43, 95 Workspace, 5-6, 11-12,
111 WriteStream class, 22, 28
X Windows, 2 x coordinate,
130 y coordinate, 130 yourself
method, 56, 199 zoom Icon,
88-89 zoom message, 181

Index 233

