


Contents i

Contents

Contents.........................................................................................................................i
Preface.............................................................................................................................xi
Typographical Conventions......................................................................................xi
Trademarks...................................................................................................................xii
Acknowledgements.....................................................................................................xii
Chapter 1: What is Object–Oriented Programming?...........................................1

1.1. Objects................................................................................................................1
1.2. Messages............................................................................................................2
1.3. Classes and Instances......................................................................................4
1.4. Class Hierarchy................................................................................................5
1.5. Methods............................................................................................................7
1.6. Alternative Object–Oriented Programming Languages.........................8

1.6.1. Simula......................................................................................................8
1.6.2. Smalltalk..................................................................................................8
1.6.3. Eiffel..........................................................................................................9
1.6.4. C++............................................................................................................9
1.6.5. Objective–C.............................................................................................9
1.6.6. C+@...........................................................................................................10
1.6.7. Object Pascal............................................................................................10
1.6.8. CLOS.........................................................................................................10
1.6.9. Self.............................................................................................................10
1.6.10. Dylan.......................................................................................................10

1.7. The Advantages of Object–Oriented Programming................................11
1.8. Summary..........................................................................................................12

Chapter 2: Introduction to Smalltalk.......................................................................13
2.1. What is Smalltalk?.........................................................................................13

2.1.1. A Language..............................................................................................13
2.1.2. A Programming Environment...........................................................13
2.1.3. A Class Library........................................................................................14
2.1.4. A Persistent Object Store......................................................................15

2.2. Smalltalk Implementations.........................................................................15
2.2.1. Smalltalk–80...........................................................................................16
2.2.2. Smalltalk⁄V..............................................................................................17
2.2.3. SmalltalkAgents.....................................................................................17
2.2.4. VisualAge................................................................................................17
2.2.5. Smalltalk⁄X..............................................................................................17
2.2.6. Apple Smalltalk.....................................................................................18
2.2.7. Little Smalltalk.......................................................................................18

2.3. The Books.........................................................................................................18
2.4. Summary..........................................................................................................18

Chapter 3: Language Basics........................................................................................20
3.1. Smalltalk Expression Syntax........................................................................20
3.2. Literals...............................................................................................................20

3.2.1. Numbers..................................................................................................20
3.2.2. Characters................................................................................................21
3.2.3. Strings.......................................................................................................21
3.2.4. Symbols....................................................................................................21



Contents ii

3.2.5. Literal Arrays..........................................................................................21
3.2.6. Byte Arrays..............................................................................................21

3.3. Variables...........................................................................................................21
3.4. Pseudo–Variables............................................................................................22
3.5. Messages............................................................................................................22

3.5.1. Unary Messages......................................................................................22
3.5.2. Binary Messages.....................................................................................22
3.5.3. Keyword Messages.................................................................................23

3.6. Parsing Rules...................................................................................................23
3.7. Assignments....................................................................................................25
3.8. Returning.........................................................................................................26
3.9. Blocks.................................................................................................................26
3.10. Variables (again)............................................................................................26
3.11. Comments......................................................................................................27
3.12. Summary........................................................................................................27

Chapter 4: Getting Going with the User Interface.................................................28
4.1. Windows..........................................................................................................28
4.2. Menus, Prompters, etc...................................................................................29
4.3. The Mouse........................................................................................................29
4.4. Cursors..............................................................................................................30
4.5. Using VisualWorks........................................................................................31

4.5.1. Unix..........................................................................................................32
4.5.2. MS–Windows.........................................................................................32
4.5.3. Macintosh................................................................................................32

4.6. The Launcher...................................................................................................33
4.7. <Window> Button Menu Operations.......................................................35
4.8. The Window Menu.......................................................................................36
4.9. Help....................................................................................................................36
4.10. Summary........................................................................................................38

Chapter 5: Typing and Editing in Workspaces......................................................40
5.1. Introduction.....................................................................................................40
5.2. Typing and Selecting......................................................................................40
5.3. Editing...............................................................................................................45
5.4. Scrolling............................................................................................................48
5.5. Evaluating Smalltalk Code...........................................................................50
5.6. The Settings Tool............................................................................................54
5.7. Summary..........................................................................................................55

Chapter 6: Introduction to Application Development........................................56
6.1. The System Browser.......................................................................................56

6.1.1. Class Categories......................................................................................57
6.1.2. Class Names............................................................................................57
6.1.3. Message Categories................................................................................58
6.1.4. Message Selectors...................................................................................58

6.2. Example: Browsing the Implementation of an Existing Method.........58
6.3. Defining Methods...........................................................................................59
6.4. Example: Creating a new Method...............................................................59
6.5. Defining Classes..............................................................................................60
6.6. Example: Adding a new “Application”......................................................61
6.7. Saving Your Code...........................................................................................63



Contents iii

6.8. The File Browser.............................................................................................64
6.8.1. The Upper Pane......................................................................................65
6.8.2. The Middle Pane....................................................................................66
6.8.3. The Lower Pane......................................................................................68
6.8.4. The auto read button.............................................................................69

6.9. Summary..........................................................................................................69
Chapter 7: The System Transcript............................................................................70

7.1. Introduction.....................................................................................................70
7.2. Using the System Transcript........................................................................70
7.3. Global Variables..............................................................................................73
7.4. Cascading Expressions....................................................................................75
7.5. Summary..........................................................................................................76

Chapter 8: Inspecting an Example Class — Point..................................................78
8.1. Class Point........................................................................................................78

8.1.1. Creating a new Point.............................................................................79
8.1.2. Accessing..................................................................................................80
8.1.3. Comparing...............................................................................................80
8.1.4. Arithmetic...............................................................................................80
8.1.5. Truncation and Rounding...................................................................81
8.1.6. Polar Coordinates...................................................................................81
8.1.7. Point Functions......................................................................................81

8.2. Alternative Representations for Class Point............................................82
8.3. Inspecting Instances of Classes.....................................................................83
8.4. Other Inspectors..............................................................................................87
8.5. Summary..........................................................................................................88

Chapter 9: Other Kinds of Browsers.........................................................................89
9.1. Introduction.....................................................................................................89
9.2. Spawning other Browsers.............................................................................89
9.3. Alternative Ways of Opening Browsers....................................................93
9.4. Summary..........................................................................................................95

Chapter 10: Blocks and Control Structures (1).......................................................96
10.1. Introduction...................................................................................................96
10.2. Simple Repetition.........................................................................................97
10.3. Conditional Selection..................................................................................97
10.4. Conditional Repetition................................................................................99
10.5. Block Arguments..........................................................................................100
10.6. Block Temporary Variables........................................................................100
10.7. Summary........................................................................................................101

Chapter 11: Use of Inheritance..................................................................................102
11.1. Methods revisited.........................................................................................102
11.2. Review of Message Sending.......................................................................102
11.3. Messages to self and super..........................................................................102
11.4. An Example of Inheritance.........................................................................104
11.5. Summary........................................................................................................107

Chapter 12: Class Variables and Protocols..............................................................109
12.1. Class Variables...............................................................................................109
12.2. Examples.........................................................................................................110

12.2.1. LookPreferences...................................................................................110
12.2.2. ScheduledWindow..............................................................................111



Contents iv

12.2.3. FileBrowser...........................................................................................111
12.3. Class Instance Variables...............................................................................111
12.4. Pool Variables................................................................................................112
12.5. Summary of Variable Scope.......................................................................114
12.6. Class Protocol.................................................................................................115
12.7. Summary........................................................................................................116

Chapter 13: Abstract Superclasses.............................................................................117
13.1. Introduction...................................................................................................117
13.2. The Number Hierarchy...............................................................................118

13.2.1. ArithmeticValue..................................................................................119
13.2.2. Number..................................................................................................120
13.2.3. Fraction..................................................................................................120
13.2.4. Integer.....................................................................................................120
13.2.5. SmallInteger..........................................................................................121
13.2.6. LargeInteger...........................................................................................121
13.2.7. LimitedPrecisionReal..........................................................................121
13.2.8. Float........................................................................................................121
13.2.9. Double....................................................................................................121
13.2.10. FixedPoint............................................................................................121
13.2.11. Common Messages............................................................................122
13.2.12. Coercion...............................................................................................124

13.3. The Geometric Hierarchy............................................................................125
13.3.1. Geometric..............................................................................................125
13.3.2. Circles.....................................................................................................126
13.3.3. Ellipses....................................................................................................126
13.3.4. Straight Lines........................................................................................126
13.3.5. Polygons.................................................................................................127
13.3.6. Curves....................................................................................................127
13.3.7. Rectangles..............................................................................................128

13.3.7.1. Accessing
........................................................................................................................
129
13.3.7.2. Testing
........................................................................................................................
129
13.3.7.3. Functions
........................................................................................................................
129

13.4. Summary........................................................................................................131
Chapter 14: Collections (1) — Unordered...............................................................132

14.1. Introduction...................................................................................................132
14.2. Class Collection.............................................................................................132
14.3. Unordered Collections.................................................................................133
14.4. Creating Instances of Collections...............................................................134
14.5. Accessing Elements of a Collection...........................................................135

14.5.1. Adding....................................................................................................135
14.5.2. Removing..............................................................................................136
14.5.3. Enquiries................................................................................................137
14.5.4. Testing....................................................................................................138



Contents v

14.5.5. Enumerating.........................................................................................138
14.6. Class Dictionary.............................................................................................140

14.6.1. Adding....................................................................................................140
14.6.2. Accessing................................................................................................141
14.6.3. Removing..............................................................................................143
14.6.4. Testing....................................................................................................143
14.6.5. Enumerating.........................................................................................144

14.7. Class IdentityDictionary...............................................................................144
14.8. SystemDictionary..........................................................................................146
14.9. Class Bag..........................................................................................................146
14.10. Summary......................................................................................................148

Chapter 15: Collections (2) — Sequenceable...........................................................149
15.1. Sequenceable Collections............................................................................149
15.2. Class Array......................................................................................................149

15.2.1. Creating..................................................................................................149
15.2.2. Adding....................................................................................................150
15.2.3. Accessing................................................................................................151
15.2.4. Removing..............................................................................................152
15.2.5. Copying..................................................................................................152
15.2.6. Enumerating.........................................................................................153

15.3. Class OrderedCollection..............................................................................153
15.3.1. Adding....................................................................................................153
15.3.2. Accessing................................................................................................155
15.3.3. Removing..............................................................................................155

15.4. Class SortedCollection.................................................................................156
15.4.1. Creating..................................................................................................157
15.4.2. Accessing................................................................................................157

15.5. Converting Collections................................................................................158
15.6. Strings..............................................................................................................159

15.6.3. String Manipulation...........................................................................160
15.6.2. Converting............................................................................................160
15.6.4. Comparing.............................................................................................161

15.7. Symbols...........................................................................................................161
15.8. Summary........................................................................................................162

Chapter 16: More on Browsers..................................................................................163
16.1. Browser Menus.............................................................................................163

16.1.1. Hardcopy................................................................................................163
16.1.2. The Class Categories Menu................................................................164
16.1.3. The Class Names Menu.....................................................................167
16.1.4. The Message Categories Menu..........................................................170
16.1.5. The Message Selectors Menu............................................................172
16.1.6. The Text Pane Menu...........................................................................173

16.2. Alternatives...................................................................................................175
16.3. Message–Set Browser...................................................................................176
16.4. The Launcher.................................................................................................176

16.4.1. File...........................................................................................................176
16.4.2. Browse....................................................................................................178
16.4.3. Tools.......................................................................................................178
16.4.4. Changes..................................................................................................179



Contents vi

16.5. Summary........................................................................................................179
Chapter 17: Blocks and Control Structures (2).......................................................181

17.1. Class Interval.................................................................................................181
17.1.1. Looping..................................................................................................183
17.1.2. Iterating..................................................................................................184

17.2. Instance Behaviour through Blocks.........................................................184
17.3. Return Expressions in Blocks.....................................................................184
17.4. Summary........................................................................................................185

Chapter 18: Streams and Files...................................................................................187
18.1. Streams............................................................................................................187

18.1.1. Class ReadStream.................................................................................188
18.1.2. Class WriteStream...............................................................................189
18.1.3. Class ReadWriteStream......................................................................190

18.2. Printing...........................................................................................................190
18.3. Accessing the File System...........................................................................192

18.3.1. Class Filename......................................................................................192
18.3.2. Filestreams............................................................................................193
18.3.3. Storing Objects......................................................................................195

18.4. Class Random................................................................................................197
18.5. Summary........................................................................................................197

Chapter 19: Graphics (1) — Media............................................................................199
19.1. Introduction...................................................................................................199
19.2. Class GraphicsContext..................................................................................200

19.2.1. Using a GraphicsContext....................................................................201
19.2.2. Obtaining a GraphicsContext.............................................................202
19.2.3. GraphicsContext Examples................................................................203

19.3. Class Paint.......................................................................................................205
19.3.1. Paint Examples.....................................................................................206

19.4. Class Palette....................................................................................................206
19.5. Summary........................................................................................................208

Chapter 20: Graphics (2) — Objects...........................................................................209
20.1. Class VisualComponent..............................................................................209
20.2. Class Image.....................................................................................................209

20.2.1. Displaying an “Empty” Image...........................................................211
20.2.2. Displaying an Existing Image............................................................211
20.2.3. Magnifying an Image..........................................................................211
20.2.4. Centring an Image...............................................................................211
20.2.5. Changing the Background Colour...................................................212
20.2.6. Creating a Pattern.................................................................................212
20.2.7. Changing the Tile Phase.....................................................................212
20.2.8. Changing the Palette...........................................................................212
20.2.9. Using CoverageValues (1)..................................................................213
20.2.10. Using CoverageValues (2)................................................................213

20.3. Class Text........................................................................................................214
20.4. Class ComposedText.....................................................................................216
20.5. Class VariableSizeTextAttributes..............................................................216
20.6. Displaying Geometrics.................................................................................218
20.7. Summary........................................................................................................219

Chapter 21: Logic Operations and UndefinedObject.............................................220



Contents vii

21.1. Class Boolean.................................................................................................220
21.2. Comparing Objects........................................................................................223
21.3. Copying...........................................................................................................227
21.4. Class UndefinedObject.................................................................................229
21.5. Summary........................................................................................................230

Chapter 22: Runtime Error Handling......................................................................231
22.1. Interrupted Message Sends.........................................................................231
22.2. Error Notifiers...............................................................................................234
22.3. Summary........................................................................................................238

Chapter 23: Debugging an Application....................................................................239
23.1. Introduction...................................................................................................239
23.2. Breakpoints....................................................................................................241
23.3. Message Receiver Context...........................................................................242
23.4. Interrupted Method Context......................................................................242
23.5. Single–stepping Through an Evaluation................................................243
23.6. Debugging Example......................................................................................243
23.7. Summary........................................................................................................252

Chapter 24: Projects and Change Management.....................................................253
24.1. Projects............................................................................................................253
24.2. Managing Change Sets.................................................................................254

24.2.1. Inspecting Change Sets.......................................................................254
24.2.2. Forgetting Changes..............................................................................256
24.2.3. Filing–out Changes.............................................................................256

24.3. The Change List Browser............................................................................257
24.4. Summary........................................................................................................265

Chapter 25: Processes and Semaphores...................................................................266
25.1. Links and Linked Lists.................................................................................266
25.2. Processes..........................................................................................................268

25.2.1. Priorities.................................................................................................269
25.3. Scheduling Processes....................................................................................271
25.4. Synchronisation using Semaphores.........................................................272
25.5. Semaphores....................................................................................................274
25.6. Shared Queues...............................................................................................276
25.7. Delays...............................................................................................................276
25.8. Summary........................................................................................................277

Chapter 26: Classes and Metaclasses.........................................................................279
26.1. Introduction...................................................................................................279
26.2. Classes and Metaclasses...............................................................................279
26.3. Summary........................................................................................................286

Chapter 27: The Dependency Mechanism..............................................................287
27.1. Introduction...................................................................................................287
27.2. Operation of Dependencies.........................................................................287
27.3. Changing and Updating..............................................................................288
27.4. Broadcasting...................................................................................................290
27.5. Maintaining Dependents............................................................................290
27.6. Dependency Implementation....................................................................291
27.7. Example: Clocking Flip–Flops....................................................................294
27.8. Summary........................................................................................................302

Chapter 28: Dialogues — Menus, Prompters and Confirmers...........................303



Contents viii

28.1. Using Menus..................................................................................................303
28.1.1. Alternative Ways of Creating a Menu............................................306

28.2. Using Prompters...........................................................................................307
28.3. Using Confirmers.........................................................................................309
28.4. Other Dialogues.............................................................................................311
28.5. Summary........................................................................................................311

Chapter 29: Introduction to Models, Views and Controllers.............................312
29.1. Introduction...................................................................................................312
29.2. MVC Basics.....................................................................................................312
29.3. Communications in MVC..........................................................................314
29.4. Multiple Views..............................................................................................315
29.5. Models.............................................................................................................317
29.6. Class ValueModel.........................................................................................317
29.7. Building an MVC Application...................................................................318
29.8. Summary........................................................................................................320

Chapter 30: The VisualPart class Hierarchy and class ScheduledWindow.....322
30.1. Introduction...................................................................................................322
30.2. Class VisualPart.............................................................................................322
30.3. Arranging Panes in a Window..................................................................324
30.4. Class ScheduledWindow............................................................................325
30.5. Adding a Component to a Window.........................................................327
30.6. Wrappers........................................................................................................328
30.7. Class CompositePart.....................................................................................328
30.8. Layout Specification.....................................................................................332
30.9. Summary of VisualPart class hierarchy...................................................334
30.10. The displayOn: Message............................................................................336
30.11. Invalidation.................................................................................................336
30.12. Example: ClockView..................................................................................337
30.13. Summary......................................................................................................339

Chapter 31: Controllers...............................................................................................340
31.1. Introduction...................................................................................................340
31.2. Class Controller.............................................................................................341
31.3. Flow of Control.............................................................................................341
31.4. Specialised Controllers................................................................................343

31.4.1. Class StandardSystemController......................................................343
31.4.2. Class NoController..............................................................................344
31.4.3. Class ControllerWithMenu...............................................................344

31.5. Class InputSensor.........................................................................................345
31.6. Class Cursor....................................................................................................346
31.7. Example: ClockController...........................................................................347
31.8. Summary........................................................................................................348

Chapter 32: An Interactive Application — Dice....................................................349
32.1. Introduction...................................................................................................349
32.2. Separating the Model and its View...........................................................349
32.3. Developing the Model Dice........................................................................350
32.4. A Simple View for Dice...............................................................................353
32.5. The DiceController.......................................................................................357
32.6. Refining the View........................................................................................359
32.7. Additional Control Features......................................................................363



Contents ix

32.8. Summary........................................................................................................366
Chapter 33: Building a Dialogue Box.......................................................................367

33.1. Class DialogView..........................................................................................367
33.2. Dialogue Components.................................................................................368

33.2.1. Class LabeledBooleanView................................................................368
33.2.2. Class FractionalWidgetView.............................................................370
33.2.3. Class ComposedTextView..................................................................370

33.3. Class PluggableAdaptor...............................................................................370
33.4. Summary........................................................................................................372

Chapter 34: Using a Canvas.......................................................................................373
34.1. Overview........................................................................................................373
34.2. Summary of Parts.........................................................................................374

34.2.1. Class ApplicationModel.....................................................................374
34.2.2. Widgets..................................................................................................375
34.2.3. Models....................................................................................................377
34.2.4. Dependencies........................................................................................378

34.3. Tools................................................................................................................379
34.4. Building an Application..............................................................................382
34.5. Example: A different Dice...........................................................................383
34.6. Benefits of Using a Canvas.........................................................................389
34.7. Summary........................................................................................................389

Appendix: References and Pointers.........................................................................391
A.1. References.......................................................................................................391
A.2. Pointers............................................................................................................393

A.2.1. CoolDraw................................................................................................393
A.2.2. The Grapher...........................................................................................393
A.2.3. SmallDraw.............................................................................................393
A.2.4. Smallmusic............................................................................................394
A.2.5. The Manchester Smalltalk “Goodies” Library...............................394
A.2.6. The UIUC Archive...............................................................................394
A.2.7. ENVY/Developer.................................................................................395
A.2.8. HP Distributed Smalltalk....................................................................395
A.2.9. ObjectExplorer.......................................................................................395
A.2.10. ReportWriter.......................................................................................395
A.2.11. Runtime Packager..............................................................................395

A.3. Troubleshooting............................................................................................396
A.3.1. Closed Launcher?.................................................................................396
A.3.2. Missing Sources?..................................................................................396
A.3.3. Growing Image?....................................................................................397

A.3.3.1. Release Methods
........................................................................................................................
398
A.3.3.2. DependentsFields
........................................................................................................................
398
A.3.3.3. Undeclared Variables
........................................................................................................................
398

A.4. Summary.........................................................................................................399



Contents x



Preface

This book is a complete, stand–alone introduction to application development

using Smalltalk–80. It provides a comprehensive description of the VisualWorks

2.0 development environment, the language and major aspects of the class

library, including coverage of the Model–View–Controller (“MVC”) paradigm.

The book is aimed at students attending university⁄college and software

professionals in industry. It can be used by both the specialist and the general

reader: the specialist will find a detailed guide to the development of applications

using VisualWorks; for the general reader, the book provides an introduction to

Smalltalk–80 and the VisualWorks development environment.

Note, however, that this book is not intended as a general programming primer

— readers are expected to have a firm understanding of general computer

systems and the algorithms used in such systems. Readers are also expected to be

familiar with at least one programming language (such as Pascal, C or Lisp).

However, no previous exposure to VisualWorks, Smalltalk–80, or object–

oriented programming, is assumed.

The structure of the book stresses the relationship between the language syntax,

the class hierarchy and the development environment. This reflects the tutorial

nature of our approach, with a large number of (relatively) short chapters, each

covering specific points. An exhaustive index combined with extensive cross–

references ensures that the reader can find what he or she is looking for.

There are a large number of worked examples, each of which illustrates a

particular aspect of the Smalltalk–80 language, the VisualWorks development

environment or its class library. The examples are frequently accompanied by

screen–shots of VisualWorks in operation. Additionally, almost all chapters

contain exercises (of various degrees of complexity) which the reader is

encouraged to answer using VisualWorks.

Typographical Conventions

In this book the standard typeface is a serif font. Other fonts are used to

distinguish special terms, as follows:

• Menu items are in bold sans–serif, e.g. Workspace.



• Smalltalk expressions or variables, as they appear in the system, appear in

sans–serif, such as Transcript show: 'Hello'.

• Place holders and variables used in examples are in italics sans–serif

typeface, for example aCollection.

• Keys that appear on the keyboard are indicated by angle brackets. For

example the “carriage return” key: <CR>, or a function key: <F1>.

Trademarks

ParcPlace, the ParcPlace logo, VisualWorks, Smalltalk–80 are registered

trademarks, and BOSS is a trademark of ParcPlace Systems, Inc. Sun is a

trademark of Sun Microsystems, Inc. Microsoft and MS–Windows are registered

trademarks of Microsoft Corporation. Apple is a registered trademark of Apple

Computer, Inc. UNIX is a registered trademark of AT&T. X Window System is a

trademark of the Massachusetts Institute of Technology. Smalltalk/V is a

registered trademark of Digitalk, Inc. All other brand names are trademarks of

their respective holders.

Acknowledgements

There are many people whom we should acknowledge for their help and support

during the production of this book. Firstly we’d like to thank Laura Hill, who

reviewed the first draft of the manuscript and provided the original material for

chapter 34. Mario Wolczko deserves special thanks, not only for providing the

basis for chapter 26, but also for his in–depth knowledge and comprehension

which has been a constant inspiration. In addition there are a number of (ex–)

colleagues who have all helped with ideas, examples and exercises—their

contribution was much appreciated; they are Gary Birch, Dave Cleal, Adrian

Kunzle, John Nolan, Anthony Nowlan, and Ian Piumarta. We would also like to

thank the anonymous reviewers for their often irritating, but nonetheless

constructive criticisms; Adele Goldberg for her review, including comments on

the technical accuracy of the book; and Helen Martin of Prentice–Hall for having

the patience to wait for us! Finally, I’d like to express my personal gratitude to my

partner, Sandra Ellesley—this book could not have been completed without her

advice, support and encouragement.

Bernard, Feb. ’95



Chapter 1 1

Chapter 1: What is Object–Oriented
Programming?

This chapter contains a brief introduction to the ideas of object–oriented

programming. It presents basic concepts such as objects and messages, and

explains the notions of class and instance, and the advantages of a class

hierarchy. The way in which the correct methods are identified after a message

send is also described.

In addition, we discuss the various implementations of object–oriented

languages, and identify the Smalltalk approach at an abstract level. The

advantages of object–oriented programming to all sorts of environments are

emphasised.

1.1. Objects

The fundamental concept that underpins object–oriented programming is that of

the Object. An object is a combination of two parts:

“Data” — the state of the object is maintained within that object.

“Operations” — all the mechanisms to access and manipulate  that state.

The internal representation of an object consists of variables which either hold

data directly or act as pointers to other objects (figure 1.1). The internal variables

within the object are not directly accessible from outside that object — the barrier

that this provides is called information hiding . In an object–oriented language,

the “natural” view of objects is from the outside ; the inside of the object is only

of interest to itself. Therefore, no object can read or modify the state of any other

object, i.e. unlike a data structure (for example, a Pascal record or a C struct), an

external entity cannot force a change of state in an object. Access to any part of the

state of an object is only possible if the object itself permits it.



Chapter 1 2

Internal variables

op
er

at
io

ns

operations

operations

Figure 1.1: An Object

1.2. Messages

Object–oriented programming languages use message–sending  as their only

means of performing operations. If the receiving object understands the message

it has been sent, then one of its internal operations (or methods ) will be

performed. This, in turn, may cause some computation to take place (by acting

on one or more of the object’s internal variables). A result is always returned (i.e.

an object).



Chapter 1 3

Message

Message

Message

Figure 1.2: Objects send messages to each other

Since an object’s internal state is private and cannot be directly accessed from the

outside, the only way of accessing that state is by sending a message to the object.

The set of messages to which an object responds is called its message interface.

However, it is important to note that a message specifies only which  operation is

requested, not h o w  that operation is to be fulfilled. The object receiving the

message (the receiver) determines from its methods (described in some object–

oriented language) how to carry out that operation. Similarly, a method that is

being performed in response to the receipt of a message may only manipulate

other objects (including the receiver’s internal variables) by sending them

messages. Program flow may therefore be illustrated in terms of communication

between many objects (see figure 1.2).

For example, we could request an object to carry out some activity by sending it a

message. One or more arguments may be sent to an object along with the name



Chapter 1 4

of the message (called the selector). The object receiving the message may be able

to perform the action entirely on its own; alternatively, it may ask other objects

for information, pass information to other objects, or to carry out computation,

all by sending messages.

The same message sent to different objects can produce different results, since it

is the receiver of the message, not the sender, that decides what will happen as a

result of a message–send. In this respect sending a message is fundamentally

different to calling a procedure in a conventional programming language such as

C.

Let us examine the result of sending the message + 5. Here the selector is +, and

the argument is the integer 5.

6 + 5 returns 11

(7@2) + 5 returns (12@7).

The result of sending the message +5 to the object integer 6 (equivalent to the

expression 6 + 5) is 11. However, the result of sending the same message to the

point (7@2) is (12@7). In the first case the receiver is an Integer, and an Integer is

returned. In the second case, where the receiver is an object representing a two–

dimensional point in space, the operation and the result are different. In this case

the addition of a scalar to a point returns another point. This feature — in which

many objects are able to respond to the same message in different ways — is

called polymorphism .

1.3. Classes and Instances

In theory, a programmer could implement an object in terms of the variables it

contains and the set of messages to which it responds or understands (and the

methods corresponding to those messages). However, it is more useful to share

this information between similar objects. Not only does this approach save

memory, it also provides a means of reusing code.

The information is shared by grouping together those objects that represent the

same kind of entity into what is called a class. Every object in an object–oriented

programming system is a member of a single class — it is called an instance of

that class. Furthermore, every object contains a reference to the class of which it

is an instance. The class of an object acts as a template to determine the number

of internal variables an instance will have, and holds a list of methods which

corresponds to the messages to which all instances of the class will respond.



Chapter 1 5

If objects did not obtain their behaviour from classes, each object would have to

“carry around” with it a copy of all the code it could evaluate. By using classes we

avoid the potential efficiency problems in a fine–grain object–oriented system.

Consequently, the behaviour of an object, expressed in terms of messages to

which it responds, depends on its class. All objects of the same class have

common methods, and therefore uniform behaviour, but they may have

different state.

1.4. Class Hierarchy

Classes are arranged in a class hierarchy. Every class has a parent class — or

superclass — and may also have subclasses. A subclass inherits both the

behaviour of its superclass (in terms of its method dictionary), and also the

structure of its internal variables. At the top of the hierarchy is the only class

without a superclass, called class Object in Smalltalk. Class Object defines the

basic structure of all objects, and the methods corresponding to the messages to

which every object will respond.



Chapter 1 6

Mammal

Dog Cat

Persian

thomas
harriet

oliver

Subclasses of 
Mammal

superclass of subclass of

has instance

instance of

Figure 1.3: An Example of a Class Hierarchy and its instances.

For example, referring to figure 1.3, we can see a class hierarchy where thomas is

an instance of class Persian, which itself is a subclass of class Cat, which is a

subclass of class Mammal , which may be a subclass of class Vertebrate , and so on.

A superclass of which no instances should be created is known as an abstract

superclass. Such classes are intended to support partial implementations of

features that are completed (differently) in subclasses.

Inheritance supports differential programming (or programming by

modification), i.e. a new class of object may be defined which is similar to an

existing one (its superclass) except for a few minor differences. Subclasses



Chapter 1 7

therefore allow the programmer to refine , or specialise, the behaviour of the

parent class. This can take a number of forms:

• additional or modified behaviour provided by extra methods;

• the re–implementation of the internal representation of the object’s state;

• the addition of extra internal variables;

• any combination of the above.

We may therefore exploit inheritance as another technique for reusing code. For

example, if the message odd  is sent to the Integer 12, the result false will be

returned even though the class Integer does not have a method specifying how

to make this test. This is because the method corresponding to the message odd  is

defined in class Number, which is a superclass of class Integer. This means that

all subclasses of class Number, including integers, are able to respond to the

message odd , since they inherit this method.

Within Smalltalk, the class structure is implemented as a single inheritance

hierarchy. This means that a subclass can only inherit from one parent

superclass. Other object–oriented programming languages support multiple

inheritance, in which case a subclass may inherit from multiple parent

superclasses.

1.5. Methods

A message is sent to an object which is an instance of some class. A search is

made in the class’s method dictionary for the method corresponding to the

message selector. If the method is found there, then it is bound  to the message

and evaluated, and the appropriate response returned. If the appropriate method

is not found, then a search is made in the instance’s class’s immediate superclass.

This process repeats up the class hierarchy until either the method is located or

there are no further superclasses. In the latter case, the system notifies the

programmer that a run–time error has occurred.

The object–oriented message passing mechanism can be compared to a function

call in a conventional programming language such as C. It is similar in that the

point of control is moved to the receiver; the object sending the message is

suspended until a response is received. It is different in that the receiver of a

message is not determined when the code is created (“compile time”), but is

determined when the message is actually sent (“run time”). This dynamic  (or



Chapter 1 8

late) binding mechanism is the feature which gives Smalltalk its polymorphic

capabilities.

1.6. Alternative Object–Oriented Programming Languages

At present there are many languages that claim to be “object–oriented”. Of these,

many are pure  in the sense that they consistently adhere to the object–oriented

paradigm described in the previous sections. Others take a conventional

language and add extensions suitable for object–oriented programming.

However, in these hybrid languages, objects are only used to represent higher–

level entities; the data types specific to each language are retained. In addition,

hybrid languages relax the requirement for information–hiding — external

procedures or functions may be used to access the internal variables of an object.

However, hybrid languages offer the advantage of familiarity, and programmers

have the freedom to decide whether or not to make use of the extra object–

oriented features. Unfortunately, therefore, these languages lack the rigorous

consistency and conceptual clarity that make pure object–oriented languages, for

example Smalltalk, such a powerful programming language.

In the following sections we briefly describe several of the most well–known

object–oriented programming languages.

1.6.1. Simula

Based on Algol 60, Simula was the first object–oriented language. It introduced

the concepts of class, inheritance and polymorphism .

1.6.2. Smalltalk

The Smalltalk language and programming environment was developed at Xerox

Palo Alto Research Center in the 1970’s and early 1980’s. The graphical

programming environment greatly influenced the development of the Apple

Macintosh and later windowing systems such as X11 and Microsoft Windows.

When first developed, Smalltalk broke new ground as the first uniformly object–

oriented language (every data item is an object). Today, over 20 years later, there

are still few languages or environments that match the sophistication of its

incremental compiler and the extensibility of both its language and

environment.

At the time of writing, there are several implementations of Smalltalk available.

The ParcPlace Systems implementation is a direct descendant of earlier Xerox



Chapter 1 9

versions, whereas others have arrived on the scene more recently. (Chapter 2

discusses the various Smalltalk implementations.)

1.6.3. Eiffel

Eiffel builds on the concepts of Simula by adding multiple inheritance and semi–

formal class specifications in an attempt to produce a pure  object–oriented

language compatible with current approaches to software engineering.

Class invariants and operation pre– and post–conditions may be expressed

algebraically in a class specification. Consequently this allows a large degree of

compile–time and run–time correctness checking.

The Eiffel library contains numerous classes for common data structures, parsing

and scanning libraries, and an interface with the X11 window system.

1.6.4. C++

An extension to C designed by Bjarne Stroustrup of AT&T Bell Laboratories —

the home of the C language. The AT&T product is a translator that converts C++

into C, which you then compile with a compiler of your choice, other vendors

provide products that compile C++ directly.

Its main influence was Simula, rather than Smalltalk, and so it remains a

strongly–typed language.

There is no “standard” library of classes to compare with that of Smalltalk–80,

although there are libraries for different application areas.

1.6.5. Objective–C

Objective–C extends the C language by the introduction of classes and a new data

type, id, which is a reference to any object. Objective–C is modelled on

Smalltalk–80 and has the same typeless nature, although simple data items, such

as integers and reals, remain in C.

It is a pre–processor that translates the object–oriented extensions into

conventional C code, which is then fed to a standard C compiler. Objective–C

comes with a class library in source form which is a useful aid to learning the

basics. It initially achieved popularity through its use on the NeXT machine,

bundled with Interface Builder (also written in Objective–C).



Chapter 1 10

1.6.6. C+@

C+@ (pronounced ‘cat’) is another language based on C by AT&T Bell Labs,

derived from their Calico language. It is closer to Smalltalk than C++ since it is a

true object–based language in which all data items are objects, although it retains

the language syntax of C.

Again, like Smalltalk, it provides a graphical programming environment and a

large class library, written in C+@ and available in source.

1.6.7. Object Pascal

An extension to Pascal developed as a systems programming tool at Apple.

Object Pascal is a simple object–oriented language, but lacks some of the more

complex ideas present in Smalltalk–80.

It has been used to produce a large variety of Macintosh applications. The

language is in the Simula mould, and (like C++) it uses an extension of the

existing record structure to implement classes. Microsoft’s Quick Pascal is based

closely on Object Pascal, with nearly identical syntax.

1.6.8. CLOS

The Common Lisp Object System is an extension to Common Lisp, itself a

standardised version of Lisp. An object in CLOS is an instance of a class and a

class may inherit from many other classes (multiple inheritance). However,

CLOS does not have any notion of message–sending.

1.6.9. SELF

SELF is an object–based language whose syntax is similar to Smalltalk. One

difference is that SELF doesn’t have the notion of a class. An object is derived

from another (its prototype) by copying and refinement. Another difference is

that no distinction is made between instance variables and methods — they are

both called slots. On the face of it, SELF is an immensely powerful language;

however, its disadvantages shouldn’t be overlooked: it’s still a research project

and requires a large amount of memory and a big machine to run (Sparc–10 &

64MB, preferably).

1.6.10. Dylan

Dylan (which stands for “DYnamic LANguage”) is a new object–oriented

language originally developed by the Eastern Research and Technology Labs of

Apple Computer. It most closely resembles CLOS and Scheme, but has been



Chapter 1 11

influenced by Smalltalk and SELF. At present its design is still fluid, and there are

no commercial implementations.

1.7. The Advantages of Object–Oriented Programming

To summarise this chapter, it is worth reiterating the main points concerning

object–oriented programming:

• An object is a combination of some local state (represented as internal

variables) and the operations by which that state may be accessed and

manipulated — this is called encapsulation.

• The state of an object is not directly accessible from outside that object —

this is called information hiding .

• Message–sending is the only means of performing operations.

• A message specifies which operation is requested, the corresponding

method contains the expressions to be evaluated.

• Every object is an instance of a class.

• Classes are arranged in a hierarchy.

• Every class has a superclass (except class Object in Smalltalk–80).

• A subclass inherits the behaviour of its superclass.

• Message–sending is a polymorphic operation.

These properties provide the programmer with the following useful features:

• An object encapsulates state and methods, and consequently the use of

objects provides data protection without excessive specification.

• By separating the user of an object from the implementer, the user is no

longer aware of how an object is implemented. Users, then, can only

manipulate an object by using those messages provided by the

implementer. This has the benefit that the programmer can change the

internal implementation of an object and, keeping the message interface

constant, have no detrimental effect on the applications using that object.

This in turn promotes a modular programming style.



Chapter 1 12

• Similarly, separating what  happens from h o w  it happens promotes the

reuse of code.

• The use of inheritance and polymorphism promotes differential

programming, or programming by modification.

• The description of a system in terms of objects, and of objects in terms of

possible behaviour (as defined by messages), permits modular design.

Object–oriented programming minimises the number of assumptions that

different parts of a program make about each other, therefore reusing

some components of a program written for one application in another

application is easy.

1.8. Summary

In this chapter, we have given a fairly brief overview of object–oriented

programming, emphasising the basic concepts such as encapsulation and

polymorphism. We hope that it has provided you with the incentive to go on to

explore the use of Smalltalk–80 in more detail. The next chapter describes some

of the history of the Smalltalk language, and acts as a precursor to later chapters

that describe the use of VisualWorks.



Chapter 2 13

Chapter 2: Introduction to Smalltalk

In this chapter we briefly describe Smalltalk, its origins and the way in which it is

used. In particular, we outline the elements that combine to make Smalltalk —

the language, the programming environment, the class library, and the

implementation.

There is a short discussion of the differences between various Smalltalk

implementations from the users’ point of view, followed by a list of other

publications cited within the book.

2.1. What is Smalltalk?

Smalltalk can be seen as just another programming language, with its own rules

of syntax for describing classes, objects, methods and messages; and its own rules

of grammar for parsing expressions. However, most implementations of

Smalltalk provide more than just a language — they provide a programming

environment, a library of classes and a persistent object store. Each of these

combines to produce a unified framework for the development of object–

oriented applications. Each is described in detail below.

2.1.1. A Language

Compared to conventional programming languages such as C or Pascal,

Smalltalk has an unusual syntax. In addition, Smalltalk has no notion of “type”.

Objects are employed to represent everything in Smalltalk, including all the

conventional data types that may be found in any programming language: such

as integers, booleans, floating point numbers, characters, strings, arrays. In

addition, objects are used to represent display items such as menus, windows,

and even the compiler itself. Smalltalk is therefore described as a uniformly

object–oriented language.

However, the rules of Smalltalk syntax (see chapter 3) are simple and consistent.

When you have mastered these rules and have gained a certain familiarity, it is a

straightforward language both to read and write. The problems are no greater

than mastering the syntax of Lisp, APL and Forth and, like the adherents of those

languages, most Smalltalk programmers argue that the syntax is one of the

strengths of the language.

2.1.2. A Programming Environment

Smalltalk was one of the first systems to pioneer the so–called “WIMP” interface

(Windows, Icons, Menus & Pointer). It is not surprising, then, to discover that



Chapter 2 14

current environments provide numerous tools to enable programmers to

browse existing classes and copy and modify pre–written code (chapter 6).

Additional editing tools enable programmers to amend and correct newly created

code effortlessly. Other tools allow the programmer access to the underlying

filing system (chapter 6), from which existing source code my be “filed–in”.

Additionally, Smalltalk provides change management tools. These are in the

form of Projects that may be used to contain code specific to particular software

Projects and also Browsers to view recent changes (chapter 24). Since Smalltalk is

extensible, programmers can tailor these existing tools or create new ones for

their own use.

Smalltalk also pioneered the use of an incremental compiler. This means that

programmers can avoid lengthy sessions of compiling and linking, and get

“instant gratification” from the speed of compilation, thus enabling them to

adopt a more exploratory approach to software development. This approach

enables the programmer to develop software in a piecemeal fashion, exploring

ideas as the application takes shape.

The combination of an incremental compiler and a symbolic debugger (giving

interactive access to source code) allows the programmer to inspect and modify

currently active objects, carry out in–line testing and modify and re–compile

existing code, and then restart the evaluation of the expressions. By inserting

break points at suitable points, the programmer is able to step through the

evaluation of the code (see chapter 23).

Thus, the Smalltalk programming environment promotes a programming

process that employs an iterative development style for creating an application.

The programmer is able to develop a partial solution, test it, add new

functionality, test it, and so on, until the complete solution is reached.

2.1.3. A Class Library

Despite its name, Smalltalk is not necessarily small — for example, Smalltalk–80

contains hundreds of classes and thousands of methods, all available on–line in

source code form (Smalltalk is written almost entirely in Smalltalk — a small

kernel is written in machine code). The classes can be further refined using the

inheritance mechanism, or they can be used as internal variables by other objects.

Consequently, the effort required to construct new applications is minimised.

The library of classes includes:



Chapter 2 15

• Various subclasses of Number. This includes Integer, Float and Fraction.

• Various data structures. This includes Set , Bag, Array, OrderedCollection,

SortedCollection, and Dictionary.

• Classes to represent text, font, colour, and so on.

• Geometric representations, e.g. Point, Rectangle , Circle, Polygon, and so

on.

• Classes to assist in the control of concurrency. For example, Process, and

Semaphore.

2.1.4. A Persistent Object Store

A Smalltalk system consists of two parts:

• The virtual image (or “Image”), containing all the objects in the system.

• The virtual machine  (or “VM”), consisting of hardware and software

(microcode) to give dynamics to objects in the image. (Each hardware

platform requires its own VM.)

This implementation technique was used for several reasons:

• To ensure portability of the virtual image. Any Smalltalk image should be

executable on any virtual machine. The image is (mostly) isolated from

the VM implementation (hardware and software).

• The Smalltalk system is very large, but most of the functionality is in the

image. This eases the problems of implementation, as only a relatively

simple VM has to be constructed.

Because the complete working environment is saved (the image), Smalltalk also

acts as a persistent object store. This allows the programmer to create new classes,

and even new instances, and keep them from one working session to another.

2.2. Smalltalk Implementations

At the moment there are four commercial implementations of Smalltalk, with

others under development. In addition, there are a small number of

implementations in the public domain. The differences between them are

generally outweighed by their similarities, and any differences that do exist are



Chapter 2 16

likely to be found in the content of the class library and the sophistication of the

tools.

In the following sections we describe the most popular Smalltalk

implementations:

2.2.1. Smalltalk–80

Smalltalk–80 is the latest in a line of Smalltalk development originally started at

Xerox Palo Alto Research Center (PARC) in the early 1970’s, and can be viewed as

the ancestor of all other Smalltalk implementations. (Earlier versions, including

Smalltalk–72 and Smalltalk–76, were for research purposes only.)

Smalltalk–80 became a commercial product in the late 1980’s when its current

distributor ParcPlace Systems was created out of the Smalltalk researchers at

PARC headed by Adele Goldberg. At that time, the release of Smalltalk–80 was

numbered 2.2. Release 2.4 introduced a major modification to the VM with the

effect that previous virtual images would no longer run on the new VM.

However, the most significant recent release was 4.0 (ParcPlace named the

product ‘Objectworks\Smalltalk’) which integrated the windowing system with

that of the host platform. (To our knowledge there has never been a 3.x release!)

In the meantime there has been a minor upgrade (with the addition of extra

classes) in the form of release 4.1. More recently, ParcPlace has released an

extended version of Smalltalk–80, called ‘VisualWorks’ (now at release 2.0),

which provides window–building facilities and database connectivity.

There are three important features that distinguish VisualWorks from its

competitors:

1) Its class library — considered to be the most complete and reusable. (All

source is available.)

2) Its portability — VisualWorks is available for several platforms, including

Apple Macintosh, SUN, HP, DEC, and MS–Windows. A virtual image

created on any one of these machines will run on any other without

recompilation.

3) Its tools — VisualWorks has the richest set of tools available (some of

which we have referred to above; others are described in later chapters).



Chapter 2 17

2.2.2. Smalltalk⁄V

Produced by Digitalk. Current versions are available for PCs (running under MS–

Windows, and Presentation Manager) and for the Macintosh. Most of the

differences between VisualWorks and Smalltalk⁄V relate to the size and content

of the library of classes provided (which is smaller than VisualWorks), the

sophistication of programming tools and the ease of portability across platforms.

(Source code is typically not portable between Smalltalk⁄V and VisualWorks.

Some source code — especially that which provides the user interface — is not

portable between different versions of Smalltalk⁄V.)

2.2.3. SmalltalkAgents

Released by Quasar Knowledge Systems in late 1993, SmalltalkAgents is a

relative newcomer to the Smalltalk scene. It is currently (Spring ’94) only

available for the Apple Macintosh, with versions for MS–Windows and SUN

scheduled for late 1994.

The implementation appears closer to Smalltalk⁄V than Smalltalk–80, and some

of the extensions it introduces contravene other Smalltalk conventions. It is

packaged with an extensive set of modular class libraries including data

structures and support for graphical user interfaces.

2.2.4. VisualAge

IBM advertises VisualAge as its ‘object–oriented application–builder technology’.

Essentially a 4GL, it combines a visual programming toolkit; a library of ‘parts’ (to

provide database queries, transactions and a graphical user interface); multi–

media capabilities (in the form of support for audio and video); team

programming tools and configuration management. The reason for its inclusion

here is that it also provides Smalltalk as a ‘scripting language’ for advanced

application logic (the language is interpreted). At the moment it is only available

for OS⁄2 and MS–Windows.

2.2.5. Smalltalk⁄X

Currently a beta product, Smalltalk⁄X is an almost full implementation of

Smalltalk that compiles to machine code using ‘C’ as an intermediate.

Smalltalk⁄X may be used as a language or a full programming environment. As

its name suggests, this implementation is aimed at platforms that use the X11

windowing system, although we understand that versions are being developed

for MS–Windows.



Chapter 2 18

Smalltalk⁄X comes with a library of classes to represent data structures, user

interface components, and so on.

2.2.6. Apple Smalltalk

Developed by Apple, but unsupported by them, available from the ‘Apple

Programmers and Developers Alliance’ for a minimum cost.

2.2.7. Little Smalltalk

Little Smalltalk, by Timothy Budd, is designed to run under Unix on an

alphanumeric display (and therefore does not possess the sophisticated

programming tools available in other versions of Smalltalk). It is available as a

book and sources in the public domain for Unix, MS–DOS, and the Acorn

Archimedes.

2.3. The Books

Throughout the chapters of this book you will see occasional reference to the

“Orange Book” or the “Blue Book”. Here we refer to one of the four books to be

written by authors who were (and some who still are) involved with the

development of Smalltalk–80. The “colour” of the book indicates the colour of

the background of the illustration on the front cover (as well as for the Addison–

Wesley logo on the spine). The full references of the books are as follows:

Blue Book Goldberg, Adele, and David Robson, Smalltalk–80: The
language and Its Implementation, Addison–Wesley, 1983.

Purple Book Goldberg, Adele, and David Robson, Smalltalk–80: The
language, Addison–Wesley, 1989.1

Orange Book Goldberg, Adele, Smalltalk–80: The Interactive Programming
Environment, Addison–Wesley, 1984.

Green Book Krasner, Glenn, ed., Smalltalk–80: Bits of History, Words of
Advice, Addison–Wesley, 1983.

2.4. Summary

The overview of Smalltalk provided in this chapter is an introduction to the

later chapters of the book. We hope to have given you a glimpse of the way in

which Smalltalk is different to other programming languages. In the following

chapters, this difference will be made more apparent as we consider Smalltalk’s

language syntax.

1The Purple book is an update⁄revision of the Blue book.



Chapter 2 19

From now on, when we mention Smalltalk, we shall be referring to the

Smalltalk–80 language, unless stated otherwise.



Chapter 3 20

Chapter 3: Language Basics

The Smalltalk language syntax is straightforward, but is rather unusual

compared with more conventional languages. Topics in this chapter include the

expression syntax, literals and variables, the parsing rules, a brief introduction to

blocks and an introduction to variables.

3.1. Smalltalk Expression Syntax

Clearly, an expression syntax is required to express how objects interact with one

another. An expression is a sequence of characters which describe an object,

called the value  of the expression.

Four types of expression are permitted:

• Literals describe constant objects (numbers, characters, strings, symbols and

arrays).

• Variable names describe accessible variables. The value of the variable

name is the current value of the variable with that name.

• Message expressions describe messages sent to receivers. The value of the

expression is determined by the method it invokes.

• Block expressions describe deferred activities. Blocks are often used for

control structures.

3.2. Literals

One of the simplest forms of Smalltalk expression is the “literal expression”.

Here we describe the syntax of these constant objects:

3.2.1. Numbers

A Number is represented as a sequence of digits, with an optional leading unary

minus sign and optional decimal point. There is no unary plus sign. Examples

include:

8 12.7 –0.0007

Numbers can also be represented in other bases, by preceding the base with a

radix and the letter ‘r’:

8r177 16r5E 2r100011



Chapter 3 21

Numbers can also be expressed in “scientific notation”, using the suffix letter ‘e’.

For example:

2.23e5 8r177e6 3e-2

Finally, numbers can also be represented as “fixed–point” (used, for example, to

represent currency values) using the suffix letter ‘f’. For example:

2.23f 177f6 3f-2

3.2.2. Characters

A Character is an individual letter of an alphabet. It is represented by a single

alphanumeric letter preceded by a ‘$’ sign. Examples include:

$D $+ $$ $9 $x

3.2.3. Strings

A String is a sequence of Characters surrounded by quote marks. Examples

include:

'test string' 'string with '' embedded single quote'

3.2.4. Symbols

A Symbol is an object that represents a string used for a name in Smalltalk. A

Symbol is represented using the ‘#’ sign, and is optionally surrounded by quote

marks. Symbols are always unique. Examples include:

#initialize #W80 #temp #'3x'

3.2.5. Literal Arrays

The literals are surrounded by brackets and preceded by the ‘#’ sign. One array

“embedded” in another may avoid the use of the ‘#’ sign. Examples:

#(40 41 42) #((1 '2') ('first' #second)) #(1 'one' ($5 'five'))

3.2.6. Byte Arrays

A Byte Array is a sequence of bytes (integers between 0 and 255) surrounded by

square brackets and preceded by a ‘#’ sign. For example:

#[1 2 3 0] #[16rFF 0 2r111 2e2]

3.3. Variables

A variable points to an object. The variable’s name is an expression referring to

that object. Variable names are identifiers made up of letters and digits with an

initial letter:

someObject Integer Smalltalk temp3



Chapter 3 22

When made up from more than one word, the first letter of each subsequent

word in the identifier is capitalised. You are strongly encouraged to conform

with this convention — it is used consistently throughout the standard image.

3.4. Pseudo–Variables

A pseudo–variable name refers to an object which cannot be changed; these

include:

nil A value used when no other is appropriate, such as uninitialized

variables. nil  is the sole instance of class UndefinedObject.

true Represents truth. It is the sole instance of class True.

false Represents falsehood. It is the sole instance of class False.

Classes True and False are subclasses of Boolean.

3.5. Messages

A message expression comprises a receiver , a selector and possibly some

arguments. The basic specification for sending a message in Smalltalk is

<receiver> <message>

where <receiver> is the name of some known object, and <message> is a unary,

binary, or keyword  message including arguments.

3.5.1. Unary Messages

Unary messages are the simplest type of message in Smalltalk. An object is

followed by a single word (the message selector) and no arguments. The selector

must contain no colons. Examples:

3 negated

100 factorial

Window new

anArray size

theta sin

4 even

3.5.2. Binary Messages

Binary messages are more complex, since they also have one argument specified

with them. The selector is one or two non–alphabetic characters, the second of

which must not be a minus sign. Existing binary messages in the current

Smalltalk image include:



Chapter 3 23

+ - / *
= < > ~=
<= >= // (integer division)
& (logical “and”) | (logical “or”)
, (string concatenation)

These binary messages will be described in more detail in later chapters.

Examples:

2 + 3

true & false

3 * 4

100 // 17

index – 1

3.5.3. Keyword Messages

Keyword messages are the most complex type of message. The structure of a

keyword message comprises one or more keywords each with its own argument.

For instance, in the message

anArray copyFrom: 1 to: 3

copyFrom: and to: are the keywords, and the numbers 1 and 3 are arguments.

Note that each keyword must end with a colon. A message can have no more

than 255 keywords. An argument can be an expression representing any object.

Other examples:

index max: limit

anArray at: first put: 'aardvark'

3.6. Parsing Rules

The order of evaluation in a Smalltalk statement is:

1) Unary messages left to right;

2) Binary messages left to right;

3) Keyword messages left to right.

Multiple expressions are separated by full stops1.

1For North American readers, a “full stop” is a “period”.



Chapter 3 24

These rules are quite unlike those in many other languages, where precedence

depends on the function. There is no algebraic hierarchy. However, as with

many other languages, parentheses (round brackets) can be used to alter the order

of precedence. It is worthwhile considering some examples:

In the example:

1.5 tan rounded

the unary message tan is sent to 1.5, and the unary message rounded is sent to the

resulting object.

Similarly for binary messages:

a + b * 2

returns the result “twice (a+b)”. To get “(twice b)+a”, the expression should be

written:

a + (b * 2)

Parentheses also have precedence over unary messages.

In the example:

(anArray at: 14) even

the message even  is sent to the 14th element of anArray , while:

anArray at: 14 even

the message even  is sent to 14, and an attempt is made to use the resulting object

(true) as an index to anArray . This is probably an error.

When multiple keywords appear in an expression, they are parsed as a single

keyword message. For example:

frame scale: factor max: 5

contains a keyword message selector (scale:max:) with two arguments, factor and

5. Conversely:

frame scale: (factor max: 5)

sends the keyword message max: 5 to factor, and uses the resulting object as the

argument to the keyword message selector scale: sent to frame.

It is important therefore to exercise care when putting keyword messages

together:



Chapter 3 25

2 raisedTo: 3 raisedTo: 7

As there is no raisedTo:raisedTo: message selector, the above expression will

result in an error. Similarly it is important to note that:

(2 raisedTo: 3) raisedTo: 7 is not equal to 2 raisedTo: (3 raisedTo: 7)

Omitting the parentheses in these sorts of cases is a common source of errors.

Parentheses can always be used to clarify the intention of an expression.

Nevertheless, use with care, otherwise your expressions will become very

cluttered.

Ex 3.1: What is the result for each of the following Smalltalk expressions?

2 + 3 negated

2 raisedTo: 3 + 7

(2 raisedTo: 3) + 7

2 raisedTo: 3 + 7 negated

(2 raisedTo: 3) + 7 negated

(2 raisedTo: 3 + 7) negated

3.7. Assignments

A variable name can refer to different objects at different times. The assignment

expression can be used to assign an object to a variable. It looks like:

<variable> := <message send>

Examples:

newIndex := 1

this := that

someString := 'Part Two'

anArray := #(1 2 3 4 5)

Assignment expressions return values (like other expressions) so several

assignments can be made together.

this := that := theOther

stop := end := 0

Ex 3.2: What is the result of the following assignment expressions?

a := 5 - 4.

a := 5 raisedTo: 3.

a := (b := 5) * 66.

a := 3 * (2 raisedTo: (b := 36 // 42)).



Chapter 3 26

3.8. Returning

When it has finished evaluating, every Smalltalk method returns an object to

the sender of the message. If no object is specified, the receiver itself is returned.

If some other object should be returned, the ‘^’ symbol is used to return the

object and terminate the evaluation of the current method (though it need not

necessarily be at the end of the message sequence). Any object can be returned

this way.

3.9. Blocks

A block represents a deferred sequence of messages. A block is represented by a

sequence of expressions (separated by full stops), enclosed by square brackets. For

example:

aBlock := [index + 2]

aBlock := [anArray at: newIndex put: 42]

The expressions in a block are evaluated when the block receives the message

value. For example:

aBlock := [a := 0].
aBlock value

when aBlock  receives the message value, its message expressions are evaluated,

here causing the variable a to refer to the integer 0.

Blocks are used to implement control structures (see chapter 10). Examples

include:

aNumber even
ifTrue: [aString := 'even']
ifFalse: [aString := 'odd']

[index > 0]
whileTrue: [index := index 1]

3.10. Variables (again)

The permanent “private” memory of an object has already been introduced. The

term used to describe the variables that represent an object’s private memory is

instance variables, since they are used to represent the private memory of an

instance of a class.

Instance variables are only available to the specific object in which they are

contained. They are simply names for pointers to other objects and always begin



Chapter 3 27

life as nil . Each instance of a class keeps its own internal copy of each instance

variable.

Other types of variables are also provided; they are described below:

Temporary

Variables

exist only for the duration of some activity

(e.g. the evaluation of a method).

Class Variables are shared by all instances of a single class.

Global Variables are shared by all instances of all classes (i.e.

all objects). Try not to use global variables

except for experimentation.

Pool Variables are shared by all instances of some classes,

and are thus a way of creating common

storage between object classes. Pool

variables are very rarely used.

By convention, private variables (instance variables, temporary variables) start

with an initial lower–case letter, whereas shared variables (class variables, global

variables, pool variables) start with an initial upper–case letter.

3.11. Comments

Text that is only for documentation purposes is indicated by its enclosure in

double quotes (").

3.12. Summary

This chapter provides an introduction to the syntax of the Smalltalk language,

covering all of the most important features. However, later chapters expand on

the use of the syntax, in particular we shall return to different kinds of variables

later in the book: chapter 7 gives examples of global variables, and chapter 12

gives examples of class and pool variables.

Also, blocks are examined in more detail in chapters 10 and 17. In the meantime,

the next few chapters introduce the VisualWorks user interface, so that you can

get underway with using the syntax.



Chapter 4 28

Chapter 4: Getting Going with the User Interface

In this chapter we present a brief introduction to the items seen on the screen,

and their relationship to things within the environment. These include

Browsers and Workspaces, Prompters and Menus. The mouse⁄cursor

combination, the screen and the keyboard is also mentioned.

This introduction is followed by an indication of how to start (and stop!)

VisualWorks; naturally, this aspect is somewhat dependent on the users’ local

machine and operating system. A discussion of the importance of snapshots and

the “sources” and “changes” files is provided.

4.1. Windows

The VisualWorks user interface consists of one or more (potentially)

overlapping windows, each of which may contain text or graphics. The windows

are managed by the host platform’s standard window manager, and not part of

VisualWorks. On UNIX systems, this will be X–windows, together with a

window manager such as twm, olwm (OpenLook) or mwm (Motif). On PC

machines it will be MS–Windows, and on the Macintosh it will be Apple’s own

distinctive user interface.

Each window is manipulated using the mechanisms of the native window

manager, but can also be manipulated through VisualWorks.

Several types of windows are available as standard. These include windows with

the following labels:

VisualWorks a window with menu options and buttons for

launching other windows (herein after known as

the ‘Launcher’). It may also contain an area known

as the ‘System Transcript’ (see below). We

recommend that you keep this window open so

that you can see the messages as they are displayed.

Workspace a general work⁄edit area.

System Browser for managing (parts of) the class hierarchy.

Class Browser for managing a single class.



Chapter 4 29

System Transcript displaying “system” messages.

File Browser access to underlying file system.

Inspector discover⁄change state of any object.

Debugger following⁄modifying evaluation paths.

Change List

Browser

for managing changes made to the image.

The VisualWorks image contains much code and a uniform mechanism for

creating new windows.

4.2. Menus, Prompters, etc.

A number of other “things” can appear on the screen. These include:

Menus These are widely used in conjunction with windows.

These allow the user to select one of several items

using the mouse.

Confirmers These request the user to confirm or deny a request.

Prompters A mechanism for prompting the user for some typed

response.

Informers These typically inform the user that some user

request has failed.

Notifiers The means by which VisualWorks indicates that

some event has occurred. This may be an error

condition, a user interrupt or some other exception

condition.

The use of many of these items will be demonstrated later in the book.

4.3. The Mouse

VisualWorks requires the use of some form of pointing device — it is used for

much of the user’s interaction with the environment. A cursor on the display

screen follows the movement of the pointing device. Typically, the pointing

device will be a mouse with three buttons. (If you are using a Macintosh or a PC,

now would be a good time to consult your manual to discover how to simulate a



Chapter 4 30

three button mouse on your single–button (Macintosh) or double–button (PC)

mouse.)

Because VisualWorks also runs on machines with one– and two–button mice,

use of the terms “left”, “middle” and “right” is discouraged. The names for the

mouse buttons are:

<Select> is the left button (for historical reasons, also called the “red”

button in VisualWorks source code).

<Operate> is the middle button (also called the “yellow” button in

VisualWorks).

<Window> is the right button (also called the “blue” button in

VisualWorks).

Despite the recommendations, much Smalltalk code still uses the colour names!

The following terminology for the use of the mouse buttons is normally used:

Press press and hold the button down.

Release release the button.

Click press and release the button without moving the mouse.

Double Click click the button twice without moving the mouse between
clicks.

When over a VisualWorks window, the general operations associated with

mouse buttons are as follows:

<Select> button Selecting and positioning within the “application”

displayed in the window.

<Operate> button “Application” (window) specific menu items.

<Window> button Window control function menu items, common to

all standard VisualWorks windows.

4.4. Cursors

Eight standard cursors are used to give feedback about VisualWorks’ activities

and the current mouse position. (Use of these and other cursors is described in

chapter 31.)



Chapter 4 31

The eight cursors are described below:

shape name description

normal The cursor looks like this for most of the time. The

point of selection (or hot–spot) is the tip of the arrow.

execute The system is compiling a method, evaluating an

expression, etc. During this time, mouse button

movements are ignored and keyboard inputs are

deferred.

wait The system is carrying out some operation that

prevents it from responding to your input.

read Data is being read from an external file. User input is

ignored⁄deferred.

write Data is being written to an external file. User input is

ignored⁄deferred.

garbage

collector

Non–compacting garbage–collection is taking place.

This occurs only during “low–space conditions”. User

input is ignored⁄deferred.

memory

compactor

Memory is being compacted. This occurs when free

memory if heavily fragmented. User input is

ignored⁄deferred.

compacting

garbage

collector

A full compacting garbage–collection is taking place.

This only occurs during “low–space conditions”. User

input is ignored⁄deferred.

The wait and⁄or execute cursors are used when evaluating messages that require

several seconds to complete. The read and write cursors are used when file I⁄O is

being performed.

4.5. Using VisualWorks

At least the following files should be present in your directory1:

1Macintosh users should substitute the word ‘folder’ for the word ‘directory’.



Chapter 4 32

visual.im this is the image file, representing the current (suspended)
state of your Smalltalk evaluation.

visual.sou this file contains the source code for all the classes and
methods in the image. (On distributed file systems, you may
find that this file is elsewhere.)

visual.cha this file contains the changes made to the image file since the
sources file was created. Every new or modified method, and
all evaluations performed are recorded here.

If any of these files is missing, you will not be able to run VisualWorks. It is very

important that the visual.im and visual.cha files remain consistent, so we

recommend that you do not directly modify either file.

The actions required to start your VisualWorks session depend on the platform

you are using. Here we will consider three possibilities: UNIX, MS–Windows

and Macintosh. You should consult your manual or system administrator if you

feel you may need help accessing or installing the software.

4.5.1. Unix

To start the VisualWorks system, type oe20 visual.im. This starts the Smalltalk

Virtual Machine (known as the ‘Object Engine’) and loads the image file. A

number of messages will be printed in the console window as the image is

loaded.

4.5.2. MS–Windows

Double click on the icon named ‘Visual’ in the appropriate Program Manager

window. This starts the Smalltalk Virtual Machine (known as the ‘Object

Engine’) and loads the image file.

4.5.3. Macintosh

Double click on the icon named ‘Visual.im’ in the appropriate folder (usually

contained in a folder also called ‘Visual’). This starts the Smalltalk Virtual

Machine (known as the ‘Object Engine’) and loads the image file.

Once the image is loaded, two windows will appear on the screen: the Launcher

(labelled ‘VisualWorks’) and a Workspace.



Chapter 4 33

Figure 4.1: Confirm that you wish to quit the VisualWorks image

To leave the VisualWorks environment, select the Exit VisualWorks… option

from the File menu of the Launcher. A Confirmer will appear (figure 4.1); select

Exit from this. Any changes you have made are not saved. If you want to save

the changes you have made to the image, then you should select the

Save,  then Exit  option. A Prompter will appear, asking for a filename to be

used for the image (figure 4.2).

Figure 4.2: Specifying the file name to be used

Ex 4.1: Exit and save the VisualWorks image (when asked to specify the file name, simply
press <CR>). Then restart the image — you should note that the VisualWorks
windows are in exactly the same state as when you quit the image.

The image can also be saved without stopping the VisualWorks system by using

the Save  as…  option from the File menu of the Launcher.

Ex 4.2: Select the Save as…  option from the File menu of the Launcher. Use the default
image file name (visual); type <CR> in the Prompter. Move the existing windows
around the screen and then quit without saving. Restart VisualWorks; note the
window positions are those of the saved image.

4.6. The Launcher

The Launcher is a window that is always available (see figure 4.3). The Launcher

allows a wide variety of VisualWorks windows to be opened, and may

incorporate an area called the ‘System Transcript’ (see later).



Chapter 4 34

Figure 4.3: The VisualWorks Launcher

The Launcher consists of a menu bar containing seven menus, and seven

buttons (each button acts as a shortcut to a menu option):

File Various special options, including saving the image

to a file, forcing a full garbage collection cycle, and

setting the user’s preferences.

Browse Allows a variety of browsers to be opened, including

System and Class browsers (chapters 6 & 9), and access

to VisualWorks’ “resources” (chapter 34).

Tools Allows file handling (chapter 6) and Workspace

windows to be opened. Additionally provides access

to VisualWorks window–building tools and other

advanced utilities (if available). The menu also

includes an option to specify if the System Transcript

should be included in the Launcher.

Changes Allows several different kinds of windows to be

opened, which support change management. We will

be describing techniques for change management

later in the book (chapter 24).

Database Allows access to database connectivity tools. (These

will not be described further in this book.)

Window Provides window management features (see later).



Chapter 4 35

Help Allows access to on–line documentation and

examples.

4.7. <Window> Button Menu Operations

Every window has a standard <window> button menu (figure 4.4), which

provides operations to control the window. The options provided by the menu

will usually be identical for each window.

Figure 4.4: The <window> button menu

relabel as… Allows the user to change the label that identifies the

window.

refresh Re–displays the entire window contents.

move This permits a window to be moved without

changing its size. The window is temporarily

removed and its frame may be re–positioned using

the mouse. Click the <select> button to establish the

top left corner of the window’s new position.

resize This permits a window to be re–sized. You are

prompted for the new top–left and bottom–right

positions of the window.

front Forces the window to the top of any stack of

overlapping windows.

back Forces the window to the bottom of any stack.



Chapter 4 36

collapse Collapses the window to an icon. (It is not possible to

reduce a window to an icon on the Macintosh.

Instead the window is collapsed to the size of the

window’s title bar.)

close The window is permanently removed. If there is

anything in the window that has been changed but

not “saved” (see later), then a Confirmer is used to

ensure that this is what you want to do. (Beware of

different names: E.g. OpenLook’s “close” is the same

as collapse, “quit” means close.)

Ex 4.3: Create a new Workspace by selecting the Workspace item from the Tools menu of
the Launcher. Then experiment with the operations on the <window> button menu.
Also, try the window manager operations provided by the host platform.

4.8. The Window Menu

The Window menu available from the Launcher (figure 4.5) contains more

options to control window management.

Figure 4.5: The Window menu

The menu options are described below:

Refresh All re–draws all the open windows.

Collapse All collapses all the open windows, with the exception of the
Launcher.

Restore All expands all collapsed windows.

Windows provides a sub–menu containing a list of window labels.
Selecting an item from this menu will bring the
corresponding window to the front. (The Macintosh
version also includes a ‘window’ menu on its screen menu
bar.)

4.9. Help

The Help  menu (figure 4.6) on the Launcher provides access to the help system.

The menu contains four items; the first two both open the online



Chapter 4 37

documentation (the latter goes directly to the chapter entitled ‘Database Quick

Start Guides’). The third option opens a Browser containing all the methods in

the VisualWorks image that give the user an opportunity to experiment with an

example. The last menu option opens a window describing your release of

VisualWorks.

Figure 4.6: The Help  menu

Ex 4.4: Experiment with the example methods.

The online documentation is divided into three “books”, each of which contains

“chapters” and pages. The titles of the books are: ‘Database Cookbook’ (containing

one Chapter), ‘Database Quick Start Guides’ (containing six chapters — only one

of which is complete), and ‘VisualWorks Cookbook’ (containing 31 chapters). It’s

worth taking some time to examine the online documentation, using it as a

complement to this book. For example, Chapter 1 of the ‘VisualWorks

Cookbook’ describes similar material to chapter 3 (figure 4.7).



Chapter 4 38

Figure 4.7: The Online Documentation

The window containing the online documentation also provides buttons to gain

access to examples, and to search the chapters.

Ex 4.5: Browse the examples in chapter 1 of the VisualWorks Cookbook chapter of the
online documentation.

4.10. Summary

It’s important that readers become familiar with the user interface to the

VisualWorks development environment, since it’s almost impossible to write

code by any other means. This and subsequent chapters rely on readers having a



Chapter 4 39

copy of VisualWorks at their disposal. If you don’t have a copy, then we suggest

that you buy (or beg!) a copy before reading chapter 5.



Chapter 5 40

Chapter 5: Typing and Editing in Workspaces

This chapter provides a complete introduction to the typing and editing

functions built–in to the user interface, using the Workspace as an example.

Operations include simple selection and editing using the mouse, copy, cut and

paste operations, and search and replace operations. The chapter also describes

the use of the cursor keys, scroll bars and special key combinations, and discusses

the simple evaluation of expressions

This chapter includes extensive small exercises, to ensure that the reader is

completely familiar with this level of operation of the VisualWorks system. This

is very important, as all further chapters will rely on these skills.

5.1. Introduction

In any programming system, you will of course spend a great deal of time typing

at the keyboard. Unless you are a perfect typist, and also never make

programming mistakes, you will undoubtedly want to edit what you have typed.

The VisualWorks environment recognises these facts, and much effort has been

put into facilitating the process of editing (particularly Smalltalk code).

In this chapter, we will describe how text is manipulated within the

VisualWorks system. We will concentrate on using Workspaces, which are a

simple kind of edit⁄compile interface. However, you should remember that the

same editing mechanisms are available in all places where you can type; this is

because all the editors behind the Workspaces and other text areas are instances

of the same class, or at least instances of related classes.

5.2. Typing and Selecting

This section considers simple text editing within the VisualWorks system. First,

you will need to open a Workspace (unless, of course, you already have one open

somewhere on the screen). To do this, you need to select the Workspace item

from the Tools menu on the Launcher (see figure 5.1). (Note that the item is

preceded by an icon which matches one found on the Launcher itself.) The

Workspace should now be the active window (the one in which your typing will

appear), if necessary move the cursor over it and click the <select> (left) button.



Chapter 5 41

Figure 5.1: The Tools menu of the Launcher

Now type some text into the Workspace. You will see that new characters are

placed at a location just after the caret, the symbol which looks like ‘ˆ’. The caret

should move along as you type. You can position the caret anywhere within the

text by clicking the <select> button at the desired position or by using the cursor

keys. In this way, you can add new characters within existing text. The

Workspace will now appear something like figure 5.2. (The description that

follows is specific to the “default look” of VisualWorks, your window manager

may provide an alternative style.)

Figure 5.2: Entering text into a Workspace



Chapter 5 42

You should note that the caret always appears between adjacent characters, since

you cannot add a new character in the middle of an existing one. Also, the

characters are presented using a proportionally–spaced font (like the characters in

this book), rather than the fixed–spaced fonts (like typewritten characters) often

used for computer output.

Characters can be deleted using the <delete> or <backspace> key on the keyboard.

This key deletes the character immediately to the left of the caret, in the usual

way. Also the entire word  to the left of the caret can be deleted in one go, using

the <control–w> key combination (<control> key held down while <w> is

typed).

Most of the remaining editing commands rely on the notion of a text selection

(or just selection). Because this notion is so widely used, VisualWorks provides a

number of ways in which to make a selection.

One or more characters can be selected (i.e. identified as the selection) by

positioning the cursor at the desired start position using the mouse, pressing

down the <select> mouse button and, while holding the <select> button down,

drawing through the text. The selected characters will be highlighted (see figure

5.3). The selection is completed by releasing the <select> mouse button.

Figure 5.3: Making a text selection

The selection can be deleted using the <delete> or <backspace> key. This is a

convenient way of quickly deleting a “chunk” of text. Alternatively, the selection

can be replaced simply by typing new characters at the keyboard. The characters

are inserted in the place of the current selection.



Chapter 5 43

Note that the caret disappears when a text selection has been made. You can

think of the caret as indicating the position of a “zero–length” selection, and

characters you type always replace the current selection. To extend the text

selection, hold down a <shift> key and then click at the new end point. To de–

select the text selection, simply click once anywhere in the active window.

There are several other “shorthand” ways of making selections more quickly.

One which is particularly useful is to use the <escape–tab> key combination

(<escape> key fol lowed  by the <tab> key) to select all the text just typed (i.e. since

the caret was last moved, or since an editing operation was performed). This is

particularly useful should you wish to perform some operation on everything

you have just entered. You may find that this selection method is faster than

using the mouse, since you do not have to move your hands from the keyboard.

Another useful selection mechanism is “double–clicking” the <select> mouse

button; i.e., pressing and releasing the button twice in quick succession without

moving the mouse between clicks. Double–clicking within a “word” selects the

entire word; this is handy should you wish to replace an entire word. Double–

clicking at the beginning or end of a line of text (up to the next carriage return)

selects the entire line. All the text in that Workspace may be selected by double–

clicking at its beginning or its end. You should note that the double–click

selection is not determined by the speed of clicking, but by location; the first click

positions the caret, and a subsequent click in the same location as the caret selects

the word, line or complete text appropriately.

A final mechanism by which double–clicking can be used to make selections

quickly is where there is a section of text surrounded by delimiters. These include

round brackets ‘( )’, square brackets ‘[ ]’, curly brackets ‘{ }’, angle brackets ‘< >’,

single quote marks ‘' '’ and double quotes ‘" "’. The text within any of these

delimiters can be selected by double–clicking between the delimiter and the first

(or last) character of the enclosed text. Almost all of these delimiters have some

meaning in the syntax of the Smalltalk language.

A great many of the keys on the keyboard have different functions when used in

combination with the <control> key or the <escape> key. We have already seen

the <control–w> and <escape–tab> combinations in operation. Several other

<escape> key combinations affect the selection in interesting and useful ways (see

figure 5.4):



Chapter 5 44

<Escape–b> makes the selected text bold (heavy) font. <Escape–B> makes it

normal weight font.

<Escape–i> makes the selected text italic. <Escape–I> reverses the effect.

<Escape–u> makes the selected text underlined. <Escape–U> reverses the

effect.

<Escape–+> increases the font size of the selected text. <Escape–-> decreases

the font size of the selected text.

<Escape–x> “normalises” the text to its default size and font.

<Escape–f> removes embedded <CR>’s and <tab>’s from the selected text

(effectively re–wraps the text into a single paragraph).

The <escape> key with an opening delimiter character key (such as ‘[’ or ‘"’)

inserts a pair of the appropriate delimiters around the selection, provided they

do not already have a pair of these delimiters surrounding them, in which case

they are removed. The feature, together with the ability to make a selection by

double–clicking within a pair of delimiters, makes it very easy to add and

remove various brackets, and so on.

Figure 5.4: Changing Text fonts, using <escape> key combinations

There are also some <control> key combinations that you may find of use later:

<Control–t> inserts ifTrue:

<Control–f> inserts ifFalse:



Chapter 5 45

<Control–g> inserts :=

<Control–d> inserts the current date.

Ex 5.1: Try opening a Workspace, and then typing some text into it. Add characters at
different places within the Workspace, moving the caret by using the <select>
mouse button and cursor keys.

Ex 5.2: Experiment with removing characters from the Workspace using the <backspace>,
<delete> and <control–W> keys. Try determining what Smalltalk considers to be a
“word”, when using the <control–W key>. Hint: consider the syntax of the
Smalltalk language (see chapter 3).

Ex 5.3: Try making text selections by “drawing through” using the <select> mouse button.
Try deleting the text (using the <delete> or <backspace> key) and replacing the
text by typing in new characters.

Ex 5.4: Experiment with different ways of making selections, including using the <escape–
tab> key combination, double–clicking within words and at the beginning of lines
and so on. Also, try selecting the text within various kinds of delimiters by double–
clicking.

Ex 5.5 Experiment with changing the font of the text selection using the <escape> key
combinations. Also, experiment with inserting and deleting pairs of delimiters
around the selection.

Ex 5.6 Experiment with the <control> key combinations (but be careful trying <control–
c>).

5.3. Editing

In this section, we will consider further editing operations. These operations

invariably operate on the text selection (introduced in the previous section).

Editing operations are selected from the pop–up menu attached to the <operate>

mouse button

Each <operate> menu can also be invoked by being pulled–down  (especially

useful for single–button mice). This is done by pressing either the <select> or

<operate> mouse button while the cursor is over the stripe above each pane

(containing a small inverted caret at the left end), note that the cursor also

changes shape. If you don’t like the appearance of the stripe, it may be removed

(see chapter 12).



Chapter 5 46

Figure 5.5: Using the cut, copy and paste options (1)

The copy, cut  and paste options on the <operate> button menu provide fairly

conventional cut–and–paste style editing functions. The cut  option removes the

current selection, and puts it in a (hidden) paste buffer (figure 5.5). This can be

pasted back using the paste option; the text is inserted at the caret, or is used to

replace the current selection, just as if the text had been typed in at the keyboard

(figure 5.6). The resulting Workspace is shown in figure 5.7. The copy option

operates just like the cut  option, except that the selection is not removed from

the Workspace.



Chapter 5 47

Figure 5.6: Using the cut , copy and paste options (2)

Figure 5.7: Using the cut , copy and paste options (3)

You should note that the paste buffer is global, and is therefore shared by all text–

editing operations. This means that is possible to cut or copy text from one

Workspace, for example, and paste it into another Workspace. If a copy or cut

operation is performed outside VisualWorks, placing text in the operating

system’s clipboard, that text will be used instead. If the paste option is selected

from the <operate> button menu with a <shift> key held down, a list will appear

containing the last five items put into the paste buffer, possibly including the

contents of the operating system’s clipboard. You can then select the text you

actually want to paste into the Workspace from this list. You can also cut and

paste to and from non–VisualWorks windows.



Chapter 5 48

Any editing operation can be reversed by selecting the undo option from the

<operate> button menu. This operation behaves as a toggle; undoing the

previously undone operation reverts to the original.

Ex 5.7: Try using the copy, cut and paste  options from the <operate> button menu. You
should be able to remove text from one part of the Workspace, and replace it
elsewhere. You should also try inserting the same text several times, in different
places.

Ex 5.8: Also, try copying text between different Workspaces. You may have to open another
Workspace window, using the Launcher Tools menu. You may also wish to try the
paste  option, using a <shift> key, to display the current contents of the paste
buffer.

Ex 5.9: Try repeatedly replacing a piece of text using the replace…  option from the
<operate> button menu. Also, try the effect of the undo  <operate> button menu
option.

Ex 5.10: Try searching for text in a Workspace, using the find… options.

5.4. Scrolling

Frequently, a window will contain more text than can be displayed with its

visible area; scroll bars are provided to allow the text to be scrolled within a

window. The thick black line in the centre of the scroll bar (the marker) indicates

the extent of the visible text. For example, when half of the pane’s contents are

displayed, the marker is half the length of the scroll bar. The marker also

indicates the position of the contents in the pane — when you are viewing the

bottom–most portion, for example, the marker occupies the bottom–most

portion of the scroll bar. By default, a vertical scroll bar appears to the right of

each pane. This may be amended by modifying the class LookPreferences — we

will examine this later (chapter 12)

When the cursor is moved into a scroll bar, the cursor shape changes to an arrow

to indicate the scrolling operation. The scroll bar area itself is divided into three

parts (horizontal scroll bars are available, and work in a similar fashion):

• When the cursor is above the marker, clicking the <select> mouse button

moves the marker up, and the text down. The cursor changes to . (See

figure 5.8)

• When the cursor is below the marker, clicking the <select> mouse button

moves the marker down, and the text up. The cursor changes to . (See

figure 5.9)



Chapter 5 49

• When the cursor is over the marker, the marker and text can be dragged

while the <select> button is held down. The cursor changes to . (See

figure 5.10)

• When the cursor in anywhere in the scroll bar, the marker and text can be

dragged while the <operate> button is held down.

There are also two small “buttons” (elevator buttons) associated with the scroll

bar. These scroll the text up and down appropriately, a line at a time (or

continuously, if held down), while the <select> button is pressed. The cursor

changes to  or  respectively.

Figure 5.8: Scrolling text down in a Workspace

Figure 5.9: Scrolling text up in a Workspace



Chapter 5 50

Figure 5.10: Absolute scrolling of text in a Workspace

Ex 5.11: Type lots of text into a Workspace. Experiment with the scrolling operations,
including the scrolling buttons, and the different parts of the scroll bar. You will be
using the scrolling mechanism extensively, so it is worth getting used to it.

Ex 5.12: How far does the text move when the up or down scrolling actions are performed?
Hint: try clicking a mouse button in the top and bottom parts of the scroll bar.

Ex 5.13: What happens when you type in a line of text which is much longer than the width
of the Workspace? Try it and see. Also, try re–sizing the Workspace containing
several very long lines of text.

5.5. Evaluating Smalltalk Code

Unlike most systems, the primary “command” interface to Smalltalk is a

compiler; in fact, the Smalltalk language compiler. “Commands” are therefore

written in the Smalltalk language itself. There is no notion of a separate

“command interpreter”, as in MS–DOS or UNIX, for example.

Workspaces and other text areas allow textual expressions to be entered by the

user and sent to the compiler. Once again, it is the text selection which is

important. The do i t  option on the Workspace <operate> button menu

evaluates the selection. This means that simple expressions in the Smalltalk

language (see chapter 3) can be typed in and evaluated immediately.

More precisely, the text in the selection is fed to the Smalltalk compiler (an

instance of class Compiler, of course). This parses the text and, if there are no

syntax errors, generates code that can be evaluated by the underlying virtual

machine. This code is then evaluated. In practice, it takes less time to compile

and evaluate simple expressions than it takes to explain the process (see

figure 5.11).



Chapter 5 51

Figure 5.11: Selecting and evaluating a simple expression

Frequently, we will wish to see the result of evaluating an expression. We can do

this by using the print it  option from the <operate> button menu. This

compiles and evaluates the selected expression(s) just like the do i t  option but,

in addition, the object resulting from evaluating the code is sent the message

printString. Every object understands this message, and answers with a String

which represents its internal state. The characters in the string are then added to

the Workspace just after the expression which was selected and evaluated, and

they become the current selection.

In a Workspace, two kinds of variable may be used, global and temporary. The

code is not being evaluated as a method in some specified class, therefore

instance variables, class variables, and pool variables are not accessible.

Look at the example shown in figure 5.11. When compiled and evaluated, the

selected expression 3+4 causes the message +4 to be sent to the object 3 (an

instance of class SmallInteger). The message comprises a binary message selector,

+, and the argument 4. The resulting object 7 (also an instance of SmallInteger)

then receives the message printString. The resulting String, '7', which just

contains a single character $7 is then placed in the Workspace and made the

current text selection (see figure 5.12).



Chapter 5 52

Figure 5.12: The result of evaluating a simple expression

But what happens if the expression contains syntax errors? The answer is that

the error is detected and indicated. There is also an error correction mechanism

available, which attempts to correct simple typing mistakes and other silly errors.

Consider selecting and evaluating (using the print it option) the following

expression:

2 raiedTo: 10 "Note the spelling error!"

The correct message selector is raisedTo: . On evaluating this expression, a

Confirmer appears (see figure 5.13). The heading of the Confirmer tells us that

the message selector is new; there is no corresponding method in any class,

anywhere in the image. The Confirmer offers three options: you can give up

immediately and edit the text yourself, using abort; you can carry on regardless,

using the proceed option, or you can invoke the correction mechanism, using

the correct it option. If correct it is selected, then one or more message

selectors which are the nearest match to the error are found and presented to the

user (see figure 5.14); if you select a suggested correction, the error is corrected in

the source text, and the compilation and evaluation proceeds. In this example,

there are no further syntax errors, so the compilation and evaluation is

completed (figure 5.15).



Chapter 5 53

Figure 5.13: Syntax error correction in operation (1)

Figure 5.14: Syntax error correction in operation (2)

Figure 5.15: Correction complete

The other options on the <operate> button menu will be considered later.

Ex 5.14: Use the following expressions in a Workspace to discover (a) the current number of
unused object pointers; and (b) the current amount of free memory:

ObjectMemory current oopsLeft

ObjectMemory current availableFreeBytes



Chapter 5 54

Ex 5.15: Try selecting and evaluating other simple expressions using the print i t  <operate>
button menu option. For example, you might like to try some of the other expressions
in figure 5.11.

Ex 5.16: Try inserting deliberate syntax errors and provoke the correction mechanism into
assisting you. You should note that Smalltalk is unable to correct all syntax errors.
In some cases, the correction mechanism will give up.

5.6. The Settings Tool

The “Settings Tool” may be opened by selecting the Settings option from the

File menu of the Launcher. The items available from the Settings Tool

(figure 5.16) provide information useful to install your VisualWorks image.

These include initializing the source file manager, selecting the appropriate time

zone, default text style and look–and–feel preferences.

Figure 5.16: The Settings Tool

Ex 5.17: Change the time zone so that it is appropriate for your machine and geographical
location. (You may need to scroll to the tab labelled ‘Time Zones’.) Ensure that your
setting is correct by printing out the result of the following expression in a
Workspace:



Chapter 5 55

Time now

(i.e. type and select the expression, then evaluate it using the print i t  option from
the <operate> menu.)

5.7. Summary

By now, we assume that you are familiar enough with the VisualWorks

environment to start writing methods and implementing classes. If not, then we

suggest you revisit the exercises until you feel confident enough to go on;

alternatively, experiment on your own, using a Workspace.



Chapter 6 56

Chapter 6: Introduction to Application
Development

This chapter forms the introduction to the use of the System Browser,

illustrating the way in which it may be used to inspect and modify existing code

within the image, and create new methods and classes. This is illustrated by a

number of worked examples, together with some exercises.

We also introduce the File Browser at this point, in order to allow existing

applications to be “filed–in” to VisualWorks.

6.1. The System Browser

The System Browser is the primary user interface for entering code in

VisualWorks. It allows the user to:

• create and edit source code;

• perform in–line testing;

• format (pretty print) method source code;

• explain code;

• save (“file out”) source code;

• organise classes and methods;

• find the senders of, implementors of, and messages sent by a method;

• create⁄alter⁄remove classes;

• display class hierarchy;

• spawn special purpose Browsers,

many of these will be described in later chapters.

The System Browser allows the user to inspect the message interface to any object

in the image, and to modify it if required. To open a System Browser, select the

All Classes  item from the Browse menu on the Launcher. (Note that the

menu item is preceded by an icon, a copy of which is present as one of the

buttons below the menu bar.) More than one System Browser can be open

simultaneously.



Chapter 6 57

Figure 6.1: The System Browser

The System Browser (figure 6.1) is made up of five panes and two  buttons,

marked instance and class. From left to right, the top four panes are:

6.1.1. Class Categories

These are groups of classes that are categorised for the convenience of the user.

The order of the categories and the classes they contain is arbitrary and bears little

relationship to the VisualWorks class hierarchy. One of these categories may be

selected (by clicking the <select> mouse button). New categories may be added

using the add…  item from the <operate> button menu. Categories may also be

r emoved  or renamed  (see chapter 16). The classes in the selected category are

presented in the next pane:

6.1.2. Class Names

Classes in the selected category are presented in this pane. One class may be

selected, causing categories of messages to be presented in the next pane.

Selecting a class causes the class definition to be displayed in the lower (text)

pane. Alternatively, a display of the part of the class hierarchy containing this

class, or a comment  about the functions of this class can be selected from the

<operate> button menu. Classes may also be r emoved  or renamed (see

chapter 16).



Chapter 6 58

6.1.3. Message Categories

These are the categories of messages which can be sent either to instances of the

selected class (instance button pressed) or to the class itself (class button

pressed). By default, the instance button is selected. The message categories are

also known as protocols. One of these protocols may be selected, causing all the

message selectors in this protocol to be presented in the right–most pane. The

<operate> button menu includes options to allow the user to add a new protocol,

or r e m o v e  or rename  an existing protocol (see chapter 16).

6.1.4. Message Selectors

All the message selectors in the selected protocol are presented in this pane. One

of the selectors may be selected, causing its method (the code evaluated when

this message is received) to be shown in the lower (text) pane. The code can be

modified and re–inserted into the image if desired (see later). The source code for

the method displayed in the text pane is held on an external file (the “sources”

file — see chapter 4).

6.2. Example: Browsing the Implementation of an Existing Method

Try the following: Select the class category Magnitude–Numbers in the left–most

top pane, using the <select> mouse button. Select Number in the Class Names

pane. Select testing in the Protocol pane. Select the selector even  in the Message

Selector pane.

The code displayed in the lower pane is evaluated when an instance of a Number

(or one of its subclasses) receives a message with the selector even . This code

returns true if the receiver is even, otherwise false. Note that it sends a message

to itself (self), using the selector \\ (modulo) with 2 as the argument.

Ex 6.1: Verify that the even method evaluates correctly by typing, selecting and
evaluating (using print it) the following expression in a Workspace:

42 even

Repeat the above test with other numbers.

Ex 6.2: Try the effect of the following options from the <operate> button menu in the Class
Names pane. First select Magnitude–Numbers (left–most pane). Select Number in
the Class Names pane. Select hierarchy from the Class Names pane <operate>
button menu. This will display a textual representation of the part of the
hierarchical structure of the classes in the image which includes Number in the
lower (text) pane.

You can see, for example, that classes Float, Fraction and Integer  are all subclasses of
Number. Thus, the message even should be understood by instances of all of these
classes. Try:



Chapter 6 59

4 even

17.91 even

(3/7) even

Also examine the definition and comment menu items from the <operate> button menu.

6.3. Defining Methods

A new method can be defined from the Browser whenever a protocol has been

selected. If there are no protocols to select, one must be created by using the

add… command in the Message Categories pane <operate> menu. The

following template  is provided by the Browser:

message selector and argument names
"comment stating purpose of message"

| temporary variable names |
statements

This template is relatively straightforward to complete. Any number of

statements can be placed in the statements section. There can be no more than

255 temporary variables and arguments.

6.4. Example: Creating a new Method

A function not currently implemented by instances of class Number is the

“absolute difference” function. Here, we will add this functionality to Number.

Select Magnitude–Numbers, Number and arithmetic  in the left–most three panes

in the System Browser. Do not select anything from the top right–most pane.

The lower (text) pane should display a “template” for new methods. Edit (using

the normal text editing conventions) the template, so that it appears as below.

diff: aNumber
"return the absolute difference between me and aNumber"
| temp |
temp := self - aNumber.
temp < 0

ifTrue: [^temp negated]
ifFalse: [^temp]

This method first calculates temp, which is the difference between the parameter

aNumber and the receiver (self). It then answers with either temp or a negated

version of temp, depending whether temp is negative. The new method can now

be compiled and added to the VisualWorks environment by selecting accept

from the <operate> button menu in the lower pane. Do this. Correct any errors

that have inadvertently crept in!



Chapter 6 60

(The cancel option discards all the text just added to the text pane and restores it

to its earlier state.)

Ex 6.3: Test the functioning of the new method by typing and evaluating (print i t)
suitable expressions in a Workspace. For example, try:

42 diff: 17.

17 diff: 42.

-17 diff: -19.

10.15 diff: (3/7).

237846527938465 diff: 3456

Note that the addition you have made to your VisualWorks image will be there

permanently, until you choose to remove it. (This assumes that you save the

image eventually, of course!).

Ex 6.4 In fact, the implementation of diff:  used above is not very good (although it works).
A better version is shown below.

diff: aNumber
"return the absolute difference between me and aNumber"
^ (self - aNumber) abs

This version eliminates the temporary variable, and uses the abs method, which

is already implemented for Number. This minimises the amount of code added

to the image to support this new functionality.

Ex 6.5: Modify your implementation of diff: by editing and accepting the text in the System
Browser. Verify that this has not changed the functionality of the method by
repeating the tests above. Note that there is no way in which the implementation
can be determined by the sender of the diff: message. You may like to look at the
implementation of the abs method in class ArithmeticValue .

6.5. Defining Classes

In much the same fashion as methods, class definitions can be added using the

Browser when a class category is selected. As with methods, if no appropriate

category exists then the add…  option from the Class Categories pane <operate>

menu can be used to create one. The Browser provides the following template:

NameOfSuperclass subclass: #NameOfClass
instanceVariableNames: 'instVarName1 instVarName2'
classVariableNames: 'ClassVarName1 ClassVarName2'
poolDictionaries: ' '
category: 'Category–Name'



Chapter 6 61

Once again, this is easy to fill out. Remember to keep the ‘#’ symbol in front of

the class name, and also that class names should always begin with an uppercase

character.

Example:

Number subclass: #Fraction
instanceVariableNames: 'numerator denominator'
classVariableNames: ' '
poolDictionaries: ' '
category: 'Magnitude–Numbers'

6.6. Example: Adding a new “Application”

This example is an exercise in adding a (small) new “application”, based on

classes already available within the image. The example itself is adapted from the

“Orange Book”, chapter 17.

Here, we will construct a class corresponding to an individual’s “spending

history”. We will not be too concerned about the design or the other classes used.

This is an exercise in effectively using the System Browser and compiler. We will

describe a new class SpendingHistory with several methods and instance

variables. We will also try out this class in a simple manner.

Ex 6.6: Use the add…  item from the <operate> button menu in the Class Categories pane
(top left) of the System Browser. When prompted, choose a suitable name for the
category, such as ‘Spending’. This new class category will have no classes in it, as
yet. A template for the creation of a new class will be displayed in the lower pane
of the System Browser.

Ex 6.7: Edit the template (using the normal text editor conventions) so that it appears as
below.

Object subclass: #SpendingHistory
instanceVariableNames: 'cashOnHand expenditures'
classVariableNames: ' '
poolDictionaries: ' '
category: 'Spending'

This declares the new class SpendingHistory to be a subclass of Object. The new

class has two instance variables called cashOnHand and expenditures, and no

class variables. Select accept from the <operate> button menu. This creates the

new class SpendingHistory and permanently installs it in the image.

We now need to add some additional functionality to SpendingHistory, since at

the moment all instances of SpendingHistory will have exactly the same



Chapter 6 62

functionality as instances of Object. First, we will add a method to the class

protocol to create new initialized instances of SpendingHistory.

Ex 6.8: Select the class button in the System Browser and select the add… item from the
<operate> button menu in the Message Categories pane. You will be prompted for
the name of a protocol; respond with ‘instance creation’. The method template will
appear in the lower window. Use the editing functions to create the initialBalance:
method as shown.

initialBalance: anAmount
^self new setInitialBalance: anAmount

Note that this method uses a method defined further up the class hierarchy

(new). Add the method to the image using the accept item from the <operate>

button menu. This method causes the message selector setInitialBalance: to be

sent to the new instance of SpendingHistory. The method corresponding top this

message is not yet defined, so you should select proceed when prompted with a

Confirmer.

We will now add instance protocol to class SpendingHistory.

Ex 6.9: Select the instance button in the System Browser. Create a new protocol (as
before) called ‘private’. Edit the template to add the setInitialBalance: method.
Accept this using the <operate> button menu item.

setInitialBalance: anAmount
"Initialize the instance variables;
cashOnHand is set to amount"

cashOnHand := anAmount.
expenditures := Dictionary new.

Ex 6.10: Repeat the above for method totalSpentOn: in protocol ‘inquiries’, for method
spend:on: in protocol ‘transactions’, and for method printOn: in protocol ‘printing’
(see below).

totalSpentOn: reason
"return the amount spent on reason. Answer
0 if reason is not used for expenditures"

(expenditures includesKey: reason)
ifTrue: [^expenditures at: reason]
ifFalse: [^0]

spend: anAmount on: reason
"Spend anAmount on reason, reducing the variable cashOnHand"

expenditures
at: reason
put: (self totalSpentOn: reason) + anAmount.

cashOnHand := cashOnHand - anAmount.



Chapter 6 63

printOn: aStream
"print a suitable representation of the receiver on aStream"

super printOn: aStream.
aStream space.
aStream nextPutAll: 'balance: '.
cashOnHand printOn: aStream.
expenditures keysAndValuesDo: [:reason :amount |

aStream cr.
reason printOn: aStream.
aStream tab.
amount printOn: aStream]

You can now create initialized instances of class SpendingHistory by evaluating

the expression:

SpendingHistory initialBalance: 600

Ex 6.11: To test the new class, type the expressions shown below in a Workspace. Select and
evaluate the code using print i t .

| spendingHistory |
spendingHistory := SpendingHistory initialBalance: 800.
spendingHistory spend: 220 on: 'rent'.
spendingHistory spend: 30 on: 'food'.
spendingHistory spend: 45 on: 'drink'.
spendingHistory spend: 20 on: 'petrol'

Before continuing, ensure that you take a “snapshot” of your image, by selecting

the Save As…  option from the File menu of the Launcher. We will return to

this example later in the book.

6.7. Saving Your Code

Each of the upper panes in the System Browser has a f i le  out  as…  option on

the <operate> button menu. This option allows the user to produce a file

containing the source code for the selected category, class, protocol or method.

Ex 6.12 Select the category Spending in the Class Categories pane, and choose the
f i l e  out  as…  option from the <operate> button menu in that pane. You will be
prompted to complete a filename specification (see figure 6.2) ending in ‘.st’ (if
necessary the filename will be truncated to the constraints of your platform’s filing
system). Simply press the <CR> key. The cursor will indicate that a file is being
written to the disk.



Chapter 6 64

Figure 6.2: Completing a Filename Specification

Ex 6.13 File out the diff:  method you created earlier.

6.8. The File Browser

The File Browser provides browsing access to the operating system’s file

management facilities. It allows the user to:

• produce a list of files that meet a specified pattern;

• access information about files (e.g. creation date);

• access the contents of files;

• “file–in” existing source code to create new methods and⁄or classes;

• create, remove or rename files and directories;

• edit files.



Chapter 6 65

Figure 6.3: The File Browser

The File Browser consists of three panes and one button (figure 6.3).

6.8.1. The Upper Pane

The upper pane permits a file or directory name to be specified. Parts of the

directory structure are separated by appropriate characters (e.g. ‘/’ for UNIX, ‘\’

for PC machines, and ‘:’ for the Macintosh). (On the Macintosh the directory

structure is replaced by folders. Broadly speaking, each folder on the Macintosh is

equivalent to a directory on the other platforms.) This pane is used as the initial

access point into the file system. Wildcards may be used in the specification of

the file or directory. An asterisk (‘*’) symbol may be used to substitute for any

number of characters, and a hash (‘#’) for an individual character. Note that the

label of the window reflects the currently selected file⁄directory.

The <operate> menu in the pane (figure 6.4) is similar to the standard text–

editing menu, with the additional option volumes… which displays a menu of



Chapter 6 66

sub–directories in the root directory (UNIX); or currently available disk drives or

volumes (Macintosh and MS–Windows).

Figure 6.4: The <operate> menu available in the
upper pane of the File Browser

6.8.2. The Middle Pane

The middle pane normally contains an alphabetically sorted list of one or more

files or directories (e.g. the contents of a directory). One of the items from the list

may be selected using the <select> mouse button. Note that the contents of the

<operate> menu in this pane depends on whether a file, a directory, or no item is

selected.

If a file or directory is  selected then the <operate> menu appears as in figures 6.5

and 6.6 respectively.

Figures 6.5 & 6.6: The <operate> menu options available in the
middle pane of the File Browser

when a file or directory is selected (respectively)



Chapter 6 67

There are a number of options common to both menus that apply to the selected

file⁄directory:

copy name Copies the path name of the selected file or directory so that it
may later be pasted.

rename as… Changes the name of the selected file⁄directory. (On some
platforms this may produce an error if you do not have
permission to change the name of the file.) This may cause
the position of the file to change in the list of files. A
Prompter will appear requesting the new name, with the old
name as default.

remove… Deletes the selected file⁄directory, after prompting for user
confirmation1.

spawn Opens a new File Browser in the selected directory, or opens a
File Editor (see later) on the selected file.

Those options only applicable to a selected file are as follows:

get info Displays information about the selected file in the lower pane
(e.g. creation date, modification date). You should note that
this option is replaced by get contents, when the lower
pane contains file information.

get contents Displays the contents of the selected file in the lower pane.

file in Assumes that the file contains Smalltalk code (e.g. that has
previously been filed out), retrieves the file contents, reading
and evaluating the text.

copy file to… Creates a new file after prompting the user for its name. The
original file remains selected. If the destination file already
exists then the user is prompted to try again (with a different
file name) or abort.

The options available when a directory is selected are as follows:

new pattern Copies and accepts the currently selected directory into the
upper pane and displays its contents in the middle pane.

add directory… Prompts the user for the name of a  new directory, and
creates a new directory with that name as a sub–directory of
the selected directory.

add file… Prompts the user for the name of a new file, and creates a
new empty file with that name within  the selected directory.



Chapter 6 68

6.8.3. The Lower Pane

The lower pane is where the contents of the selected file (or information about it)

may be displayed using the get contents (get info) option from the <operate>

button menu in the middle pane. The contents of a file may be edited using the

normal VisualWorks editing conventions.

The options available on the <operate> menu in this pane are dependent on the

selection in the middle pane. If a directory is selected then the pane will display

the contents of the directory (if any) and the menu will be similar to the usual

text editing menu.

If a file is selected in the middle pane and its contents are displayed in the lower

pane, then the <operate> menu (figure 6.7) contains the following extra options:

Figure 6.7: The <operate> menu available from the lower pane of the
File Browser when a file is selected

file it in Evaluates the text selection as if it were reading it from the

selected file.



Chapter 6 69

save Writes the contents of the file to disk (e.g. after editing the file).

save as… Prompts the user for the name of a new file and then writes the

contents of the existing file to a file with that name.

cancel Ignores any edits made to the file since it was last saved, and

resets its contents.

spawn Opens a File Editor on the selected file with any changes that

have been made to it. Cancels any edits that have been made in

the original File List Browser.

6.8.4. The auto read button

The button is used in combination with the lower two panes, and indicates

whether or not the contents of selected file should be automatically displayed

(without recourse to the get contents option), rather than information about

the file.

Ex 6.14 Open a File Browser by selecting the File List  option from the Tools menu of the
Launcher. (Note that the menu item is preceded by an icon, a copy of which is
present as one of the buttons below the menu bar.) View all files in the current
directory by typing a ‘*’ in the top pane and using the accept option from the
<operate> button menu. As a shortcut to using the menu, you may just press the
<CR> key here.

Select the file visual.cha in the middle pane, and (if necessary) use the
get  contents  option from the <operate> button menu. The contents of the file
will be displayed in the lower window.

Note that all changes you have made to the image, as well as all code evaluated in
a Workspace, have been recorded in this file.

6.9. Summary

The System Browser provides a user interface metaphor for using VisualWorks

— especially by its use of the <select> and <operate> mouse buttons which

provide a means of “selecting” some piece of a window or pane (such as a text

selection or an item in a list) and then “operating” on that selection by choosing

an option from a menu. The File Browser continues this metaphor, acting as a

means of browsing the underlying file system.

Don’t be surprised if it takes you some time to get to grips with this metaphor —

very few user interfaces follow the lead set by Smalltalk. It’s worthwhile

investing some time using the System Browser, it will pay off in later chapters.

In the next chapter we return to using the Smalltalk language: an extension to

the syntax and the use of global variables.



Chapter 7 70

Chapter 7: The System Transcript

This chapter starts by introducing the System Transcript, illustrating how it can

be used with a number of examples. The Transcript is also used to introduce

Global Variables, and the TextCollector class is briefly mentioned. The Transcript

is also used as a vehicle to introduce cascaded expressions, again with examples.

7.1. Introduction

The System Transcript (or just Transcript)is primarily used to display warnings

or useful information. For example, when you run an explicit garbage collection

operation (by selecting the Collect Garbage  item from the File menu on the

Launcher), a message is printed in the Transcript indicating how much memory

space was reclaimed, as well as other (possibly) useful information (figure 7.1).

Similarly, when you save the VisualWorks image into a file (see chapter 4),

some comments are printed in the Transcript.

Figure 7.1: The System Transcript

The Transcript can also be used as a general–purpose text output area, which is

very useful for displaying the results of computations which do not require

sophisticated presentation. This chapter starts by describes how to use the

Transcript in this way. Using the Transcript as an example, this chapter goes on

to discuss global variables, and a further piece of Smalltalk language syntax called

cascading.

7.2. Using the System Transcript

The System Transcript is like an ordinary Workspace (see chapter 5), except that

it has the additional property of being able to display messages generated from

anywhere within VisualWorks. So, the Transcript has the usual Workspace



Chapter 7 71

<operate> button menu, and you can type, edit and evaluate expressions just as if

it was a Workspace.

You will already have seen a Transcript open on the screen as part of the

Launcher when you started VisualWorks. You are advised to have the

Transcript open at all times, so that you do not miss any important messages

which might be displayed. The inclusion of the Transcript is controlled by the

System Transcript check–box on the Tools menu of the Launcher.

The Transcript is referenced by a global variable Transcript. Global variables can

be accessed from any part of the image (see later). The global variable Transcript

actually refers to an instance of class TextCollector. The most useful message

understood by Transcript (and other instances of TextCollector) is show: ; the

argument to this keyword message should be a String. When the object

referenced by the global variable Transcript receives the message show: , the

argument string is added to the contents of the Transcript.

For example, select and evaluate the following expression in a Workspace, using

the do i t  option from the <operate> button menu:

Transcript show: 'Hello, world!'.

The result is shown in figure 7.2.



Chapter 7 72

Figure 7.2: Displaying messages using the System Transcript

Another useful message understood by instances of TextCollector is cr, which

starts a new line. Other useful messages include space , which inserts a single

blank space, and tab, which inserts enough blank space to move to the next

tabbing position (just like “tab stops” on a word processor or typewriter). The tab

message is very useful to allow text output to be lined up neatly — remember

that VisualWorks uses proportionally–spaced fonts for displaying characters, so

that it is impossible to line up text output using only spaces.

We’ve already seen in chapter 5 that every object in the image understands the

message printString. The response to the message is a string containing a suitable

printable representation of the receiving object. Since everything in the

VisualWorks image is an object, this means that we can print out some

representation of anything within the image. The printString method is defined

in class Object; the default printing method used to implement this (printOn:) is

frequently re–defined in subclasses of Object.

Using Transcript and the printString message together provides a very useful way

of printing out the results of computations. For example, if the following

expression is selected and evaluated using do i t , the number 1024 will be

printed in the Transcript.



Chapter 7 73

Transcript show: (2 raisedTo: 10) printString

Omitting the printString message is a very common source of programming

errors.

Finally, you should note that the System Transcript only retains the last ten

thousand characters inserted into it.

Ex 7.1: Try some further example messages sent to Transcript. You might like to try some of
the expressions below:

Transcript show: 'Good-bye, World!'

Transcript cr. Transcript tab. Transcript show: 'String on a new line'.

Transcript show: (3+4) printString

Transcript show: (22/7) printString

Transcript cr. Transcript show: (42 raisedTo: 42) printString

Ex 7.2 Try getting an instance of SpendingHistory to print itself in the Transcript.

Ex 7.3 Try using the System Browser (chapter 6) to browse class TextCollector. Find out
what other messages Transcript can respond to. Try out some of these messages. (This
class can be found in category Interface-Transcript.)

7.3. Global Variables

The System Transcript illustrates the use of a global variable: a variable name

that can be used from anywhere within the image. This is in contrast to the other

kinds of variables introduced in chapter 3: instance variables, which are only

accessible from within a particular object, and temporary variables, which are

only accessible within a particular method or block. Another important kind of

variable, the class variable, is introduced in chapter 12.

All global variables start with an initial capital letter, unlike instance and

temporary variables. Global variables are usually used to refer to objects which

we wish to have a long lifetime. For example, the names of classes (names like

Object, Number and so on) are global variables. Several other important objects

are referred to by global variables within the image, including the object that

controls all the windows on the screen (ScheduledControllers — see chapter 31).

In fact, all global variables within the image are stored in a single table called the

system dictionary. This is an instance of class SystemDictionary which itself is a

subclass of Dictionary (described in chapter 14). The system dictionary is

referenced by the global variable Smalltalk; this means that the global variable

Smalltalk appears in the system dictionary referred to by that variable (i.e. is a

circularity).



Chapter 7 74

You can look at the contents of the VisualWorks system dictionary by printing its

contents in a Workspace (remember that every object in the image can be printed

out). Selecting and evaluating (using print it) the following expression is one

convenient way of doing this. (The expression produces a sorted list of the names

of global variables.)

Smalltalk keys asSortedCollection

This will display the names of every global variable in the image, including the

names of all the classes. You can also more conveniently inspect the contents of

the VisualWorks system dictionary using an Inspector (chapter 8).

Global variables are usually declared simply by typing and “accepting” the name

of the new variable (with an initial capital letter, of course). If the variable does

not already exist, a Confirmer will appear, asking what kind of variable is

required. You should select the global option (see figure 7.3). You could also

select the Correct It  option, if you had mis–typed the variable name.

Figure 7.3: Declaring a Global variable

Alternatively, the new global variable name, together with the object to which it

refers, can be inserted directly into the system dictionary, using an expression

like:

Smalltalk at: #NewGlobal put: (55/7).

Global variables can be removed using the following expression:

Smalltalk removeKey: #NewGlobal.



Chapter 7 75

It’s important to note that new global variables are relatively rare in

VisualWorks applications, and extensive use of globals suggests that the

structure of the application has not been well thought out. A global variable

should only be used when you are quite sure that there should never be more

than one object with these particular properties.

Ex 7.4: Look at the contents of the system dictionary Smalltalk, by printing it out in a
Workspace (or in the Transcript).

Ex 7.5: Try creating new global variables, in both of the ways described in this section.
Also, try removing the global variables you have created.

Ex 7.6: What happens if you try and declare a global variable which does not start with
an upper–case letter? Try it and find out.

7.4. Cascading Expressions

You will have seen in the examples and exercises earlier in this chapter how it is

frequently necessary to send several messages in sequence to the System

Transcript. In general, repeated message sends to the same object occur quite

frequently. To aid this, a syntactic form called “cascading” is provided. This uses a

different separator character ‘;’ (semi–colon).

For example, the following sequence of expressions might be used:

Transcript cr.
Transcript show: 'The result of 6 times 7 is'.
Transcript tab.
Transcript show: (6*7) printString.
Transcript cr.

A series of messages (cr, show:, tab and so on) is sent to the same object

(Transcript). Clearly, the repeated use of the global variable name Transcript

involves tedious repeated typing.

These expressions could be re–written using a cascade, to avoid using the

Transcript identifier quite so often:

Transcript cr ;
show: 'The result of 6 times 7 is' ;
tab ;
show: (6*7) printString ;
cr.

You should be able to see that exactly the same sequence of messages has been

sent. In both cases, five messages are sent to the Transcript. (Here the message

expressions have been spread over several lines for clarity — it is not necessary

to do this in practice.)



Chapter 7 76

The use of cascade expressions frequently results in fewer, shorter expressions,

with fewer temporary variables being used. However, any cascaded expression

can be re–written as a sequence of message–sends without cascades, possibly with

the addition of temporary variables. In some cases, the expressions may be much

easier to understand in a form without cascades.

It is important to stress the difference between cascaded and ordinary

concatenated message sends. Consider the following two expressions:

receiverObject message1 message2.

receiverObject message1; message2. "Note the cascade."

In the first expression, receiverObject receives message1, and evaluates the

appropriate method. This method answers with another object; it is this new

object that receives message2. In the second case, receiverObject receives

message1 as before and evaluates the corresponding method. However, this

new object is discarded, and it is receiverObject again which then receives

message2. The two expressions are equivalent only if message1 answers with

self; i.e. receiverObject itself.

Ex 7.7: Try rewriting some of the Transcript examples from Ex 7.1 using cascades.

Ex 7.8: The following expressions create an Array containing three elements and put a
different string at each element using a sequence of at:put: messages. Re–write these
as three expressions using cascades, keeping the temporary variable array.

| array |
array := Array new: 3. "Create a new Array, length 3."
array at: 1 put: 'first'. "Put a string in the first location."
array at: 2 put: 'second'. "Put a string in the second location."
array at: 3 put: 'third'. "Put a string in the third location."
Transcript cr. "New line in the Transcript."
Transcript show: array printString. "Print the array in the Transcript."

Ex 7.9 (Much harder.) Try rewriting the above as a single expression, but with all the
same message sends, removing the temporary variable array. Hint : you may need to
use the message yourself , implemented in class Object.

7.5. Summary

The System Transcript is most often used as a means of tracing the flow of a

sequence of message–sends. It’s unlikely that the Transcript would be open when

an application is deployed to users, it’s far more of a developer’s aid.

The Transcript is an excellent example of the use of a global variable — only one

instance of it is required, and it needs to be accessed from everywhere in the

image.



Chapter 7 77

We are now going to look at one of the Smalltalk classes — Point — as an

example of the way in which objects provide encapsulation.



Chapter 8 78

Chapter 8: Inspecting an Example Class — Point

This chapter introduces, as an example, the class Point. This illustrates aspects of

the use of class and instance protocol, the use of instance variables, and the

“information hiding” and “encapsulation” aspects of the object–oriented

approach.

This chapter also uses class Point to illustrate the use of Inspectors, with many

examples.

8.1. Class Point

Class Point represents the abstract notion of locations in a two–dimensional

plane . This is a particularly useful idea, especially when we are interested in

manipulating objects on a (two–dimensional) display screen. Points are very

widely used within VisualWorks, particularly in conjunction with rectangles

(see chapter 13), windows and panes (see chapter 30).

Internally, a Point is represented in cartesian (rectangular) coordinates, although

other representations are possible (see later). Two instance variables are defined,

x and y, giving the displacement from the origin in the horizontal and vertical

directions respectively. Unusually, the coordinate scheme is left–handed (see

figure  8.1), so that, while the x–axis runs left–to–right, the y–axis runs top–to–

bottom. (Conventionally, the y–axis runs bottom–to–top.) This is because

VisualWorks is frequently concerned with the display of text — usually

displayed left–to–right and top–to–bottom.



Chapter 8 79

0

1

2

3

4

5

6

7 8 9

0

1 2 3 4 5 6Origin
X axis

Y axis

Point x: 3 y: 4.5   (3@4.5)

Figure 8.1: The VisualWorks coordinate scheme

8.1.1. Creating a new Point

Sending the message new  to a class will usually result in a new instance of that

class. When the class Point receives the message new , the corresponding method

returns a new instance of Point with both x and y instance variables uninitialized

— i.e. each with a reference to the undefined object nil  (see chapter 21). In other

words, a Point is created which represents nowhere in particular. We will then

have to define the instance variables by sending further messages to the newly–

created instance. What we really want is a way of creating initialized instances of

class Point — i.e. with their instance variables suitably defined.

An instance creation class method is already available by which initialized

instances of Point may be created. This method is called x: y:, and allows new

instances to be created with the x and y instance variables initialized by the

argument numbers, for example:

Point x: 3 y: 4.5.

or,

Point x: 2 y: 3.



Chapter 8 80

This is a slight improvement; it is now easier to create initialized instances.

However, since points are so widely used, a shorthand way of creating points is

provided. The message @ (a binary message selector) is understood by instances

of subclasses of Number (see chapter 13). This answers with a new instance of

Point, created from the receiver (for the x–coordinate) and the argument (for the

y–coordinate). This means that points can be expressed simply as 2@3. This

mechanism for creating new points using @ is so widely used that the same

format is adopted when points are printed.

Class Point has a large number of methods available. You are advised to spend

some time browsing this class. The instance protocols provided include:

8.1.2. Accessing

The current values of the x and y instance variables can be accessed, using the

messages x and y respectively. The corresponding methods (also called x and y)

simply return the current value of the appropriate instance variable. Similarly,

the instance variables can be set using the x: and y: messages. You should note

that the relationship between the instance variable names x and y, and the

method names x and y is simply one of convenience; there is no a priori reason

why they should have the same names. However, giving the same names to

instance variables, and to methods that access those instance variables (often

called simply access methods) is conventional, and frequently used.

8.1.3. Comparing

Methods are provided to compare Points for equality (=), and various kinds of

inequality (<, >, <=, >=, ~=, and so on). For example, a Point is “less than” another

Point if it is both above, and to the left of the first Point; i.e. closer to the origin in

both coordinates.

8.1.4. Arithmetic

All the usual arithmetic operations (+ and so on) are defined on Points. For

example:

(3 @ 4.5) + (12.7 @ -3)

((22 / 5) @ 14) - (2 @ 13)

(3 @ 4) * (2 @ 2)

(99 @ 100) / (4 @ 4)

(-14 @ 13.95) abs

These methods also work if the argument is a scalar (any kind of number), rather

than a Point. Examples:



Chapter 8 81

(3 @ 4.5) + 12

(3 @ 4) / (22 / 7)

8.1.5. Truncation and Rounding

The rounded method answers with a new Point with x and y values converted to

the nearest integer values. The truncate: method answers with a new point  with x

and y values truncated so that they lie on a grid specified by the argument

(another Point).

8.1.6. Polar Coordinates

The r method answers with the distance of the Point from the origin. The theta

method answers with the angle (in radians) from the x–axis. These methods

allow locations to be converted to polar coordinate form.

8.1.7. Point Functions

Several useful methods are provided in this protocol. These include: dist:, giving

the absolute distance between the receiver and argument Points, and transpose,

which answers with a new Point with x and y swapped over.

There are several other instance protocols provided, which are not considered

here.

Ex 8.1: Try creating various instances of class Point, using each of the instance creation
methods mentioned above. Use the show:  and printString messages to display the
values in the Transcript.

Ex 8.2: Browse class Point; this class can be found in category Graphics-Geometry. Using the
System Browser, find out the effect of dividing a Point by an integer. Type in and
evaluate (using print i t) an expression to find out if your answer is correct.

Ex 8.3: Try out some of the methods defined in the point functions and polar coordinates
protocols. For example, find out the result of each of the following expressions:

101.7@77.1 grid: 4@4.

43@17 dist: 45@103.

(4@3) r.

(4@3) theta.

Ex 8.4: (Harder.) The dist: method in the point functions instance protocol answers with
the absolute (positive) distance between the argument and receiver Points. This is
the length of a straight line joining these two Points. In manhattan geometry,
motion is not permitted in arbitrary directions, but must follow horizontal and
vertical lines only. (This is just like travelling in a modern city, laid out as a series
of “blocks” — hence the name!). Write a new method called manhattan:, in the
point functions instance protocol of class Point, which answers with the absolute
distance between the receiver and argument Points, when travelling only in
horizontal and vertical directions.



Chapter 8 82

8.2. Alternative Representations for Class Point

It is worth observing at this point that the internal representation of class Point

(in cartesian coordinates) is not the only possible way in which locations in two–

dimensional space can be specified. For example, in a polar coordinate

representation, a location is specified as a distance (‘r’) from a defined origin,

together with an angle (‘theta’) from a defined axis through that origin (see

figure  8.2).

0

1

2

3

4

5

6

7 8 9

0

1 2 3 4 5 6Origin

Point r: 5.40833  theta: 0.982835

theta reference axis

Figure 8.2: Alternative representation for class Point

It would be perfectly feasible to implement class Point so that each instance had

instance variables r and theta. When the message x was sent, for example, the

corresponding method would have to compute the appropriate value from r and

theta. However, methods such as r could be implemented simply to answer with

the value of the corresponding instance variable. All the other methods

currently implemented by class Point could be re–implemented using the new

instance variables.

Thus, it is possible to implement class Point in a completely different way but,

provided that the same methods were implemented to give the same result,

there would be no change  as far as any other object in the image is concerned.

This illustrates the information–hiding features provided by an object–oriented

system.



Chapter 8 83

Class Point is actually implemented using x and y instance variables for

performance reasons. As points are most frequently used to describe rectangular

areas (such as panes on the screen), the cartesian operations are the ones most

frequently used.

Ex 8.5: Implement a new class NewPoint that behaves just like Point, but using a different
internal representation as suggested above.

8.3. Inspecting Instances of Classes

We have already investigated the use of Browsers to view the source code of the

methods associated with various classes. The effect that a message sent to an

instance of some class can be determined by examining the appropriate method.

However, the only way we have so far discovered to find out the state of a

particular instance is to print it out (in the Transcript, or using print it  from the

<operate> menu, see chapter 5). This is clearly less than satisfactory, and we need

a better way of viewing the internal state of an object.

All objects understand the message inspect . This is implemented in class Object

to open a new kind of window called an Inspector on that object. For example, to

inspect an instance of class Point, the following expression can be used:

(Point x: 3 y: 4.5) inspect

Since objects are inspected so frequently, an inspect option is provided on the

<operate> menu associated with Workspaces (see chapter 5) and other text

editing windows. In either case, an Inspector is opened (figure 8.3).



Chapter 8 84

Figure 8.3: Inspecting an instance of class Point

An Inspector is labelled with the class of the object being inspected, and consists

of two panes. The left–hand pane is a list of the instance variables of the object

(like the lists in the top part of a System Browser) plus the pseudo–variable self,

representing the actual object being inspected. One of the items can be selected

from this list; the right–hand pane, which is an ordinary text pane (like a

Workspace), displays the current value of that instance variable. In this way, we

can inspect any object in the image in some detail.

The left–hand pane has an <operate> menu; this has one item (inspect), which

allows the selected instance variable to be inspected; another Inspector is

spawned on that object. This allows complex structures of interrelated objects to

be explored.

Since the right–hand pane of the Inspector is a Workspace, we can select and

evaluate expressions in the usual way. However, we can also write expressions

which use the named instance variables and the pseudo–variable self (see

figure 8.4). We say that the expressions we select and evaluate are evaluated “in

the context of the object being inspected”.



Chapter 8 85

Figure 8.4: Evaluating an expression using self,
in the context of the inspected object

As well as being able to view the values of instance variables of any object,

Inspectors also allow us to modify these values. Any expression can be typed into

the right–hand pane of an Inspector; if the accept option is selected from the

<operate> menu (figure 8.5), then the resulting object is used as the new value of

the instance variable (figure 8.6). You should note that you cannot change self in

this way.



Chapter 8 86

Figure 8.5: Changing the value of a Point’s instance variable,
using an Inspector

Figure 8.6: The result of changing an instance variable using an Inspector

Ex 8.6: Create and inspect various instances of class Point, in the ways suggested above.
Look at the values of the instance variables. You might also like to try inspecting
other objects you already know about. Experiment with the inspect option from
the <operate> menu in both the left–hand and the right–hand panes of the
Inspector.



Chapter 8 87

Ex 8.7: Try evaluating some expressions using the values of instance variables, or self (as in
figure 8.5, for example). Also, try modifying the value of an instance variable, by
typing an expression and using the accept menu item.

8.4. Other Inspectors

A small number of special Inspectors are provided for instances of certain classes.

In particular, Inspectors are implemented for instances of class OrderedCollection

(see chapter 15) and its subclasses (figure  8.7), as well as instances of class

Dictionary (chapter 14) and its subclasses (figure  8.8). Both these Inspectors have

extra items on their <operate> menus to provide a means of modifying the

collection (by adding or removing an element), or finding references to an

element in a Dictionary.

Figure 8.7: Inspecting an OrderedCollection



Chapter 8 88

Figure 8.8: Inspecting the System Dictionary

Ex 8.8: Try inspecting the system dictionary Smalltalk, which contains all the global
variables in the image. Warning: be very careful not to remove anything from this
dictionary!

Ex 8.9: You might like to try inspecting a class, to find out its internal structure. Classes are
considered further in chapter 26.

8.5. Summary

Class Point is a simple class, yet it is a good example of the way in which objects

both hide  their state from the outside world, and encapsulate operations on that

state. The suggested alternative representation for Point shows how the internal

implementation of a class may be changed without any change in its behaviour

or message interface. Class Point also demonstrates how a class can have class

messages as well as instance messages.

Inspectors are frequently used when developing, testing and debugging, but it

should be emphasised that Inspectors allow direct access to the instance variables

of the object being inspected, and therefore deliberately break the information–

hiding notion which is central to object–oriented programming.

In the following chapter we temporarily revisit the System Browser, before going

on (in chapter 10) to look at the use of blocks.



Chapter 9 89

Chapter 9: Other Kinds of Browsers

This chapter returns to the System Browser, and explains the way in which

further Browsers can be “spawned” to view the image in different ways.

This chapter also illustrates some of the other types of Browsers that are available

and also explores some of the functions available from the pop–up menus.

9.1. Introduction

As we have already seen in chapter 6, the System Browser permits access to all

classes and methods in the image. Using the System Browser, we can view and

modify any method in the image, add and remove methods, as well as adding

and removing classes. The System Browser is the most generally useful way of

exploring the functionality associated with classes within the VisualWorks

image.

During application development, however, it is frequently necessary to view

methods in several different (and possibly unrelated) classes, and it is often

convenient to be able to browse only a part of a class hierarchy. It is always

possible to open two (or more) System Browsers on the screen simultaneously

for this purpose; however, the System Browsers take up a lot of screen space and

the screen can rapidly become very cluttered and crowded.

To attempt to alleviate this problem, VisualWorks provides several other kinds

of Browsers, each of which permit access to only a limited amount of the image,

such as just one class, or even just one method. Although these kinds of

Browsers are limited in their access, they occupy less screen space, and are

sometimes useful for this purpose. Other kinds of Browser permit classes to be

explored in a completely different way from that supported by the System

Browser. For example, the Hierarchy Browser allows a part of the class hierarchy

to be viewed. Both these kinds of Browser are explored in this chapter.

Yet other kinds of Browser permit, for example, methods with the same name to

be viewed regardless of the class with which they are associated. These kinds of

Browser are discussed in chapter 16.

9.2. Spawning other Browsers

Each of the panes in the System Browser has a spawn option on the <operate>

menu. The <operate> menu available in the Class Names pane also has a



Chapter 9 90

spawn hierarchy  option. Each of these options causes a different kind of

Browser to be created, on a limited part of the class hierarchy.

Working from left to right across the System Browser, the spawn option on the

left–most pane (Class Categories) <operate> menu opens a Browser on only

those classes in the selected category — a Category Browser. Other classes are not

accessible (see figure 9.1).

Figure 9.1: A Class Category Browser

Two spawn options are available from the <operate> menu of the Class Names

pane: spawn creates a Browser on only the selected class — a Class Browser, see

figure 9.2. (Other classes are not available.) Alternatively, spawn hierarchy

creates a Hierarchy Browser on all classes in the hierarchy of the selected class

(see figure 9.3). A Hierarchy Browser provides the same information access,

viewing and editing capabilities as a System Browser, except the information

available is for a specified class and its superclasses and subclasses. This is a

convenient way of browsing a “vertical slice” of the hierarchy. (Note how the

structure of the class hierarchy is reflected in the format of the list of class

names.)



Chapter 9 91

Figure 9.2: A Class Browser

Figure 9.3: A Hierarchy Browser



Chapter 9 92

The spawn option from the <operate> menu of the Message Categories

(Protocols) pane creates a Browser on only the methods in the selected protocol

— a Protocol Browser (figure 9.4).

Figure 9.4: A Protocol Browser

In the Message Selectors <operate> menu, spawn creates a Browser on only the

selected method — a Method Browser  (figure 9.5).

Figure 9.5: A Method Browser

Note that the underlying class structure is equally accessible and modifiable

through any of these Browsers (subject to the limitations of what can be located

with the particular Browser used). Also, the panes in each of these Browsers



Chapter 9 93

have exactly the same <operate> button menu as the corresponding pane in the

System Browser.

Finally, it is important to be aware of two consequences of spawning Browsers. If

a new Browser is spawned from an existing Browser in which the method source

code has been modified but not “accepted”, then the original Browser reverts to

the original source code (as if the cancel option had been selected) and the new

Browser contains the modified code. Secondly, note that the consistency of the

representation presented to the user when multiple windows are in operation is

not automatically managed. Changes made to a class or category in one Browser

are not reflected in other Browsers until another selection is made, or the

update option from the Class Categories <operate> button menu is used.

9.3. Alternative Ways of Opening Browsers

Frequently, we will wish to browse a particular class. Of course, we can always do

this by finding the class in the System Browser, but there are two alternatives.

The first is to use the Browse menu from the Launcher (figure 9.6). (You have

used this option before, to open a System Browser.) The menu also contains

other options, and the one that is of interest here is the Class Named…

option. When this option is selected the user is presented with a request for a

class. You may simply type the class name in full here, or, if you are unsure, use

the “wildcards” described earlier in chapter 6 (figure 9.7). If the later approach is

taken you will be presented with a list of matching classes (figure 9.8), from

which you may only select one.

Figure 9.6: The Browse menu of the Launcher



Chapter 9 94

Figure 9.7: Entering a class name

Figure 9.8: A Confirmer containing a list of classes matching the above

The other alternative is to open a Class Browser directly from a Workspace. This

can be done by sending the newOnClass: message to class Browser ; for example, a

Browser on class Point can be created by typing and evaluating the following

expression in a Workspace:

Browser newOnClass: Point

This is so useful that a shorthand way of opening a Class Browser is to send the

message browse to that class, or to send the message browse to any instance of

that class. So, alternative ways of creating a Browser on class Point would be:

Point browse.

(3@4) browse.

The Class Browsers created in this way are identical to those created when the

spawn option is used from the Class Names <operate> menu.

A complete System Browser can be opened using the expression:

Browser open



Chapter 9 95

A Hierarchy Browser can also be created by evaluating an expression. For

example, a Hierarchy Browser that includes class Point can be opened using:

HierarchyBrowser openHierarchyBrowserFrom:
(Browser new onClass: Point)

Ex 9.1: Experiment with creating various Category, Class, Protocol, and Method Browsers
from existing Browsers. Include a hierarchy Browser.

Ex 9.2: Experiment with creating various types of Browsers, by typing and evaluating
expressions as suggested above.

Ex 9.3: Browse the instance creation class methods of class Browser and try creating some
other kinds of Browsers using the messages found there.

Ex 9.4: Note how Browsers may be spawned from Browsers other than System Browsers.

Ex 9.6: Modify a method (non–destructively or reversibly!) in one Browser.

Ex 9.7: Verify that the changes are visible in other Browsers only after re–selection or the
use of the update  menu option.

9.4. Summary

The System Browser provides not only a view of the whole VisualWorks image,

but also acts as a means of spawning other Browsers on selected parts of the

image. Thus, the programmer can concentrate his or her attention on specific

classes or method — making it easier to explore the image. One of the most

useful Browsers is the Hierarchy Browser which clearly shows the inheritance

path of a class. Although it’s possible to open a Browser programmatically, in

practice this is only useful when debugging.

A comprehensive description of blocks is presented next, concentrating on their

use in control structures.



Chapter 10 96

Chapter 10: Blocks and Control Structures (1)

This chapter returns to the notion of “blocks” first introduced in chapter 3, and

illustrates how blocks can be used to implement a wide variety of control

structures. Only conventional serial programming constructs are introduced

here; more complex structures are discussed in chapter 17, and parallel constructs

(e.g. processes) are left to chapter 25. We also consider block arguments and

temporary variables.

10.1. Introduction

A block represents a deferred sequence of message expressions. A block is

represented by a sequence of expressions (separated by full stops), surrounded by

square brackets ‘[]’. For example:

[ans := Float pi / 2]

When a block is encountered in the evaluation of a method, the statements

enclosed in the square brackets are not  immediately evaluated.

When a block receives the message value, the expressions in the block will be

evaluated in the context in which the block was defined which is not necessarily

the current context. A block expression is an instance of BlockClosure and can

therefore be assigned to a variable, e.g.:

testBlock := [this < that]

Thus, the following sequences of messages are identical:

testBlock := [this < that].
testBlock value

and

[this < that] value

The result returned from a block is the value of the last expression evaluated.

Thus, for the expression:

ans := [3 even. 3 odd] value

the variable ans is set to true.

Ex 10.1: Write a block expression which increments a temporary variable index by one.
Assign the block to the variable addBlock . Send messages to addBlock  to increment
index.

Ex 10.2: What is returned from an empty block? (Try [] value.)



Chapter 10 97

Ex 10.3: What is the effect of the sequence of expressions below? Try evaluating them to
check whether you are correct. (The last exercise appears in the “Blue Book”, page
33.)

| incrementBlock sumBlock sum index |
incrementBlock := [index := index + 1].
sumBlock := [sum + (index * index)].
sum := 0.
index := 1.
sum := sumBlock value.
incrementBlock value.
sum := sumBlock value.
sum

10.2. Simple Repetition

A very simple “repetition” control structure using a block may be achieved using

the timesRepeat: message sent to an integer.

anInteger timesRepeat: argumentBlock

In this case, the message value is sent to the argumentBlock variable anInteger

number of times.

Examples:

| this that |
this := 0.
that := 5.
4 timesRepeat: [this := this + that].
this

| a |
a := 1.
10 timesRepeat: [a := a * 2].
a

Ex 10.4: Write a sequence of expressions to display the sum of the integers 1 to 100 in the
Transcript.

10.3. Conditional Selection

Blocks are also used as arguments in the conditional selection control structure.

Conditional operations are achieved by sending one of the following messages to

a Boolean object:

ifTrue: aBlock

ifFalse: aBlock

ifTrue: trueBlock ifFalse: falseBlock

ifFalse: falseBlock ifTrue: trueBlock



Chapter 10 98

To get a Boolean object, just send any comparison message to an object. For

example, send 4 the message > with the argument 2 and true will be returned.

(i.e. 4 > 2)

Some useful comparison operators are:

= < > <= >= ~=

== ~~ (object identity and non–identity1)

So putting this all together, an example if statement might look like:

a = b
ifTrue: [a := b + 1.

b := b - 2]
ifFalse: [b := a]

or:

| number parity |
number := 17.
(number \\ 2) = 0

ifTrue: [parity := 'even']
ifFalse: [parity := 'odd'].

parity

The value returned from ifTrue:ifFalse: is the value of the last block evaluated.

So the above could also be written:

| number parity |
number := 17.
parity := (number \\ 2) = 0

ifTrue: ['even']
ifFalse: ['odd'].

parity

The keyword message ifFalse:ifTrue: is also provided.

Also provided are single–keyword messages, where only one consequence is

useful:

a > b ifTrue: [a := b].

This statement would check to see if a is greater than b, and if so set the value of

a to be the value of b. Other examples:

a <= b ifFalse: [b := a].

1Chapter 21 describes these terms in more detail.



Chapter 10 99

index <= limit
ifTrue: [total := total + (list at: index)]

If the condition is false, the block is not evaluated, and ifTrue: returns nil . Thus, it

is equivalent to:

index <= limit
ifTrue: [total := total + (list at: index)]
ifFalse: [nil]

10.4. Conditional Repetition

Simple conditional loops can be constructed using the whileTrue: or whileFalse:

message selectors. Both the receiver and the message argument are expected to be

blocks.

receiverBlock whileTrue: argumentBlock

receiverBlock whileFalse: argumentBlock

In the case of the whileTrue: message, the loop works as follows: the receiver

block is sent the message value; if the response to this message–send is true, then

the argument block is sent the message value. The loop repeats until the receiver

block returns false.

For example, to initialize an array list:

| list index |
list := Array new: 10.
index := 1.
[index <= list size]

whileTrue:
[list at: index put: 0.
index := index + 1].

list

Equivalently, using the whileFalse: message:

| list index |
list := Array new: 10.
index := 1.
[index > list size]

whileFalse:
[list at: index put: 0.
index := index + 1].

list

In some cases, all the “useful” work may be done in the receiver block. In this

case, the argument block may be omitted and the unary messages whileTrue and

whileFalse used instead, or example:



Chapter 10 100

| list index |
list := Array new: 10.
index := 1.
[list at: index put: 0.
index := index + 1.
index <= list size] whileTrue.
list

10.5. Block Arguments

A block may take one (or more) arguments. The arguments are each represented

by an identifier preceded by a colon (‘:’). They are separated from the expressions

in the block by a vertical bar (‘|’). For example:

[:each | total := total + each]

A block with a single argument is evaluated by sending it the keyword message

value: . For example:

[:each | each degreesToRadians sin] value: 90

Blocks with more than one argument, e.g.:

[:x :y | (x * x) + (y * y)] value: 3 value: 4

use the corresponding keyword message, e.g. value:value:. Up to three arguments

may be provided using this technique; any larger number of arguments can be

handled by sending the message valueWithArguments:, which accepts an array of

arguments. The same number of arguments must appear in the block and the

message.

10.6. Block Temporary Variables

A block, like a method, can also define local (temporary) variables.

10 timesRepeat:
[ | bTemp |

bTemp := Rectangle fromUser.
bTemp width > 100

 ifTrue: [Transcript show: 'Too Big!'; cr]
 ifFalse: [Transcript show: bTemp printString; cr]]

Here bTemp is local to the block.

Naturally, block arguments and temporaries can be used together. Here we create

a block (called quadBlock) to resolve a quadratic equation, and then use it to

solve the equation y = 4x2 + 5x - 6:



Chapter 10 101

| quadBlock |
quadBlock := [:a :b :c |

| denominator root |
denominator := 2 * a.
root := ((b * b) - (4 * a * c)) sqrt.
Array with: b negated + root / denominator

with: b negated - root / denominator].
quadBlock value: 4 value: 5 value: -6

Ex 10.5: Rewrite the sum of integers example (exercise 10.3) using (a) whileTrue:, and (b)
whileFalse:.

Ex 10.6: Write some expressions to find the maximum (or minimum) value in an array of
numbers.

Ex 10.7: Write some expressions to reverse the order of elements in an array.

Ex 10.8: You might like to add a method reverse to the protocol of Array.

Ex 10.9: Use a timesRepeat: loop to sum the odd integers from 1 to 100. (Hint : look in the
testing messages of class Integer . Yes, this would be an inefficient way to do this
calculation).

Ex 10.10: Use a whileTrue:  loop to calculate the squares of the integers from 1 to 10 . Print your
answers in the Transcript.

Ex 10.11 For all odd integers < 20 calculate the number which is (the factorial of twice the
integer) divided by the square of the integer. Print your answer in the Transcript.

10.7. Summary

Blocks provide a very powerful programming mechanism. In this chapter we

have only been able to give a taste of how and where they can be used. Starting

with the fairly simple use of a block to provide repetition, the chapter shows how

blocks may be used to provide conditional selection, conditional repetition and

parameterisable algorithmic objects.

We return to inheritance in the next chapter, by giving examples to explore the

way in which inheritance “works”.



Chapter 11 102

Chapter 11: Use of Inheritance

This chapter reviews message sending and the method search mechanism, and

considers the effect of messages to self and super . This very important aspect of

using Smalltalk is illustrated with several small examples.

11.1. Methods revisited

A method  describes how an object will respond to a message . It is made up of a

message pattern and a sequence of expressions (separated by full stops). The

names of arguments in the message pattern are accessible within the method.

Temporary variables may also be used — they must be declared at the beginning

of the method (just after the message pattern). Temporaries are initially nil , and

are forgotten after the end of the method evaluation. The pseudo–variables self

and super  can also be used within methods to refer to the receiver itself. Once the

method has finished evaluating, an answer is returned to the sender of the

message. By default, the object returned is the receiver itself (i.e. self).

However, other objects can be returned by use of a return expression — an

expression preceded by an “up–arrow” (‘^’). The return expression is be the last

expression evaluated in a method.

11.2. Review of Message Sending

When a message is sent, the methods in the receiver’s class are searched for one

with a matching selector. If none is found, the methods in that class’s superclass

are searched. The search continues upwards until a match is found, or the top of

the hierarchy is reached. (The superclass of Object is nil .) If a match is made, the

corresponding method is evaluated. This will probably cause further messages to

be sent.

If no match is found during the search, the message doesNotUnderstand: is sent

to the receiver. The argument is the offending message. A method with selector

doesNotUnderstand: is implemented in the instance protocol of Object, which

causes an error message to be displayed in a Notifier.

11.3. Messages to self and super

When a method contains an expression that causes a message to be sent to self,

the search for the corresponding method starts in the class of the instance

regardless of which class contained the method containing self. It is just as if



Chapter 11 103

some other object had sent the message — the search starts exactly as described

above.

The pseudo–variable super  is also available for use within a method. It also

refers to the receiver of the message (just like self). However, the search for the

method does not  start in the receiver’s class. Instead, it starts in the superclass of

the class in which the method using super  is located (note that this is not

necessarily the same as starting the search in the superclass of the receiver). The

use of super  allows methods to access other methods defined in classes further

up the hierarchy, even if they have been overridden  in subclasses. The following

exercise demonstrates how the search proceeds.

Ex 11.1: Type in the class descriptions and methods given below.

class One class Three
superclass Object superclass Two
instance
variables

none instance
variables

none

class variables none class variables none
pool dictionaries none pool dictionaries none
class category Messages-example class category Messages-example
message protocol tests message protocol tests

result1
^self test

result2
^self result1

test
^1

result3
^super test

class Two class Four
superclass One superclass Three
instance
variables

none instance
variables

none

class variables none class variables none
pool dictionaries none pool dictionaries none
class category Messages-example class category Messages-example
message protocol tests message protocol tests

test
^2

test
^4

Evaluate the following expressions, one at a time:

| ex1 |
ex1 := One new.
ex1 test.

| ex1 |
ex1 := One new.
ex1 result1.



Chapter 11 104

| ex2 |
ex2 := Two new.
ex2 test.

| ex2 |
ex2 := Two new.
ex2 result1

Explain what happens.

Ex 11.2: Also, explain what happens with each of the following expressions (create the
appropriate temporary variables, and evaluate each test  and result expression in
isolation):

ex3 := Three new.
ex4 := Four new.
ex3 test.
ex4 result1.
ex3 result2.
ex4 result2.
ex3 result3.
ex4 result3

These examples are from the “Blue Book”, pages 62–66.

Ex 11.3: Show the sequence of message sends in the System Transcript by augmenting the
above methods with extra expressions.

11.4. An Example of Inheritance

In chapter 6, we introduced the class SpendingHistory as a simplistic model of a

person’s spending habits. Suppose we also want a class that is a more complete

model of a person’s overall finances — one that includes income . Rather than

develop a class from scratch, we can subclass the existing SpendingHistory class,

and consequently inherit  both its behaviour and data structure. The class

description of the new subclass, called FinancialHistory, is specified below1:

SpendingHistory subclass: #FinancialHistory
instanceVariableNames: 'incomes'
classVariableNames: ''
poolDictionaries: ''
category: 'Financial Tools'

Add a new class category called ‘Financial Tools’ and edit the class template so

that it appears as above. The class description introduces one extra instance

variable incomes. Select accept from the <operate> menu.

1If you remembered to take a snapshot of your work in chapter 6, you will find that class SpendingHistory  is in
your image. Otherwise, you may find that you need to revisit that chapter.



Chapter 11 105

The class FinancialHistory inherits the instance variables of its superclass

SpendingHistory (i.e. cashOnHand and expenditures) and also its instance and

class methods. Therefore, the class message initialBalance: is understood by class

FinancialHistory as the corresponding method is implemented in its superclass.

Let us revisit that method (in class SpendingHistory):

initialBalance: anAmount
^self new setInitialBalance: anAmount

We can see that the method creates a new instance of the receiver and sends it

the message setInitialBalance:, hence we should implement the corresponding

method in our new class as follows:

setInitialBalance: anAmount
super setInitialBalance: anAmount.
incomes := Dictionary new.

This method uses the pseudo–variable super  as the receiver of the message

setInitialBalance:. The consequence of sending this message is that the method

setInitialBalance: in class SpendingHistory is evaluated, i.e. cashOnHand refers to

anAmount, and expenditures refers to a new empty Dictionary. The only

additional operation provided by the method above is that incomes refers to

another new empty Dictionary. You should add this method to instance protocol

private  of class FinancialHistory.

The sequence of message sends that result from sending the message

initialBalance: to class FinancialHistory now appears to be rather complex. We can

number the stages as follows:

1) The class methods of FinancialHistory are searched for the selector

initialBalance: — it is not found.

2) The class methods of SpendingHistory (the superclass of

FinancialHistory) are searched for the selector initialBalance: — it is

found.

3) The found method is evaluated, causing a new instance of the receiver

(i.e. class FinancialHistory) to be created. This instance is then sent the

message setInitialBalance:.

4) The instance methods of the class of the receiver (FinancialHistory) are

searched for the selector setInitialBalance: — it is found.



Chapter 11 106

5) The found method is evaluated, causing the expression

super setInitialBalance: to be evaluated.

6) The search for the selector setInitialBalance: begins in the “superclass of

the class in which the method using super  is located” — i.e. the search

begins in class SpendingHistory.

7) The instance methods of class SpendingHistory are searched for the

selector setInitialBalance: — it is found.

8) The found method is evaluated, causing the instance variables

cashOnHand and expenditures to be initialized as appropriate. The

receiver is returned from the method (i.e. the instance of

FinancialHistory is returned).

9) The remainder of the instance method setInitialBalance: in class

FinancialHistory is evaluated, causing the instance variable incomes to

be initialized. The receiver is returned from the method (i.e. the

instance of FinancialHistory is returned).

10) There are no more expressions to evaluate in the class method

initialBalance: in class SpendingHistory, and the return symbol

indicates that the initialized instance (of FinancialHistory) should be

returned.

Now, add the method totalReceivedFor:  in protocol inquiries, the method

receive:for: in protocol transactions, and the method printOn: in protocol printing.

The code is below:

totalReceivedFor: reason
"return the amount received from reason. Answer
0 if reason is not used for incomes"

^(incomes includesKey: reason)
ifTrue: [incomes at: reason]
ifFalse: [0]

receive: anAmount for: reason
"Receive anAmount for a reason and increase the cashOnHand"

incomes
at: reason
put: (self totalReceivedFor: reason) + anAmount.

cashOnHand := cashOnHand + anAmount.



Chapter 11 107

printOn: aStream
"print a suitable representation of myself on aStream"

super printOn: aStream.
aStream space.
incomes keysAndValuesDo: [:reason :amount |

aStream cr.
reason printOn: aStream.
aStream tab.
amount printOn: aStream]

Note how the printOn: method uses the pseudo–variable super  to inherit

behaviour from the superclass, so that all the programmer has to add are the

message expressions necessary to print out details of income.

To test the new class, type the expressions shown below in a Workspace. Select

and evaluate the code using print it  (note that this example uses cascaded

expressions).

| spendingHistory |
spendingHistory := FinancialHistory initialBalance: 800.
spendingHistory spend: 220 on: 'rent';

spend: 30 on: 'food';
spend: 45 on: 'drink';
spend: 20 on: 'petrol';
receive: 300 for: 'salary';
receive: 50 for: 'expenses';
receive: 50 for: 'overtime'.

spendingHistory

Ex 11.4: Experiment with the class FinancialHistory, perhaps extending it with extra
expressions that write to the System Transcript.

Ex 11.5: Consider creating a class GriddedPoint, as a subclass of Point. Class GriddedPoint
represents a two–dimensional point whose co-ordinates lie on some specified grid.
What methods should class GriddedPoint re–implement so that its co–ordinates
always  lie on a 10x10 grid?

Before continuing, ensure that you take a “snapshot” of your image, by selecting

the Save As…  option from the File menu of the Launcher. We will return to

this example later in the book.

11.5. Summary

To summarise, classes can inherit properties from other classes; this process is

repeated to form a “tree” of classes, rooted at Object.

• As stated above, a subclass inherits properties from its superclass.



Chapter 11 108

• Subclasses are used to refine  the functionality of the superclass, for either

the external protocol or the internal implementation.

• Superclasses which should not  themselves have direct instances are

known as abstract superclasses. They are intended to support a partial

implementation of features which are completed (differently) in

subclasses.

• Each class is a (possibly indirect) subclass of class Object.

• The use of self or super  can be used to control the methods selected in

response to message–sends.

Having described the way in which inheritance can be used, the next chapter

describes the different variables that can be shared by instances and classes.



Chapter 12 109

Chapter 12: Class Variables and Protocols

This chapter explores two types of variables not yet considered — the class

variable, the class instance variable, and the pool  variable. The chapter goes on to

explore protocol typically implemented in classes, including ‘instance creation’,

‘class initialization’ and ‘examples’. These aspects are explored using class Date

and class Time as examples. Other examples are taken from the VisualWorks

classes LookPreferences, ScheduledWindow and FileBrowser.

12.1. Class Variables

We have already seen one type of shared variable in Smalltalk — the global

variable. Another type of shared variable is the class variable. This variable is

only accessible by all instances of the class in which the variable is defined or any

of its subclasses. Typical uses of class variables are:

• “Constant” values used by all instances of the class and its subclasses, but

which might need to be changed occasionally.

• Private communication between instances.

In general, shared variables provide another mechanism for communication (as

well as message passing). The over–use of shared variables is frequently an

indication that a solution has not been well designed.

For example, class Date has five class variables, which are declared in the class

definition as follows:

Magnitude subclass: #Date
instanceVariableNames: 'day year'
classVariableNames: 'DaysInMonth FirstDayOfMonth MonthNames

SecondsInDay WeekDayNames'
poolDictionaries: ''
category: 'Magnitude-General'

The instance variables (day, year) change with each instance, so they can only be

accessed directly by the same object. The class variables, however, keep the same

values across instances. So when an instance of Date wants to access the Array of

Integers referenced by the DaysInMonth variable, for example, it does not have to

send a message to itself. It can use the variable in its methods just as naturally as

it would use an instance variable. Objects that are not in the inheritance chain

would have to query Date for the information, for example, sending it the



Chapter 12 110

message nameOfMonth:. Figure 12.1 demonstrates the use of a repeat structure to

print the names of the months on the Transcript.

Figure 12.1: Printing the names of the Months

The initial value of a class variable is usually assigned in a class method

(normally named initialize) and the corresponding message is typically sent as the

final act of creating a class.

Ex 12.1: Browse the class protocol of Date to discover where and how its class variables are
used. Try some examples (e.g. Date today).

Ex 12.2: Also explore the instance protocol of Date. Try some examples, including comparing
and arithmetic. How would you subtract a number of days from an instance of Date?

Ex 12.3: Create a new class protocol called ‘examples’. Install some of your examples there.
Remember to document your examples in method comments!

12.2. Examples

There are a number of examples of the use of class variables to control the

appearance and behaviour of the VisualWorks user interface. Here we describe

three of them.

12.2.1. LookPreferences

Simple changes to the appearance of the user interface (the colour of windows,

menus, and so on) are managed by the class LookPreferences. Its class methods

may be used to change the default settings; if you modify the current settings, you



Chapter 12 111

will have to re–initialize the class for the changes to take effect (i.e. evaluate the

expression LookPreferences initialize).

Ex 12.4: Browse the class LookPreferences. Which class variable is used to refer to colour of
the windows?

Ex 12.5: Modify the default attributes of LookPreferences so that the background colour of
the windows is yellow and then re–initialize the class.

12.2.2. ScheduledWindow

By default, VisualWorks will allow you to choose where a new window is

positioned. If you always want the window manager to choose where it goes,

evaluate the following expression. (Note that this user preference may be

controlled via the Settings Tool, described in chapter 5.)

ScheduledWindow promptForOpen: false.

Ex 12.6: Use the Browser to discover the name of the class variable that controls how a new
window is positioned.

12.2.3. FileBrowser

The FileBrowser was described in chapter 6. It’s possible to specify an initial “file

pattern” (held by the class variable DefaultPattern) for retrieving the file name list

by sending the message defaultPattern: to the class FileBrowser, supplying the

(argument) pattern in the form of a string.

Ex 12.7: Set the default file pattern of the FileBrowser so that, when opened, the file list
contains the contents of the current directory. Hint : remember the use of
“wildcards”.

12.3. Class Instance Variables

The use of class instance variables is little understood, mainly because there are

few examples of their use in VisualWorks. As its name suggests, a class instance

variable is an instance variable for a class. At first this may seem a little

confusing, but you should remember that every object is an instance of some

class, thus every class is also an instance of some class. We have seen earlier that

instance variables are inherited by classes, similarly, class instance variables are

inherited.

It’s important to distinguish between the use of a class variable and a class

instance variable. For example, suppose class Persian inherits from class Cat. If

Cat has a class variable, then Persian has the exact same class variable and value,

i.e. if an instance of Persian modifies it, then instances of all subclasses of Cat

will refer to that new value.



Chapter 12 112

On the other hand, if Cat has a class instance variable, then all subclasses of Cat

(including Persian) have their own copy of that variable and therefore can have

their own private values.

Although there are not many examples of the use of class instance variables in

VisualWorks, there is one which is a good example: class UILookPolicy. This class

is an abstract superclass for classes that emulate the “look–and–feel” of various

window managers; its subclasses provide specific emulation for Macintosh,

Windows, Motif, or MS–Windows. It introduces three class instance variables:

systemAttributes, systemWidgetAttributes  and useSystemFontOnWidgets. Each of

its subclasses initialize these variables in their respective class initialize methods

to provide class–specific values. It is important to note that the class instance

variables can only be accessed by class methods.

Ex 12.8: Open a Hierarchy Browser on class UILookPolicy. Browse references to the class
instance variables mentioned above. Where are they initialised?

Ex 12.9: Open a Browser on all those classes that contain class instance variables. Hint: The
following code returns true if the receiver has a class instance variable.

aClass class instVarNames isEmpty not

12.4. Pool Variables

A pool variable is a variable whose scope is a defined subset of classes. Pool

variables are stored in pool dictionaries  (instances of PoolDictionary) —

collections of name⁄value associations. The variables in a pool dictionary can be

made accessible to any class by declaring the pool dictionary in the pool

dictionary list of the class definition. Smalltalk, the dictionary of global variables,

is itself a pool dictionary that is globally accessible. The class variables of a class

are also stored in a pool dictionary that is accessible to the class, its subclass, and

instances of the same. However, unlike class variables, pool variables can be

referenced by classes outside the same subtree of the class hierarchy.

The purpose of a pool dictionary is to provide quick access to the contents of the

dictionary, bypassing the usual dictionary look–up mechanism (see chapter 14).

One common use of pool variables is as a means of providing application–

specific constants.

For example, the pool dictionary TextConstants is shared by all classes that deal

with the display of text (including classes Text, ParagraphEditor and

ComposedText). It includes variables referring to basic character constants,

providing the mapping from characters such as <tab>, <CR>, and <space> to



Chapter 12 113

their ASCII equivalents, allowing unprintable ASCII characters to be referenced

by name.

For example, class Text declares the pool dictionary TextConstants in its class

definition:

CharacterArray subclass: #Text
instanceVariableNames: 'string runs'
classVariableNames: ''
poolDictionaries: 'TextConstants'
category: 'Collections-Text'

The keys of the pool dictionary are referenced within Text methods as if they

were global or class variables. For example, figure 12.2 shows a method

containing the  pool variable DefaultTextStyle — one of the elements of the pool

dictionary TextConstants.

Figure 12.2: The pool variable DefaultTextStyle referenced
in the method displayOn:at: in class Text



Chapter 12 114

Ex 12.10: Inspect the pool dictionary TextConstants.

A new pool dictionary may be created by declaring the dictionary as a global

variable. Pool variables may then be added to the dictionary using the message

at: put:. For example:

Smalltalk at: #ExamplePoolDictionary put: PoolDictionary new.

(This creates a new global variable named ExamplePoolDictionary that refers to a

new instance of PoolDictionary.)

ExamplePoolDictionary at: #ExamplePoolVariable put: someObject

(This creates and adds a new pool variable named ExamplePoolVariable to the

dictionary ExamplePoolDictionary.)

12.5. Summary of Variable Scope

We have now described all the types of variables available in Smalltalk:

temporary, instance, class, pool, and global. Figure 12.3 provides a pictorial

representation of variable scope.

Global Variables Are Available To All Objects In Visualworks

Pool Variables Are Available Only To Members Of 
Classes Which Specify The Pool As A Shared Pool

Class Variables And Class Instance Variables 
Are Available Only To 

Members Of That Class Or A Subclass

Instance Variables Are 
Available Only To The 

Object That Contains The 
Variable

Temporary Variables Are Available Only From Within
The Method Or Block In Which They Are Defined

Figure 12.3: The scope of the variables available in Smalltalk

Ex 12.11: To see how scoping works, create a new class called Foo , and give it as many
different variables of the same name as possible. (E.g. an instance variable named



Chapter 12 115

‘foo’, a class variable named ‘Foo’.) Also, add methods of the same name, perhaps
including blocks which refer to their arguments by the same name!

12.6. Class Protocol

When constructing a class, it is often difficult to arrive at a consistent naming

convention for class protocols, but doing so is important so that your code

structure is understandable to others. If you browse the VisualWorks image you

will notice that some protocols become familiar. They are described below:

instance creation This important protocol is very common. New

instance creation methods to suit subclasses are

frequently defined in order to initialize the new

instance appropriately. Examples include those to

create an instance from data in a stream (e.g.

readFrom:).

class

initialization

When a class has class variables, a class method (by

convention, initialize) is required to set up the initial or

default values of the variables.

examples Helpful examples to explain the operation of a class are

often provided. This is good practice.

documentation Class methods solely for documentation are sometimes

used. Generally, the class comment is a better place for

this information. The method guideToDivision in class

SmallInteger is an example of a class method provided

solely as documentation (the documentation is in

quotes and typically the last line of the method

contains the expression ^self error: 'comment only')

accessing Class methods to access class variables.

inquiries General inquiries about information the class

encapsulates are provided by many class methods. The

method nameOfMonth: in class Date is an example

(figure 12.1).



Chapter 12 116

instance

management

A class may wish to provide some control over its

instances, such as restricting the number or enforcing

an ordering. The method currentWindow in class

ScheduledWindow is an example.

private Methods not for general use, provided to support the

above protocols.

Ex 12.12: Explore class Time. This class is a subclass of Magnitude. Note the class initialization
and general enquires methods, and how they use the class variables. Try Time
now.

12.7. Summary

Class variables, class instance variables and pool variables represent a group of

variables whose access is shared by one or more classes. Of these variables, class

variables are most often used, since they provide “constants” shared by instances

of a class and its subclasses. Because class instance variables are generally poorly

understood — their scope is rather confusing — it’s best to avoid them until you

have more familiarity with Smalltalk. Pool variables, on the other hand, can be

very useful as a means of providing access to constant values to a group of

disjoint class hierarchies.

The grouping of class methods into protocols is generally a hit and miss affair —

although most VisualWorks classes adhere to a common style (useful when

searching for a class method in a Browser).

We continue our examination of classes in the next chapter, paying close

attention to two class hierarchies: headed by class Number and class Geometric.



Chapter 13 117

Chapter 13: Abstract Superclasses

This chapter investigates the way in which common properties are held together

in superclasses, and refined differently in subclasses. This chapter also provides

an introduction to the general notion of “abstract superclasses”, using examples

from the Magnitude and Geometric hierarchies.

This chapter explores the Number hierarchy in some detail. The coercion

mechanism for numbers is also outlined. The Geometric class hierarchy is also

described, with class Rectangle  receiving particular attention.

13.1. Introduction

An abstract superclass is a class with one or more subclasses, which itself does not

have sufficient functionality to make instances of it useful. The intention is to

capture some common aspects of its subclasses, rather than having the

functionality duplicated in several (sub)classes. Subclasses that are not abstract

are commonly called “concrete”.



Chapter 13 118

Figure 13.1: Class Magnitude captures common comparison aspects
of its subclasses

For example, note the way in which only some of the inequality tests are

implemented in Date (look in protocol comparing); all others are implemented

using methods in Magnitude (figure 13.1). This mechanism makes extensive use

of messages to self.

You can also regard class Object as an abstract superclass for all classes in

Smalltalk — instances of Object are seldom useful (except occasionally for testing

purposes).

This chapter concentrates on two very important abstract superclasses: Number

and Geometric.

13.2. The Number Hierarchy

The numeric system of VisualWorks is quite extensive and flexible. It already

possesses several useful number classes, and a general conversion mechanism to

perform operations on disparate classes of number.



Chapter 13 119

13.2.1. ArithmeticValue

Class ArithmeticValue represents the behaviour necessary to perform arithmetic.

It is a subclass of Magnitude and therefore inherits some equality⁄inequality

properties. ArithmeticValue adds protocols such as arithmetic, mathematical

functions, testing, and rounding. Nevertheless, the key methods respond with:

^self subclassResponsibility

The method named subclassResponsibility is implemented in class Object (figure

13.2). This sets up a framework for the behaviour of the class’s subclasses, raising

an error indicating that a subclass should have implemented this method.

Figure 13.2: The implementation of the subclassResponsibility method

The ArithmeticValue class hierarchy is as follows (abstract superclasses are

underlined):

Object
Magnitude

ArithmeticValue
Number

Fraction



Chapter 13 120

Integer
LargeInteger

LargeNegativeInteger
LargePositiveInteger

SmallInteger
LimitedPrecisionReal

Double
Float

FixedPoint

13.2.2. Number

Class Number represents scalar quantities, corresponding to real numbers.

Number adds many mathematical functions which are only appropriate for scalar

values. It also re–defines arithmetic operators, and adds testing abilities (even

and odd), truncation and rounding (ceiling, floor, rounded, truncated), and

conversion messages both to convert to other classes of number, and also to

convert from degrees to radians and vice–versa.

No specific methods are needed to create an instance of a number because they

are typically created by calculations involving literals. However, there are

occasions when it’s useful to create a Number from a different base or in power

form. For example

16rff 255

2r1111 15

123e3 123000

13.2.3. Fraction

Class Fraction is a subclass of Number whose instances represent arbitrary

precision rational numbers. It defines two instance variables — numerator and

denominator (both of which should be instances of Integer subclasses), and re–

defines methods for arithmetic, testing, and truncation. Results of arithmetic

functions are returned in fractional form, unless the message asFloat is sent

explicitly. For example, evaluating the expression:

3 / 4

returns the result (3/4).

13.2.4. Integer

Class Integer is the abstract superclass representing integer arithmetic

implementations. Methods in class Integer provide nearly all the functionality

for integer operations, but the basic arithmetic operations are implemented in



Chapter 13 121

subclasses. The class re–defines methods for arithmetic, testing and comparing,

and adds factorisation methods (factorial , greatest common denominator — gcd:,

lowest common multiple — lcm:).

13.2.5. SmallInteger

Class SmallInteger represents integers sufficiently small to be represented directly

by the virtual machine. Consequently, almost all of its methods are “primitives”

— i.e. executed directly by the virtual machine. The boundaries between

SmallInteger and larger integers occur at 229-1 and -229.

13.2.6. LargeInteger

Class LargeInteger acts as an abstract superclass for classes LargePositiveInteger

and LargeNegativeInteger to represent arbitrary precision integers. It is a subclass

of Integer, and introduces little extra behaviour. Large integers have no size limit

(other than those imposed by memory constraints).

13.2.7. LimitedPrecisionReal

Class LimitedPrecisionReal is an abstract superclass for different kinds of

“floating–point” numbers.

13.2.8. Float

Class Float is a subclass of LimitedPrecisionReal and most of its methods for

arithmetic, mathematical functions, comparing and truncating are implemented

as primitives. Instances of Float represent “short” (single precision) floating point

numbers between 1038 and -1038. Class Float also introduces Pi and

RadiansPerDegree class variables as constants. Example instances of Float:

123.456 10.0 -456.123

13.2.9. Double

Class Double is also a subclass of LimitedPrecisionReal, similar to class Float

except that its instances represent “long” (double precision) floating point

numbers between 10307 and -10307. Class Double also has class variables

representing Pi and RadiansPerDegree. To force the compiler to recognise

numbers as instances of Double, it is necessary to suffix the number with the

letter ‘d’, for example:

123.456d

13.2.10. FixedPoint

Class FixedPoint represents numbers with arbitrary precision before the decimal

point, but limited precision after the decimal point (often used in business



Chapter 13 122

calculations).  A prime example of their use is in representing currency values,

which are always rounded off to the nearest hundredth, but which could easily

have more digits than a Float (or a Double) could represent accurately. To create

an instance of FixedPoint, it is necessary to suffix the number with the letter ‘f’,

for example:

123.456f

In summary, the class hierarchy may be described as follows:

Class Description

Magnitude Linear Dimension

ArithmeticValue Primitive Arithmetic

Number Represents scalar quantities

LimitedPrecisionReal Abstract superclass for various
implementations of Real numbers

Float Single Precision

Double Double Precision

Fraction A Rational number as a Fraction

Integer Abstract superclass for integer
implementation

FixedPoint Represents “business” numbers

It is quite possible to add further subclasses to this hierarchy, for example

Complex, Infinity and Infinitesimal.

13.2.11. Common Messages

The typical arithmetic and mathematical operators of interest are described in the

table below. Most of the messages are understood by all number classes, those

that aren’t should be obvious. It is possible to optimise much of your “number–

crunching” code by careful selection of number classes. Techniques for

optimisation are considered briefly later in this chapter.

Message Description Examples Result

+ - * / simple arithmetic 10 - 3
10 / 3

7
(10/3)

// integer divide 10 // 3 3
\\ modulo 10 \\ 3 1
quo: truncated division,

returns the integer
portion of the
quotient

10 quo: 3 3



Chapter 13 123

rem: returns the
remainder from a
division

10 rem: 3 1

raisedToInteger: 10 raisedToInteger:3 1000
raisedTo: or use ** 10 raisedTo: 1/3 (1/1000)
squared 10 squared 100
ln exp log power 10 ln

10 exp
10 log

2.30259
22026.5
1.0

sin
cos
tan

Trigonometric
functions

10 sin
10 cos
10 tan

-0.544021
-0.839071
0.648361

arcSin
arcCos
arcTan

transcendental 0.5 arcSin
0.5 arcCos
0.5 arcTan

0.523599
1.0472
0.463648

ceiling
floor
rounded
truncated

truncating 10 sin ceiling
10 sin floor
10 sin rounded
10 sin truncated

0
-1
-1
0

abs absolute 10 sin abs 0.544021
negated negate the receiver 10 sin negated 0.544021
reciprocal return the reciprocal

of the receiver
10 sin reciprocal -1.83816

positive test if receiver is >= 0 10 positive
0 positive

true
true

strictlyPositive test if receiver is > 0 10 strictlyPositive
0 strictlyPositive

true
false

negative test if receiver is < 0 10 negative false
even test if receiver is

even
10 even true

odd test if receiver is odd 10 odd false
isInteger test class of receiver 10 isInteger

10.0 isInteger
true
false

isZero test if receiver is zero 10 isZero
0 isZero

false
true

asInteger convert receiver to
integer

10 asInteger
10.0 asInteger

10
10

asFloat convert receiver to
float

10 asFloat
10.0 asFloat

10.0
10.0

asDouble convert receiver to
double

10 asDouble
10.0 asDouble

10.0d
10.0d

asRational convert receiver to
rational (fraction)

10 sin asRational (-
586822/10
78675)

asCharacter convert receiver to
character

65 asCharacter $A

printStringRadix: print the integer in
specified base.

10
printStringRadix:2

'1010'



Chapter 13 124

13.2.12. Coercion

If two objects involved in a mathematical operation are of different number

classes, one must be converted to assure correct results. In Smalltalk, this process

is called coercion .

The coercion process has three steps:

1. The operation fails because of differing classes of operands.

2. Determine which operand is of the most general class (called highest

generality).

3. Convert all operands to that class. (If one or more operands have to be

coerced for the successful completion of the operation, then this is

obviously compute–intensive.)

The generality of a number class is determined with the help of a method to

which all numbers must respond, generality. This message returns an integer

indicating a level of generality for that particular number class. SmallIntegers are

of low generality, but Doubles are of high generality, since almost all numbers

can be represented as a Double. The following is a table of the subclasses of

Number followed by their generality:

Class Generality

Double 90

Float 80

FixedPoint 70

Fraction 60

Integer 40

SmallInteger 20

Ex 13.1: Review the Magnitude, ArithmeticValue  and Number hierarchy. There is a huge
amount of functionality in this hierarchy, and you are advised to spend some time
becoming familiar with these classes.

Ex 13.2: Look at the different implementations of methods such as + and // in the hierarchy.

Ex 13.3: Open an Inspector on an instance of Float. Send the message + 3.0 to self. What is the
result? Try again, but use super  rather than self.

Ex 13.4: Why is raisedTo: implemented in the instance protocol of Number, even though it
performs differently depending on the class of the receiver? How does
raisedToInteger: work?



Chapter 13 125

Ex 13.5: Bit manipulation methods are defined for Integer  (e.g. bitAnd:), and re–defined in
SmallInteger — why?

Ex 13.6: Consider adding class methods to classes Float, Double or LimitedPrecisionReal to
answer other (useful) constants when appropriate messages are received.

13.3. The Geometric Hierarchy

The Geometric class hierarchy represents “shapes” in two–dimensional space,

such as line segment, circle, or rectangle. This notion is represented by the

abstract class Geometric, which provides almost all default behaviour for its

subclasses. In this respect the approach taken by the Geometric class hierarchy is

different to that provided by the Number class hierarchy; most of the methods in

class Geometric contain default (non–optimal) code for a generic shape (rather

than subclassResponsibility). Subclasses of Geometric may provide their own

(optimal) methods to over–ride those provided by their superclass. However, for

some methods it is not possible to provide a default method. In these cases, there

is not an alternative to the use of the subclassResponsibility route.

It should be noted that these entities cannot be displayed directly, since they have

no visual properties such as colour or line thickness. However, as we shall see

later (chapter 20), it is possible to contain a Geometric in an appropriate

“wrapper”, enabling it to play the role of a graphical object.

The class hierarchy is as follows:

Object
Geometric

Bezier
Circle
EllipticalArc
LineSegment
Polyline
Rectangle
Spline

Ex 13.7: Compare the “shape” of the Number and Geometric class hierarchies. Give at least
two features that distinguish them.

We now briefly describe some of the Geometric classes.

13.3.1. Geometric

As an abstract class, class Geometric provides the minimum message interface to

which all its subclasses must conform. It includes the following:



Chapter 13 126

bounds Answers a rectangle that bounds the coordinate
region used by the receiver. Also commonly called its
“bounding box”.

outlineIntersects: Answers whether the receiver’s perimeter intersects
the perimeter of the argument (a Rectangle).

regionIntersects: Answer whether the receiver’s area intersects the are
of the argument (a Rectangle).

scaledBy: Answer a new instance scaled by the argument,
which can be a Point or a scalar.

translatedBy: Answer a new instance translated by the argument,
which can be a Point or a scalar.

13.3.2. Circles

Class Circle represents circular areas, and defines two instance variables: center (a

Point) and radius (a Number). Instances can be created using:

Circle center: 100@100 radius: 50

Accessing methods allow the centre, radius, diameter, and area to be returned.

Otherwise, most methods provide an optimal re–implementation of those

defined in the superclass.

13.3.3. Ellipses

Elliptical areas, and ellipses and circles, are represented by instances of

EllipticalArc. Instance creation and accessing methods compatible with those of

Circle are provided, but further methods allow the “start” and “sweep” angles to

be defined. These angles, together with a Rectangle  bounding the ellipse, are

retained by instance variables.

13.3.4. Straight Lines

Straight lines are represented by class LineSegment. This defines two instance

variables start and end , both Points.

A LineSegment can be asked for its length which may then be compared to that

of other LineSegments via usual comparing operators (=, <). It can perform

scaling (scaledBy:) and translation (translatedBy:). Instances can be created using:

LineSegment from: 10@10 to: 120@130

LineSegment with: 10@10 with: 120@130.

Methods for accessing the start and end Points are also provided.



Chapter 13 127

13.3.5. Polygons

Arbitrary polygons, and “polylines” are represented by class Polyline. This defines

a single instance variable vertices, which retains an Array of Points, of size three

or more. Instances of Polyline can be created by:

Polyline vertices: (Array with: 10@10 with: 120@130 with: 120@10).

13.3.6. Curves

Two kinds of “curve” are provided by the classes Spline and Bezier . A Spline is

similar to a Polyline in that it connects a collection of vertices; the difference is

that a Spline smoothes the corners (see figure 13.3). A Bezier  curve has a start, an

end and two control points — each control point exerts gravity on the line

segment connecting the start and end (see figure 13.4).

Figure 13.3 and 13.4: Comparison of a Spline and a Bezier Curve

Both curve classes support comparison, intersection, testing, scaling, and

transforming.

Ex 13.8 Browse class Geometric and the subclasses mentioned previously. Try to understand
how the concrete subclasses and the abstract superclass work together to provide
the functionality.

Ex 13.9: Try some examples of Circles and EllipticalArcs. Also, browse these classes, and look
at the way in which the startAngle  and sweepAngle methods are implemented.
Why isn’t one a subclass of the other?

Ex 13.10: Try some examples of the transforming and testing methods for the various
Geometric subclasses. Consider adding some more methods in the converting
protocols of the classes, so that it is possible to convert from a Spline to a Bezier (for
example).



Chapter 13 128

13.3.7. Rectangles

Class Rectangle  represents rectangular areas, with the sides always horizontal

and vertical. Class Rectangle  is the most widely used Geometric subclass. It is

used in the user interface to indicate the sizes of windows and panes.

We have already seen how class Point (see chapter 8) represents the abstract

notion of a location in two–dimensional space. In just the same way, class

Rectangle  represents a rectangular area in two–dimensional space. Class

Rectangle  is a subclass of Geometric, and defines just two instance variables:

origin and corner . These are instances of Point, and represent the top–left and

bottom–right corners respectively. Since rectangles always have sides that are

parallel to the horizontal and vertical axes, this is enough to completely define a

rectangular area.

As with most classes, new instances of class Rectangle  can be created by sending

the message new  to that class. However, this answers with a Rectangle  with both

instance variables nil ; this is not very useful. To allow initialized Rectangles  to be

created, several instance creation messages are provided, some of which are

included below.

Rectangle origin: aPoint corner: anotherPoint

Rectangle origin: aPoint extent: anotherPoint

Rectangle vertex: vertexPoint1 vertex: vertexPoint2

Rectangle left: leftNumber
right: rightNumber
top: topNumber
bottom: bottomNumber

aPoint extent: anotherPoint

aPoint corner: anotherPoint

Thus we can see that it is possible to use a number of different expressions to

create an initialized Rectangle . For example, the following three message

sequences give rise to equal Rectangles :

| r |
r := Rectangle new.
r origin: 2@2.
^r corner: 30@30.

^2@2 extent: 28@28

^2@2 corner: 30@30



Chapter 13 129

The instance protocol of Rectangle  is exhaustive; some of the most frequently

used messages are described below.

13.3.7.1. Accessing
origin: aPoint corner: anotherPoint set the origin and the corner of the

receiver

origin: aPoint extent: anotherPoint set the origin and the extent of the
receiver

origin: aPoint set the origin of the receiver

corner: aPoint set the corner of the receiver

origin return the origin of the receiver

corner return the corner of the receiver

left, right, top, bottom return the appropriate number

center return the centre of the receiver

extent, width, height return the extent of the receiver (a
Point), its width or height
(respectively)

13.3.7.2. Testing
= aRectangle returns a Boolean indicating whether

the receiver is equal to the argument

contains: aRectangle returns a Boolean indicating whether
the argument is contained in the
receiver

containsPoint: aPoint returns a Boolean indicating whether
the argument is contained in the
receiver

intersects: aRectangle returns a Boolean indicating whether
the argument intersects with the
receiver

13.3.7.3. Functions
scaledBy: aPointOrNumber returns a new Rectangle  scaled by the

argument

translatedBy: aPointOrNumber returns a new Rectangle  translated by
the argument

intersect: aRectangle returns a new Rectangle  that is the
intersection of the receiver and the
argument

areasOutside: aRectangle returns a collection of Rectangles
describing the difference between the
receiver and the argument



Chapter 13 130

merge: aRectangle returns a new Rectangle  that is a
merger of the receiver and the
argument

insetBy:
aRectangleOrPointOrNumber

returns a new Rectangle  that is inset
by the argument

expandedBy:
aRectangleOrPointOrNumber

returns a new Rectangle  that is
expanded by the argument

area returns the area of the receiver

moveBy: aPointOrNumber moves the origin and corner of the
receiver by the argument

moveTo: aPoint moves the origin and corner of the
receiver to the argument

It’s important to note the difference between intersects: and intersect:; the former

returns a Boolean indicating whether the receiver and the argument overlap,

and the latter returns a Rectangle  describing the area of overlap. For example:

(3 @ 1 corner: 5 @ 6) intersect: (1 @ 2 corner: 7 @ 5)

returns (3@2 corner: 5@5)  (see figure 13.5).

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

Figure 13.5: A Visualisation of the expression
(3 @ 1 corner: 5 @ 6) intersect: (1 @ 2 corner: 7 @ 5)

Ex 13.11: Browse class Rectangle  (category Graphics-Geometry). Try some of the instance
creation methods mentioned above, and any others you might discover in the class
protocol.



Chapter 13 131

Ex 13.12: You may also like to consider how self is used in the instance creation methods.
Where is the new message interpreted?

Ex 13.13: What is returned from the expression rect1 intersect: rect2  if the areas of rect1  and
rect2  do not overlap?

Ex 13.14: Compare the effects of Rectangle fromUser with Rectangle fromUser: aPoint

Ex 13.15: We have already seen how class Point could have a different internal
representation (chapter 8), while retaining the same message interface. Consider
the internal structure of class Rectangle  in this light. Are alternative
representations possible?

Ex 13.16: You might like to try implementing a new class (NewRectangle), with a different
internal representation (e.g. instance variable centre, height, width, or keep top–
right and bottom left corners), but which retains the same message interface as
Rectangle .

13.4. Summary

Although Number and Geometric both act as abstract superclasses, the class

hierarchies they head have very different patterns. The Number hierarchy

appears as a fairly deep “tree” containing intermediate abstract superclasses,

whereas the Geometric hierarchy is completely “flat”. The Number hierarchy, in

particular, is crucial to VisualWorks — without the ability to represents

numbers, VisualWorks would cease to function. However, of the Geometric

hierarchy, only class Rectangle  is really necessary (to represent the bounds of

panes and windows).

In the following two chapters we continue our examination of “crucial”

Smalltalk classes: those that represent collections of one form or another. We

begin by looking at collection in general and then describe specific classes and the

behaviour that they provide.



Chapter 14 132

Chapter 14: Collections (1) — Unordered

This chapter describes the abstract superclass Collection, the root of a hierarchy of

interesting classes that roughly correspond to the traditional data structures

common in procedural languages. We demonstrate the behaviour of Collections

with examples that use class Set  — a subclass of Collection. The examples

demonstrate the creation of new instances, their access and enumeration.

We specifically describe unordered collections in this chapter, including classes

Set, Dictionary and Bag, illustrating their use with examples. Subclasses of

Dictionary, specifically IdentityDictionary and SystemDictionary, are also

considered.

14.1. Introduction

A collection is simply a “bunch” of objects. In most conventional languages, the

array is the only sort of collection that is provided, and anything else must be

implemented by the programmer. Additionally, most of these languages deal

with collections containing only a single type of data.

In Smalltalk, the situation is different. A collection may be an instance of any of a

number of available classes. Also, each Smalltalk collection may simultaneously

contain objects of many different classes. For instance, a collection might contain

Strings, Numbers, other collections, or even more complex structures as its

elements. The behaviour of the collection is independent of its elements.

There are two main kinds of collection: the first one, called an unordered

collection, does not refer to its elements based on a numeric index; the second

one, called a sequenceable collection, supports the notion of having an order

associated with the elements and uses a numeric index to locate them. This

chapter will examine unordered collections, chapter 15 will concentrate on

sequenceable collections.

14.2. Class Collection

The class Collection is an abstract superclass (see chapter 13) of all the collection

classes, and it therefore includes methods to provide the behaviour shared by all

its subclasses. For example, figure 14.1 shows the implementation of the includes:

method. Additional protocol is implemented by subclasses of Collection to

support operations suitable only for that class (see later and chapter 15).



Chapter 14 133

Figure 14.1: The includes: method implemented in class Collection

Class Collection is unordered  — a property shared by its concrete subclasses:

Set A Set  contains all the objects put into it, in any

order. Duplicates are not kept; adding equal objects

many times results in only one such object in the

Set .

Bag A Bag contains all the objects put into it, in no

particular order. Duplicate objects are permitted.

Dictionary A Dictionary contains a Set  of Associations

between pairs of objects.

14.3. Unordered Collections

There are three primary examples of unordered collections. The first, class Set , is

of interest whenever membership information is of primary importance. The

second, class Dictionary, is a subclass of Set  whose elements are associations of



Chapter 14 134

two objects: a key and a value. The third, class Bag, is of interest whenever a tally

of occurrences is required.

Here we describe class Set  in some detail as an example of a collection, since

much of its behaviour is also provided by other collection classes. Therefore, the

description that follows may be considered to be applicable to all collection

classes, except where otherwise stated.

The class hierarchy of the unordered collections is as follows:

Object
Collection

Bag
Set

Dictionary

As mentioned earlier, a Set  is a way of keeping information about simple

groupings of objects. A Set  keeps exactly one copy of any particular object in it. A

Set  can contain any number of objects, and the number can vary as needed. No

explicit count need be kept by the programmer.

14.4. Creating Instances of Collections

We have already seen how to create instances of String and Array as literals (see

chapter 3). Other sorts of collections can be created by sending new  or new: to the

appropriate class. For example:

Set new: 5

creates a new Set  of size 5 (initially, all the elements are nil).

The new  message by default creates a Set  of size two; it will grow in size when

necessary. (By default, most other collections have an initial size of 10.)

Initialized instances can be created using with:, with:with:, and so on. For example:

Set with: 40 with: 2

creates a new Set  with the two elements 40 and 2. This technique can be used to

specify up to four arguments:

Set with: obj1

Set with: obj1 with: obj2

Set with: obj1 with: obj2 with: obj3

Set with: obj1 with: obj2 with: obj3 with: obj4



Chapter 14 135

There are also several conversion messages (to convert a collection from one

class to another) which are also useful when creating instances; these are

considered in the next chapter.

14.5. Accessing Elements of a Collection

All subclasses of Collection behave in a similar way. For example, most provide

mechanisms for adding, removing and testing.

14.5.1. Adding

Any object may be added to a collection using the add: message (figure 14.2); its

argument is the object to be added. It’s important to note that the argument is

returned from these messages, not  the receiver. For example:

| set |
set := Set new.
set add: 'a'.
set add: 5.
^set

produces a Set  containing 'a' and 5.

Often we wish to combine two collections; the addAll: message provides this

functionality, adding the elements of the argument to the receiver. This is

equivalent to set union. For example:

(Set with: 2 with: 3) addAll: (Set with: 4 with: 5)

returns a Set  containing the SmallIntegers 2, 3, 4, and 5.



Chapter 14 136

Figure 14.2 The add: method in class Set

14.5.2. Removing

To remove an object from a collection, send the collection the message remove:

— the argument is the object to be removed. An error will be raised if the

argument is not present in the receiver. The message remove:ifAbsent:  can be

used to avoid this possible outcome; the second argument is a block which is

evaluated if the first argument is absent. The two message sequences below use

the remove: message to exemplify the difference between the add: and addAll:

messages.

| set |
set := Set new.
set add: 'a'.
set add: 5.
set addAll: (Set with: 1 with: 3 with: 4).
set remove: 1.
^set

produces a Set  containing the elements 'a', 3, 4, and 5 (i.e. Set ('a' 3 5 4 )),

whereas



Chapter 14 137

| set |
set := Set new.
set add: 'a'.
set add: 5.
set add: (Set with: 1 with: 3 with: 4).
set remove: 1.
^set

causes an error because the temporary variable set refers to a Set  containing

three elements — Set ('a' 5 Set (1 3 4)) — one of which is another Set

containing the element to be removed. The temporary variable set does not itself

contain 1.

There are two messages which may be used to remove a collection of elements

from another collection. The first, removeAll:, requires that all the elements of

the argument be present in the receiver. Alternatively, the binary message - (only

applicable to class Set  and its subclasses) answers those elements present in the

receiver and absent from the argument — i.e. set subtraction. For example, the

message sequence

| set |
set := Set new.
set add: 'a'.
set add: 5.
set addAll: (Set with: 1 with: 3 with: 4).
set removeAll: (Set with: 'a' with: 'b' with: 'c').
^set

results in an error, because not all of the elements of the argument to the

removeAll: message are present in the receiver. However, the similar message

sequence

| set |
set := Set new.
set add: 'a'.
set add: 5.
set addAll: (Set with: 1 with: 3 with: 4).
set - (Set with: 'a' with: 'b' with: 'c').
^set

succeeds, returning a Set  containing the elements 1, 3, 4, and 5 (i.e.

Set  (1  3  4  5  ) ).

14.5.3. Enquiries

There are two general enquiry messages to which all collections will respond.

The first of these is occurrencesOf:, which responds with the number of elements



Chapter 14 138

in the receiver which are equal to the argument. The second is size, which

responds with the number of (non nil) elements of the receiver. For example, the

size of an empty Set  is 0, but the size of a Set  containing an empty Set  is 1.

14.5.4. Testing

Additionally there are two testing messages understood by all collection classes.

The first of these, isEmpty, responds with a Boolean indicating whether there is

at least one (non nil) element in the receiver. The includes: message also

responds with a Boolean, indicating that there is at least one element in the

receiver that is equal to the message argument.

The includes: message may be used to reiterate the difference between the add:

and the addAll: messages. Only the second of the following two message

sequences returns true.

| set |
set := Set new.
set add: 'a'.
set add: 5.
set add: (Set with: 1 with: 3 with: 4).
^set includes: 1

| set |
set := Set new.
set add: 'a'.
set add: 5.
set addAll: (Set with: 1 with: 3 with: 4).
^set includes: 1

14.5.5. Enumerating

There are a number of messages that may be used to enumerate over a collection.

The first three messages described below answer with a new collection “just like

the receiver”. The elements of this new collection depend on the criteria

specified in the argument.

collect: aBlock Evaluates aBlock  for each element. Answers with
a collection of the same size, with the result of the
evaluation of the block for each element.

select: aBlock Evaluates aBlock  for each element. Answers with
a collection containing the elements of the
receiver selected when aBlock  evaluated to true
(the collection may be empty).



Chapter 14 139

reject: aBlock Evaluates aBlock  for each element. Answers with
a collection containing the elements of the
receiver selected when aBlock  evaluated to false
(i.e. the complement of select:).

detect: aBlock Evaluates aBlock  for each element. Answers with
the first element for which aBlock  evaluates to
true.

Alternatively, the message detect:ifNone:  may be
used; the second argument is a block which is
evaluated if no elements of the receiver match the
criteria specified in the first argument, otherwise
detect: responds with an error.

inject: anObject
into: aBlock

Accumulates a running value associated with
evaluating the argument, aBlock , with the current
value and  the receiver as block arguments. The
initial value is the value of the argument,
anObject .

do: aBlock Evaluates aBlock  for each of the elements in the
receiver.

The following example expressions demonstrate the use of the above messages:

(Set with: 1 with: 3 with: 4) collect: [:each |
each factorial]

Set (1 24 6 )

(Set with: 1 with: 3 with: 4) collect:[:each | each >=3] Set (false true ).

(Set with: 1 with: 3 with: 4) select:[:each | each >=3] Set (3 4)

(Set with: 1 with: 3 with: 4) select:[:each | each > 4] Set (), i.e. an
empty Set.

(Set with: 1 with: 3 with: 4) reject:[:each | each >=3] Set (1 ).

(Set with: 1 with: 3 with: 4) detect:[:each | each >=3] 3.

(Set with: 1 with: 3 with: 4) detect:
[:each | each > 4] ifNone:['Not found']

'Not found'.

(Set with: 1 with: 3 with: 4)
inject: 0
into:[:sum :each | sum + each]

8

(Set with: 1 with: 3 with: 4)
inject: 0
into:[:max :each | max max: each]

4

(Set with: 1 with: 3 with: 4) do: [:each |
Transcript show: each factorial printString; cr]

1
6
24

(Set with: 65 with: 66 with: 67) do: [:each |
Transcript show: each asCharacter printString; cr].

$A
$B
$C

Ex 15.1: Try creating instances of Set  and adding the same object several times. Inspect the
contents.



Chapter 14 140

Ex 15.2: Write a sequence of expressions to find the average (mean) of a collection of
numbers. What is the minimum number of expressions required to achieve this?

14.6. Class Dictionary

Class Dictionary is a subclass of Set  and represents a set of Associations. An

Association is a pair of objects, a key and a value. A Dictionary stores a set of

Associations in a manner that allows retrieval of the value when the key is

known. This is occasionally known as attribute–value pairing.

Although the elements in a Dictionary are unordered, each has a definite name

or key . Thus, a Dictionary can be regarded as an unordered collection of values

with unique external keys.

14.6.1. Adding

Although it’s possible to send the add: message to a Dictionary, this is rarely done

in practice since the argument is expected to be an instance of Association (see

figure 14.3). The conventional approach is to use the at:put: message which takes

two arguments: a key  and a value , each of which may be any object.

Figure 14.3: The add: method in class Dictionary



Chapter 14 141

14.6.2. Accessing

The most commonly used accessing message is the keyword message at: which

returns the value  associated with argument. If there is no key  equal to the

argument, then an error is raised. Alternatively the message at:ifAbsent: may be

used; the second argument (a block) is evaluated if no key is found. Figure 14.4

shows how the ifAbsent: keyword can be used to provide a default exception.

Some examples:

| dict |
dict := Dictionary new.
dict at: 'a' put: 1.
dict at: 5 put: 'b'.
dict at: $c put: 6.
dict at: 'a' put: (Set with: 1 with: 3 with: 4).
dict at: 3/4 put: 'b'.
^dict at: 'a'

returns Set (1 3 4 ).

| dict |
dict := Dictionary new.
dict at: 'a' put: 1.
dict at: 5 put: 'b'.
dict at: $c put: 6.
dict at: 'a' put: (Set with: 1 with: 3 with: 4).
dict at: 3/4 put: 'b'.
^dict at: $a

raises an error.

| dict |
dict := Dictionary new.
dict at: 'a' put: 1.
dict at: 5 put: 'b'.
dict at: $c put: 6.
dict at: 'a' put: (Set with: 1 with: 3 with: 4).
dict at: 3/4 put: 'b'.
^dict at: $a ifAbsent:['not found']

returns 'not found'.



Chapter 14 142

Figure 14.4: The implementation of at: in class Dictionary

Other Dictionary accessing messages are as follows:

keys answers with a Set  of the keys from the receiver.

values answers with an OrderedCollection (see
chapter 15) of the values in the receiver. Note that
values are not necessarily unique.

associationAt: answers with the Association given by the
argument.

keyAtValue: answers with a key  associated with the argument.

Examples of the above:

| dict |
dict := Dictionary new.
dict at: 'a' put: 1.
dict at: 5 put: 'b'.
dict at: $c put: 6.
dict at: 'a' put: (Set with: 1 with: 3 with: 4).
dict at: 3/4 put: 'b'.
^dict keys



Chapter 14 143

returns Set ($c 'a' 5 (3/4) ).

| dict |
dict := Dictionary new.
dict at: 'a' put: 1.
dict at: 5 put: 'b'.
dict at: $c put: 6.
dict at: 'a' put: (Set with: 1 with: 3 with: 4).
dict at: 3/4 put: 'b'.
^dict values

returns OrderedCollection ('b' 6 Set (1 3 4 ) 'b' ). Class OrderedCollection is

described in the next chapter.

| dict |
dict := Dictionary new.
dict at: 'a' put: 1.
dict at: 5 put: 'b'.
dict at: $c put: 6.
dict at: 'a' put: (Set with: 1 with: 3 with: 4).
dict at: 3/4 put: 'b'.
^dict keyAtValue: 'b'

raises an error because the Dictionary has two keys corresponding to the value 'b'.

14.6.3. Removing

The messages remove: and remove:ifAbsent:  are not available for instances of

Dictionary. Rather, the corresponding messages removeKey:  and

removeKey:ifAbsent: should be used. For example, the expressions

| dict |
dict := Dictionary new.
dict at: 'a' put: 1.
dict at: 5 put: 'b'.
dict at: $c put: 6.
dict at: 'a' put: (Set with: 1 with: 3 with: 4).
dict at: 3/4 put: 'b'.
dict removeKey: 'a'.
^dict

returns a Dictionary containing three keys: (3/4), $c, and 5.

14.6.4. Testing

Class Dictionary provides an extra testing message to determine the presence of a

specified key — includesKey:.



Chapter 14 144

14.6.5. Enumerating

The keyword enumerating message do: enumerates over the values  of the

receiver. Other enumerating messages are keysDo:, which enumerates the

argument block with each of the receiver’s keys; and keysAndValuesDo:. This last

message takes a two–argument block as its argument, since both each key  and its

corresponding value  are substituted for each enumeration. Examples:

| dict |
dict := Dictionary new.
dict at: 'a' put: 1.
dict at: 5 put: 'b'.
dict at: $c put: 6.
dict at: 'a' put: (Set with: 1 with: 3 with: 4).
dict at: 3/4 put: 'b'.
dict do:[:each | Transcript show: each printString; cr]

| dict |
dict := Dictionary new.
dict at: 'a' put: 1.
dict at: 5 put: 'b'.
dict at: $c put: 6.
dict at: 'a' put: (Set with: 1 with: 3 with: 4).
dict at: 3/4 put: 'b'.
dict keysDo:[:each | Transcript show: each printString; cr]

| dict |
dict := Dictionary new.
dict at: 'a' put: 1.
dict at: 5 put: 'b'.
dict at: $c put: 6.
dict at: 'a' put: (Set with: 1 with: 3 with: 4).
dict at: 3/4 put: 'b'.
dict keysAndValuesDo:

[:k :v | Transcript show: k printString; tab; show: v printString; cr]

Ex 15.3: Browse the accessing, testing and removing  protocols in Dictionary. Also, browse the
Association .

Ex 15.4: Create a Dictionary and insert a few associations. Test whether a particular value is
associated with a key using at:.

14.7. Class IdentityDictionary

Instances of IdentityDictionary perform key  lookup using object identity (==),

rather than object equality (=), and are hence more efficient. Chapter 21 discusses

this distinction in more detail.



Chapter 14 145

Figure 14.5: Class definition for IdentityDictionary

You can see from the class definition above (figure 14.5) that the class is

implemented with an associated collection of values  (the instance variable

valueArray), rather than as a single Set  of Associations.

Examples:

| dict |
dict := IdentityDictionary new.
dict at: 'a' put: 1.
dict at: 5 put: 'b'.
dict at: $c put: 6.
dict at: 'a' put: (Set with: 1 with: 3 with: 4).
dict at: 3/4 put: 'b'.
^dict at: 'a'

raises an error, because the class uses object identity to lookup 'a', which fails.

| dict |
dict := IdentityDictionary new.
dict at: 'a' put: 1.
dict at: 5 put: 'b'.
dict at: $c put: 6.
dict at: 'a' put: (Set with: 1 with: 3 with: 4).
dict at: 3/4 put: 'b'.
^dict at: $c

returns 6.



Chapter 14 146

14.8. SystemDictionary

Figure 14.6: Class Definition for SystemDictionary

The SystemDictionary class (figure 14.6) is a special dictionary that provides

methods which answer questions about the structure of the VisualWorks image.

There is only one instance of this class — the global variable Smalltalk. Example

messages include:

Smalltalk classNames

Smalltalk allClassesDo:[:class |
Transcript show: class name; tab; show: class category; cr]

14.9. Class Bag

A Bag, like a Set , is an unordered collection of elements. The difference is that a

Bag can store the same object more than once. It stores these elements in a

Dictionary, tallying up occurrences of equal objects.



Chapter 14 147

Figure 14.7: The add: method in class Bag

Since a Bag can store the same object more than once, a specialised message

add:withOccurrences: is provided for that purpose. Note that Bag overrides the

default implementation of the add: method to ensure that one occurrence of the

object is added (see figure 14.7). The following two examples demonstrate the

difference between classes Bag and Set :

| bag |
bag := Bag new.
bag addAll: (Set with: 1 with: 3 with: 4).
bag addAll: (Set with: 1 with: 3 with: 4).
^bag size

returns 6, whereas

| set |
set := Set new.
set addAll: (Set with: 1 with: 3 with: 4).
set addAll: (Set with: 1 with: 3 with: 4).
^set size

returns 3.

Ex 15.5: Repeat exercise 15.1, but using Bag rather than Set .



Chapter 14 148

Ex 15.6: Browse the implementations of Bag and Set . Why is Set  not a subclass of Bag (or
vice versa)?

14.10. Summary

One of the major differences between collections in Smalltalk and those

provided by other languages is the fact that a Smalltalk collection can contain

objects of any  class, even objects of different classes. The behaviour provided by

all Smalltalk collections is represented by the abstract superclass Collection — its

(concrete) subclass Set  can be considered to be a representative example of how to

use almost all subclasses of Collection. So far, we have only described unordered

collections; in the following chapter we examine those subclasses of Collection

that provide elements with an order or sequence.



Chapter 15 149

Chapter 15: Collections (2) — Sequenceable

This chapter continues the discussion of collections, concentrating on

sequenceable collections, as represented by abstract class SequenceableCollection

and its subclasses, including classes Array and OrderedCollection. Other classes,

including SortedCollection, String, and Symbol, are also considered here.

Additionally, this chapter describes how to convert an instance of one class of

collection to be an instance of another class.

15.1. Sequenceable Collections

Unlike unordered collections, sequenceable collections access variables by a

numeric index (a Dictionary can be used in this way in a limited sense). Class

SequenceableCollection is an abstract superclass, of which class Array, and its

superclass ArrayedCollection may be considered to be typical sequenceable

collections. Here we describe class Array as a typical sequenceable collection, since

much of its behaviour is applicable to all subclasses of SequenceableCollection.

Therefore the description that follows may be considered to be applicable to all

sequenceable collection classes, except where otherwise stated.

We then go on to consider classes OrderedCollection and SortedCollection, with

their specialised protocol. The class hierarchy is as follows:

Object
Collection

SequenceableCollection
ArrayedCollection

Array
OrderedCollection

SortedCollection

15.2. Class Array

Arrays in Smalltalk are similar to one–dimensional arrays in many languages.

Unlike all other collections, instances of class Array (and all other subclasses of

ArrayedCollection) are fixed size. Once the size of an Array is declared it cannot be

changed, and the Array cannot “grow”. Consequently, class ArrayedCollection

supports the notion of an externally defined ordering.

15.2.1. Creating

We have already seen how we can create instances of the Collection classes with

the messages new , new:, with:, with:with:, and so on. Class Array also responds to

these messages, and in addition it provides the extra messages new:withAll: and



Chapter 15 150

withAll: . (It’s also possible to use a literal array, e.g. #(1 3 4).) The following

examples demonstrate their use:

Array new: 5 withAll: 'a'

produces #('a' 'a' 'a' 'a' 'a' ).

Array withAll: (Set with: 1 with: 3 with: 4)

produces #(1 3 4 ).

15.2.2. Adding

The add: messages should not be sent to instances of Array, since they may not

grow in size (see figure 15.1). To place objects in an array, the at:put: message is

used; the first argument is the index which must be a positive integer within the

bounds of the receiver, the second is the object to be placed. It is the object — not

the array — that is returned from the at:put: message.

There are two additional messages that provide the ability to place more than

one object. The first of these, atAllPut:, replaces each element of the receiver with

the argument. For example, the expression

#(1 3 4) atAllPut: 5

produces an Array in which each element is 5, i.e. #(5 5 5 ). The message atAll:put:

sounds similar but takes two arguments. The first argument is a collection of

indices at which the second argument should be placed. For example, evaluating

the expression

#(1 3 4) atAll: #(1 2) put: 5

results in an Array whose first two elements are both 5, i.e. #(5 5 4 ).



Chapter 15 151

Figure 15.1: Elements cannot be added to instances of Array

15.2.3. Accessing

As you might expect, the message to access a particular element of an Array is at:.

Thus the expression

#(1 3 4) at: 2

returns the second element, 3. There are, however, a couple of shortcuts

provided: the messages first and last return the first and last elements of the

receiver, respectively.

It’s also possible to find the index of an element in an Array using the message

indexOf:. However, this message is unusual in that if it fails to find an index

corresponding to the argument; it returns 0, rather than raising an error. For

example, the expression

#(1 3 4) indexOf: 3

returns 2, whereas

#(1 3 4) indexOf: 5

returns 0.



Chapter 15 152

There are a number of other useful messages which fall broadly under the

“accessing” umbrella; these are as follows:

, (comma) create a new instance in which the argument is
concatenated after the receiver.

reverse return a copy of the receiver in reverse order.

findFirst:
(findLast:)

return the index of the first (last) element of the
receiver which meets the criteria specified in the
argument block.

replaceFrom: to:
with:

specifies a range of elements in the receiver which
are to be replaced with the elements of another
sequenceable collection (the last argument of the
message). The number of elements in the
argument collection must equal the number of
elements to be replaced.

Here are some examples that demonstrate the use of the above messages:

#(1 3 4), #(5 7 8)  #(1 3 4 5 7 8 )

#(1 3 4) reverse  #(4 3 1 )

#(1 3 4) findFirst: [:i | i >= 3] 2

#(1 3 4) findLast: [:i | i >= 3] 3

#(1 3 4), #(5 7 8)
replaceFrom: 2
to: 5
with: #('a' 'b' 'c' 'd')

#(1 'a' 'b' 'c' 'd' 8 )

15.2.4. Removing

Since the size of an Array cannot be modified, it is not possible to remove any of

its elements. However, other subclasses of SequenceableCollection (notably

those in the OrderedCollection hierarchy) do  provide removing protocol (see

later).

15.2.5. Copying

Rather than copying the whole of the collection, it’s sometimes useful to copy

some sub–collection. There are several messages to support this requirement; the

most common three are:

copyFrom: to: return a new collection similar to the receiver
containing the elements specified in the range
indicated by the two numeric arguments.

copyWith: return a new collection similar to the receiver,
containing the extra element specified.

copyWithout: return a new collection similar to the receiver, not
including the element specified.



Chapter 15 153

Examples:

#(1 3 4), #(5 7 8) copyFrom: 2 to: 5 #(3 4 5 7 )

#(1 3 4) copyWith: 5 #(1 3 4 5 )

#(1 3 4) copyWithout: 4 #(1 3 )

15.2.6. Enumerating

All the enumerating protocol described in chapter 14 is applicable to

sequenceable collections (e.g. do:). There are three additional messages which are

of occasional use. The first of these, reverseDo:, simply enumerates across the

receiver in reverse order.

The keysAndValuesDo: message has the same selector as that provided for class

Dictionary (chapter 14), but substitutes each of the receiver’s indices and its

corresponding element for each enumeration.

Finally, the message with:do: provides a mechanism of synchronising the

combined enumeration of two Arrays (the receiver and the first argument), in

the evaluation of a two–argument block (the last argument).

The following examples demonstrate the messages described above:

#(1 3 4) do: [:i | Transcript show: i printString; cr]

#(1 3 4) reverseDo: [:i | Transcript show: i printString; cr]

#(1 3 4) keysAndValuesDo:
[:index :element | Transcript show: (index * element) printString; cr]

#(1 3 4) with: #(4 5 6) do: [:i :j | Transcript show: (i * j) printString; cr]

Ex 15.1: What’s the difference between the following two message expressions?

#(1 3 4) reverse do: [:i | Transcript show: i printString; cr]

#(1 3 4) reverseDo: [:i | Transcript show: i printString; cr]

15.3. Class OrderedCollection

An OrderedCollection may be used as a multi–purpose data structure. It

preserves the order in which things are added to it, and allows the elements to be

accessed according to the order of entry. As such, it serves as a stack, queue,

varying size array, and combinations thereof.

15.3.1. Adding

Unlike Arrays, OrderedCollections are not of fixed size. Therefore they may have

elements added to them. There are several messages in protocol adding which



Chapter 15 154

provide the functionality to add single and multiple elements at various relative

positions. Some of them are described below (remember that the argument is

returned from these messages, not  the receiver):

add: add the argument to the receiver. This message is
equivalent to addLast:  (as shown in figure 15.2).

addFirst: add (prepend) the argument to the receiver,
putting it before  all existing elements.

addLast: add (append) the argument to the receiver,
putting it after all existing elements.

add:after: add the first argument to the receiver, placing it in
the position after the second argument.

add:before: add the first argument to the receiver, placing it in
the position before the second argument.

addAllFirst:
(addAllLast:)

add the argument collection to the receiver
placing its elements before (after) any existing
elements.

The following expressions demonstrate the above messages:

| coll |
coll := OrderedCollection with: 1 with: 3 with: 4.
coll add: 5.
coll addFirst: 7.
^coll

OrderedCollection
(7 1 3 4 5 )

| coll |
coll := OrderedCollection with: 1 with: 3 with: 4.
coll add: 5 after: 3.
coll add: 7 before: 3.
^coll

OrderedCollection
(1 7 3 5 4 )

| coll |
coll := OrderedCollection with: 1 with: 3 with: 4.
coll addAllFirst: #(5 7 8).
coll addAllLast: #(9 11 12).
^coll

OrderedCollection
(5 7 8 1 3 4 9 11
12 )



Chapter 15 155

Figure 15.2: Adding an element to an OrderedCollection
places it after any existing elements

15.3.2. Accessing

In addition to the accessing messages described for class Array, there are two

additional messages to retrieve elements of an OrderedCollection relative to

some other specified element. These are after: and before:. The former returns

the element in the collection whose index is one greater than the argument;

similarly the latter returns the object preceding that specified in the message.

15.3.3. Removing

Unlike class Array, OrderedCollection (and its subclasses) provide messages to

remove elements. In addition to those mentioned for collections in general

(chapter 14), there are several other messages that are of interest. These are

described below:

removeFirst
(removeLast)

removes the first (last) element from the
receiver.

removeFirst:
(removeLast:)

the argument to this message is an integer
which indicates how many elements should
be removed from the front (rear) of the
receiver.

removeAllSuchThat: removes all those elements which meet the
criteria specified in the block argument.



Chapter 15 156

The following message sequences give examples of the above messages (in

addition to the existing remove: message):

| coll |
coll := OrderedCollection with: 1 with: 3 with: 4.
coll remove: 3.
^coll

OrderedCollection
(1 4 )

| coll |
coll := OrderedCollection with: 1 with: 3 with: 4.
coll removeFirst.
^coll

OrderedCollection
(3 4 )

| coll |
coll := OrderedCollection with: 1 with: 3 with: 4.
coll removeLast.
^coll

OrderedCollection
(1 3 )

| coll |
coll := OrderedCollection with: 1 with: 3 with: 4.
coll removeFirst: 2.
^coll

OrderedCollection
(4 )

| coll |
coll := OrderedCollection with: 1 with: 3 with: 4.
coll removeAllSuchThat: [:i | i >=3].
^coll

OrderedCollection
(1 )

15.4. Class SortedCollection

Class SortedCollection is a subclass of OrderedCollection whose instances sort

their elements according to some order. The order is determined by the

expression contained in an instance variable called sortBlock. The block requires

two arguments, and returns a Boolean, i.e. true or false (chapter 21) — thus it acts

as a “function” for sorting the elements as each element is added. By default, all

instances of SortedCollection use the class variable DefaultSortBlock (see

figure 15.3), which gives ascending order. Therefore any object that understands

the message <= can be added to a SortedCollection.



Chapter 15 157

Figure 15.3: The class variable DefaultSortBlock
is initialised to ascending order

15.4.1. Creating

In addition to the usual instance creation messages, SortedCollection provides

two extra selectors to initialise the sortBlock to something other than the default.

The sortBlock: message, when sent to the class, will create an instance of

SortedCollection with its sortBlock initialised to that specified in the argument.

Alternatively, the withAll:sortBlock: performs the same operation, with the

additional benefit of providing some initial elements.

15.4.2. Accessing

Extra messages are provided to get and set the sortBlock of instances of

SortedCollection via the messages sortBlock and sortBlock: respectively. The

example below demonstrates the use of a SortedCollection.

| coll |
coll := SortedCollection new: 10.
coll sortBlock: [:x :y | x >= y].
#(1 3 4) do:[:i | coll add: i factorial].
^coll

Given that we are sorting in descending order, the result is

SortedCollection (24 6 1 ).



Chapter 15 158

15.5. Converting Collections

There are many messages which can be used to convert  an instance of one class

of collection to another. Strictly speaking, the instances are not converted,

instead new instances are created containing the same elements. The most

commonly used messages are described below:

asArray Answers with an Array containing the
elements of the receiver.

asBag Answers with a Bag containing the elements
of the receiver.

asSet Answers with a Set  containing the elements of
the receiver.

asOrderedCollection Answers with an OrderedCollection containing
the elements of the receiver. If the receiver is
unordered, then the resulting order is
arbitrary.

asSortedCollection Answers with a SortedCollection, containing
the elements of the receiver, sorted so that
each element is less than or equal to (<=) its
successors.

asSortedCollection: Answers with a SortedCollection, containing
the elements of the receiver, sorted so that
each element is ordered by the argument block
(which must have two arguments).

The conversion messages are also useful when creating instances, for example:

#(1 4 6 3 8 1) asSortedCollection

creates a SortedCollection containing the elements of the (literal) Array in

ascending order. Other examples:

(#(1 3 4), #(4 3 1)) asSet Set (1 3 4 )

(#(1 3 4), #(4 3 1)) asBag Bag (1 1 3 3 4 4 )

(#(1 3 4), #(4 3 1)) asOrderedCollection OrderedCollection
(1 3 4 4 3 1 )

(#(1 3 4), #(4 3 1)) asSortedCollection SortedCollection
(1 1 3 3 4 4 )

(#(1 3 4), #(4 3 1)) asSortedCollection: [:i :j | i > j] SortedCollection
(4 4 3 3 1 1 )

(Set with: 1 with: 3 with: 4) asArray #(1 3 4 )
Ex 15.2: Build a Binary Tree class as a subclass of Object. It should have the following

properties:



Chapter 15 159

• Be able to add any object to the tree, as long as they are the same class and
understand the ‘<’ and ‘>’ messages. Call the message which can perform this add:
aValue;

• Be able to return a collection of the elements of the tree in ascending order.

Ex 15.3: Make your binary tree class a subclass of class OrderedCollection. Build the
following methods for your binary tree class, allowing it to act just like a collection.

do: aBlock

size (return the number of non–empty tree nodes in the tree)

remove: anObject ifAbsent: aBlock

Ex 15.4: Verify that the following messages can be sent successfully to a member of your class
(if you did everything correctly these should be available automatically):

asSortedCollection

printString

removeAll: aCollection

Ex 15.5: Create an OrderedCollection of Integers . Convert it to a SortedCollection using the
default sorting rule.
Sort the collection so that they are in decreasing order of absolute value.

Ex 15.6: Try converting an Array to a SortedCollection.

15.6. Strings

A String is a fixed length sequence of Character objects. Class String and class Text

are subclasses of CharacterArray. Strings are used in much the same way as

strings in other languages. A String may be any length up to ~65k characters .

Character objects can be obtained by placing a dollar symbol ($) in front of the

desired character value. For instance, the Character object for lowercase ‘c’ can be

obtained from $c.

It’s important to note the difference between instances of Character and instances

of String. For example the String 'b' contains the Character $b, and is therefore

not equal to it.

There are a few specialised Characters such as tab, or return. These may be

obtained by sending the corresponding message to the class Character. For

example, the expression Character tab returns a tab character.

There are many implementation–specific subclasses of String (e.g. MacString),

corresponding to the way in which strings are handled in different operating

systems. However, most of the behaviour of String and its subclasses is

implemented in its superclass CharacterArray. The protocol provided by

CharacterArray is described below.



Chapter 15 160

15.6.3. String Manipulation

Since much of the computation of application programs is likely to centre on the

input and output of text, Smalltalk provides numerous messages to transform

Strings. Some of the most useful ones are described below, along with a few

examples. Note that all of these messages return a new instance, i.e. they are

non–destructive .

chopTo: Combine start and end characters of the receiver
in such a way that the final length of the string is
equal to the integer argument.

contractTo: Combine the start and end characters of the
receiver, separated by an ellipsis, in such a way
that the final length of the string is equal to the
integer argument.

dropFinalVowels Return a copy of the receiver missing all vowels,
except for the first letter (if that was a vowel).

dropVowels: The integer argument specifies how many vowels
are to be removed from a copy of the receiver. If
there are fewer vowels that the number specified
then the difference is made up by removing
characters from the beginning of the receiver.

findString:
startingAt:

Search through the receiver searching for the
(first) string argument, starting from the index
specified by the (second) integer argument. Return
the index at which the search string was found.

Examples of the above messages are as follows:

'VisualWorks' chopTo: 9 'Visuaorks'

'VisualWorks' contractTo: 9 'Vis...rks'

'VisualWorks' dropFinalVowels 'VslWrks'

'VisualWorks' dropVowels: 2 'VisulWrks'

'VisualWorks' dropVowels: 4 'VslWrks'

'VisualWorks' dropVowels: 5 'slWrks'

'VisualWorks' findString: 'Work'  startingAt: 1 7

15.6.2. Converting

Strings can also be case converted using asLowercase and asUppercase. For

example:

'VisualWorks' asLowercase 'visualworks'

'VisualWorks' asUppercase 'VISUALWORKS'



Chapter 15 161

15.6.4. Comparing

Strings can be compared using the messages <, <=, >, and >=. The ordering is

ASCII with case differences ignored. For example, the message < answers

whether the receiver collates before the argument.

The match: method performs a pattern matching operation. Case differences are

ignored and “wildcard” characters are matched only when in the receiver . A ‘#’

character matches any one character, and a ‘*’ character matches any sequence of

characters, including no characters.

Alternatively, the sameAs: message answers whether the receiver and the

argument match precisely (ignoring case differences). Some examples:

'VisualWorks' match:  'VisualWorks' asLowercase true

'VisualWorks' match: 'Vis*orks' false

'Vis*orks' match: 'VisualWorks' true

'VisualWorks' sameAs: 'VisualWorks' asLowercase true

15.7. Symbols

A Symbol (see chapter 3) is a label that conveys the name of a unique object such

as a class name. There is only one instance of each Symbol in the VisualWorks

image. Consequently, class Symbol overrides some of the protocol it inherits

from class String. It’s important to note the difference between testing for equality

(=) and identity (==) between instances of classes String and Symbol (chapter 21

describes the terms “equality “and “identity” in more detail):

'abc' = 'abc' true

'abc' == 'abc' false, Strings are not unique

#abc = #abc true

#abc == #abc true, Symbols are unique

Ex 15.7: Create an instance of Array containing three Strings , in three different ways.

Ex 15.8: Browse the CharacterArray and String  protocols comparing and converting. Try some
of these methods.

Ex 15.9: Explore the CharacterArray methods match: and sameAs:. Try some example
expressions.

Ex 15.10: Investigate the CharacterArray method spellAgainst:, which is used in the spelling
correctors.

Ex 15.11: Investigate the effect of the replaceFrom:to:with: method (defined in
SequenceableCollection) on instances of String .

Ex 15.12: Write a method leftMost: in class CharacterArray whose argument is an integer, so
that 'abcdef' leftMost: 3 returns 'abc'.



Chapter 15 162

Ex 15.13: Similar to above, write a method rightMost:, so that 'abcdef' rightMost: 3 returns
'def'.
Ensure that both your methods work correctly when the integer argument is greater
than the size of the receiver.

15.8. Summary

The preceding two chapters describe all the reader needs to know to understand

how collections behave, and how to use them. Of the sequenceable collections, it

is important to identify those that cannot grow (subclasses of ArrayedCollection),

and thus should not be sent add: messages. The following table summarises the

sequenceable collections covered in the chapter:

OrderedCollection A collection where the ordering is given by the

order in which elements are added. Can grow.

Array A collection where the order is determined by an

integer index, starting at 1. Cannot grow.

String An indexed collection of Characters, with the

index starting at 1. Cannot grow.

SortedCollection A collection of objects, which is sorted according

to an ordering defined in the instance of

SortedCollection. Can grow.

Symbol A subclass of String. (All Symbols are unique,

while there can be two different Strings

containing the same Characters.) Cannot grow.

In the following chapter we temporarily return to Browsers, completing the

description of the options available from the many <operate> menus.



Chapter 16 163

Chapter 16: More on Browsers

In this chapter we describe the remaining Browser <operate> button menu

options not yet explored. These options are demonstrated with examples drawn

from previous chapters.

Additionally, we conclude the description of the options available from the

Launcher that are not covered elsewhere in the book.

16.1. Browser Menus

Using the System Browser as an example we will consider each menu option

from the available <operate> menus. The Browsers that may be spawned from

the System Browser (or produced as a result of evaluating a message expression,

from a Workspace for example) all share these menus. Some of the options have

already been described (see chapters 6 and 9); the remainder will be described

here.

16.1.1. Hardcopy

Before we examine each of the <operate> menus in turn, let us first describe the

hardcopy option, since it is present in all the <operate> menus in the Browsers,

and many of the other text–based windows. This option produces a file

containing the source code for the selected method, protocol, class or category

and sends it to the printer. (The format of the file is similar to that produced by

the f i le  out  as…  option, but doesn’t contain any special characters recognised

by the compiler — i.e. it may not be later filed–in.) After the operation has been

successfully completed a notification is written to the System Transcript.

The Settings Tool (chapter 5) should be used to select the appropriate form of

printing for your platform. For example, in figure 16.1, we have selected the

options suitable for a Macintosh connected to a non–postscript printer. For other

platforms, please consult your VisualWorks ‘User Guide’ or ‘Installation Notes’.



Chapter 16 164

Figure 16.1: Setting the printing preferences

16.1.2. The Class Categories Menu

The Class Categories menu comes in two guises, according to whether or not a

category is selected. Figure 16.2 shows the full menu, with those options always

available indicated by a ‘†’. The numbers alongside the right–hand edge of the

menu indicate the chapters in which an option has already been described.



Chapter 16 165

†

†

†

†

6

16

9

6

9

Figure 16.2: The Class Categories <operate> menu

rename as… The user is prompted to provide a new name for the
selected category. This option is often used when there is
a conflict between category names or when correcting a
typing mistake. All classes in the selected category are
modified accordingly. The operation fails if the user
provides a category name that already exists
(unfortunately, no feedback is given to the user in these
circumstances)!

remove… This option removes the selected category and the
classes it contains from the VisualWorks image. Not
recommended, unless you are sure you know what you
are doing — it is possible to remove classes which will
prevent any further work being carried out in this
image! The user is prompted to confirm the operation if
the category contains any classes.

edit all Prints the structure of all categories and their classes in
the lower text pane. The order of the categories is the
same as that in the class categories pane. By editing this
list the user may change category names, category
contents, and the order in which the categories will
appear. Although it is also possible to modify class
names, all such changes are ignored. The user must
select accept from the text pane <operate> menu to see
the result of any changes that have been made. This
option is seldom used, since other options exist by which
the same modifications may be (more safely) carried out.
Not recommended.



Chapter 16 166

find class… The user is prompted to specify a class name (possibly
including the wildcards ‘*’ and ‘#’). The category
containing the specified class is selected in the category
pane and the class is selected in the class pane. This
mechanism is similar to that described in chapter 9 for
opening a Browser on a specified class, i.e. if more than
one class matches the specified name, then the user is
prompted to select the required class. For example, in
figure 16.3, the user specifies the name ‘Gra*’; the
resulting list is shown in figure 16.4. If there is no class
whose name matches the specified name, then a
“warning” Prompter appears (figure 16.5).

Figure 16.3: The find class…Prompter

Figure 16.4: Possible class names beginning with ‘Gra*’



Chapter 16 167

Figure 16.5: A Prompter to indicate that no class matches the
name specified by the user

(with the option to try again)

The following exercises assume that you followed our recommendations in

chapter 11, and saved your work! (Otherwise, you will find it necessary to revisit

that chapter.)

Ex 16.1: Rename the class category Spending as Finance using the rename as…  menu
option

Ex 16.2: Undo the modification in exercise 16.1 using the edit  al l  option.

Ex 16.3: File out the class categories Spending and Financial Tools. Examine the files using
the File Editor (chapter 6).

Ex 16.4: Remove the class category Financial Tools.

Ex 16.5: File–in the category Financial Tools from the file–out you created in exercise 16.3.

Ex 16.6: Experiment with the find class… option.

16.1.3. The Class Names Menu

The Class Names menu (or “Class Menu”) is only available if a class is selected.

Figure 16.6 shows the menu, with numbers alongside its right–hand edge

indicating the chapters in which options have already been described.



Chapter 16 168

6

16

9

9

6

6

6

Figure 16.6: The Class menu

inst var refs… A menu is displayed listing the instance variables of
the class and its superclasses. (The variables in each
class are identified appropriately.) When the user
selects a variable name, a Browser (called a “Message–
Set Browser” — see later) is opened on the methods
in which the selected variable is referenced. For
example, if the class FinancialHistory is selected, the
inst var refs…  option produces a list of its instance
variable names (figure 16.7).



Chapter 16 169

Figure 16.7: A list of instance variable names for the class
FinancialHistory

class var refs… Similar to above, except that the resulting menu
contains a list of the class variable names for the class
and its superclasses.

class refs This option opens a Browser containing all those
methods in which the class is referenced.

move to… The user is prompted for a category name (which
may be new or existing) into which to move the class.
The System Browser is updated accordingly.

rename as… The user is prompted to provide a new class name for
the selected class. If appropriate, a Browser is opened
containing the methods in which the class is
currently referenced (using its old name); if necessary
these methods should be amended. We recommend
that you first check for references to this class (using
the class refs  option above) and make any
necessary modifications before  renaming the class.

remove… The user is prompted to confirm this operation. It’s
easier to remove references to this class before you
remove the class itself!

Ex 16.7: Open a Browser which contains all methods referencing the class variable
DefaultForWindows  in class LookPreferences.

Ex 16.8: Open a Browser which contains all methods which reference the class
LookPreferences.

Ex 16.9: Move the class SpendingHistory into the category called ‘Financial Tools’.

Ex 16.10: What will happen if you try to rename the class SpendingHistory as
‘ExpendituresHistory’? Go ahead and see if you are correct.



Chapter 16 170

Ex 16.11: What will happen if you try to remove the class SpendingHistory? Go ahead and
see if you are correct. (This assumes that you didn’t rename the class in
exercise 16.10!)

16.1.4. The Message Categories Menu

The Message Categories menu (or “Protocols Menu”) is similar to the Class

Category menu since it has two guises, according to whether or not a protocol is

selected. Figure 16.8 shows the full menu, with those options always available

indicated with a ‘†’. The numbers alongside its right–hand edge indicate the

chapters in which options have already been described.

†

†

†

6

16

9

6

Figure 16.8: The Protocols Menu

rename as… Prompts the user for a new name for the selected
protocol, then updates the protocol list in the
Browser.

remove… After prompting the user for confirmation, this
option removes the protocol and the methods it
contains. However, there is no attempt to discover if
any other methods send messages corresponding to
the methods contained in the selected protocol you
are about to remove. (To determine all senders of a
given message, see the senders option from the
Message Selectors menu below.)



Chapter 16 171

edit all Prints the structure of the protocols and the methods
they contain in the lower text pane. The order of the
protocols is the same as that in the protocol pane. By
editing this list the user may change protocol names,
protocol contents, and the order in which protocols
will appear. Although it is possible to modify
message selector names, all such changes are ignored.
The user must select accept from the text pane
<operate> menu to see the result of any changes that
have been made. This option is seldom used, since
other options exist by which the same modifications
may be (more safely) carried out. Not recommended.

find method… This option displays a list of the message selectors
provided by the selected class. The instance⁄class
switch on the Browser determines which group of
selectors is displayed in the menu. Selecting a selector
from the list causes its protocol to be selected in the
protocol pane, itself to be selected in the message
selectors pane, and its method to be displayed in the
lower text pane. For example, figure 16.9 shows the
list of selectors in class SpendingHistory.

Figure 16.9: The list of message selectors
 defined for class SpendingHistory

Ex 16.12: In class SpendingHistory, rename the protocol private as initialize-release.

Ex 16.13: Reverse the modification made in exercise 16.12, by using the edit  al l  menu option.

Ex 16.14: File–out the class protocol instance creation in class SpendingHistory. Examine the
file using the File Editor (chapter 6).

Ex 16.15: Remove the class protocol instance creation from class SpendingHistory. File–in
the protocol from the file–out you created in exercise 16.14.



Chapter 16 172

16.1.5. The Message Selectors Menu

The Message Selectors menu is only available if a message selector is selected.

Figure 16.10 shows the menu, with numbers alongside its right–hand edge

indicating the chapters in which options have already been described.

6

16

9

Figure 16.10: The Message Selectors menu

The first three menu options are very useful in tracing message–sends (see also

later, for alternative ways of browsing the senders and implementors of a

message):

senders This option searches the VisualWorks image for all
methods in which the message selector is sent. A
Browser is opened. If the selected message selector is
not sent by any method in the image, then the user is
presented with a “warning” Prompter.

implementors This option opens a Browser containing all classes that
implement a method corresponding to the selected
message selector.

messages… This option displays a menu of the messages sent in
the selected method. Selecting one of these messages
opens a Browser containing the implementors of that
message.

move to… The user is prompted for the name of the destination
protocol into which the selected method will be
moved. If a protocol of that name does not exist then it
is created. To copy the method to another class, the
user must include both the class name and the message
protocol, in the form ClassName>selector.



Chapter 16 173

remove… The method is deleted after confirmation from the
user. It’s advisable to ensure that there are no senders
of the message (using the senders option above)
before removing a method!

Ex 16.16: Select the message selector printOn: in class SpendingHistory. Open a Browser on all
senders of this message.

Ex 16.17: Whilst having the same message selected, open a Browser on all implementors of
printOn:.

Ex 16.18: Again from the same message, browse all implementors of keysAndValuesDo:.

16.1.6. The Text Pane Menu

The text pane menu (or “Code” menu) is always available, since the pane can

also be used as a workspace for experimentation. Figure 16.11 shows the menu,

with numbers alongside its right–hand edge indicating the chapters in which

options have already been described.

5

5

5

5

5

5

5

5

7

6

6

9

16

Figure 16.11: The Code menu



Chapter 16 174

format This option modifies the layout of the method so that it
adheres to the code indentation conventions. For
example, figures 16.12 and 16.13 display the original
printOn: method in class FinancialHistory that we described
in chapter 11 before and after the use of the format option
respectively.

Figure 16.12: The printOn: method before formatting

Figure 16.13: The printOn: method after formatting



Chapter 16 175

explain Used when a variable, literal or message selector is
selected, this option appends an “explanation” of the
selection. The explanation usually includes some code
which, when evaluated, opens a Browser on references to
the selection. For example, in figure 16.14 the Browser
contains an explanation of the instance variable incomes.

Figure 16.14: An “explanation” of the variable incomes

Ex 16.19: Ensure that the methods in classes SpendingHistory and FinancialHistory adhere to
the code formatting conventions.

Ex 16.20: “Explain” the message space in the method pictured above.

16.2. Alternatives

You can also find all senders of a message by evaluating an expression of the

form:

Browser browseAllCallsOn: #printOn:

This opens a new Browser containing all those methods that send the message

printOn:.

Alternatively, you can open a Browser containing all implementors of a method

by evaluating an expression such as:

Browser browseAllImplementorsOf: #do:

Finally, you can open a Browser containing all those methods that contain a

reference to a specific class by evaluating an expression similar to:



Chapter 16 176

Browser browseAllCallsOn: (Smalltalk associationAt: #Array)

16.3. Message–Set Browser

A Message–Set Browser is a special kind of Browser that gives access to a

collection of methods with specific characteristics. For example, figure 16.15

shows a Message–Set Browser containing all implementors of do:. You can see

that the upper pane contains a list of class–selector pairs corresponding to the

label of the Browser.

Figure 16.15: A Message–Set Browser

16.4. The Launcher

We have already described most of the operations available from the Launcher.

The following sections describe the remainder, and identify those options already

described.

16.4.1. File

The options available from the File menu (figure 16.16) are described below:



Chapter 16 177

Collect Garbage collects objects in the image that are no longer required
(called garbage) and discards them, thus removing them
from memory. Although this process occurs automatically
at regular intervals, you may want to use this option to
discard objects for a specific reason. The operation also
writes a message to the Transcript indicating how much
space remains.

Collect All
Garbage

performs a similar operation to above. In addition, this
operation searches for garbage in a memory zone called
Perm Space. Consult your User Guide for more
information on both options.

Settings opens a window in which various options can be set. See
chapter 5.

We have already described the Save As…  option in chapter 4. There are two

other options for saving, Perm Save As…  and Perm Undo As….  These

more advanced options provide a means of using Perm Space; consult your User

Guide for more information.

Figure 16.16: The File menu of the Launcher

You should also be familiar with the dialogue box that is produced when you

select the Exit VisualWorks… option from the Launcher (figure 16.17). This

was described in chapter 4.



Chapter 16 178

Figure 16.17: The Exit VisualWorks… dialogue box

16.4.2. Browse

The Browsers menu of the Launcher (figure 16.18) contains five options. By

now you should be very familiar with the All Classes  option. The

Class Named…  option was described in chapter 9. The References To…

and Implementors Of… options provide the same functionality as the

senders and implementors options described earlier in this chapter. The

remaining option, Resources, is described in chapter 34.

Figure 16.18: The Browse menu of the Launcher

16.4.3. Tools

Four of the options available from the Tools menu (figure 16.19) have all been

described elsewhere, others are described in chapter 34. The remainder are

beyond the scope of this book. Numbers on the right–hand side of the menu

indicate the chapter in which the option is described.



Chapter 16 179

6

6

7

34

34

34

34

7

Figure 16.19: The Tools menu of the Launcher

16.4.4. Changes

The options available from Changes  menu of the Launcher (figure 16.20) are all

described in chapter 24.

Figure 16.20: The Changes  menu of the Launcher

16.5. Summary

This chapter completes the description of the Browsers available in

VisualWorks. Hopefully, by now, the reader will feel completely at ease with the

VisualWorks user interface, being able to navigate between class categories,



Chapter 16 180

classes, protocols and methods, using a combination of Browsers and the

Launcher.

We now return to blocks, examining how they are used to create “looping”

control structures.



Chapter 17 181

Chapter 17: Blocks and Control Structures (2)

This chapter considers further the construction of control structures using blocks.

In particular, we describe class Interval and its use in a simple “for” loop.

Other constructions using blocks are also considered here, including the use of

return expressions in blocks.

17.1. Class Interval

Class Interval is a special kind of sequenceable collection (see figure 17.1) that

represents a finite arithmetic progression or sequence. Such progressions are

given by a starting number, a (finite) limit, and a method of computing the next

number. The progression is specified at creation time and may not be changed or

grown. Thus, it is logically a special class of array with a particularly efficient

representation for the elements. Hence the usual at: message is available (but not

at:put:, add:, or remove:) — i.e., once created, new elements cannot be added or

removed from an Interval. Typically, Intervals are used for looping control (see

later). However, they can also be manipulated as independent objects.

In general, Intervals are created by specifying start and end points along with an

optional step–size. For example:

Interval from: start to: stop

Interval from: start to: stop by: step

Without the step–size, the Interval must be non–decreasing as in (1 to: 1) or (1 to:

10). Otherwise it denotes an empty Interval, i.e. an Interval without elements, e.g.

(1 to: -10).

Intervals are more general than corresponding facilities in other programming

languages because they can be constructed with arbitrary numbers. Consequently,

it is legal to have Intervals such as:

1 to: 10

(1/3) to: (8/3) by: (1/3)

1.5 to: 9.5 by: 0.5

1 to: 5.0 by: (1/3)

When accessed sequentially via the sequencing operations do:, collect:, and so on.

(see below), the elements obtained are not always of the same class. For instance,

in the last example above, the elements accessed include 1 (a SmallInteger) and

4/3 (a Fraction).



Chapter 17 182

Another way of creating an Interval is by sending to: or to:by: to a kind of Number.

The following two expressions are equivalent:

Interval from: 10 to: 114 by: 4

10 to: 114 by: 4

Figure 17.1: The class definition of Interval

As a subclass of SequenceableCollection, class Interval inherits lots of behaviour

(see chapter 15). These messages include size, isEmpty, last, asArray, and so on. In

addition, it provides access to its instance variable step via the increment

message. Examples:

( 1 to: 10 by: 3) size 4

( 1 to: -10 by: -3) size 4

( 1 to: -1) size 0

( 1 to: -10 by: 2) size 0

( 1 to: 10 by: 3) isEmpty false

( 1 to: -10 by: -3) isEmpty false

( 1 to: -1) isEmpty true

( 1 to: 10 by: 3) last 10



Chapter 17 183

( 1 to: -10 by: -3) last -8

( 1 to: -10 by: 2) last -11

(1 to: 5.0 by: (1/3) ) last 5.0

( 1 to: 3 by: 0.5) last 3.0

( 1 to: 10 by: 3) asArray #(1 4 7 10 )

( 1 to: -10 by: -3) asArray #(1 -2 -5 -8 )

( 1 to: -10 by: 2) asArray #()

( 1 to: -1) asArray #()

(1 to: 5.0 by: (1/3) ) asArray #( 1 (4/3) (5/3) 2 (7/3)
(8/3) 3 (10/3) (11/3) 4
(13/3) (14/3) 5)

( 1 to: 3 by: 0.5) asArray #(1.0 1.5 2.0 2.5 3.0 )

( 1 to: 10 by: 3) increment 3

( 1 to: -10 by: -3) increment -3
Ex 17.1: Why does the expression (1 to: -10 by: 2) last return a nonsensical result?

17.1.1. Looping

Intervals respond to the message do: by evaluating the block argument for each of

its values in sequence. Thus, an Interval can be used to construct the equivalent

of a “for” loop:

(10 to: 114 by: 4) do: [ :each | Transcript show: each printString; cr]

This construction is so common that to:do: and to:by:do: are implemented in

Number, so the initial parentheses can be omitted. Examples:

| sum |
sum := 0.
1 to: 10 do: [:i | sum := sum + (i * 3)].
sum

165

| sum |
sum := 0.
10 to: 1 by: -1 do: [:i | sum := sum + (i * 3)].
sum

165

| coll |
coll := OrderedCollection new: 10.
1 to: 10 do: [:i | coll add: i factorial].
coll

OrderedCollection
(1 2 6 24 120 720
5040 40320
362880
3628800 )

Ex 17.2: Try some examples using Intervals to control the repetition of a block.



Chapter 17 184

17.1.2. Iterating

We have already seen that class Collection provides protocol to iterate across

elements of its instances. As instances of one of its (indirect) subclasses, Intervals

also respond to these messages. For example:

( 1 to: 3 by: 0.5) collect: [:each | each factorial]

Ex 17.3: Re–write the first two examples in section 17.1.1 using the inject:into: message.

17.2. Instance Behaviour through Blocks

We have already seen that blocks are a means of storing Smalltalk code as

variables which can then be passed to other methods, evaluated, and so on.

One particularly useful application of blocks is to provide “instance behaviour”.

This means giving individual instances of a class some special behaviour which

is not common to all instances of that class.

Generally this is accomplished by:

1. Setting aside one or more instance variables in the class for the block(s).

2. Implementing a method to set the instance variable(s).

3. Finally, creating some sort of “execute” method to activate the behaviour

embedded in the block(s).

Examples in the VisualWorks image include SortedCollection (chapter 15) and

PluggableAdaptor (chapter 33).

This technique also has applications in AI tools (setting individual responses for

frames), in direct computing applications (such as spreadsheets, for cell

formulae), and many other sorts of programs.

17.3. Return Expressions in Blocks

A method can have return expressions inside a block. For example, a method

may contain the following code:

self someTest ifFalse: ["exit from method immediately" ^'Fail'].
"rest of method here"

This causes the method to return immediately if the test fails.



Chapter 17 185

This behaviour is frequently useful when expressing an algorithm with some

special cases, or with exception conditions. It can also be used (together with the

pseudo–variable self) to express recursive solutions.

However, a block is always evaluated in the context in which it was defined. This

means that it is possible to attempt to return (using a return expression inside a

block, i.e. ‘^’) from a method which has already returned using some other

return expression. This run–time error condition is trapped by the virtual

machine, and an error Notifier displayed. For example, figure 17.2 shows the

method returnBlock which we have added to class Object. This method simply

returns a block containing an expression to return self. Evaluating the expression

Object new returnBlock value

causes an error Notifier to appear.

Figure 17.2: An example of a block expression that causes an error

17.4. Summary

The use of an instance of class Interval, when combined with a block, provides a

simple “for” loop. Additionally, because Interval is a subclass of



Chapter 17 186

SequenceableCollection, it inherits the ability to enumerate — using messages

such as collect:, select:, etc.

Blocks have access to the instance variables and temporary variables of the

method in which they were first defined. Try to avoid using these variables in

blocks that will be passed elsewhere, since side effects of the worst kind can be

created. Therefore, if at all possible, use only those variables passed in as

arguments, or temporaries declared local to the block.

The following chapter continues the theme of enumeration by looking at the use

of “streams” — a mechanism for controlling access to an underlying

sequenceable collection.



Chapter 18 187

Chapter 18: Streams and Files

The concept of “streaming” over a collection of data — starting at the beginning,

and going through it one element at a time — is such a useful one that special

classes are provided in VisualWorks to support this kind of operation.

This chapter starts by considering streams, and their relationship to subclasses of

SequenceableCollection. (Streams do not themselves store the data items;

instead they rely on some underlying storage — such as a sequenceable collection

— to retain the items.) Examples of streaming over collections using subclasses

of PositionableStream are given. Other types of streams, especially generators are

considered, using class Random as an example.

A major use of streams within VisualWorks is to provide a convenient

mechanism for printing out objects. This mechanism is described here, with

examples taken from existing VisualWorks classes.

This chapter goes on to consider file system access — how to read and write files

from within VisualWorks — again with many examples.

18.1. Streams

Class Stream and its subclasses provide a convenient way of sequentially

scanning a collection of objects. It supports a variety of operations for navigating

within that stream of data: such as inserting, or searching. Class

PositionableStream augments this mechanism by keeping track of your position

in the stream. (Positioning in a Stream starts at 0.) There are a number of

different classes of streams, but three are used most often. These are ReadStream,

WriteStream, and ReadWriteStream. Generally, it’s best to avoid

ReadWriteStream, specify either a ReadStream or a WriteStream.

In the description that follows, we are essentially describing class

PositionableStream. The (partial) class hierarchy is as follows:

Object
Stream

PeekableStream
PositionableStream

InternalStream
ReadStream
WriteStream

ReadWriteStream



Chapter 18 188

The general operation of PositionableStream subclasses allows the use of the next

message to access the “next” object (and set the position after it), starting from the

first one in the collection. Alternatively, the nextPut: message allows a new object

(the argument) to be inserted into the underlying collection at the “next”

position (and set the position after it), replacing any object currently there.

The next and nextPut: messages in Stream subclasses are implemented using

primitives, so they are particularly fast. Furthermore, Stream subclasses

implement an efficient mechanism for making otherwise fixed–size collections,

such as Array and String, larger on demand.

The usual way of creating a new instance of a Stream subclass is to use the class

method on:. The argument should be the sequenceable collection over which

you wish to stream. As a shortcut, it’s possible to create an instance of

ReadStream or WriteStream by sending the message readStream or writeStream

(respectively) to a sequenceable collection. For example, the following

expressions create new instances of a ReadStream (i & ii) and a WriteStream:

(i) ReadStream on: #(1 2 3 4 5)

(ii) ReadWriteStream on: OrderedCollection new

(iii) #(1 2 3 4 5) writeStream

It is sometimes useful to discover the current position in the stream; the position

message provides this. Alternatively, the message position: is provided to

explicitly set the position within the stream. The messages reset and setToEnd

may be used as shortcuts to setting the position to the beginning or end of the

stream (respectively). We can also change the position implicitly by use of the

skip message; this skips the “next” object. To skip more than one object, use the

skip: message — the argument should be an integer (negative to skip backwards).

As a convenient way to determine whether we have reached the end of the

underlying collection, the message atEnd answers true if there are no further

objects to be processed, false otherwise.

18.1.1. Class ReadStream

Class ReadStream is an concrete subclass of PositionableStream, and permits

read–only access to the underlying collection. Thus, the nextPut: message is not

supported, but the next message is available.



Chapter 18 189

In addition we may use the next: message to access the number of objects

specified in the argument. We can also use the contents message to retrieve the

whole underlying collection.

Alternatively, we may use the through:  message to retrieve objects from the

current position to a specified “endpoint” object — the argument of the message,

which should be an element of the collection. The upTo: message provides

similar behaviour, but doesn’t retrieve the argument.

The example below creates a ReadStream on a (literal) Array containing five

SmallIntegers:

| stream |
stream := #(5 4 3 2 1) readStream.
stream next; next; next.
^stream atEnd

The first three integers are accessed by the next messages; atEnd therefore answers

false.

18.1.2. Class WriteStream

Class WriteStream is another concrete subclass of PositionableStream, and

permits write–only access to the underlying collection. At first sight, this might

be considered useless, but it turns out that, since we can still use the contents

message to retrieve the (presumably) modified underlying collection, this class is

in fact very useful.

In particular, WriteStreams are very useful for sequentially inserting objects into

fixed–size collections such as Arrays and Strings. Very often, we don’t know how

large an Array or String will be required. However, WriteStreams have an

efficient way of making collections larger — therefore, using a WriteStream to

construct a String is likely to be very efficient, especially when compared with the

concatenation message ‘,’.

Furthermore, WriteStreams implement a number of useful variants on nextPut:,

including nextPutAll:. The argument to the latter is a collection of objects, and all

these objects are inserted into the WriteStream.

In the example below, an instance of WriteStream is created on an Array with ten

elements, each of which are initially nil . Firstly, some objects are added with

nextPut:, then the individual elements of the (literal) String (i.e. the Characters

in that String) are added to the stream, using the nextPutAll: message.



Chapter 18 190

| stream array |
stream := (Array new: 10) writeStream.
stream nextPut: 6.
stream nextPut: $s.
stream nextPutAll: 'test,test,...'.
array := stream contents.
^array

Thus, the resulting Array, when extracted from the stream using the contents

message, has the following elements:

#(6 $s $t $e $s $t $, $t $e $s $t $, $. $. $. )

Note that most, but not all, of the elements are Characters, and that the number

of elements in the Array is now more than ten.

Finally there are some additional messages that add particular characters to the

stream. Especially useful are cr, tab and space . These insert the appropriate

character into the stream.

18.1.3. Class ReadWriteStream

Class ReadWriteStream is a subclass of WriteStream, inheriting write–only access.

It adds the capability of read access (like class ReadStream).

Ex 18.1: Browse class PositionableStream and its subclasses.

Ex 18.2: Try the examples above. Use an Inspector on the results.

Ex 18.3: Write a whileFalse: loop which runs through a ReadStream, printing the contents
individually on the Transcript.

Ex 18.4: Try creating a ReadStream on an Interval. Experiment with next. What happens
when you send it the message contents?

Ex 18.5:  Implement a subclass of ReadStream called CircularStream which, on reaching the
end of the underlying collection, returns to the beginning. This would allow a
collection to be streamed over repeatedly.

18.2. Printing

We have already discovered that we need to be able to print out any kind of

object in a suitable fashion. For example, the print it  option on many of the

<operate> menus requires this. We have also seen the use of the printString

message for this purpose.

The printString method is implemented in class Object (see figure 18.1), and is

therefore understood by all objects. The implementation creates a WriteStream

on an uninitialized String, and uses this as the argument when sending the



Chapter 18 191

message printOn: to self. Once the printOn: message returns, the contents message

is sent to the WriteStream to retrieve the “completed” String.

Figure 18.1: The implementation of the printString method
(in class Object)

The method printOn: has a default implementation in class Object, which uses

nextPutAll: to add 'a' (or 'an') and the name of the class to the WriteStream. Many

subclasses re–implement this method, to print out instances in a more attractive

or comprehensible fashion. For example, figure 18.2 shows the implementation

of the printOn: method in class Point.



Chapter 18 192

Figure 18.2: The implementation of printOn: in class Point

When you devise your own classes, you are encouraged to consider re–

implementing the printOn: method, in order to assist testing, debugging and

reusability.

18.3. Accessing the File System

The need to access external files from VisualWorks is often surprisingly

infrequent in practice, especially for stand–alone applications. However, several

classes are provided to support the manipulation of files.

18.3.1. Class Filename

Class Filename represents individual files and directories and provides a

convenient mechanism for manipulating files. Class Filename is an abstract

superclass; its platform–specific classes (MacFilename, PCFilename, and

UnixFilename) provide most of the implementation. Always direct messages to

Filename to maintain portability.

To create an instance of Filename, send the message named:  to the class. The

argument should be a String representing the name of the file in the usual way,



Chapter 18 193

possibly including directory names. Alternatively, the message asFilename may

be sent to the String.

Class Filename contains many useful methods for the manipulation of files. For

example, a file can be removed by sending the delete message to its Filename. (A

runtime error occurs if the file does not exist.) The renameTo:  message allows

files to be renamed, the copyTo: message makes a copy of the file, and the

moveTo: message moves a file from one location to another. The argument to

each message is a String representing the name of the destination file. Other

messages include:

exists returns true if the file represented by the
receiver exists, false otherwise

fileSize size of the receiver (in bytes)

directoryContents returns an Array of Strings (raises an error if
the receiver is not a directory)

filesMatching: aString as above, but uses *, #; and returns an
OrderedCollection of Strings

contentsOfEntireFile returns the contents of the receiver

edit opens a FileBrowser on the receiver

makeDirectory creates a new directory with the same name
as the receiver

As well as messages which can be sent to instances of Filename, there are a

number of useful messages that may be sent to the class itself. Some of these are

described briefly below:

separator return the Character used to separate
components of the path name, e.g. one of
$/, $:, $\ — for portability

maxLength return the maximum allowed length for a
filename on the current platform

volumes return an Array of Strings identifying all
disk volumes

18.3.2. Filestreams

It turns out that a convenient way of viewing the contents of a file is as a

“stream” of data (bytes, characters, etc.) This view is supported in VisualWorks

by class ExternalStream, which is a subclass of PositionableStream. There are class

methods in Filename which return a stream on a named file; thus we can use all

the methods inherited from PositionableStream and its superclasses to access the

contents of the file. Hence, although there is no such class as Filestream, we refer



Chapter 18 194

to a filestream meaning a Stream attached to a Filename. The partial class

hierarchy is shown below:

Object
Stream

PeekableStream
PositionableStream

ExternalStream
BufferedExternalStream

ExternalReadStream
ExternalReadAppendStream
ExternalReadWriteStream

ExternalWriteStream

The most convenient way of creating a filestream is to send the appropriate

message to an instance of Filename. For example,

(Filename named: aFilename) readWriteStream

or,

aString asFilename readWriteStream

It’s often important to distinguish between those messages which create a new

file, and those that overwrite or append to an existing file. The examples below

summarise:

aFilename readStream read–only

aFilename appendStream write–only — position is
always at the end of the file

aFilename writeStream write–only; empties the file
first.

aFilename readWriteStream read and write access

aFilename newReadWriteStream as above, but empties the file
first

Class BufferedExternalStream is a Smalltalk representation of the data on an

external file, which must be opened and closed. The creation of a stream on a

Filename opens  the file, but it must be closed explicitly. The close  method first

flushes the buffer, then closes the file. A common programming error is to omit

to close files. This can lead to a number of possible outcomes: preventing other

processes from accessing open files, losing data, or (on some platforms) running

out of file resources.

Once a filestream has been created, then all the methods available in the

superclasses are available for use. For example, the familiar messages next (for



Chapter 18 195

filestreams providing read–access) and nextPut: (for filestreams providing write–

access) can be used. If the file contains Characters (the most common case), then

obviously the argument to nextPut: should be a Character. Similarly, if

nextPutAll: is used, the argument should be a String. As one would expect, by

default, filestreams are accessed one Character at a time (or a collection of

Characters); the message binary causes the file to be accessed one bit at a time. To

revert the filestream to “character” mode, send it the message text.

The internal implementation of BufferedExternalStream does not actually

perform a write to the disk for every character or byte written — this would be

very inefficient. Instead, a buffering scheme is used. However, to ensure that data

has been completely written to the disk, the method flush is provided.

Ex 18.6: Browse the file system classes mentioned above.

Ex 18.7: File out a class (e.g. Filename). Create a ReadStream on the file and inspect it. Try
the effects of next and next:.

Ex 18.8: Add a method to ExternalReadStream called nextLine, which will answer with a
String  containing all the characters up to, but not including, the next newline or
carriage return Character.

Ex 18.9: Using the answer from the exercise above, write some code that reads a character
file and writes another with the lines reversed.

18.3.3. Storing Objects

Class Object contains two methods that are used when storing objects —

storeString and storeOn:. These work in a similar way to the printString and

printOn: messages described above. However, the intent is that the result of

sending storeString to an object is a String, which, if compiled and evaluated,

produces an exactly similar object. The same mechanism can also be used to

produce a file (using a filestream rather than a String) which can readily be

transferred between machines (on a diskette, or over a network, for example).

This provides a simple way of transferring objects between VisualWorks images.

There are, however, certain problems…

The storeOn: mechanism cannot cope with cyclic structures. Since almost all

“interesting” objects contain cycles, the storeOn: approach is rarely useful in

practice.

Unfortunately, Smalltalk’s compiler only allows methods which have less than

256 literals to be compiled. Since the general storeOn: messages ignore this fact, it

is easy to get an object that was stored correctly, but cannot be retrieved.



Chapter 18 196

Ex 18.10: Browse the storeString and storeOn: methods in class Object.

Ex 18.11: Use the implementors option from the <operate> menu of the protocols pane to
browse other implementations of storeOn:.

A more successful alternative is to use the “Binary Object Storage System”

(BOSS) which stores objects in an encoded format. The protocol to BOSS is very

similar to that of streams above. In the example below, we create an instance of

FinancialHistory (see chapter 11), and store it in a file using BOSS.

| spendingHistory fileStream storage |
spendingHistory := FinancialHistory initialBalance: 800.
spendingHistory spend: 220 on: 'rent';

spend: 30 on: 'food';
spend: 45 on: 'drink';
spend: 20 on: 'petrol';
receive: 300 for: 'salary';
receive: 50 for: 'expenses';
receive: 50 for: 'overtime'.

"Open a stream on a file"
fileStream := 'spending.bos' asFilename writeStream.
"Open the storage"
storage := BinaryObjectStorage onNew: fileStream.
"Put the object into storage"
storage nextPut: spendingHistory.
"Close the storage (and thus the file)"
storage close

In the example below, we retrieve the object from the file created above, thus:

| fileStream storage spendingHistory |
"Open a stream on a file"
fileStream := 'spending.bos' asFilename readStream.
"Open the storage"
storage := BinaryObjectStorage onOld: fileStream.
"Get the object from storage"
spendingHistory := storage next.
"Close the storage (and thus the file)"
storage close.
"Inspect the result"
spendingHistory inspect

Ex 18.12: Create an object, such as a Point or a Rectangle , and store it in a file using BOSS.

Ex 18.13: Retrieve the object you stored in the exercise above.

Ex 18.14: Create a collection of objects, and store them on a file using BOSS; then retrieve
them.



Chapter 18 197

18.4. Class Random

Instances of class Random represent a “stream” of randomly–generated numbers

— instances of Float in the range 0 ≤ x < 1. Thus, the following expression prints

10 random numbers in the Transcript:

| rand |
rand := Random new.
10 timesRepeat: [Transcript show: rand next printString; cr]

However, quite often there is a requirement to obtain random numbers within a

range greater than or different to that offered by class Random. This requirement

can be met easily via some simple arithmetic. For example, to produce a random

number in the range 1 to 6, the following expression could be used:

| rand |
rand := Random new.
rand next * 5 + 1

Alternatively, to produce an integer random number in the range 1 to 6, the

following expression may be used:

| rand |
rand := Random new.
(rand next * 6 + 1) truncated

Finally, we may also use an instance of class Random to produce a random

element from a sequenceable collection:

| rand coll size |
coll := #('a' #b $c).
rand := Random new.
size := coll size.
5 timesRepeat: [| index |

index := (rand next * size + 1) truncated.
Transcript show: (coll at: index) printString; cr]

Ex 18.15: Modify the last example above so that a random number may be returned from a
specified Interval.

Ex 18.16: Similarly, modify the example so that a random Character may be returned from a
specified String .

Ex 18.17: Consider implementing a subclass of Random (called BetterRandom, say) which
takes responsibility for producing random numbers in a specified range.

18.5. Summary

The use of streams in Smalltalk provides an alternative mechanism for

enumerating over a collection of objects. Although we can use the iterators



Chapter 18 198

described in chapter 15, these are sometimes slightly awkward, especially if the

collection is being simultaneously modified.

One of the more important uses of a stream is when it’s necessary to create or

edit a file. As we have seen, this may be achieved by using a stream opened on an

instance of (some subclass of) Filename. The file may contain simple text, a

representation of (one or more) classes, or Smalltalk objects.

In the following two chapters, we begin to examine the graphical capabilities of

VisualWorks. The first of these explores the “media” that may be displayed on

the screen.



Chapter 19 199

Chapter 19: Graphics (1) — Media

Chapters 19 and 20 describe the graphical operations available in VisualWorks.

This chapter considers the media that may be displayed on the screen and

chapter 20 describes the objects that may be rendered on those media.

Additionally, this chapter describes the means by which the properties of the

media may be modified — e.g. colour, line width. Many examples are provided

to introduce the reader to VisualWorks’ graphics capabilities.

19.1. Introduction

There are basically three kinds of screen–based “graphic media”: windows ,

pixmaps, and masks . Collectively, they are known as display surfaces, since the

classes that represent them are all subclasses of class DisplaySurface. The class

hierarchy is as follows:

Object
GraphicsMedium

DisplaySurface
UnmappableSurface

Pixmap
Mask

Window

A window in VisualWorks corresponds to a window supplied by the host

platform’s window manager and is an instance of Window or one of its

subclasses. It is a rectangular matrix of pixels, each pixel defining a colour (via a

palette — see later). Clearly, the range of colours available on any particular

screen will be restricted by the display hardware (and perhaps the host window

system). Each window also has a GraphicsContext  on which objects may be

drawn.

Windows do not retain their graphic contents automatically: certain operations

produce “damaged” regions in a window (e.g., moving, resizing, use of menus).

The graphic contents of such regions are incorrect and must be regenerated by the

Smalltalk code associated with the regions. (This is discussed in more detail in

chapter 30.)

A pixmap is similar to a window except that is off–screen. For the contents of the

pixmap to be viewable, it must be drawn on the GraphicsContext of a window

currently on the screen.



Chapter 19 200

A mask is similar to a pixmap, except its contents is based on “coverage values”

rather than “colour values” (this distinction is explored in more detail later). The

area described by a mask therefore may be non–rectangular. Coverage values at

mask pixels are either 0 (transparent) or 1 (opaque).

The abstract superclass DisplaySurface provides a mechanism to connect

instances of its subclasses to the virtual machine, and hence to the screen. In

addition it provides many methods, including background: (which sets the

“background” colour of its instances), and clear  (which clears its current

contents).

19.2. Class GraphicsContext

The abstract superclass GraphicsContext handles the displaying (rendering) of

graphical objects, such as Images (see later), onto a graphic medium (much of the

implementation of the rendering represented by GraphicsContext is directly

supported by the virtual machine). (Specialised subclasses are responsible for

output to the screen or a printer.) It is, as such, a repository of parameters

affecting graphics operations; these parameters are retained as instance variables

and accessible via instance messages (figure 19.1). They include:

• The display surface on which to display.

• The co–ordinate system in which to interpret graphic operations. This

may be different from the natural co–ordinate system of the graphic

medium. (Co-ordinate values must lie in the range -32768 to 32767, i.e.

-(215) to 215-1).

• The clipping rectangle — accessed via the message clippingBounds. The

clipping rectangle is the area in which graphic objects may be displayed. If

any region of a graphic object lies outside this region, it is said to be

“clipped”.

• The paint  used to draw unpainted objects — black, by default.

• The width used to draw lines — one pixel, by default.



Chapter 19 201

Figure 19.1: The accessing protocol of class GraphicsContext

19.2.1. Using a GraphicsContext

There are two ways of displaying graphics. The simplest is to ask a graphic object

to display itself on a GraphicsContext. For example, to display a String at a Point:

'Customer' displayOn: aGraphicsContext at: 100@100

Similarly, a GraphicsContext can be requested to display a graphic object:

aGraphicsContext display: 'Customer' at: 100@100

Both variants have exactly the same result.

The other way of displaying graphics is to send a message that specifies the type

of graphic object to display. For example, to display a line:

aGraphicsContext displayLineFrom: 10@20 to: 150@50

Of these styles of graphics display, the first (asking a graphic object to display

itself) is more flexible because it allows the creation of general display statements

such as:

aGraphicObject displayOn: aGraphicsContext at: 10@10



Chapter 19 202

where the actual graphic effect varies at run time depending on the object

referred to by aGraphicObject.

19.2.2. Obtaining a GraphicsContext

You can send the graphicsContext message to a window or a graphic medium to

obtain the instance of GraphicsContext that represents that medium. For

example, to display a line on the window aWindow:

aWindow graphicsContext displayLineFrom: 10@20 to: 150@50

For the examples that follow, we suggest that you obtain a GraphicsContext by

evaluating the expression:

ScheduledControllers activeController view graphicsContext

The object named ScheduledControllers is a global variable responsible for

managing the windows on the screen. In response to the message

activeController, it provides us with the object that controls the current window;

sending this object the message view  results in an instance of (a subclass of)

Window, which may then be asked for its graphicsContext. Thus, the above

expression will return the instance of GraphicsContext of the window in which

the expression was evaluated. (Chapter 31 describes the global variable

ScheduledControllers in more detail.) So, to re–write the example above:

ScheduledControllers activeController view graphicsContext
displayLineFrom: 10@20 to: 150@50.

we may produce our first graphical display! (See figure 19.2.)

Figure 19.2: Producing a simple graphical display



Chapter 19 203

19.2.3. GraphicsContext Examples

Type and then evaluate the following example in a Workspace:

| gc |
gc := ScheduledControllers activeController view graphicsContext.
'A short, yet worthwhile string' displayOn: gc

at: gc clippingBounds center

The following pages contain a number of examples for you to familiarise

yourself with several of the available messages; there are more later in this

chapter and in chapter 20. Type each one of them in a Workspace and then

evaluate it. You may find it easier to use a large Workspace, and to refresh the

window between examples.

| gc |
gc := ScheduledControllers activeController view graphicsContext.
gc displayString: 'A short, yet worthwhile string'

at: gc clippingBounds center

| gc |
gc := ScheduledControllers activeController view graphicsContext.
gc displayString: 'A short, yet worthwhile string'

from: 21
to: 29
at: gc clippingBounds center

| gc |
gc := ScheduledControllers activeController view graphicsContext.
gc displayRectangle: gc clippingBounds

| gc |
gc := ScheduledControllers activeController view graphicsContext.
gc displayRectangle: gc clippingBounds at: 10@10

| gc |
gc := ScheduledControllers activeController view graphicsContext.
gc displayRectangularBorder: gc clippingBounds

| gc |
gc := ScheduledControllers activeController view graphicsContext.
gc lineWidth: 4;

displayRectangularBorder: gc clippingBounds at: 10@10

| gc |
gc := ScheduledControllers activeController view graphicsContext.
gc displayPolygon: (Array

with: 0 @ 0
with: 200 @ 0
with: 100 @ 100
with: 0 @ 0)

at: (gc clippingBounds origin translatedBy: 10@10)



Chapter 19 204

| gc |
gc := ScheduledControllers activeController view graphicsContext.
gc displayPolyline: (Array

with: 0 @ 0
with: 200 @ 0
with: 100 @ 100
with: 0 @ 0)

at: (gc clippingBounds origin translatedBy: 10@10)

| gc |
gc := ScheduledControllers activeController view graphicsContext.
gc displayPolygon: (Array

with: 0 @ 0
with: 200 @ 0
with: 100 @ 100
with: 25 @ 50)

at: (gc clippingBounds origin translatedBy: 10@10)

| gc |
gc := ScheduledControllers activeController view graphicsContext.
gc lineWidth: 2;

displayPolyline: (Array
with: 0 @ 0
with: 200 @ 0
with: 100 @ 100
with: 25 @ 50)

at: (gc clippingBounds origin translatedBy: 10@10)

| gc |
gc := ScheduledControllers activeController view graphicsContext.
gc displayArcBoundedBy: gc clippingBounds

startAngle: 25
sweepAngle: 60

| gc |
gc := ScheduledControllers activeController view graphicsContext.
gc displayWedgeBoundedBy: gc clippingBounds

startAngle: 25
sweepAngle: 60

| gc |
gc := ScheduledControllers activeController view graphicsContext.
gc lineWidth: 8;

displayArcBoundedBy: gc clippingBounds
startAngle: 25
sweepAngle: 120
at: (20 @ 20) negated



Chapter 19 205

| gc |
gc := ScheduledControllers activeController view graphicsContext.
gc displayWedgeBoundedBy: gc clippingBounds

startAngle: 25
sweepAngle: 120
at: (20 @ 20) negated

Ex 19.1: Browse the examples class protocol of class GraphicsContext.

19.3. Class Paint

We mentioned above that a GraphicsContext has a paint as one of its parameters.

Class Paint is an abstract class, and represents a paint that can be used for

rendering a graphical object onto a graphic medium.

Paints can either be “flat” colours, represented by the abstract superclass

SimplePaint or a Pattern. A Pattern retains an Image (see chapter 20) defining the

pattern to be used.

Concrete subclasses of SimplePaint include ColorValue, representing “real”

colours, and CoverageValue, representing partially transparent areas (i.e.

translucent).

The above classes are structured in a class hierarchy, as follows:

Object
Paint

Pattern
SimplePaint

ColorValue
CoverageValue

The class protocol of ColorValue has many methods for creating colours. For

example:

ColorValue black.

ColorValue lightGray1.

ColorValue darkGreen.

Alternatively, the colour may be specified using one of the “colour models”:

ColorValue red: 0.3 green: 0.4 blue: 0.05.

ColorValue cyan: 0.4 magenta: 0.4 yellow: 0.9.

ColorValue hue: 0.1 saturation: 0.7 brightness: 0.3.

Finally, we may also specify a degree of “greyness”:

1Note the North American spelling.



Chapter 19 206

ColorValue brightness: 0.5

CoverageValue has only one instance creation method:

CoverageValue coverage: aNumber

where 0 ≤ aNumber ≤1.

19.3.1. Paint Examples

Here are some more examples demonstrating how to use paint:

| win |
win := ScheduledControllers activeController view.
win background: ColorValue gray.
win clear

| gc |
gc := ScheduledControllers activeController view graphicsContext.
gc paint: ColorValue gray.
gc displayRectangle: gc clippingBounds

| gc |
gc := ScheduledControllers activeController view graphicsContext.
gc paint: ColorValue gray.
gc lineWidth: 4.
gc displayLineFrom: gc clippingBounds topLeft

to: gc clippingBounds center

Ex 19.2: Browse the Paint classes mentioned above.

Ex 19.3: If you have a colour screen, modify the examples to use colours other than grey.

19.4. Class Palette

In the description of graphic media above, we mentioned the concept of a palette

— a mapping  from a pixel value (a number) to a paint value (an instance of

some subclass of Paint). Class Palette (a subclass of Collection) is an abstract

superclass, and represents this mapping. The class hierarchy is as follows:

Object
Collection

KeyedCollection
Palette

ColorPalette
FixedPalette
MappedPalette

MonoMappedPalette
CoveragePalette

Class ColorPalette is an abstract superclass for palettes that contain only

ColorValues. Concrete subclasses include FixedPalette, where groups of the



Chapter 19 207

individual bits in the pixel values are interpreted directly as red, green and blue

components.

Another useful subclass is MappedPalette, which allows an arbitrary mapping (a

true look–up table) between pixel values and colours. Any of the Paint subclasses

can be used as the colour.

Class MonoMappedPalette handles palettes with exactly two colours — useful for

monochrome screens.

Useful Palette creation methods:

MappedPalette whiteBlack.

MappedPalette blackWhite.

MappedPalette with: ColorValue red with: ColorValue green.

MappedPalette withColors: anArray.

Instances of CoveragePalette contain a maximum pixel value  — this is used to

determine the coverage value that corresponds to a pixel value (by dividing the

value of a pixel by the maximum pixel value). Hence, each pixel value in a

CoveragePalette directly specifies a “scaled” CoverageValue. To create an

instance of CoveragePalette, a maximum pixel value must be supplied

(represented by the argument anInteger):

CoveragePalette maxPixelValue: anInteger

Pixels in the range from zero to anInteger are mapped uniformly to coverage

values in the range 0.0 to 1.0.

Examples in the creation and use of palettes are given when we describe class

Image (chapter 20), since they are most often used in conjunction with instances

of that class.

Ex 19.4: Browse class Palette  (and its subclasses).

Ex 19.5: Produce an example similar to those earlier which will:

a) Clear to grey a 250x250 pixel area in the top left of the window.

b) Draw a border around the cleared area in white lines, four pixels wide.

c) Draw the diagonals of the area, in black lines, one pixel wide.

d) Display the string ‘Origin’ centred over the intersection of the two diagonals.

Ex 19.6: Create a new example, based on the code from above, which will work for the
clipping bounds of the window in which the expressions are evaluated.



Chapter 19 208

19.5. Summary

The abstract superclasses DisplaySurface, GraphicsContext, Paint and Palette

combine to provide VisualWorks’ extensive graphics capabilities. First, the

subclasses of DisplaySurface provide a representation of the screen–based

graphics media in which objects may be displayed. Secondly, class

GraphicsContext provides the behaviour for displaying and rendering objects on

to a graphic medium. Finally, subclasses of Paint and Palette are used to control

the “paint” at each pixel of the graphics medium.

In the following chapter we describe the graphic objects which may be displayed

on a graphics medium.



Chapter 20 209

Chapter 20: Graphics (2) — Objects

Much of the functionality in the VisualWorks image deals with graphical

output, some of which was covered in chapter 19. This chapter concentrates on

the objects which may be displayed on the graphical media introduced in

chapter 19, which includes classes VisualComponent, Image, Text, and

ComposedText.

We also briefly examine ways in which instances of the Geometric classes

(chapter 13) may also be displayed.

20.1. Class VisualComponent

Class VisualComponent is an abstract class representing all sorts of graphic objects

which might be displayed on the screen, and as such defines a standard protocol

for all graphic objects.

Most graphic objects are instances of some subclass of VisualComponent;

however, there are also graphic objects that lie outside this class hierarchy. We

have already seen some of these: for example, String, Pixmap , etc. It’s important

to note that although all graphic objects may be displayed (via the displayOn:at:

message, for example), not all graphic objects may be a component  of some other

object — it is the behaviour to act as a component, or to be contained, that is

provided by class VisualComponent. We shall see later (in chapter 30) how to

create nested graphical structures whose elements are kinds of VisualComponent.

All VisualComponents also support a notion of a bounds  — a Rectangle  within

which the graphic object will be displayed. Additionally, they can provide a

preferred bounds, although they may be distorted away from this. These

properties may be accessed via the bounds and preferredBounds messages,

respectively.

20.2. Class Image

The abstract superclass Image is a subclass of class VisualComponent. It represents

a rectangular array of pixels each of which in turn represent a particular colour.

Images commonly represent pictures captured by a scanner, etc. The size of an

Image is retained by instance variables width  and height that may be accessed via

the corresponding messages.

A pixel can be represented by one or more bits. Subclasses of Image are provided

to implement Images with pixels of different depths , e.g. Depth8Image. Pixels are



Chapter 20 210

mapped onto actual colours for display by a Palette, which is associated with an

Image (see later).

Class Image supports lots of useful operations. An Image of one depth can be

converted to an Image of a different depth (or with a different Palette). Pixels can

be modified individually. Parts of one Image can be copied onto another. There

are several useful Image manipulation methods provided.

Images can also be used as paint for drawing, and can also be used as a mask

while rendering (see later).

There are many instance creation messages available for class Image. The most

general message creates an “empty” Image, i.e. one whose pixels are all zero. The

template is:

Image extent: aPoint depth: anInteger palette: aPalette

Other messages are available to create an Image whose content is given by a

ByteArray. For example, evaluating the message

Image parcPlaceLogo

will create a Depth1Image, shown in figure 20.1. The parcPlaceLogo method (in

class protocol examples) specifies a ByteArray containing the pixel arrangement

that gives the Image’s appearance.

Figure 20.1: The ParcPlace logo Image

There are two alternatives to the usual instance creation methods:

Image fromUser

Pixmap fromClipboard asImage

The first of these waits for the user to “grab” a rectangular region of the screen

using the mouse, and then returns an Image (of the appropriate depth) whose

contents are a copy of the pixels in that region. The second example creates an

instance of Pixmap  that is a representation of the graphics contents of the

platform’s clipboard and then converts this into an Image. (This operation only

succeeds when using a window manager that provides a graphic clipboard — e.g.

the Apple Macintosh.)



Chapter 20 211

The examples below demonstrate the creation and display of instances of class

Image. Some of the examples show how to use an Image as a paint and a mask .

Also, note how the Images are constructed using a specified Palette (chapter 19).

20.2.1. Displaying an “Empty” Image

First, we create an Image of depth one, whose extent is 100@50, with a

“whiteBlack” Palette. Then, we display it. (By default, the pixel values of a new

Image are all zero. Hence the Image displays as a white rectangle, since we are

using a whiteBlack Palette — 0 is mapped to white, 1 is mapped to black.)

| image gc |
gc := ScheduledControllers activeController view graphicsContext.
image := Image extent: 100@50

depth: 1
palette: MappedPalette whiteBlack.

image displayOn: gc

20.2.2. Displaying an Existing Image

In an earlier example we referred to the parcPlaceLogo message. Here, we use

the message again, and display the result. Note that, when displayed, the colour

of the text is red.

Image parcPlaceLogo displayOn:
ScheduledControllers activeController view graphicsContext.

20.2.3. Magnifying an Image

By sending the message magnifiedBy: to an Image, we get a new  larger image.

(Image parcPlaceLogo magnifiedBy: 2@2) displayOn:
ScheduledControllers activeController view graphicsContext.

20.2.4. Centring an Image

The displayOn:at: message is used in the example below to centre the Image

within the bounds of the window. The point at which the Image is displayed is

its top–left corner (or origin). The point is determined by calculating the

difference between the centre of the bounds of the Image and the centre of the

bounds of the window (equivalent to the centre of the clipping bounds of its

GraphicsContext).

| gc image |
gc := ScheduledControllers activeController view graphicsContext.
image := Image parcPlaceLogo.
image displayOn: gc at: gc clippingBounds center - image bounds center



Chapter 20 212

20.2.5. Changing the Background Colour

This example is similar to the one above. However, we have introduced an extra

statement to specify the colour of the GraphicsContext, before displaying the

Image.

| gc image |
gc := ScheduledControllers activeController view graphicsContext.
image := Image parcPlaceLogo.
gc paint: ColorValue gray.
gc displayRectangle: gc clippingBounds.
image displayOn: gc

at: gc clippingBounds center - image bounds center

20.2.6. Creating a Pattern

We noted in chapter 19 that a Pattern can be created from an Image. Here, we see

another example, in which the paint of the GraphicsContext is specified to be a

Pattern based on the ParcPlace logo. The effect of changing the paint is not visible

until we display a filled rectangle.

| gc image |
gc := ScheduledControllers activeController view graphicsContext.
image := Image parcPlaceLogo.
gc paint: image asPattern.
gc displayRectangle: gc clippingBounds

20.2.7. Changing the Tile Phase

In this example we change the tile phase of the GraphicsContext, before

displaying a filled rectangle. Note, also, that the argument to the

displayRectangle: message is the result of a message expression which reduces

the area by 20 pixels.

| gc image |
gc := ScheduledControllers activeController view graphicsContext.
image := Image parcPlaceLogo.
gc paint: image asPattern.
gc tilePhase: image extent //2.
gc displayRectangle: (gc clippingBounds insetBy: 2@2)

20.2.8. Changing the Palette

It’s possible to change the Palette of an Image after it has been created. In the

example below, we modify the colour values to be light grey and dark grey

(rather than black and red, as specified by the parcPlaceLogo method).



Chapter 20 213

| gc image |
gc := ScheduledControllers activeController view graphicsContext.
image := Image parcPlaceLogo palette:

(MappedPalette with: ColorValue veryLightGray
with: ColorValue darkGray).

image displayOn: gc
at: gc clippingBounds center - image bounds center

20.2.9. Using CoverageValues  (1)

In the two examples given below, we provide two mechanisms to produce a

“mask”. In the first example, we change the Palette of the Image so that it uses

CoverageValues; in the second we use the modified Image as the “shape” for an

instance of Mask. Note how the background of the Image becomes transparent.

| gc image |
gc := ScheduledControllers activeController view graphicsContext.
image := Image parcPlaceLogo palette: CoveragePalette monoMaskPalette.
gc paint: ColorValue darkGray.
image displayOn: gc

at: gc clippingBounds center - image bounds center

| gc image mask |
gc := ScheduledControllers activeController view graphicsContext.
image := Image parcPlaceLogo palette: CoveragePalette monoMaskPalette.
gc paint: ColorValue darkGray.
mask := Mask fromShape: image.
gc displayMask: mask

at: gc clippingBounds center - mask bounds center

20.2.10. Using CoverageValues  (2)

The following two examples mirror those given above. The only modification to

the code is the expression which modifies the Palette of the Image, with the

result that, when displayed, the text of the Image becomes transparent.

| gc image |
gc := ScheduledControllers activeController view graphicsContext.
image := Image parcPlaceLogo convertToCoverageWithOpaquePixel: 0.
gc paint: ColorValue darkGray.
image displayOn: gc

at: gc clippingBounds center - image bounds center

| gc mask image |
gc := ScheduledControllers activeController view graphicsContext.
image := Image parcPlaceLogo convertToCoverageWithOpaquePixel: 0.
gc paint: ColorValue darkGray.
mask := Mask fromShape: image.
gc displayMask: mask

at: gc clippingBounds center - mask bounds center



Chapter 20 214

Ex 20.1: Browse class Image and its subclasses. Pay particular attention to the image
processing protocol.

Ex 20.2: Try some examples of using Images. (Experiment with Images captured from the
screen⁄clipboard.)

20.3. Class Text

Class Text is similar to class String (chapter 15), except that class Text also provides

its instances with style–based attributes or emphasis , such as font characteristics,

size and colour for each character of the string. For example:

'Smalltalk-80: An Introduction to Application Development'

To create a Text with no  emphasis the message asText should be sent to an

instance of String. Alternatively, the message fromString: may be sent to class

Text, with a String as the argument.

The emphasis of a Text is represented by one or more of the Symbols below:

#bold #italic
#serif #sansSerif
#small #large
#underline
#strikeOut

To create a Text with one of these emphases, the message string:emphasis: should

be sent to class Text, with the Symbol representing the emphasis as the second

argument; the String is the first. Some examples:

'Smalltalk-80' asText

Text fromString: 'Smalltalk-80'

Text string: 'Smalltalk-80' emphasis: #bold

It’s also possible to create a Text with multiple emphases, for example, #large and

#bold. In this case an Array of Symbols is used to represent the emphasis; for

example:

Text string: 'Smalltalk-80' emphasis: #(#bold #large)

Once a Text has been created, its emphasis may be modified by sending it the

message emphasizeFrom: start to: stop with: anEmphasis, where start and stop are

indices of the underlying String and anEmphasis is a Symbol, or Array of

Symbols as described above.

There are also two shortcuts for the message emphasizeFrom:to:with:, these are

emphasizeAllWith:, which uses the argument to change the emphasis for all the



Chapter 20 215

characters in the receiver; and allBold, which changes the emphasis of all the

characters of the receiver to #bold.

It’s important to note that these messages are destructive — i.e. changing the

emphasis of a sequence of characters overrides  any existing emphasis for those

characters.

To retrieve the emphasis for a particular Character of the Text, send it the

message emphasisAt:  — the argument should be the index of the Character.

The code below gives an example of using Text. (The last line causes a “warning”

dialogue box to appear, so that you may see the result of evaluating the code —

see figure 20.2.)

| aText index |
aText := 'Smalltalk-80: An Introduction to Application Development' asText.
index := aText findString: 'Smalltalk-80:' startingAt: 1.
aText emphasizeFrom: index

to: 'Smalltalk-80:' size + index -1
with: #bold.

index := aText findString: 'Introduction' startingAt: index.
aText emphasizeFrom: index to: index + 'Introduction' size with: #italic.
DialogView warn: aText

Figure 20.2: A Text with emphasis

An Association (chapter 14) may also be used as an emphasis, in which the key  is

#color and the value  is a Paint. Some examples:

| aText |
aText := 'Colourful' asText.
aText emphasizeAllWith: #color->ColorValue gray.
DialogView warn: aText

| aText |
aText := 'Colourful' asText.
aText emphasizeAllWith: (Array

with: #color->ColorValue gray
with: #italic).

DialogView warn: aText



Chapter 20 216

Ex 20.3: In a Workspace, modify the 'Smalltalk-80: An Introduction to Application
Development' example to create the text 'The Guardian' in a large font. (For those
of you unfamiliar with this British newspaper, the string ‘the’ is in a sans–serif
font, and the string ‘Guardian’ is serif, italic.)

20.4. Class ComposedText

As the class name suggests, class ComposedText (a subclass of VisualComponent)

is a more sophisticated kind of text, offering control over its composition in

terms of such characteristics as alignment and indentation. The easiest way to

create a ComposedText is to send the message asComposedText to a String or

Text. However, the class also provides several other class instance creation

methods.

The simplest of these is withText:, which expects a Text as its argument. It’s also

possible to specify a style to be used when displaying; this is specified as the

second argument in the class instance creation message withText:style:. The

argument must be an instance of TextAttributes (see below). The final instance

creation message withText:style:compositionWidth: expects a third (integer)

argument that specifies the composition width  of the resulting ComposedText in

pixels.

Once created, instances of ComposedText may be modified in terms of their

alignment, indentation, and composition width:

• The four messages leftFlush, rightFlush, centered and justified may be used

to control the alignment of the text relative to its composition width. The

default setting is leftFlush.

• Indentation and margin setting are achieved by the messages firstIndent:

(first line), restIndent: (subsequent lines), and rightIndent:  (all lines). Each

has a corresponding message to retrieve the current setting. Use the

clearIndents message to reset all three indents to zero.

• Finally, the messages compositionWidth and compositionWidth: may be

used to access and set the width of a ComposedText. If a line of text is

longer than the width of the ComposedText, then it will be wrapped

around to the following line, if possible at a word boundary.

20.5. Class VariableSizeTextAttributes

The “text attributes” or emphases  described above (i.e. the symbols used to

control character style) and others such as tab stops, line grid (the vertical



Chapter 20 217

distance between the top of one line of text and the next) and baseline (the

vertical distance between the top of a line and the baseline of that line) are

controlled by an instance of VariableSizeTextAttributes. (The baseline is the line

from which a font’s ascent and descent are measured — see also figure 20.3.)

Line grid

Baseline

A largish amount of
text, sufficient to cover 
three whole lines.
Figure 20.3: The difference between line grid and baseline

The VisualWorks image currently contains four instances of

VariableSizeTextAttributes, named default, small , large and fixed. To access any

one of these, send the message styleNamed: to the class with a Symbol as the

argument. For example:

VariableSizeTextAttributes styleNamed: #default

VariableSizeTextAttributes styleNamed: #large
VariableSizeTextAttributes styleNamed: #small

VariableSizeTextAttributes styleNamed: #fixed

One of the four is the default instance of VariableSizeTextAttributes — used as

the default style for the display of all text in Browsers and other tools. The default

may be accessed by sending the message default  to the class. To change the

default, send the message setDefaultTo: to the class, with the appropriate Symbol

as the argument1. You will also need to inform any open windows that they

should re–display themselves using the new default. This is achieved by sending

the message resetViews to class VariableSizeTextAttributes. For example:

VariableSizeTextAttributes setDefaultTo: #fixed; resetViews

The examples below create instances of ComposedText and display them in the

window in which the expressions are evaluated.

1The “Settings Tool” can also be used to change the default font. See chapter 5 for more details.



Chapter 20 218

| gc composedText |
gc := ScheduledControllers activeController view graphicsContext.
composedText := 'A short, yet worthwhile string' asComposedText.
composedText

displayOn: gc
at: gc clippingBounds center - composedText bounds center

| composedText |
composedText := ComposedText withText:

'Smalltalk-80: An Introduction to Application Development' asText
style: (VariableSizeTextAttributes default).

composedText
displayOn: ScheduledControllers activeController view graphicsContext

| aText |
aText := 'Colourful' asText.
aText emphasizeAllWith: #color->ColorValue gray.
aText asComposedText

displayOn: ScheduledControllers activeController view graphicsContext

| aText |
aText := 'Colourful' asText.
aText emphasizeAllWith: (Array with: #color->ColorValue gray with: #italic).
aText asComposedText

displayOn: ScheduledControllers activeController view graphicsContext

| composedText |
composedText := ComposedText withText:
'Smalltalk-80:\An\Introduction\to\Application\Development' withCRs asText

style: (VariableSizeTextAttributes
styleNamed: #large).
composedText rightFlush

displayOn: ScheduledControllers activeController view graphicsContext

Ex 20.4: Browse classes ComposedText and VariableSizeTextAttributes.

Ex 20.5: Experiment with creating your own instances of ComposedText.

Ex 20.6: Modify the code from exercise 19.5 to use an instance of ComposedText to display
the word ‘Origin’. Make sure the exact centre of the word is over the centre of the
window.

Ex 20.7: Change the default font for your VisualWorks image.

20.6. Displaying Geometrics

Although we haven’t yet examined wrappers in detail in this book (see

chapter 30), it is worth mentioning them here in relation to the mechanism

provided to display Geometric objects. As its name suggests, a wrapper encloses

some other object — its component . A GeometricWrapper encloses a Geometric

object and consequently allows it to behave as if it is a kind of VisualComponent.



Chapter 20 219

Class StrokingWrapper allows a Geometric object to be displayed using lines,

while class FillingWrapper allows a Geometric object to be displayed with its

inside filled. Note that the latter form is not always sensible (e.g. a filled

LineSegment!) The common properties of these classes are represented by the

abstract superclass GeometricWrapper.

To create a GeometricWrapper, send the message on: to the appropriate class, with

the Geometric object as the argument. For example:

StrokingWrapper on: (Circle center: 100@100 radius: 50)

As a shortcut, a Geometric object can be sent a message to return a

GeometricWrapper with the receiver as the component. The messages are

asStroker and asFiller. The example below creates a FillingWrapper containing a

Rectangle .

| gc image |
gc := ScheduledControllers activeController view graphicsContext.
image := Image parcPlaceLogo.
gc paint: image asPattern.
gc clippingBounds asFiller displayOn: gc

Ex 20.8: Browse the classes GeometricWrapper, FillingWrapper and StrokingWrapper .

Ex 20:9: Modify the code from exercise 20.6 to use Geometric objects.

20.7. Summary

This chapter completes our preliminary discussion of the graphics capabilities of

VisualWorks. In later chapters, we will introduce other important subclasses of

VisualComponent. For the time being, we return to some aspects of Smalltalk, in

particular the use of booleans, copying operations and the undefined object nil .



Chapter 21 220

Chapter 21: Logic Operations and
UndefinedObject

In this chapter, we introduce several important facilities without which any

programming system would be useless. Smalltalk’s representation of boolean

truth values, and its implementation of comparisons and explicit copying are

described. Finally, the properties of the undefined object nil  are briefly

investigated.

21.1. Class Boolean

In most computer languages, some simple entities such as boolean values are

built–in “types”. However, in Smalltalk, these types are represented as classes,

just like any other kind of object. Here, we investigate the way in which

Smalltalk represents truth and falsehood, and how logical operations can be

performed.

In Smalltalk, “truth” is represented by class True and “falsehood” by class False.

Since these two classes have much in common, a common abstract superclass

Boolean (a subclass of Object) is introduced. The class hierarchy is shown below.

Object
Boolean

False
True

Since we never need more than one instance of True (it never changes its value,

after all!), the sole instance of True is referred to by the pseudo–variable true.

Similarly, the sole instance of False is called false.

We have already seen (in chapter 10) how keyword messages like ifTrue: and

ifFalse: can be used together with blocks to form control constructs. These are

implemented as methods in class Boolean and its subclasses.

Taking for example the message ifTrue:ifFalse:, this is implemented differently in

classes True and False. In class True, the first argument (which is expected to be a

block) receives the value message (figure 21.1). Conversely, in class False, it is the

second argument (also a block) which receives the value message. Thus, different

blocks are activated depending on whether the receiver is true or false; in this

way, an “if–then–else” construct is implemented. Other similar control

constructs (ifFalse:, ifTrue: and so on) are implemented in the same way.



Chapter 21 221

Figure 21.1: The implementation of ifTrue:ifFalse: in class True

You should note, however, that the ifTrue:ifFalse: method is used so frequently

that it is recognised as a special case by the Smalltalk compiler. So, specially–

optimised code is used, instead of an actual message being sent. This improves

performance, but does reduce the flexibility; for example, it is difficult to extend

the boolean classes to allow three–state logic (e.g. “true”, “false” and “unknown”)

without modifying the compiler.

Smalltalk provides the usual kinds of logical operations on truth–valued

expressions. The following messages are supported in the logical operations

protocol

& evaluating conjunction (and function). A binary selector. Answers

true if both receiver and  argument are true, otherwise false. For

example, the expression:

(3 < 4) & (5 < 6)

evaluates to true. You should note that the first pair of round

brackets is redundant, but do help to make the intent clearer.



Chapter 21 222

| evaluating disjunction (or function). A binary selector. Answers

true if either the receiver or  argument is true, otherwise false.

not Negation. A unary selector. Answers true if the receiver is false, and

vice versa.

eqv: Logical equivalence. A keyword selector. Answers true if both

receiver and argument have the same logic value, otherwise false.

You should avoid confusing logical equivalence (the eqv: message)

with object identity (==).

xor: Logical not–equivalence. A keyword selector. Answers true if both

receiver and argument have different logic values, otherwise false.

For example, the following expression evaluates to true:

(3 < 4) xor: (5 > 6)

You should note that the and  (&) and or  (|) methods discussed above are

evaluating forms: both the argument  and the receiver  are fully evaluated before

the logic operation is performed. Evaluating both can be undesirable under some

circumstances. In the following example, you should assume that someInteger is

an argument to a message send, and can refer either to nil  or to an instance of

class SmallInteger. We want the code in the block to be evaluated only if

someInteger is a positive integer.

someInteger notNil & (someInteger > 0)
ifTrue: ["Code expecting positive integers only"]

This code is wrong. The problem is that the expression (someInteger > 0)  is

evaluated even if someInteger is nil . Thus, if someInteger is indeed nil , then nil

will receive the > message, which it will not understand.

The problem can be overcome by separating the two tests:

someInteger notNil
ifTrue: [someInteger > 0

ifTrue: ["Code expecting positive integers only"]]

However, this is rather ugly, and can get to be complicated if many tests are used.

A better way is to use the method for non–evaluating  conjunction called and:.

(someInteger notNil and: [someInteger > 0])
ifTrue: ["Code expecting positive integers only"]



Chapter 21 223

The argument to the and: message is a block, which is evaluated only  if the

receiver evaluates to true. Thus, in this example, if the variable someInteger does

refer to nil , then the > message is never sent. A non–evaluating disjunction (or:)

method is also provided.

Ex 21.1: Browse classes Boolean, True and False. You should pay particular attention to the
logical operations and controlling protocols.

Ex 21.2: Try some examples using the logical operators described in this section. In
particular, explore the difference between the evaluating and non–evaluating
forms of logical operator.

21.2. Comparing Objects

Any pair of objects can be compared with each other. However, we have already

seen two different forms of comparison (see chapters 14 and 15).

The first comparison is object identity. Smalltalk expressions evaluate to objects;

two expressions are identical in this sense if and only if they evaluate to exactly

the same object. The message selector for this comparison is ==; the inverse test

is ~~. The selectors == and ~~ are defined in class Object (see figure 21.2).

Figure 21.2: The implementation of ==  in class Object

The second comparison is object equality. Two expressions are equal if they

evaluate to “the same sort of thing”. Exactly what is meant by “the same sort of

thing” depends on the class of the object. For example, two Points can represent



Chapter 21 224

the same location in a plane, and thus be equal, but still actually be different

objects, and therefore not identical. The message selector = is used for testing

equality between objects; the inverse test is ~=.

Figure 21:3: The implementation of =  in class Object

The default implementation of = and ~= is in class Object (see figure 21.3), and is

the same as == and ~~ respectively. Therefore every object can be compared

equal. However, many classes redefine = in a way appropriate to their function.

Examples include class Point, class Rectangle  (see figure 21.4), and class Magnitude

and its subclasses. Thus, class Float (a subclass of Number and thus Magnitude)

defines = in a way appropriate for floating point numbers. Classes that don’t

redefine = include Symbol, Character, and SmallInteger — this is because

instances of these classes are unique. In the case of Character and SmallInteger,

instances are known as “immediates”, i.e. represented directly by the VM.



Chapter 21 225

Figure 21.4: The implementation of =  in class Rectangle

The internal implementation of several important classes which use equality,

including Set  and Dictionary, relies on hashing  to achieve a high performance.

The hash value is used to provide a starting point for a search for matching

objects. The hash value must not change during the lifetime of the object, and it

must be rapidly generated. The method hash  is defined in class Object; if the =

method is re–implemented in a subclass, then the hash  method should be re–

implemented also.

To illustrate the difference between object identity and object equality, consider

the following expressions:

| rectangle1 rectangle2 |
rectangle1 := Rectangle origin: 0@0 corner: 100@100.
rectangle2 := rectangle1.
rectangle1 == rectangle2.

Clearly, both variables rectangle1 and rectangle2 refer to exactly the same object,

thus the final expression evaluates to true.



Chapter 21 226

| rectangle1 rectangle2 |
rectangle1 := Rectangle origin: 0@0 corner: 100@100.
rectangle2 := Rectangle origin: 0@0 corner: 100@100.
rectangle1 == rectangle2.

In this case, however, rectangle1 and rectangle2 refer to different objects, even

though they represent the same area and location. Thus, the last expression

evaluates to false. However, the = method is redefined in class Rectangle  (see

figure 21.4) to compare the origins and corners of rectangles. Thus, the

expression:

rectangle1 = rectangle2

evaluates to true, as the two different rectangles clearly represent exactly the same

area.

As another example of object identity, consider class IdentityDictionary. Its

instances perform key  lookup using object identity (==) rather than object

equality (=), and are hence more efficient. (This distinction between “identity”

and “equality” is also used in other symbolic programming languages,

particularly Lisp.) For example, the following message expressions,

| dict |
dict := IdentityDictionary new.
dict at: 'a' put: 1.
dict at: 5 put: 'b'.
dict at: $c put: 6.
dict at: 'a' put: (Set with: 1 with: 3 with: 4).
dict at: 3/4 put: 'b'.
^dict at: 'a'

raise an error, because the class uses object identity to lookup 'a', which fails.

However, in the code below,

| dict |
dict := IdentityDictionary new.
dict at: 'a' put: 1.
dict at: 5 put: 'b'.
dict at: $c put: 6.
dict at: 'a' put: (Set with: 1 with: 3 with: 4).
dict at: 3/4 put: 'b'.
^dict at: $c

returns 6.

Ex 21.3: Browse the methods in protocol comparing in class Object (class category Kernel-
Objects). You should note the comment in the == method. You might also like to
browse the implementation of = in class Rectangle , and some of the other classes
which redefine equality. Hint : use the expression:



Chapter 21 227

Browser browseAllImplementorsOf: #=

to open a Message–Set Browser on all implementors of =.

Ex 21.4:  Try the examples using instances of Rectangle  discussed above. Also, try similar
examples with instances of class Point, or other classes that redefine the = (and
hash) method.

21.3. Copying

Sometimes it is desirable to obtain a copy of an object. In Smalltalk, it is necessary

to ask for a copy explicitly. The copy method is implemented in class Object, so

that copies can be made of all objects in the image, except where copying is

explicitly disallowed.

We can explore the copying of objects using the Rectangle  example from above.

Consider the following expressions:

| rectangle1 rectangle2 |
rectangle1 := Rectangle origin: 0@0 corner: 100@100.
rectangle2 := rectangle1 copy.
rectangle1 == rectangle2.

In this case, the variables rectangle1 and rectangle2 refer to different objects, and

thus the last expression evaluates to false. However, the two rectangles are still

equal.

In fact, two forms of copying are available in Smalltalk. The copy method makes

a copy of the receiver object, and a copy of each object referred to by an instance

variable, and so on recursively. The new object has no objects in common with

the original object at all. Consider the example below:

| rectangle1 rectangle2 |
rectangle1 := Rectangle origin: 0@0 corner: 100@100.
rectangle2 := rectangle1 copy.

In this case, rectangle1 and rectangle2 refer to different instances of class

Rectangle , and each of their instance variables (origin and corner) refers to

different instances of class Point.

The shallowCopy method makes a copy of the receiver object, but does not make

a copy of the objects referred to by any instance variables. Thus, the instance

variables of both Rectangles  refer to the same instances of class Point. In the

following example:



Chapter 21 228

| rectangle1 rectangle2 |
rectangle1 := Rectangle origin: 0@0 corner: 100@100.
rectangle2 := rectangle1 shallowCopy.

the origin instance variable of both Rectangles  refers to the same instance of

Point. The distinction between the messages copy and shallowCopy is illustrated

in figure 21.5.

Figure 21.5: The difference between the copy and shallowCopy messages1

In the case of a shallow copy, if one of the Rectangles’ Points is modified in some

way, then both Rectangles  are affected. The following expressions illustrate this.

| rectangle1 rectangle2 |
rectangle1 := Rectangle origin: 0@0 corner: 100@100.
rectangle2 := rectangle1 shallowCopy.
rectangle1 origin x: 42.
Transcript show: rectangle1 printString.
Transcript tab; show: rectangle2 printString; cr

This sort of code is a common cause of programming errors in Smalltalk.

1This illustration was produced using “Object Explorer” — a third–party addition to VisualWorks. See the
Appendix for more details.



Chapter 21 229

Both copy and shallowCopy have default implementations in class Object. The

default implementation of the copy method is shown in figure 21.6.

Figure 21.6: The default implementation of the copy message (in class Object)

Ex 21.5:  Browse the methods in protocol copying in class Object. Also, browse all
implementors of the message selectors copy , shallowCopy and postCopy. You should
be able to find some re–implementations where a copy is not made.

Ex 21.6:  Try some of the examples using copying described in this section. Also, try making
copies of instances of other classes; for example, an OrderedCollection (see
chapter 15), an Image (see chapter 20) or an Interval (see chapter 18).

21.4. Class UndefinedObject

As we have already observed repeatedly, everything in the VisualWorks image

is an object. However, we need an object to which, for example, instance

variables refer when we do not want to reference any particular object. Class

UndefinedObject is provided for this purpose, and is a subclass of Object. Only

one instance of UndefinedObject is ever required, and this sole instance is

referred to by the pseudo–variable nil . Thus, uninitialized variables refer to nil .

Methods isNil and notNil are defined in class Object to answer false and true

respectively, and are thus inherited by all classes. These methods are redefined by

UndefinedObject to answer true and false respectively (see figure 21.7).



Chapter 21 230

Figure 21.7: The implementation of isNil in class Object

Ex 21.7:  Browse class UndefinedObject. Why is shallowCopy redefined in this class?

21.5. Summary

Classes True and False are used to represent boolean truth values in Smalltalk,

and provide logical operations. The conjunction and disjunction functions are

available in two forms: evaluating and non–evaluating (&, | and and:, or:,

respectively). We recommend using the non–evaluating forms where possible,

as they are more efficient.

Another efficient tip is to use the identity comparison message (==) where

possible, as it is implemented by comparing object pointers in the Virtual

Machine.

When copying an object, it is important to choose the appropriate message,

shallowCopy or copy — the latter should be used when a “deep copy” is required.

The isNil and notNil messages are used frequently in Smalltalk to test if a variable

has been initialised. Because nil  is the only instance of UndefinedObject, the tests

are very efficient. Therefore, it is unlikely that you would want to re–implement

the methods in any class you develop.

In the following two chapters, we examine the error handling and debugging

facilities in VisualWorks. We begin by discussing the possible run–time errors

that Smalltalk handles.



Chapter 22 231

Chapter 22: Runtime Error Handling

This chapter starts by considering the interpretation of the doesNotUnderstand:

message from the Virtual Machine, and shows how this is used to create a

Notifier of the suspended activity. Other ways of creating Notifiers are also

considered. Useful features of Notifiers are described, with examples.

The ability to start a Debugger on the suspended activity and the use of

breakpoints are also considered here, again with examples.

22.1. Interrupted Message Sends

We have already seen (in chapter 11) how the binding between a message

selector and the corresponding method involves a search up the class hierarchy.

If no method which matches the message selector is found, then the virtual

machine sends a special message doesNotUnderstand: to the original receiver.

The argument to the doesNotUnderstand: message is the message selector which

was not found during the search.

When a corresponding method is found, however, this is evaluated, and a new

context is created for this evaluation. This context contains the state of any

temporary variables in the method, as well as information allowing the object

answered by a method to be returned to the object that sent the message. This is

analogous to a stack of activation records found with more conventional

languages that support procedure or function calls. The Smalltalk activation

stack is directly visible in the Debugger (see chapter 23).

Interrupted message sends can occur in a number of different ways. The most

usual way is by sending a message to an object that does not understand that

message; i.e. the object has no method in either its class or its superclasses that

corresponds to the selector of the message. This is the typical response to a

programming error. The default action (implemented in class Object) is to open

an “Error Notifier” window. Notifiers are discussed in a later section of this

chapter.

Apart from messages that are not understood, message sending can be

interrupted in a number of other ways. The most useful of these is to interrupt

deliberately, using the <control–c> key combination. This is useful in the case of

run–away computations. It is also possible to stop a computation at pre–

determined points using a breakpoint . This is discussed in chapter 23.



Chapter 22 232

Another way in which a message send can be interrupted is if recursion occurs in

Smalltalk’s error handling code. In other words, an error occurs when Smalltalk

is already handling another error. This usually indicates that some method used

when handling errors has been incorrectly modified.

There are also a number of other programming errors which are not, strictly

speaking, interrupted message sends, but will still cause a Notifier to appear. For

example, you are not permitted to make new instances of certain classes; these

include the boolean classes True and False (see chapter 21), class UndefinedObject

(chapter 21), and class Character (chapter 3). Also, some classes do not permit

certain kinds of creation messages to be used; for example the Number classes

(chapter 13).

Another common way of getting a runtime error is to try and evaluate a block

(i.e. send a value message to an instance of class BlockClosure — see chapter 10)

with the wrong number of arguments. For example, the following expression

generates an Error Notifier (figure 22.1):

| result |
result := [ :arg | arg * 2] value.

The block requires one argument, but no arguments are supplied when the value

message is sent. Also, sending a control message such as ifTrue: to an object

which is not either true or false will generate an error, as will sending a loop

message like whileTrue: to an object which is not a block.



Chapter 22 233

Figure 22.1: An Error Notifier

There are a number of errors which are generated by inappropriate numeric

expressions. These include attempting to divide a number by zero, or taking the

square root of a negative number.

There are many error conditions associated with incorrect use of the Collection

classes (see chapters 14 and 15). For example, trying to remove an element from a

Set  which is not actually in that set, or trying to add an element (using add:) to a

collection which has a fixed length, such as an Array.

Another common error is to send a message to an instance of an abstract

superclass (see chapter 13), which is not intended to have any instances of it

created. Typically, an abstract superclass will implement its key methods as:

^self subclassResponsibility

to indicate that this method is overridden in a concrete subclass. Of course, in a

partially complete new application, this error may indicate that a crucial method

has been omitted in a subclass!



Chapter 22 234

Finally, you can add your own error indications as you develop applications. An

error: method is implemented in class Object, so that you can insert expressions

such as:

^self error: 'An error has occurred'

The argument to error: should be a string.

Ex 22.1: Browse the error handling protocol of class Object. What is the difference between
the error: and notify: methods?

Ex 22.2: Find examples of the various error notifications discussed above. Try inserting your
own error messages (using the error: selector) in some examples.

22.2. Error Notifiers

We have already seen a variety of ways in which a message send can be

interrupted, or some other runtime error condition can appear. This normally

causes an Error Notifier to appear (see figure 22.1). If you have been trying the

exercises suggested in earlier chapters, you will almost certainly have caused

such Notifiers to appear many times already by mis–typing.

The main purpose of this Notifier is to retain a reference to the activation stack

associated with the currently active methods. A printable representation of the

top five items in the stack will appear in the Notifier view area. The

interpretation of this representation is discussed in chapter 23. The Notifier’s

heading will give some general indication of the type of error.

The window normally contains four options. The Proceed button continues

the evaluation as if nothing had happened. This may not be very sensible if a

program error generated the Notifier, although in the meantime you may have

added a method corresponding to the message which was not understood, using

the System Browser. However, if the evaluation was interrupted using <control–

C>, for example, the Proceed button will continue from the interruption. The

Copy stack  button copies the printable representation of the stack into the

paste buffer (so that, if necessary, its contents may be transferred to an editor or a

file). The Debug  button closes the Notifier, and opens a Debugger on the

interrupted evaluation; the Debugger is described in chapter 23.

To ignore the message and not continue the interrupted activity, choose the

Terminate button or the close item from the <window> menu.

If an Error Notifier is generated by the doesNotUnderstand: message, then the

window has a fourth button, Correct it… . This invokes a runtime spelling



Chapter 22 235

corrector, which attempts to find the message selector nearest in spelling to the

selector which was not understood. This is illustrated in figure 22.2 below, where

a mis–spelled message selector is sent to an instance of class Point. The compiler

recognises that the selector inpect  is unknown but, for demonstration purposes,

we use the Proceed button on the Prompter to persuade the compiler to go

ahead anyway.

Figure 22.2: The “New Message” Prompter

Naturally, when the inpect  message is sent, it is not understood (figure 22.3); an

Error Notifier appears. If we invoke the spelling corrector using the

Correct it…  button, then a Confirmer appears suggesting a replacement, in this

case, inspect  (figure 22.4). If we select the yes option, an Inspector will indeed

appear (figure 22.5).



Chapter 22 236

Figure 22.3: Correcting runtime errors (1)

Figure 22.4: Correcting runtime errors (2)



Chapter 22 237

Figure 22.5: Correcting runtime errors (3)

You should note that the correction made by the runtime spelling corrector is

not permanent in a method (unlike the case when the spelling corrector is

invoked by the compiler — see chapter 6). You will have to find and correct the

error yourself, using the System Browser.

It is worth observing that the Notifier windows are scheduled; that is, they have

independent activity within the user interface (just like browsers and

Workspaces), and have the usual <window> button menu functions. In

particular, this feature allows a computation to be stopped (using <control–c>)

and restarted at a later time (using the Proceed button menu). A computation is

only completely abandoned when the Notifier is closed by selecting the

Terminate button or by using the usual <window> button close item.

Ex 22.3: Work through the example using the Notifier given above. You should find that
you do not get the “new message” menu (figure 22.2) appearing after the first time
though.

Ex 22.4: Start some long computation, such as:

Transcript show: 2000 factorial printString; cr

Interrupt it, using <control–C>; a Notifier should appear. Save the image and quit.
You should now be able to restart the VisualWorks image, and then complete the
interrupted computation by selecting the Proceed  button of the Notifier.



Chapter 22 238

22.3. Summary

There are many kinds of run–time errors that cause a Notifier to appear. The

most common is the ‘doesNotUnderstand’ error — the result of sending an

inappropriate message to an object. Once you are familiar with the potential

cause of errors, you may find that you make less of them; alternatively, you’ll

need to use the Debugger, described in the next chapter.



Chapter 23 239

Chapter 23: Debugging an Application

This chapter introduces the Debugger, with simple examples illustrating the

power of the tools provided. The ability of the Debugger to inspect and modify

variables in the suspended program is explored, together with the ability to

single–step through the evaluation of an application.

We also provide an example of using the Debugger to correct an error.

23.1. Introduction

When a program error occurs, a Notifier window appears displaying the last five

message–sends (see chapter 22). When you need to examine the conditions that

led to the error, select the Debug  button. The Notifier is replaced by a Debugger,

which enables you to trace the program flow leading to the error (see figure 23.1).

Figure 23.1: The Debugger



Chapter 23 240

The primary functions of the Debugger allow the programmer to:

• proceed the evaluation step by step;

• examine a method in the activation stack;

• modify the method, and accept (re–compile);

• change the values of the variables in the activation stack;

• gain access to Inspectors on any object.

The Debugger window consists of six panes and two buttons. The upper two

(larger) panes (separated by the buttons) are similar to the panes of a Message–Set

Browser. The lower panes form two Inspectors.

The uppermost pane is a list of classes and messages; for each item, the class of

the receiver and the message selector sent to the receiver is displayed, in the

format className>>message. In brackets, the class where the method was found

is shown (if it is different from the class of the receiver). This is exactly the

format that appears in the Notifier (see chapter 22), except that in the case of the

Debugger, one of the message–sends can be selected. The text pane in the middle

of the Debugger displays the source code for the method associated with the

selected message. It has the usual <operate> menu. The displayed method can be

edited and recompiled in the usual way. The message being sent to activate the

next item up the stack of contexts is shown highlighted in the text pane, together

with any arguments to that message. For example, in figure 23.1, it is the message

do: which is being sent to an object called aCollection; the argument to this

message is a block.

The lower four panes form two Inspectors, which behave just as the Inspectors

discussed in chapter 8. The left pair of panes give access to the instance variables

of the object receiving the selected message, while the right pair of panes allow

arguments to messages and blocks, as well as temporary variables, to be viewed.

The use of these two Inspectors is described later.

The <operate> menu in the upper pane (figure 23.2) has items senders,

implementors and messages, just like a Message–Set Browser.



Chapter 23 241

Figure 23.2: The <operate> menu in the Debugger’s top pane

Other <operate> menu items include:

more stack By default, only a maximum of nine message–sends appear
in the top pane. This menu item doubles the display of
message–sends. When the entire activation stack is displayed
this option disappears from the menu.

proceed The Debugger is closed, and evaluation continues just after
the interruption in the selected method. The expression
interrupted is forced to completion, with default value nil .
The value of the forced expression can be changed by
selecting and evaluating an expression in the text pane.

restart The Debugger is closed, and evaluation restarts from the
beginning of the selected method.

Items skip to caret, step and send are considered later.

23.2. Breakpoints

Breakpoints are often useful in determining what is really happening inside

Smalltalk. Breakpoints simply provide a controlled mechanism for entering a

Debugger at a known point.

Breakpoints may be placed in a method by editing the source text, inserting the

expression:

self halt.

at the desired point, and recompiling the method.



Chapter 23 242

When this expression is evaluated, halt is sent to the receiver. The corresponding

method is implemented in Object, so all objects respond to it. This opens a

Notifier, with the heading ‘Halt encountered’. You can proceed from this point,

or select the Debug  button.

If many breakpoints have been inserted, they can be identified by using the

expression:

self halt: 'An identifying string'.

Ex 23.1: Insert a self halt message into the diff:  method in the arithmetic protocol of Number
(that you created in chapter 6) and evaluate an expression containing the message.
Explore the activation stack shown in the uppermost pane. Does the more stack
<operate> menu item do anything useful in this case?

Ex 23.2: Try the implementors and messages <operate> menu items.

Ex 23.3: Explore some other parts of the image by inserting breakpoints.

23.3. Message Receiver Context

The left Inspector panes in the Debugger give access to the message receiver of

the selected message–send.

Just like a normal Inspector, you can:

• Evaluate messages in the text pane, sending messages to self; or

• Evaluate expressions which make assignments to instance variables; or

• Select a variable, type a new value, and use accept to change the value.

You can then continue evaluation from the method containing the breakpoint,

using restart.

23.4. Interrupted Method Context

The right Inspector panes in the Debugger give access to the state of the method

context associated with the selected method.

You have access to (and can change the values of):

• Arguments to the message;

• Temporary variables;

• Block arguments.



Chapter 23 243

Again, you can continue the evaluation, using restart.

Ex 23.4: Explore the effect of modifying instance variables, temporary variables and
arguments within a Debugger.

23.5. Single–stepping Through an Evaluation

In the uppermost pane of the Debugger, three <operate> menu items are

provided to permit single–stepping through an evaluation.

step Performs a complete message–send in the selected method;
i.e. the entire method corresponding to the message
highlighted is evaluated. Any associated assignments are also
carried out. (Warning: running in single step mode can be
quite slow, as the bytecodes are interpreted by Smalltalk code,
rather than by the virtual machine itself.)

send The highlighted message is “sent”, and its  method is then
displayed. Any assignments up to the highlighted message
are also evaluated.

skip to caret All message–sends and their corresponding assignments are
carried out up to the point in the methods indicated by the
caret.

Buttons corresponding to the step and send <operate> menu items are also

provided.

Ex 23.5: Trace the diff:  example, using the step  and send  <operate> menu items.

Ex 23.6: Experiment with the skip to caret <operate> menu item.

23.6. Debugging Example

As a small example, let us modify the original version of the diff: method

introduced in chapter 6:

diff: aNumber
"return the absolute difference between me and aNumber"
| temp |
temp := self - aNumber.

Transcript show: temp.
temp < 0

ifTrue: [^temp negated]
ifFalse: [^temp]

Here, we have added the expression Transcript show: temp. to print out the result

of the intermediate temporary variable on the Transcript. We will use this

modified method to demonstrate the use of the Debugger.



Chapter 23 244

Consider the following expression:

23 diff: -12

Evaluating this expression produces a Notifier window (figure 23.3) indicating

that there is an error. The window’s heading informs us that an object has been

sent a message that it does not understand. (The top line of the stack displayed in

the Notifier also displays this information.)

Figure 23.3: An Error Notifier

The first line of the activation stack displayed in the Notifier shows that the

receiver of the do: message is an instance of SmallInteger. At first this appears

confusing because the original expression we evaluated sent a show: message to

the Transcript (an instance of TextCollector), as displayed in the fifth line of the

Notifier.

As an aside, it’s worth noting two features of the activation stack as it’s displayed

in a Notifier:

• the first line usually shows the method that handled the error (e.g.

doesNotUnderstand:), but often doesn’t identify what caused the error;



Chapter 23 245

• other lines often contain information of marginal interest since they

merely report messages that have been sent as part of the mechanics  of

Smalltalk.

Back to the example: We can see from the Notifier that an error occurred in the

WriteStream>>nextPutAll: method. At this point we can either use the System

Browser to examine that method, or open a Debugger from the Notifier, as

described below.

The label of the Debugger’s window is identical to that of the Notifier from

which it was created. In figure 23.4, the line WriteStream(Stream)>>nextPutAll:

has been selected, and the method is displayed in the text pane. Note that the

receiver  of the message is an instance of WriteStream, but the method is

implemented  in class Stream. The message–send that was being evaluated when

the error occurred is automatically highlighted.



Chapter 23 246

Figure 23.4: Debugging an Error (1)

Here we find the explanation for the mysterious do: message. As you can see, it is

the nextPutAll: method that sends the do: message. We have already seen in

chapter 14 that the do: method is implemented in the Collection classes, and

therefore we would expect the receiver of the do: message to be an instance of

one of the Collection classes. However, if we inspect the argument aCollection

(from the right–hand Inspector in the Debugger), we see that it is an instance of

SmallInteger (figure 23.5).



Chapter 23 247

Figure 23.5: Debugging an Error (2)

In fact, as you may have already guessed, this is the result of the expression

23 diff: -12.

So where did the argument aCollection come from? As a clue, let us look a little

further back in the activation stack. Figure 23.6 shows the Debugger with the

method TextCollector>>show: selected, and you can see from the text of the

method that the argument is expected to be a String, not an integer!



Chapter 23 248

Figure 23.6: Debugging an Error (3)

To overcome the problem we should amend the diff: method. Rather than doing

this change in the System Browser, let us amend it in the Debugger. First select

the method SmallInteger(Number)>>diff:, and modify the code according to

figure 23.7, then accept the change you have made.



Chapter 23 249

Figure 23.7: Debugging an Error (4)

Now select the proceed option from the <operate> menu of the top pane. The

Debugger will close, evaluation of the (amended) expression will continue, and

the result of 100 factorial will be printed on the Transcript (figure 23.8).



Chapter 23 250

Figure 23.8: Debugging an Error (5)

Instead of modifying the expression, we could have modified one of the

variables. For example, figure 23.9 shows the Debugger in a similar state to

figure 23.6; however, we have modified the argument aString, so that it refers to

the (literal) String 'Hello, World!' by typing it and selecting the accept option

from the <operate> menu.



Chapter 23 251

Figure 23.9: Debugging an Error (6)

Now, if we restart the evaluation of the method with the restart option of the

<operate> menu in the top pane, we will see the new result printed on the

Transcript (figure 23.9).



Chapter 23 252

Figure 23.10: Debugging an Error (7)

Ex 23.7: Use the Debugger to follow the evaluation of the expression

'one' + 2

Ex 23.8: Similarly, follow the evaluation of the expression

1 + 'two'

Why is the activation stack not the same as in exercise 23.7?

23.7. Summary

In the example provided above, we described two ways of correcting errors. The

first solution required the programmer to modify the code in the Debugger, then

continue the evaluation; the second solution required the programmer to

modify one of the variables used in the evaluation. The latter solution is only a

“stop gap” approach — the problem is not really solved, we merely “fixed” the

variable so that computation could continue.

Once you have been using VisualWorks for some time, you will need to break

up your software into manageable pieces. The next chapter explores

VisualWorks’ support for source code control.



Chapter 24 253

Chapter 24: Projects and Change Management

In this chapter, we explore the concept of Projects, which are used to separate

different pieces of work within a single VisualWorks image. Also, techniques

and tools to manage “changes” within the image are discussed.

24.1. Projects

A Project separates different working environments within a single image. If you

regard the VisualWorks screen layout as being a metaphor for a “desk–top”, with

the windows representing different pieces of paper, then Projects allow you to

have several different desks! A Project maintains a separate collection of

windows for display on the screen, as well as a separate record of changes made

in each Project (recorded in change sets, see later). A Project can contain any

number of “sub–Projects”; this tree–like hierarchy can be extended to any depth.

When you first start using a VisualWorks image, you will have only one Project,

which is at the top of the “tree”. A new Project can be created by selecting the

Open Project  item from the Changes  menu of the Launcher (you may be

prompted for a rectangular area — for a window — in the usual way). You are

advised to make this window fairly small, as it is only provided as a “workspace”

in which to keep comments about the contents of this new Project (see

figure 24.1). It is often useful to be able to keep a title and short description here,

and to document changes made, things to do, and so on. All the usual <operate>

menu options are provided. It’s also useful to change the label of the window, so

you can see the title of the Project even when the window is collapsed.

Figure 24.1: Creating a Project



Chapter 24 254

Once a new Project has been created, it can be “entered” or accessed by pressing

the enter button in the Project window. You will now be in the new Project, and

the screen will be empty but for a Launcher. You may want to open a System

Browser and a Workspace, by selecting the appropriate items from the Launcher

(see chapter 4). You can return to the top–level Project by selecting the

Exit Project  option from the Changes  menu on the Launcher; the windows

associated with the top–level Project will be restored to the screen. If you re–

enter your new sub–Project, you will see that each Project retains its own set of

windows in their own positions. To close a Project permanently, select close in

its <window> menu. (Note: You will lose any comments you have made if you

close the Project window.)

A Project can contain any number of sub–Projects, and these can be nested to any

desired depth. In general, however, it seems that two or three levels is enough

for most purposes. However, it should be stressed that Projects do not provide a

separate source code environment; a change made to (for example) the class

hierarchy are visible in all Projects.

Ex 24.1: Try creating a new Project as described above, and experiment with moving between
them. Verify that changes made in one Project are visible in all Projects.

Ex 24.2: What happens if you select the Exit Project  menu item whilst in the top–level
Project?

Ex 24.3: Browse class Project  in category Tools-Misc. In particular, see how the enter  and
Exit Project  operations are implemented.

Ex 24.4: Once you have become familiar with the class Menu  (see chapter 28), try
implementing a new “Project Browser”. The menu should display all Projects, and
allow immediate access to any of them.

24.2. Managing Change Sets

Each Project maintains its own record of changes made to the VisualWorks

image in a “change set” associated with that Project. This change set can be

manipulated in a number of ways; in particular, changes made can be reviewed,

and selected changes can be filed–out  for use in other images. The change set

retains information on the addition, modification and removal of methods and

classes, the renaming of classes, and the movement of class and methods

between categories.

24.2.1. Inspecting Change Sets

Either of the following expressions can be used to inspect the change set

associated with the current Project. Figure 24.2 displays the change set for

chapter 6.



Chapter 24 255

Project current changes inspect

ChangeSet current inspect

Fortunately, the Inspect Changes option from the Changes  menu of the

Launcher provides an easier route to access the same Inspector. The types of

changes are listed in the left pane; select a type to display the changes in the right

pane, or select self to see the entire list in formatted form. The change set can

contain any of the following types of change:

• Added, deleted and changed classes;

• Added, deleted and changed methods;

• Changes in class categories (reported as “Reorganized System”) and

message categories (reported as “Reorganized Class”);

• “Special doIts”, rarely encountered, involving a change such as renaming

a global variable, that is effected via an evaluated expression (a doIt).

Figure 24.2: Accessing a Change Set

More usefully, the following expression opens a Message Set Browser on the

changes associated with the current Project (figure 24.3 shows the changed

method in chapter 6.):

Browser browseChangedMessages

(The Changed Methods  option on the Changes  menu of the Launcher

provides a quicker route to the same result.) This is often useful to remind you

what changes have been made to the image since you started work in a Project.



Chapter 24 256

Figure 24.3: Browsing a Change Set

24.2.2. Forgetting Changes

Occasionally, it is useful to “forget” some (or all) of the changes associated with a

Project. Either of the following expressions empty the current change set:

Project current noChanges

ChangeSet noChanges

(No changes are made to the source code or the methods⁄classes referenced by the

change set.)

Again, the Launcher provides the same functionality with the

Empty Changes…  option from its Changes  menu — in this case the user, is

requested to confirm the operation.

Alternatively, just the changes associated with a particular class can be removed

from a change set. In this example, all references to changes to class Integer are

forgotten:

ChangeSet current removeClassChanges: Integer

24.2.3. Filing–out Changes

We have already seen how any individual method, protocol, class or class

category can be filed out to the underlying file system by using the

f i le  out  as…  option from the Browsers’ <operate> menus (chapter 16).

However, it is often useful to be able to file out all changes made in a particular

Project. This is especially attractive if a new Project is used to develop a particular



Chapter 24 257

VisualWorks application. All changes in a Project can be filed out used either of

the following two expressions:

'someFile.st' asFilename fileOutChanges

Filename fileOutChanges

The latter requests the user to provide a suitable file name on which the changes

should be written. Alternatively, the File Out Changes…  option from the

Changes  menu of the Launcher may also be used — again the user is requested

for a file name. In all three cases, a message is written to the Transcript

identifying the name of the file, and identifying the changes that have been

written to that file (figure 24.4).

Figure 24.4: Messages written to the System Transcript when filing out changes

Alternatively, only those changes associated with a particular class (in this case,

class Integer) may be filed out:

'someFile.st' asFilename fileOutChangesFor: Integer

To support the functionality discussed above, a ChangeSet class is provided.

This class maintains separate records of changes made to whole classes and

individual methods, within a particular Project.

Ex 24.5: Experiment with accessing and browsing the change set, using the methods
discussed in this section. In particular, you should experiment with “filing–out”
several changes in unrelated classes.

Ex 24.6: Browse class ChangeSet in class category System–Changes.

24.3. The Change List Browser

The change set records changes to your VisualWorks image made in a particular

Project, and saves this information within the image. The changes file, however,

records all changes made in the entire image. This includes methods and classes



Chapter 24 258

changed or added to the image, as well as every do i t  selected from <operate>

menus. Furthermore, since this information is stored in an external file, it is

available even after a “crash”. This file is called something like ‘visual.cha’; in

general, the suffix ‘cha’ will appear automatically.

Very occasionally, when developing new code, you may find that VisualWorks

crashes. This may be due to a failure of the underlying platform (which is not

your fault), or may be caused by some ill–advised change made in the image

(which probably is your fault!). The simplest way of recovering the situation is to

re–start the image, (which will restore the state to that recorded at the last

snapshot), and use the following expression to look at the most recent change

information:

SourceFileManager default recover: 5000

This copies the last 5000 characters in the “changes” file into another file (called,

by default, ‘st80.recent’), and opens a File Editor window on it (see chapter 6). You

can then select expressions and re–install them in your image by using the

f i le  i t  in  option on the <operate> menu.

This approach is rather crude, and so a more sophisticated mechanism for

browsing the changes file is provided. This is the “Change List Browser”. This

Browser allows one or more files, containing Smalltalk expressions in the “filed–

out” format, to be manipulated in various ways, including the ability to redo any

expression of change and check for conflicting definitions of methods. A new

Change List Browser can be opened by evaluating the following expression:

ChangeListView open

or by selecting the Open Change List  option from the Changes  menu of the

Launcher. Both of these methods create an empty  Change List Browser.

Alternatively, a Change List Browser can be opened on all changes in the changes

file made since the last snapshot (e.g. after a crash) using the expression:

ChangeListView recover

Figure 24.5 shows a Change List Browser containing all the changes that have

been described so far in this book. The Browser is divided into two main panes,

and eight switches. The upper pane is a fixed list, displaying changes and

additions to methods and classes, and expressions directly evaluated from the

user interface. In figure 24.5, many items are available; several are doIts from

chapter 6, and two different versions of the diff: method in class Number. If an



Chapter 24 259

item is selected from the list, the corresponding method or expression is

displayed in the lower pane.

Figure 24.5: The Change List Browser

The upper two switches in the Change List Browser affect the information

displayed in the upper pane. If the show file  switch is selected, then the name

of the changes file which contains this item is displayed in brackets before the

class and selector names. Similarly, if the show category  switch is selected,

then the list item is preceded in brackets by the name of the class category (for a

change to a class), or the message protocol (for a change to a method) in which

the change occurred. Empty brackets indicate a change that does not effect a class

or method. The effect of these two switches is illustrated in figure 24.6.



Chapter 24 260

Figure 24.6: The Change List Browser
(showing the file and category to which each change belongs)

The lower six switches allow “filtering” operations to be performed on the

changes file. All these operations remove changes items from the upper pane

that do not correspond to the switch selected. The file switch removes all

methods that do not come from the same changes file as the selected item. The

type switch selects only items of the same type; i.e. doIt, class creation, or method

definition items. The class switch displays only items of the same class, the

category switch displays only items in the same message category (protocol) and

the selector switch displays only items with the same message selector. Finally,

the same switch displays only items that are identical; this allows (for example)

possibly conflicting method definitions to be detected. The filter switch



Chapter 24 261

operations are independent, so that combinations of options are frequently

useful when browsing change sets. For example, figure 24.7 shows all changes

made to class SpendingHistory first described in chapter 6.

Figure 24.7 Filtering Information in the Change List Browser

As can be seen from figure 24.5, the lower pane in the Change List Browser

supports all the usual <operate> menu functions. The upper pane’s hierarchical

<operate> menu (figure 24.8), however, provides a large number of options. The

options are divided into three sections: options handling changes files, options

managing the items in the list, and options for conflict analysis.



Chapter 24 262

Figure 24.8: The <operate> menu in the
top pane of the Change List Browser

The first item (file in/out) produces another menu to allow various changes

files to be accessed. The options on this menu are as follows:

read file⁄directory… You are prompted for the name of a
changes file. Changes in this file are
scanned and added to those already listed in
the upper pane. You are permitted to use
wildcards in the file name specification.
(The ability of the Change List Browser to
display changes from several files
simultaneously allows modifications to
different Smalltalk images to be compared.)

write file… You are prompted for a file name. Changes
not marked for removal (see below) are
written to this file.

recover last changes All changes made since the last snapshot
are added to the changes list.

display system
changes

All changes recorded inside the image are
added to the changes list.



Chapter 24 263

Frequently, we will not want to repeat all the changes displayed by a Change List

Browser. To assist in this process, many of the <operate> menu commands allow

change items to be marked  for removal. An item marked in this way is displayed

with a line through it. For example, you can select groups of items using the

filtering buttons, and mark them all for removal in a few simple operations. The

upper main section of the menu provides options to support this activity. Each

option acts only  on those items currently displayed in the upper pane.

replay all Evaluate every item that is not marked for
removal. A sub–menu offers the option of
only replaying the remaining changes.

remove all Mark every item for removal.

restore all Remove the mark from all items.

spawn all… Open a new Change List Browser on the
items.

forget Removes permanently from the list all
items marked for removal.

A typical use of these operations for crash recovery would be to mark for

removal all doIt items, and then evaluate all class and method items.

The lower main section of the menu contains options that operate only on the

selected item.

replay selection Evaluate the currently selected change item,
even if it is marked for removal.

remove selection Mark the selected item for removal.

restore selection Remove the mark for removal from the
selected item.

spawn selection… Open a window on the selected item.

Finally, the <operate> menu option conflicts provides access to operations that

allows conflicts to be detected.

check conflicts, save
as…

You are prompted for a file name. All items
in the Change List Browser are compared.
Any items defining the same method or
class are written onto the named file.

check with system,
save as…

As above, except that conflicts between the
items in the Browser and the image  are
written to the file.

For example, selecting the check conflicts, save as…  item for the case

shown in figure 24.5 causes a Prompter to appear. The file name ‘conflicts.st’ was

chosen. A File Editor on this file was created using the expression:



Chapter 24 264

'conflicts.st' asFilename edit

The contents of this file are illustrated in figure 24.9.

Figure 24.9: A “conflicts” file

Ex 24.7: Try making a number of small changes to various methods, and then quit the image
without saving these changes. Restart the image and recover these changes using
the expression:

Smalltalk recover: 5000

Ex 24.8: Experiment with the Change List Browser. Again, try making some changes and
quit the image without saving, then use the Change List Browser to re–install these
changes.

Ex 24.9: Create a new class, together with some new methods. Find out how this appears in
the Change List Browser. Also, try moving a method from one protocol to another.
Again, see how this is represented in the Change List Browser.

Ex 24.10: Verify the operation of the display and filter buttons in the Change List Browser.
To make this exercise effective, it is desirable to have a large number of different
types of changes to explore. One way of achieving this is to use the f i le  in  option
on the entire Smalltalk source code; this file will typically be named ‘visual.sou’.
You should therefore be able, for example, to browse every initialize method in the
original source code. (Warning: it will take quite a long time to parse and display
the entire source file!)



Chapter 24 265

24.4. Summary

VisualWorks provides Projects as a means of organising the changes made to an

image. Each Project maintains its own set of changes in an instance of

ChangeSet. The changes in a ChangeSet may be inspected, forgotten, or filed–

out. Files containing the changes made in a Project may be filed–in to another

image — providing a method of sharing code in a workgroup environment.

In the next chapter we discuss the classes in VisualWorks available to provide

multi–processing and concurrency control.



Chapter 25 266

Chapter 25: Processes and Semaphores

This chapter explores the features available in Smalltalk for the expression of

concurrency. It starts with a discussion of Link  and LinkedList, and then goes on

to introduce classes Process and ProcessorScheduler. Classes to support various

synchronisation operations, including Semaphore, SharedQueue and critical

sections are explored though the use of examples and exercises. Class Delay is

also considered.

25.1. Links and Linked Lists

We have already seen a number of different Collection classes where the objects

in that collection are ordered in some way (chapter 15). These classes are always

ultimately subclasses of SequenceableCollection. Instances of these classes have

a definite order, which may in some cases be externally defined (instances of

Array, for example); in other cases, the order is implicit, such as instances of

OrderedCollection.

Here, we introduce another subclass of SequenceableCollection called LinkedList,

instances of which behave something like a “list”. Class LinkedList defines two

instance variables: firstLink which is a reference to the first item in a list, and

lastLink which is a reference to the last item (see figure 25.1). If the list is empty,

both instance variables are nil . Since LinkedList is a Collection class (see

chapter 14), it inherits much protocol for accessing (at:), removing (remove:) and

enumerating (do:, select:) its elements. Additional methods are provided to

support adding and removing items at the beginning of the list (addFirst:,

removeFirst) and at the end of the list (addLast: , removeLast). However, instances

of class LinkedList represent collections whose elements are all of the same class:

they are special “link items”, instances of class Link , or of a subclass.



Chapter 25 267

Figure 25.1: A linked list

Class Link  is a subclass of Object, and defines just one instance variable (nextLink).

This is a reference to the next l ink  in the list, or nil  if there are no further items.

Thus, Link  may be described as an abstract superclass which provides its instances

with the ability to refer to another instance of Link . However, an instance of Link

does not have a way to keep a reference to the actual object in the collection;

instead, subclasses of Link  are used. Useful subclasses of Link  would define one or

more additional instance variables, to refer to the actual objects in  the linked list.

You should note that classes Link  and LinkedList are primarily provided to

support multiprocessing in Smalltalk. The structure implemented by these

classes is sufficiently simple that the virtual machine can directly manipulate a

collection of objects representing runnable  processes. For more general use, other

concrete subclasses of SequenceableCollection such as OrderedCollection

(chapter 15) should be used; instances of OrderedCollection can contain any kind

of object, rather than only instances of Link  (or a subclass).

Ex 25.1: Browse the implementation of class LinkedList (in category
Collections–Sequenceable) and class Link (in category Collections–Support).

Ex 25.2: Why is inserting elements into an instance of LinkedList using the at:put: message
not permitted?

Ex 25.3: Try constructing a LinkedList containing instances of class Point. Hint : you will
require a subclass of Link (called LinkPoint perhaps), which defines an additional
instance variable point.



Chapter 25 268

Ex 25.4:  Using a linked list of points (as suggested above), demonstrate the use of the
addFirst: and removeFirst messages to implement “stack” functions. Also, illustrate
“queue” functions using the addLast: and removeLast  messages.

Ex 25.5: You might like to try implementing a subclass of LinkedList called Stack, which
implements methods called push: and pop. Would class Stack be more useful if it
was implemented as a subclass of OrderedCollection instead?

25.2. Processes

Smalltalk supports multiple independent processes . These are lightweight

processes, as they share a common address space (object memory). Each instance

of class Process represents a sequence of actions which can be performed by the

virtual machine.

We have already seen how blocks are used to implement a wide range of control

constructs (see chapters 10 and 17). Blocks are also used as the basis for creating

Processes  in Smalltalk. The simplest way to create a Process is to send a block

the message fork. For example, selecting and evaluating the expression:

[Transcript cr;
show: 100 factorial printString] fork

creates an instance of class Process containing a block that will display the

factorial for 100 in the System Transcript. The new Process is added to the list of

scheduled Processes . This Process is runnable  (i.e. scheduled for evaluation)

immediately, and will start evaluating as soon as the current Process (one

controlling the window manager) releases control of the processor.

We can create a new instance of class Process which is not scheduled  by sending

the newProcess message to a block:

| aProcess |
aProcess := [Transcript cr;

show: 100 factorial printString] newProcess

The Process is not actually runnable  until it receives the resume  message:

aProcess resume

A Process can be temporarily stopped using the suspend message. A suspended

Process can be restarted later using the resume  message. The terminate  message

is used when a Process is no longer required. Once a Process has received the

terminate  message, it cannot be restarted.

It is also possible to create and execute a Process containing a block with any

number of arguments.



Chapter 25 269

| aProcess |
aProcess := [:first :second |

Transcript cr;
 show: (first raisedTo: second) printString]

newProcessWith: (Array with: 2 with: 20).
aProcess resume.

The example above creates a Process which, when it runs, will display 1048576

(220) in the System Transcript.

25.2.1. Priorities

In fact, Smalltalk supports prioritised Processes , so that we can create Processes

of high priority which run before other Processes  of lower priority. Eight

priority levels are supported, with level 1 being the lowest. The priorities have

names assigned to them, described in the table below.

Priority Name Purpose
100 timingPriority Used by Processes  that are

dependent on real time. For
example, Delays (see later).

98 highIOPriority Used by time–critical I⁄O
Processes , such as handling
input from a network.

90 lowIOPriority Used by most I⁄O Processes ,
such as handling input from the
user (e.g. a keyboard, pointing
device).

70 userInterruptPriority Used by user Processes  desiring
immediate service. Processes
run at this level will pre–empt
the window scheduler and
should, therefore, not consume
the processor forever.

50 userSchedulingPriority Used by Processes  governing
normal user interaction. Also
the priority at which the
window scheduler runs.

30 userBackgroundPriority Used by user background
Processes .

10 systemBackgroundPriority Used by system background
Processes . Examples are an
optimizing compiler or status
checker.

1 systemRockBottomPriority The lowest possible priority.

We can create a runnable  Process with specified priority using the forkAt:

message. The argument is an integer, but should be derived as a result of



Chapter 25 270

evaluating an expression, for example (the global variable Processor  is described

later in this chapter):

[Transcript cr;
 show: 100 factorial printString]

forkAt: Processor userBackgroundPriority.

Alternatively, we can use the priority: message to change the priority of an

existing Process. For example, in the code below we create two Processes :

process1 and process2, which are given priorities 10 and 98 respectively. Note

that process1 is resumed before process2. The result on the Transcript is shown

in figure 25.2.

| process1 process2 |
Transcript clear.
process1 := [Transcript show: ' first'] newProcess.
process1 priority: Processor systemBackgroundPriority.
process2 := [Transcript show: ' second'] newProcess.
process2 priority: Processor highIOPriority.
process1 resume.
process2 resume.

Figure 25.2: The result of evaluating the message expressions above.

The default Process priority (and the priority at which expressions are evaluated

using the user interface) is 50 (userSchedulingPriority). The scheduling algorithm

used is described in detail later in this chapter.

As we have already indicated, Processes  in Smalltalk are represented by

instances of class Process. This class is a subclass of Link , for reasons we shall see

later. Class Process defines four additional instance variables: these include

priority , which retains an integer representing the priority of a Process, and

suspendedContext which is the context that is currently being evaluated by this

Process.



Chapter 25 271

Ex 25.6: Try some examples of creating simple Processes using the fork and newProcess
messages sent to blocks. You may like to display trace messages in the System
Transcript.

Ex 25.7: Browse class Process  (in category Kernel–Processes). Try sending the resume,
suspend and terminate messages to a Process  created using the newProcess (or
newProcessWith:) message sent to a block.

Ex 25.8: Browse class BlockClosure to see how the fork and newProcess methods are
implemented.

25.3. Scheduling Processes

Class ProcessorScheduler manages the runnable Processes . As the virtual

machine has only one processor, its single instance is represented by a single

global variable Processor . We have already come across the use of the variable as

the receiver of messages to return an appropriate priority.

Note that Process is a subclass of Link , and that ProcessorScheduler has an

instance variable representing a LinkedList of “quiescent” Processes .

The active Process (the one actually running) can be identified by the expression

Processor activeProcess

This can be controlled by suspend or terminate  messages.

Processor  gives control to the Process having the highest priority. When the

highest priority is held by multiple Processes , the active Process can be forced to

the back of the quiescent Processes  with the expression Processor yield.

Otherwise it will run until it is suspended or terminated before giving up the

Processor . However, a Process that is “pushed to the back of the queue” will

regain control before a Process of a lower priority. For example, the code below

creates two Processes , the second of which sends the yield message to the

Processor :

| process1 process2 |
process1 := [Transcript show: 'Process 1'; cr] newProcess.
process2 := [Transcript show: 'Process 2, first part'; cr.

Processor yield.
Transcript show: 'Process 2, second part'; cr] newProcess.

process2 resume.
process1 resume

The result on the Transcript is shown in figure 25.3.



Chapter 25 272

Figure 25.3: Two Processes writing to the Transcript

Apart from the two messages activeProcess and yield, most application

programmers will never use ProcessorScheduler directly.

The scheduling is actually performed by the virtual machine. Note that the

scheduling algorithm interrupts Processes  with a low priority to run Processes

with a higher priority, but will not run several Processes  at the same priority

concurrently.

Ex 25.9: Browse the classes Process  and ProcessorScheduler. Note the instance protocol in
ProcessorScheduler which answers various scheduling priorities.

Ex 25.10: Try altering the priority of your Processes created earlier. You may need to include
Processor yield expressions to prevent one Process  from blocking others at the same
priority level.
Try not to create Processes that run forever at high priority levels — such
Processes are very difficult to stop!

25.4. Synchronisation using Semaphores

So far, we have shown how we create independent Processes  using Smalltalk.

However, for realistic applications, we expect that there will be some interaction

between Processes : these Processes  will have references to some objects in

common, and such objects may receive messages from several Processes  in an

arbitrary order. This may lead to unpredictable results.

To illustrate this, consider a class Counter, with one instance variable value:

Object subclass: #Counter
instanceVariableNames: ’value ’
classVariableNames: ”
poolDictionaries: ”
category: ’Processes–Experiments’

On creation, the value instance variable is set to 0, by an initialization method in

the instance protocol:



Chapter 25 273

initialize
value := 0

The ‘instance creation’ class protocol method used is:

new
^super new initialize

Instance protocol methods are also provided to read and set the value instance

variable, and to increment this variable.

value
^value

value: anInteger
value := anInteger

increment
value := value + 1

Now, suppose we create two Processes , which can both send messages to the

same instance of Counter. The first Process repeatedly sends the message

increment; the other Process is of a lower priority and sends the message value,

checks whether the result is 9 or greater, and if it is then prints it on the

Transcript and resets the value to zero (using the value:  message). Note that the

two processes are not  synchronised.

| counter |
counter := Counter new.
Process1 :=[| delay |

delay := Delay forMilliseconds: 40.
[counter increment.
delay wait] repeat] newProcess.

Process2 := [| delay |
delay := Delay forMilliseconds: 40.
[| currentValue |
currentValue := counter value.
currentValue >= 9

ifTrue:[Transcript cr;
show: currentValue printString.

counter value: 0].
delay wait] repeat] newProcess.

Process2 priority: Processor userBackgroundPriority.

Process1  and Process2  are global variables. The use of class Delay is described

later in this chapter.

The two Processes  may be started using:



Chapter 25 274

Process1 resume.
Process2 resume.

The result may appear as in figure 25.4 (depending on the amount of user

interface activity).

Figure 25.4: Two Processes sharing one object

The Processes  may be terminated by evaluating the following expressions.

Process1 terminate

Process2 terminate

In the example above, the sequence of numbers displayed in the Transcript

appears non–deterministic. Fortunately, in Smalltalk there is a class called

Semaphore which is used to synchronise multiple Processes .

Ex 25.11:  Implement the class Counter and type in and evaluate the example code above.
Start both processes and examine the Transcript. Explain its behaviour.

25.5. Semaphores

A Semaphore is an object used to synchronise multiple Processes . A Process

can wait for an event to occur by sending the message wait to a Semaphore. A

Process can signal that an event has occurred by sending the message signal to a

Semaphore. For example,



Chapter 25 275

| sem |
Transcript clear.
sem := Semaphore new.
[Transcript show: 'The '] fork.
[Transcript show: 'quick '.
sem wait.
Transcript show: 'fox '.
sem signal] fork.
[Transcript show: 'brown '.
sem signal.
sem wait.
Transcript show: 'jumps over the lazy dog'; cr] fork

gives the following result (figure 25.5).

Figure 25.5: Synchronisation using a Semaphore

A Semaphore will only return from as many wait messages as it has received

signal messages. When a Semaphore receives a wait message for which no

corresponding signal has been sent, the Process sending the wait is suspended.

If a Semaphore receives a wait message from two or more Processes , it resumes

only one Process for each signal message it receives from the Process it is

monitoring.

Unlike a ProcessorScheduler, a Semaphore pays no attention to the priority of a

Process.

A Semaphore is frequently used to provide mutual exclusion from a

critical region of code. This is supported by the instance method critical:. The

block argument is only evaluated when no other critical blocks sharing the same

Semaphore are evaluating.



Chapter 25 276

A Semaphore for mutual exclusion must start out with one extra signal,

otherwise the critical section will never be entered. A special instance creation

method is provided:

Semaphore forMutualExclusion

Ex 25.12: Browse class Semaphore, paying particular attention to the method critical:.

Ex 25.13: Repeat exercise 25.11 so that the two Processes are synchronised.

25.6. Shared Queues

When it’s necessary to match the output of one Process with the input of

another, it’s important to ensure that the Processes  are synchronised. This

synchronisation may be achieved using an instance of class SharedQueue, which

provides synchronised communication of arbitrary objects between Processes .

(SharedQueue uses Semaphores to achieve its synchronisation.)

An object is added to a SharedQueue from a Process by sending the message

nextPut: (with the object as argument) and retrieved by another Process sending

the message next. If no object has been added to the queue when a next message is

sent, the Process requesting the object will be suspended  until an object is

available.

25.7. Delays

Class Delay represents a real time delay in the evaluation of a Process. An

instance of Delay will respond to the message wait by suspending the active

Process for a certain amount of time. The time for resumption of the active

Process is specified when the Delay is created.

The resumption time can be specified relative to the current time with the

messages forMilliseconds: and forSeconds:; both messages expect a numeric

argument. A Delay created in this way can be sent the message wait again after it

has resumed.

For example, the expression:

| minuteWait |
minuteWait := Delay forSeconds: 60.
minuteWait wait.

suspends the active Process for a minute. This could also be expressed as:

(Delay forSeconds: 60) wait



Chapter 25 277

The resumption time can also be specified as an absolute time with respect to

Smalltalk’s millisecond clock with the message untilMillisecond:. A Delay created

in this way cannot be sent the message wait repeatedly.

Ex 25.14: Use a Delay to implement a simple clock which prints the current time in the
Transcript every few seconds. You may want to use the expression:

Transcript clear; show: Time now printString

Ex 25.15: Browse classes Delay and SharedQueue (both in category Kernel–Processes).
Explain how Semaphores and critical regions are used to implement these classes.

Ex 25.16: (Hard) Attempt a Smalltalk representation of “Dijkstra’s Dining Philosophers
problem”:
Five philosophers spend their lives eating and thinking. The philosophers share a
common circular table surrounded by five chairs, each belonging to one philosopher.
In the centre of the table, there is a bowl of rice and the table is laid with five
chopsticks. When a philosopher thinks, he or she does not interact with any
colleagues.
From time to time, a philosopher gets hungry and tries to pick up the two
chopsticks that are closest (the chopsticks that are between the philosopher and
his or her left and right neighbours). A philosopher may only pick up one chopstick
at a time. Obviously, a philosopher cannot pick up a chopstick that is already in
the hand of a neighbour. When a hungry philosopher has both chopsticks at the
same time, he or she eats without releasing the chopsticks. After eating enough,
the philosopher puts down both chopsticks and starts thinking again.
The suggested solution represents each chopstick as a Semaphore, using the wait and
signal messages. This guarantees that no two philosophers use the same chopstick
simultaneously. The suggested solution is also asymmetric; an odd philosopher
picks up the left chopstick first, then the right chopstick, while an even
philosopher picks up the right chopstick first.
It is suggested that each philosopher is represented by an instance of class
Philosopher. The problem could be a class DiningPhilosophers, with the
philosophers and the chopsticks are maintained in instance variables.
You may want to display tracing messages in the System Transcript. How could you
introduce some indeterminacy into the solution, given the way the Smalltalk
scheduler handles Processes of the same priority?
(The problem presented here is loosely based on the one originally proposed for
Little Smalltalk, presented in Tim Budd’s book “A Little Smalltalk”, pp.
116—121.)

25.8. Summary

Class Process provides a sophisticated mechanism for the scheduling of

processes in VisualWorks. However, we should raise a note of caution —

without careful programming, Processes can be difficult to control. The problems

of concurrency can be overcome by the use of Semaphores, which (among other

things) provide a means of specifying “critical regions” — message expressions

that can be evaluated by only one Process at a time.



Chapter 25 278

In the next chapter we return to the description of classes. Smalltalk is unlike

many other object–oriented languages because a class is itself an instance of some

other class — termed its “metaclass”.



Chapter 26 279

Chapter 26: Classes and Metaclasses1

This chapter considers the implementation of the class structure within

Smalltalk, and introduces the Metaclass concept. Classes such as ClassDescription

and Behavior are explored. The concepts here are widely misunderstood, possibly

because of the tongue–twisting terminology used; an attempt is made to clear

away the confusion in this chapter. (It’s also worth saying that some of the ideas

presented here can be difficult to understand, and are irrelevant to everyday

application programming.)

26.1. Introduction

In this chapter, we will consider the way in which classes are implemented

within the VisualWorks image. As we have already noted, classes are

themselves objects  and can respond to messages. Typically, messages (such as

new , new: and so on) are used to create new instances of that class. The idea of

metaclasses, which are the classes of classes, is introduced from a historical

perspective, and the useful properties of this approach are outlined.

Be warned that the terminology used when discussing classes and metaclasses is

extremely tongue–twisting: at the end of this chapter, you will appreciate the

veracity of statements like: ‘The class of class Metaclass  is class Metaclass class’!

(You should recall that the names of classes start with uppercase letters, as they

are global variables, and that words which are defined within Smalltalk are

reproduced here in a sans–serif font.) Fortunately, in practice you need to know

almost nothing about metaclasses to use VisualWorks effectively; the user

interface hides most of these details from you.

26.2. Classes and Metaclasses

There are two kinds of objects in Smalltalk: those which can create new objects

and those which cannot. The former kind are called classes and can create new

instances of that class. We already know that every object is an instance of some

class, and that every class (except class Object) has a superclass. So, for example,

we know that (3@4) is an instance of class Point (see chapter 8), and that class

Point is a subclass of class ArithmeticValue.

To define things more precisely: an object is a class if and only if it can create

instances of itself.

1This chapter is based on an article written by Mario Wolczko, when at the University of Manchester, with
permission.



Chapter 26 280

There are just two fundamental mechanisms which can create objects: they are

the primitive methods new  and new: which are defined in a class called

Behavior. Class Behavior also defines the basicNew and basicNew: methods,

which have the same functionality, but subclasses are not supposed to override

them. Any object that understands these messages (and thus evaluates the

methods in class Behavior) is a class.

In the earliest versions of Smalltalk developed at Xerox Palo Alto Research

Center (Xerox PARC), such as Smalltalk–72, classes were not objects. The users

found that this was a problem: it was impossible to handle classes in the same

way as other entities. For example, it was not possible to send messages to a class,

and other ways of creating objects had to be used. This situation also made it

difficult to create new classes.

In Smalltalk–76, classes became objects. Since every object must be an instance of

a class, every class was an instance of class Class . Thus, this class contained the

methods corresponding to messages that were understood by all classes,

including messages allowing new instances of a class to be created, such as new

and new:. In addition, class Class  understood messages to create new classes, and

therefore must be an instance of a class itself. In fact, in Smalltalk–76, class Class

was an instance of itself! Some simpler variants of Smalltalk available today also

use this approach (for example, Little Smalltalk).

As the researchers at Xerox PARC used Smalltalk–76, they found that initialising

objects was a little painful and prone to error. Since all classes are instances of

Class , they all behave identically, and there is no way of creating instances of a

class with specialised instance creation or initialisation methods. This means

that there is no class⁄instance distinction in the Browser, and that the only way to

create initialized objects is to first send new  (or new:) to the appropriate class, and

then send an initialisation message to the created instance. For example, creating

and initialising an instance of class Point was done by:

Point new x: 4 y: 5

A common source of bugs was to forget to initialise the newly created object, or

to initialise it incorrectly. Clearly, it is desirable that the instance creation

messages either perform the correct initialisation automatically, or insist that

appropriate parameters be supplied. For example, you will find that in the

instance creation protocol of class Point, only the x:y: and r:theta: creation

methods are provided, not new  or new:.



Chapter 26 281

If class Point is to be able to respond to the x:y: message, while class

ArithmeticValue is not, then it is clear that classes Point and ArithmeticValue

cannot be instances of the same class. The solution adopted in Smalltalk–80 is to

have every class the only  instance of another class, which is termed its metaclass.

Every metaclass is of course an instance of a class, but as all metaclasses behave

identically they are instances of the same class, which is called Metaclass .

Metaclasses are in one–to–one correspondence with classes, and are generated

when the class is defined. Since each class is the sole instance of its metaclass,

there is no need for a special name for every metaclass. Consequently, they are

named via their related class. Thus, the name of the metaclass which is the class

of Point is Point class.

We had already seen that every object is an instance of a class, and class

Metaclass  is no exception. Noting that Metaclass  is a class with multiple

instances, it follows that Metaclass  is an instance of its metaclass, called

Metaclass class. Furthermore, Metaclass class, like all the other metaclasses, is

an instance of Metaclass  itself. This relationship between metaclass and

metaclass class is a point of circularity in Smalltalk–80.

Point class

ArithmeticValue class

Magnitude class

Object class

Point

Arithmeticvalue

Magnitude

Object Metaclass

Figure 26.1: Class–instance relationships

The relationship between classes and their metaclasses is summarised in

figure 26.1. Instance–class relationships are represented by grey arrows, while

class–superclass relationships are shown with black arrows.

As an aside, all objects can be sent the message class to discover their class. So,

for example, the expression:



Chapter 26 282

(3@4) class

answers with Point. Similarly, we would expect the expression:

Point class

to respond with its metaclass. Of course, this actually prints as Point class! We

can summarise the instance relationships between classes and metaclasses as

follows. All the following expressions answer true:

(3@4) class == Point

Point class == Point class. “Point class  is a metaclass, the class of Point”

Point class class == Metaclass.

Metaclass class class == Metaclass. “Circularity”

You may well be asking: just what is the significance of the class–metaclass

relationship? For almost all application development in Smalltalk, these aspects

need not concern you. The creation of metaclasses is hidden so well by the

programming environment that you need not be aware of it. The only thing you

need be aware of is that just as a class specifies the behaviour of its instances in its

instance methods, the behaviour of the class itself (the class methods) is specified

by its metaclass.

So far, we have only been considering instance relationships. However, earlier

we observed that all classes (except Object) have a superclass. We know already

that the superclass of Point is ArithmeticValue, but what is the superclass of its

metaclass (Point class), class Metaclass  and its metaclass Metaclass class? (You

can find out the superclass of a class by sending it the message superclass.) The

general rule is that, if x is a subclass of y, then x class is a subclass of y class.

Thus, the superclass of Point class is ArithmeticValue class. While it would

have been perfectly feasible to build Smalltalk in such a way that every metaclass

was a direct subclass of Object, building it this way means that class methods are

inherited using a parallel hierarchy. This means that there are two, parallel

hierarchies: one for classes and one for their metaclasses.

As the only  class that has no superclass is Object, we need a superclass for

Object class. We know that all the instances of the metaclasses are classes, and

thus it makes sense to concentrate the general notion of “classness” into one

class called Class , and make that the superclass of Object class. Naturally, the



Chapter 26 283

metaclass of class Class  is called Class class. Our hierarchy of classes now

appears in figure 26.2.

Point class

ArithmeticValue class

Magnitude class

Object class

Point

Arithmeticvalue

Magnitude

Object Metaclass

Class Class class

Figure 26.2: Class–superclass relationships for classes

Furthermore, because classes and metaclasses are very similar, Class  and

Metaclass  are both subclasses of an abstract superclass called Behavior. This class

provides all the protocol for making new instances, and supports all the basic

functionality for classes. An intermediate class, ClassDescription provides the

extra protocol used by the programming environment; this class supports class

comments, for example. Following the usual rules about metaclasses, the

metaclass of ClassDescription is ClassDescription class that is a subclass of the

metaclass of class Behavior. The metaclasses Class class and Metaclass class are

subclasses of ClassDescription class. The final structure is illustrated in

figure 26.3.



Chapter 26 284

Point class

ArithmeticValue class

Magnitude class

Object class

Point

Arithmeticvalue

Magnitude

Object Metaclass

Class Class class

ClassDescription

Behavior

ClassDescription class

Behavior class

Figure 26.3: Classes Behavior and ClassDescription

We can make a number of interesting observations about the class–metaclass

structure. All objects, including classes and metaclasses, are instances of classes

that have Object as their ultimate superclass. This means that all objects respond

to the messages defined in Object.

Similarly, all classes and metaclasses are instances of classes that have Behavior

and ClassDescription in their superclass chain. This means that basicNew is only

defined in one place, and that all classes and metaclasses have access to protocol

to support the programming environment. Finally, if an instance method is

defined in the “connecting bridge” between the class and metaclass hierarchies

(i.e. in class Behavior or ClassDescription), then it is also available as a class

method.



Chapter 26 285

Thus the problems seem to have been solved. The solution has a certain amount

of elegance to it, but has been criticised for being complex and confusing. This is

probably due to the tongue–twisting terminology used, and the lack of suitable

explanatory material in the “Blue Book” or the “Purple Book” (it’s all there, but

it’s complicated).

Various authors have proposed going back to the situation in Smalltalk–76 (i.e.,

all classes are instances of Class), and alternative schemes are also in the works

(not at Xerox). It is doubtful that the former will be adopted, but it remains to be

seen whether anyone can come up with a better solution.

There are many methods defined in class Behavior, but the most useful ones are

to be found in the following protocols: accessing class hierarchy,

accessing method dictionary, accessing instances and variables,

testing class hierarchy, and testing method dictionary. These include:

subclasses returns an instance of class Set
containing all the direct subclasses of the
receiver.

allSubclasses returns an OrderedCollection of the
direct subclasses, and their subclasses,
and their subclasses, and so on.

allSelectors returns a Set  of all the selectors to
which instances of the receiver will
respond.

allInstances returns a Set  of all the instances of the
receiver.

instanceCount returns the number of instances of the
receiver.

someInstance returns an arbitrary instance of the
receiver, or nil  if there are no instances.

inheritsFrom: aClass returns true if the receiver is a subclass
(direct or indirect) of aClass.

canUnderstand: aSelector returns true if instances of the receiver
respond to aSelector.

whichClassIncludesSelector:
aSelector

returns the class in which the response
to the message aSelector is found.

Ex 26.1: Browse classes Class, Metaclass, ClassDescription and Behavior.
You might also like to try inspecting an instance of a metaclass (i.e. a class), by
sending the inspect message to a class of your choice. For example:

Point inspect

Metaclass inspect



Chapter 26 286

Ex 26.2: You might also like to try exploring the class and metaclass hierarchies using the
class and superclass messages. For example, what is the result of the following
expressions?

42 class superclass class class superclass

Metaclass superclass class superclass superclass class

You should be able to work out the expected result from figure 26.3.

Ex 26.3: Try some of the methods defined in class Behavior.

26.3. Summary

The metaclass concept is central to Smalltalk, but for most readers it is of no

importance. If, however, you wish to change how classes behave, and how new

classes are defined, then an understanding of the class–metaclass relationship is

essential.

In the following chapter, we return to mainstream application development. In

chapter 27, we describe the Smalltalk dependency mechanism, and in chapter 29,

examine its use as the foundation of the VisualWorks user interface.



Chapter 27 287

Chapter 27: The Dependency Mechanism

The dependency mechanism is widely used when constructing interactive

graphical applications using the “MVC” structure (chapter 29), but has many

other uses as well. The implementation and use of the dependency mechanism

is explored with examples, and some of the problems with its use are considered.

27.1. Introduction

We have already seen several ways in which activities can be co–ordinated

within Smalltalk. For example, we have seen how one object can send a message

to another object, thereby requesting an action to be performed. This can be

regarded as two objects co–ordinating their roles. We have also seen various

types of shared variables (class variables, for example), although their use for

communication has been denigrated. The dependency  mechanism provides

another way in which controlled communication can take place, by allowing one

object to depend  on another.

The major use of the dependency mechanism in VisualWorks is to provide the

links between a “model” (the application data) and its “view” (a visible

representation) in a “Model–View–Controller” (MVC) application (see

chapter 29). However, here we will consider the dependency mechanism in

isolation.

27.2. Operation of Dependencies

The basic mechanism provided allows one object (objectB  in figure 27.1) to

depend  on another object (objectA). Alternatively, we could say that objectA  has a

dependent , objectB . Naturally, objectA  can have as many dependents as

necessary, and objectB  can depend on as many objects as necessary.

changed: anAspect
objectA

objectB update: anAspect

(dependency)

Figure 27.1: The changed: and update: messages



Chapter 27 288

In this book, dependencies will be represented diagrammatically by a “fuzzy”

arrow, as illustrated in figure 27.1. This should be distinguished from references

made by variables (solid black arrows) and messages sent to objects (grey arrows).

27.3. Changing and Updating

When a particular object changes, any of its dependents may need to update

themselves. In our example, if objectA  changes, objectB  will be updated. This

mechanism is provided by two groups of messages: “changed” messages and

“update” messages.

To indicate a change, an object must receive a “changed” message. Usually, this

message is sent to self as part of the method which actually makes the changes,

using an expression like:

self changed: anAspect

The change information is propagated to any dependents, each of which receive

an update:  message, whose argument is the same aspect supplied to the

corresponding changed: message. Thus, the dependent object can perform

appropriate actions based on the aspect provided. The aspect is often a Symbol,

which can be tested by the object receiving the update:  message.

Consequently, if you wish a class of objects to perform some specific action when

an object on which they depend changes, you should re–implement its update:

method accordingly. The default implementation, defined in Object, performs

no action (figure 27.2).



Chapter 27 289

Figure 27.2: The default implementation of update:
(in class Object)

There are also two other “changed” messages, which provide different levels of

parameterisation. The simplest is the changed message, which is equivalent to

the message changed: nil. The most complex is the message changed:with:; this

variant provides dependent objects with even more information with which to

discriminate available actions.

The extra “update” messages are update:with: and update:with:from: . In both cases,

the second argument is the same object as the second argument of the

changed:with: message above. In its most complex form, the last argument of the

“update” message corresponds to the receiver of the “changed” message.

In some cases, an object may wish to check with its dependents before making a

change, to ensure that changes are made consistently (see exercise 27.4 for an

example). The changeRequest message should be sent to an object that wants to

change. This checks with all its dependents, by sending the updateRequest

message to each dependent in turn. The default implementation of

updateRequest is to answer true; subclasses should re–implement this method to

perform appropriate checks.



Chapter 27 290

27.4. Broadcasting

Another facility using dependencies is the broadcast mechanism, which permits

an arbitrary message to be sent to each of an object’s dependents in turn. For

example, in figure 27.3, objectA  has two dependents, objectB  and objectC. When

objectA  receives the message:

broadcast: #someMessage

someMessage is sent to each of the dependents in turn. There is also a form that

permits messages with one argument to be broadcast; for example:

broadcast: #someMessage: with: aParameter

This broadcast mechanism can be useful when dependencies are used in

simulations (see the example in exercise 27.6), but it is not used anywhere within

the standard VisualWorks image.

broadcast: #someMessage
objectA

objectB someMessage

(dependency)

objectC
someMessage

(dependency)

Figure 27.3: The broadcast: message

27.5. Maintaining Dependents

Clearly, some way of creating and removing dependencies is required, and

messages to support this are provided. The addDependent: message allows a

dependency to be constructed, so that:

objectA addDependent: objectB

installs the dependency illustrated in figure 27.1. Similarly,

objectA removeDependent: objectB



Chapter 27 291

removes this dependency link. To find out which objects depend on a particular

object, the dependents message may be used. For example:

objectA dependents

will answer either with one dependent object (objectB  in the case above) or an

instance of DependentsCollection (see later) containing multiple dependent

objects.

Finally, one very useful method is provided to dismantle dependency

relationships. The release message can be sent to any object; this removes any

links to objects which depend on the receiver. Taking the example in figure 27.3,

sending release to objectA  would remove all its dependents (here objectB  and

objectC). This message should be compared with the removeDependent: method

discussed previously, which removes just one object (the argument) as a

dependent of objectA .

The release message is widely used in VisualWorks applications to ensure that

dependency structures are deleted when no longer required. If the release

message is not sent, objects may remain in object memory only because they are

dependents, and will not be removed by the garbage collection processing. This

can result in much wasted space in the image. Any application that creates

explicit references to dependents should override the release method to remove

such references. It should also include the expression super release in the new

method to ensure that all the dependents are correctly deleted.

27.6. Dependency Implementation

Since the ability to be used in dependency relationships is a property of all

objects, the implementation is concentrated in class Object. A class variable

DependentsFields is declared in Object class. This refers to an instance of

IdentityDictionary (see chapter 14); the keys in this dictionary are the objects which

are depended upon. Each corresponding value  is either the sole dependent object

or an instance of DependentsCollection containing multiple dependent objects.

The class DependentsCollection is a specialised collection used solely as part of

the dependency mechanism. It was noted above that an object may have one or

more dependents. If an object (objectA) has only one dependent (objectB), then

when objectA  receives one of the changed messages, objectB  is sent a

corresponding update message (see figure 27.4).

DependentsFields



Chapter 27 292

key value

objectA objectB

Figure 27.4: An object with only one dependent

However, if objectA  has two or more dependents (for example, objectB  and

objectC) then those are contained in an instance of DependentsCollection

(figure 27.5). Consequently, when objectA  receives a changed message, the

instance of DependentsCollection is sent the corresponding update message,

which it then forwards to each of its elements (objectB  and objectC).

DependentsFields

key value

objectA DependentsCollection
(objectB objectC)

Figure 27.5: An object with more than one dependent

Most of the methods discussed above are implemented in the instance protocols

changing, updating, dependents access, and initialize–release of class Object (in

category Kernel–Objects). Associations in the dependency dictionary are created

automatically when a dependent is added to an object currently without

dependents. Similarly, when the last dependent to an object is removed, that

object is also removed from the dependency dictionary.

This implementation of the dependency mechanism has the advantage that

there is no overhead associated with objects in order to use this feature. There

are only associations in the DependentsFields dictionary for the objects involved

in a relationship at the present time. However, the implementation is somewhat

inelegant and can exacerbate problems in faulty applications that do not correctly

release dependents. Under these circumstances, objects no longer required are

still referred to by the dependency dictionary, and are not garbage–collected. This

can lead to excessive wasted space. Also, as a dictionary access is required every

time an object receives a changed: message, this mechanism is potentially

inefficient when very large numbers of dependency relationships exist.

An alternative implementation would be to have an instance variable in every

object (including all numbers, characters and strings). This would be nil  if an

object had no dependents, a reference to the sole dependent object (if there were

only one) or a reference to a DependentsCollection containing multiple

dependents, when such existed. However, since this would require space for an



Chapter 27 293

instance variable in every object, and there are many tens of thousands of objects

in a typical VisualWorks image, this approach would waste a lot of space.

As a compromise, a subclass of Object, called Model, can be used as the abstract

superclass of all objects that are expected to be depended upon. Typically, Model is

used as an abstract superclass for classes of objects used as the “model” in a

“Model–View–Controller” application (see chapter 29). Instances of class Model

have an instance variable (called dependents) which may refer to one or more

dependents, as discussed above. This permits a more efficient implementation to

be used.

The Model implementation for the dependency mechanism also reduces the

problems with certain faulty applications. It is possible to leave dependency links

set up accidentally when an application is no longer required. With the original

implementation, unwanted objects could be referenced only by the

DependentsFields dictionary. Thus, they would not be recovered by a garbage

collection process, and would waste space in the virtual image. With the Model

implementation, leaving dependency links installed merely results in the

creation of “circular” (indirectly self–referential) garbage, which can be recovered

by the garbage collector. However, not all objects can use this improvement; in

these cases, careful use of the release message is required to overcome this

problem.

Ex 27.1: As DependentsFields is a class variable of class Object, it is accessible from all
methods in the image. Try inspecting the DependentsFields using an expression
like:

DependentsFields inspect

You should then be able to inspect the various dependency relationships in your
image.

Ex 27.2: Use the System Browser to view the implementation of the dependency mechanism.
In particular, browse the methods addDependent: and breakDependents.

Ex 27.3: Browse the re–implementation of the dependency mechanism in class Model .

Ex 27.4: The changeRequest and updateRequest messages are used to ensure that when
some text has been edited but not re–compiled (accepted), an appropriate prompter
is used to ensure this is what the user really wanted.
Browse the use of these messages in the image. (Hint: Use the senders  and
implementors menu items from the Browser <operate> button menu, or the
Launcher browse menu.)



Chapter 27 294

27.7. Example: Clocking Flip–Flops

As mentioned previously, the dependency mechanism is most usually used as

part of the “Model–View–Controller” mechanism (see chapter 29). Here,

however, we will explore dependencies using an example that avoids the

complexities of MVC. This example also illustrates the way in which simulations

of “real world” systems can be constructed using VisualWorks.

We will construct a simple simulation of digital logic circuits, particularly flip–

flops, which make up a large part of the hardware of all computer systems. Such

digital circuits represent logic values as true or false, although these states are

often called 1 and 0 respectively. We will model these states using the Smalltalk

Boolean classes (see chapter 21).

A flip–flop (see figure 27.6) is a digital logic circuit which “remembers” the logic

state of its D input when a clock signal (Clk) is applied. In this case, the D input

state is recorded at the instant that the Clk signal changes from logic level 0 to 1.

This transition is normally referred to as a “positive edge”. You should note that

the D input is ignored at all other times, and this input may change as often as it

pleases. (Strictly speaking, an approximation to a positive-edge triggered, master-

slave D-Type flip-flop is being modelled here.)

However, the new state captured by the Clk signal is not available at the output

(Q) until a later time. In this model, point Q does not change until the Clk signal

changes from a 1 to a 0 (a “negative edge”). This feature has the advantage that

the Q output from one flip–flop can be fed directly into the D input of another,

with both flip–flops being controlled by the same clock. Consequently, various

useful circuits, such as shift registers, can be constructed easily.



Chapter 27 295

(Clk)

(D)

clock input

data input

new internal
state

data output
(Q)

One Clock
Period

data input

clock input

data output
D

Clk

Q

Figure 27.6: Basic Flip–Flop Operation

In typical synchronous digital systems such as computers, large numbers of flip–

flops (often many thousands) are controlled from the same clock. While it would

be possible in our simulation to arrange for every flip–flop to “know about” its

clock source, this is quite inconvenient. As an alternative, we will make each

flip–flop a dependent  of the clock, so that all timing information is distributed

using the dependency mechanism. More generally, when constructing

simulations using Smalltalk, distributing “global” knowledge (such as time)

using dependencies is frequently very useful.

To illustrate the dependency mechanism, we will create two new classes. The

first of these new classes is FlipFlop which has the following class definition:

Object subclass: #FlipFlop
instanceVariableNames: 'input state newState '
classVariableNames: ''
poolDictionaries: ''
category: 'Dependency–Examples'



Chapter 27 296

You can see that we have defined three instance variables. The variable named

input  refers to the object providing the source of the logic signal at the D input.

Messages sent to the object referred to by input  should answer either true or false.

The variable named newState holds the captured input value when the positive

edge of the clock occurs, while state holds the value available at the Q output.

Both newState and state should be either true or false.

We will need some accessing protocol, so that instances of FlipFlop can interact.

For example, other objects will need to know the current value at the Q output.

This state method simply answers with the current value of the state instance

variable.

state
"Answer with the state of the receiver."

^state

We will also want to install the link between the D input and the (simulated)

digital device to which it is connected.

input: aLogicUnit
"Set the input to be aLogicUnit"

input := aLogicUnit

Most real flip–flops have some additional inputs for setting the internal state to a

known value without using the clock input, for initialization purposes. To

model this, we will provide two methods for setting the Q output to 1 (preset)

and to 0 (clear).

preset
"Set the state to true, immediately."

state := true.
newState := true

clear
"Set the state to false, immediately."

state := false.
newState := false

For our purposes, we will assume that flip–flops are always created with the Q

output set to 0 so our initialize message in instance protocol initialize–release is

simply:



Chapter 27 297

initialize
"Initialize the receiver."

self clear

The initialize method is used by the instance creation method in class protocol

‘instance creation’ as follows:

new
"Create a new initialized instance of the receiver."

^super new initialize

The actions of the flip–flop when clocked are captured by the following two

methods in instance protocol clocking:

positiveClock
"Copy the input value into the receiver's new state."

newState := input state

negativeClock
"Copy the remembered input state into the receiver's state."

state := newState.

The positiveClock method simply copies the logic value from the input device

into the newState variable, while the negativeClock method transfers the

captured value to the state variable. This corresponds exactly to the operation of

the abstract flip–flop discussed previously.

As we are going to use the dependency mechanism to provide the clock

information, we must add our own update:  method (in protocol ‘updating’) to

override that provided by class Object.

update: anAspect
"Perform the clocking action on a rising edge."

anAspect == #risingEdge ifTrue: [self positiveClock].
anAspect == #fallingEdge ifTrue: [self negativeClock]

You should note that the aspect is expected to be one of two symbols, to indicate

which clock action is to be performed. This use of an aspect symbol to the update:

message is often useful when using dependencies.

Finally, we will override the release message inherited from Object, so that we

can break up any (potentially) circular structures created.



Chapter 27 298

release
"Reset any references to remove possible cycles."

input := nil.
super release

This removes any reference to other objects, and then uses the release method

in class Object to break up the dependency links.

We need some way of generating the clock signals. For this purpose, we can

create a class Clock  with very simple functionality.

Object subclass: #Clock
instanceVariableNames: ''
classVariableNames: ''
poolDictionaries: ''
category: 'Dependency–Examples'

No instance variables are required. Only one instance method is required (in

protocol cycling); this simply indicates that a whole clock cycle (both positive and

negative edges) has taken place, and that any dependents should change

appropriately.

cycle
"Perform one clock cycle."

self changed: #risingEdge.
self changed: #fallingEdge

As an example using the simulations of flip–flops and clocks developed here,

consider the circuit shown in figure 27.7. This circuit has three flip–flops

connected in a circle to form a ring counter. If one flip–flop is initialized to a 1

and the others to a 0 then, as the system is clocked, the 1 shifts around the ring of

flip–flops. The circuit therefore has three different states and can be used as a

simple counter.



Chapter 27 299

clock

One Clock
Period

D

Clk

Q

Q1

Q2

Q3

D

Clk

QD

Clk

Q

Master
Clock

Q1 Q2 Q3

Figure 27.7: Ring Counter using Flip–Flops

We can construct a simulation of the ring counter using the following

expressions:

FF1 := FlipFlop new preset.
FF2 := FlipFlop new input: FF1.
FF3 := FlipFlop new input: FF2.
FF1 input: FF3.

For simplicity, we are using global variables to refer to the flip–flops here. You

should note that FF1 is explicitly initialized to 1 using the preset message.

We also need to install the “connections” (dependencies) to the clock generator.



Chapter 27 300

MasterClock := Clock new.
MasterClock addDependent: FF1.
MasterClock addDependent: FF2.
MasterClock addDependent: FF3.

Again, a global variable is used to refer to the clock. This completes the circuit

illustrated in figure 27.7. Figure 27.8 shows the relationship between the

instances of FlipFlop and sole instance of Clock .

Figure 27.8: The instances of FlipFlop and Clock

You might like to inspect each of the flip–flops at this point, to verify that they

are in their expected states.

By evaluating the expression MasterClock cycle, a single clock cycle is performed.

By re–selecting the state instance variable in the Inspectors, you should be able to

see that the ring counter state has changed (see figure 27.9). By repeatedly

evaluating this expression and using Inspectors, you should be able to follow the

operation of the counter.



Chapter 27 301

Figure 27.9: Ring Counter Implementation in Operation

Once you have finished experimenting with the ring counter simulation, it is

essential to ensure that the circular structures constructed are dismantled, so that

the space taken by the objects can be recovered by the garbage collector.

MasterClock release.
FF1 release.
FF2 release.
FF3 release.
FF1 := FF2 := FF3 := MasterClock := nil.

These expressions remove the dependency links between the flip–flops and the

clock. References from the global variables are removed by assigning nil  to these

variables. You can verify that the flip–flops have disappeared using the

expression FlipFlop instanceCount.



Chapter 27 302

Ex 27.5: Try out the example used in this section. Verify that the number of true and false
states in the shift register does not change, regardless of the initial configuration.
(You might also like to implement a cycle: method, which performs the cycle action
a number of times given by a numeric argument.)

Ex 27.6: Try re–implementing the cycle method in class Clock using the broadcast
mechanism.

Ex 27.7: You might like to try implementing a more complex example using flip–flops. For
example, try building a twisted–ring counter, where the Q output from the last
flip–flop is inverted (negated) before being fed into the D input of the first flip–
flop. In this case, there is no need to “preset” any of the flip–flops — why is this?
(Hint : Implement a class Inverter, which answers with the negated logic value
obtained from the device at its input.)

Ex 27.8: There is plenty of scope for constructing much more sophisticated simulations of
synchronous digital systems using the techniques outlined here. You might like to
consider the problems of developing a wider range of digital components, including
logic gates (such as AND and OR gates) and other types of flip–flops (such as J–K
flip–flops).

27.8. Summary

The Smalltalk dependency mechanism is widely used throughout VisualWorks.

At its simplest, it may be used as a mechanism to inform one object of a change

in another object. For example, in the Financial industry, one often models

“Derivatives” — a financial product whose value is dependent on the share price

of some equity. By modelling a Derivative as a dependent of its underlying

equity, changes in equity share price can be easily propagated.

We now begin, our exploration of programmatic control of the VisualWorks

user interface, first by using “Dialogues”, before continuing to describe the use of

the “Model–View–Controller” mechanism and the classes provided to support

it.



Chapter 28 303

Chapter 28: Dialogues — Menus, Prompters and
Confirmers

This chapter considers the use of the three main interaction “Dialogues” widely

used in applications. These include menus, “Prompters”, and “Confirmers”.

28.1. Using Menus

Menus are widely used to support interactive input in VisualWorks, for

example, to get commands from the user. A list of textual items is presented on

the screen; one of these may be selected using the mouse or keyboard. The result

is an object corresponding to the menu item selected. Menus are objects, just like

everything else in VisualWorks, and are frequently used in conjunction with

controllers, especially ControllerWithMenu (see chapter 31) and its subclasses.

Individual menus are instances of class Menu . Instances may be created in

several ways, but one of the most common is by using the labels: message, which

takes as its argument a String (or a Text) containing embedded “carriage return”

characters. The carriage return characters indicate the separation between each

menu item. For example:

Menu labels: 'Coffee
Tea
Chocolate'

It is often convenient to send the String argument the message withCRs, which

answers with a new String in which the “backslash” characters (‘\’) are replaced

by carriage return characters. Thus, the above example could be written:

Menu labels: 'Coffee\Tea\Chocolate' withCRs

You will have seen that some menus have lines between selected items. A Menu

with this property can be initiated using the labels:lines: instance creation

method, as follows:

Menu labels: 'Coffee\Tea\Chocolate\Donut\Cookie\Brownie' withCRs
lines: #(3)

When the labels:lines: message is used, lines are drawn under the menu items

indicated by the integers in the second argument.

Once created, an instance of Menu  can be made to appear by sending it the

message startUp. The example shown in figure 28.1 displays a Menu  with six

items.



Chapter 28 304

Figure 28.1: Menu  example

Once the Menu  is active, the item on the menu under the cursor (the selection) is

highlighted. Unless otherwise specified, when the mouse button is released, the

Menu  will answer with an integer corresponding to the selected item. In the

above example, if Coffee was selected, then 1 would be answered. If no item was

selected when the button was released, then 0 would be answered.

As a variation, a Menu  can also answer with an item from a sequenceable

collection of “values” (corresponding to the items in the menu) specified via an

alternative instance creation method. This example uses an Array of Strings, one

of which is selected according to the menu item chosen.

| aMenu |
aMenu := Menu

labels: 'Coffee\Tea\Chocolate\Donut\Cookie\Brownie' withCRs
lines: #(3)
values: #('$0.30' '$0.40' '$0.45' '$0.55' '$0.15' '$0.30').

aMenu startUp

A typical use of “values” is to select a message to send to another object. For

example:



Chapter 28 305

| aMenu |
aMenu := Menu

labels: 'Time\Millisecond Clock\Total Seconds' withCRs
values: #(#dateAndTimeNow #millisecondClockValue

#totalSeconds).
Transcript cr; show: (Time perform: aMenu startUp) printString

This example sends one of three messages to class Time, depending on which

menu item is selected. The result of this message–send is displayed in the System

Transcript. This use of the Menu  is common in the implementation of the

various Browsers you will have seen previously.

If the values  array contains further Menus  then these are started, which gives a

hierarchical menu effect. For example, see figure 28.2 below.

Figure 28.2: Hierarchical Menu  example

Ex 28.1: Browse the implementation of Menu  in category Interface-Menus .

Ex 28.2: Try constructing instances of Menu , and start them (i.e. display them on the screen).
If you evaluate the expressions using the print i t  option on the Workspace
<operate> menu, you will see the object corresponding to the selection made.

Ex 28.3: Try the labelArray: and labelList: instance creation methods. These expect an Array of
Strings  or an Array of Arrays of Strings  respectively.



Chapter 28 306

Ex 28.4: Try some of the Menu  examples in this section.

Ex 28.5: Try creating a hierarchical menu.

Ex 28.6: In the example using perform:  above, what happens if no item is selected from the
menu? Modify the code to overcome this problem.

Ex 28.7: Browse references to class Menu  in the image, and the class examples.

Ex 28.8: Build a method for class SequenceableCollection named elementFromUser . This
method should allow the user to get a Menu  containing all the elements in the
collection (the receiver), select one, and have it returned from the method. Test
your method on the following code:

#('b' 1 3 (4 5 6) 22) elementFromUser

28.1.1. Alternative Ways of Creating a Menu

Rather than using the mechanisms described above, it is possible to use an

instance of MenuBuilder to create a Menu . In the example below, we send

messages to an instance of MenuBuilder to create the Menu  described earlier in

the chapter.

| mb |
mb := MenuBuilder new.
mb addLabel: 'Coffee' value: '$0.30';

addLabel: 'Tea' value: '$0.40';
addLabel: 'Chocolate' value: '$0.45';
line;
addLabel: 'Donut' value: '$0.55';
addLabel: 'Cookie' value: '$0.15';
addLabel: 'Brownie' value: '$0.30'.

mb startUp

Note that the message addLabel:value: is used to create the items in the Menu ,

and the line message is used to add a divider between the items. In the example

above, we sent the message startUp to the instance of MenuBuilder, whereas

below we ask the MenuBuilder for the Menu  it has created (via the message

menu), and then send it the message startUp, to recreate an earlier example.

| mb menu |
mb := MenuBuilder new.
mb addLabel: 'Time' value: #dateAndTimeNow;

addLabel: 'Millisecond Clock' value: #millisecondClockValue;
addLabel: 'Total Seconds' value: #totalSeconds.

menu := mb menu.
Transcript cr; show:(Time perform: menu startUp) printString

Ex 28.9: Browse class MenuBuilder, paying particular attention to the building instance
protocol.

Ex 28.10: Experiment with the MenuBuilder class examples.



Chapter 28 307

Ex 28.11: Try creating a hierarchical menu using the MenuBuilder class.

Ex 28.12: Modify your solution to exercise 28.8 to use class MenuBuilder.

28.2. Using Prompters

In VisualWorks, Prompters are the usual way to request the user for typed input

(often called “Fill–in–the–Blank”). When input is required, a small window

appears, usually under the cursor. This window typically has three sections: an

upper section that contains an explanatory message; a middle section, into which

the user is expected to type a response; and a lower section containing buttons

labelled OK  and Cancel . An <operate> menu supporting editing functions is

available, and the usual typed input mechanisms are supported. (Shortcuts to the

OK  and Cancel  buttons are provided by the <CR> and <esc> keys, respectively.)

You will already have seen many examples of their use in the image (see

chapter 4).

Prompters are instances of class Dialog which can be found in class category

Interface-Dialogs. The basic instance creation method for a Prompter is to send

the message request: to the class. The argument is expected to be a String, Text or

ComposedText representing the title of the Prompter, which can have embedded

carriage return characters. (The withCRs message is often useful.) For example,

the expression in figure 28.3 produces the Prompter shown in the same figure:

Figure 28.3: A Prompter

There are two alternative instance creation methods:

request:initialAnswer:

request:initialAnswer:onCancel:



Chapter 28 308

The second argument is also a String which is initially displayed in the middle

section of the Prompter. This String is normally the default input value. If the

last form of instance creation is used, then the third argument is a block

containing expressions that will be evaluated if the user presses the Cancel

button.

The following example expressions might be used to read in a grid size for a

graphical drawing package:

| answerString aGridSize |
aGridSize := 50. "Initial Grid size."
answerString := Dialog

request: ' New Grid Size? '
initialAnswer: aGridSize printString.

answerString isEmpty ifFalse:
[ aGridSize := Number readFrom: (ReadStream on: answerString)]

You should note that, in this case (figure 28.4), the instance creation method

request:initialAnswer: answers with a String typed by the user. This example also

illustrates the use of a ReadStream (see chapter 19) to create a number from a

String. This approach means that the grid size can be entered using any of

VisualWorks’ number formats.

Figure 28.4: Returning a Number from a Prompter

Alternatively, we may wish to indicate to the user via the Transcript that the

Cancel  button was pressed (see also figure 28.5):



Chapter 28 309

| answerString aGridSize  failed |
failed := false. "Flag to test for success"
aGridSize := 50. "Initial Grid size."
answerString := Dialog

request: ' New Grid Size? '
initialAnswer: aGridSize printString
onCancel: [failed := true.

Transcript show: 'No grid size'; cr].
failed ifFalse:

[ aGridSize := Number readFrom: (ReadStream on: answerString)]

Figure 28.5: Providing a Prompter with a “cancel” block

Ex 28.13: Try some of the Prompter examples given above. You might also like to construct
your own.

28.3. Using Confirmers

Confirmers are VisualWorks’ way of asking for an answer from a collection of

options (most commonly a ‘yes⁄no’ answer). A Confirmer is a window which has

two parts: an upper section containing a message, and a lower part containing a

one or more buttons (e.g. buttons displaying yes and no — see figure 28.6). One

of the buttons in the dialogue box will have an inset border; this is the default.

This means that if you press the <CR> key, that option will be selected. The user

is expected to click the <operate> mouse button over one of the buttons. You will

already have seen several examples of Confirmers in action (see chapter 4).



Chapter 28 310

Confirmers are also instances of class Dialog. The basic instance creation method

for a ‘yes⁄no’ Confirmer is confirm:. The argument is expected to be a String, Text

or ComposedText representing the question. In this case the Confirmer will

present yes as the default option and answer with true or false (depending on

the user’s selection).

As an example of the use of a ‘yes⁄no’ Confirmer, consider the code below:

(Dialog confirm: 'Do you understand this?')
ifTrue:[Transcript cr;

show: 'Good. Carry on to the next exercise.']
ifFalse:[Transcript cr; show: 'Oh, dear. Try again.']

This creates a Confirmer (figure 28.6) and, depending on the user’s response,

displays one of two different phrases in the System Transcript.

Figure 28.6: A Confirmer

Alternatively, the programmer may present no as the default option by using the

message confirm:initialAnswer:, as in the code below:

Dialog confirm: 'Confirmation needed?' initialAnswer: false

The programmer may alternatively specify that only one button is to be

presented to the user — as a “warning” (you will already have seen many

examples of this kind of dialogue). The message to achieve this is simply warn:;

the argument is a String, Text or ComposedText containing the warning. For

example:

Dialog warn: 'You have been warned!'

Ex 28.14: Try some of the Prompter and Confirmer examples given above. You might also like
to construct your own.



Chapter 28 311

28.4. Other Dialogues

Other dialogue styles are available (see the class messages in Dialog for more

details), whilst many more can be created.

Ex 28.15: Try out some of the other kinds of dialogues available. Browse the class protocol
examples in class Dialog.

28.5. Summary

Dialogues provide a relatively simple means of obtaining user input. It’s often

possible to provide the user with a constructed menu, or pre–built Prompter or

Confirmer, rather than building a complex window.

It’s important to note that all the Dialogues rely on the “Model–View–

Controller” mechanism, described in the following chapter.



Chapter 29 312

Chapter 29: Introduction to Models, Views and
Controllers

The “Model–View–Controller” paradigm is an important part of Smalltalk. This

chapter introduces the concepts involved in general terms, and indicates how a

view communicates with its mode l , and with its corresponding controller. Some

idea of the complexity of applications which can be constructed is illustrated.

Additionally, we give some examples of models, and finish by giving a summary

of the stages in building an interactive application.

29.1. Introduction

Building a new window in VisualWorks is a complex exercise, but not as

complex as in other languages. The basic concept of a VisualWorks window

depends on three elements, the mode l , view , and controller. Each of these is a

specialised type of object that combines with the others to produce a working

window. This method of building windows is called “MVC”. We will examine

how the elements work and how they can be created.

The MVC mechanism is used throughout VisualWorks. It provides a general

structure for the construction of interactive applications with graphical user

interfaces. The programming interface and tools which you have already seen

throughout this book are all constructed in this way.

In this chapter, we will outline the basic features of MVC, and suggest how they

might be used to construct graphical user interfaces.

29.2. MVC Basics

The basic idea behind MVC is the separation of a graphical interactive

application into two parts: the abstract application (or mode l ) which can perform

the necessary computations without reference to any form of input⁄output (I⁄O),

and the user interface part, which has the responsibility for all I⁄O functions. This

separation allows the application designer to concentrate on one aspect of an

application at a time, thus simplifying the design and development process. It

may even allow different people to implement these two parts. Also, it is quite

possible that different applications may be able to use the same user interface

components, or that different user interfaces may be supplied for a single

application.



Chapter 29 313

In Smalltalk, the user interface part of an application is itself split into two parts:

the view , which handles all display (output) operations and manages some part

of a window; and the controller, which handles user input from the keyboard

and mouse. The view and controller can communicate between themselves

without interacting with the model. You should note that, in Smalltalk, any

object can be used as the model. This object may be very simple (an instance of

class Boolean, for example). Frequently, however, the model is an instance of a

specially constructed class (like the Browser for example) with many instance

variables; consequently, the model can be as complex as required.

As might be expected, the functions of views and controllers are represented by

classes within the VisualWorks image. In general, a view used by an application

is an instance of a subclass of VisualPart (see chapter 30). This class supports

general mechanisms to display a visual representation of some aspect of a model

in a pane of a window.

Similarly, the controllers used in a graphical application are instances of a

subclass of class Controller (see chapter 31). A controller may also provide input

prompts (menus, Prompters, Confirmers). Instances of this class have a reference

to a sensor representing the mouse and keyboard, so that it can process user

input. A controller handles mouse clicks, menu interactions, keystrokes, and any

other user input. In MVC applications, we frequently see two distinct types of

actions initiated from a controller.

1) Communications from controller to model, causing a change of state in

the application in some way.

2) Communications from controller to view, causing a change in the visible

representation without  affecting the state of the model.

This division of labour among three objects makes for a very flexible and

extensible window system. It also has the following benefits:

• It separates the user interface code from the underlying structure. (We

want to avoid giving the model intimate details about its views that

would make it difficult to be separated from them.)

• Views present some aspect of the model to the user. The same model may

have different views presented to the same user simultaneously.



Chapter 29 314

(dependency)

model

view

controller

controller view model

model

Figure 29.1: Basic Model–View–Controller Triad

29.3. Communications in MVC

The communications between the model, view, and controller in a VisualWorks

application can be summarised as in figure 29.1. As in previous chapters, the

communication between various objects is illustrated by a boxes and arrows

diagram, such as figure 29.1. Objects are shown by rectangles, and instance

variables referring to other objects are illustrated by solid black arrows.

Communication by the dependency mechanism is shown by a grey arrow. The

view has references to its controller and model (using instance variables), and

the controller has references to its view and model. Thus, the model can be sent

messages from the controller, perhaps informing it of user actions; and from the

view, typically enquiring about the model’s current state. You should note,

however, that the model has no explicit knowledge of any user interface, and

that the only form of communication from a model to its views is by the

dependency mechanism (see chapter 27). This is used to inform the view that the

model has changed in some way. In this manner, the model is isolated from any

knowledge of its visible representation.

You can see that the separation of model and view⁄controller fits nicely into the

object–oriented programming model, as the interface between them is defined in

terms of messages understood by the model and the answers returned to the

view and controller in response to such messages. Thus, the internal operation

of the model is hidden from the view and controller, and only a well–defined

external interface is used.

In normal use, a particular controller will become active under certain

conditions, such as the mouse cursor being placed over its corresponding view.

(The way in which controllers become active is discussed in chapter 31.) Once



Chapter 29 315

active, the controller will process user input from the keyboard or mouse,

providing responses (such as menus, see chapter 28) as necessary. The controller

can send messages to the model, perhaps based on a selection made from a

menu. The model may change some part of its state, and use the dependency

mechanism to inform the view that a change has been made, typically using an

expression such as:

self changed: anAspect

(This message is described in chapter 27)

Any view that is a dependent of the model will subsequently receive an update:

message, with anAspect  as its argument. The view can then send messages to the

model to discover its new state, and can re–display the visual representation

accordingly. It is also possible for the controller to send messages directly to the

view, so that (for example) the visible representation can be changed under user

control, without changing the application (for example to change the position of

an object in a pane). Also, there is normally no communication from the model

to the controller, although the controller can be made a dependent of the model

if necessary.

29.4. Multiple Views

It is important to emphasise that a particular model can have more than one

view at a time, each of which with its own controller. The manner in which

information is presented to the user need not be the same in each view, so that

aspects of the same model need not be presented in the same way. Figure 29.2

shows how this can be arranged, with two view⁄controller pairs interacting with

the same model. User input via any of the controllers may cause messages to be

sent to the model. When the model changes, all dependents receive one of the

update messages, so that all views have the opportunity to update their visible

representation.



Chapter 29 316

(dependency)

model

view

controller

controller view model

model

view

controller

controller
view

model

model

Figure 29.2: Multiple view–controller pairs on the same model

To illustrate the use of multiple views displaying the same aspects of their model

in different ways, consider the example in figure 29.3. You will already have seen

how methods are provided in ObjectMemory  to answer with the current amount

of free memory, and the current number of object unused pointers (see

chapter 5). In the application model for this example, a Process (chapter 25) is

created, which runs at regular intervals (using a Delay, see also chapter 25).

When the Process runs, it samples the current level of activity within the

image, and stores those values in an OrderedCollection. Different subclasses of

View  are used (to produce different visual representations) of the model, so that

when the model signals a change using the dependency mechanism; the views

send messages to the model to get the current sampled values, and then displays

these values in various ways.

Figure 29.3: Different views of the same model — System Monitoring



Chapter 29 317

29.5. Models

Chapters 30 and 31 describe the classes that are available to be used as views and

controllers (respectively). In this section we concentrate on classes used to fill the

role of mode l .

When designing an application, it’s useful to distinguish two kinds of model:

A Domain Model Consists of behaviour required for some

application domain along with information

needed to carry out the behaviour. This

model often persists beyond the lifetime of

the users’ interaction and typically includes

a complex object structure that may be used

by a number of different applications. For

example, in a financial application, the

model may contain objects pertaining to

securities or trades.

An Application Model Consists of behaviour that is required to

support the user’s interaction along with

information needed to carry out the

behaviour. For example, the information in

the model may represent a selection in a

list, or the contents of a paste buffer.

It is relatively straightforward to create a new domain model, since an instance of

any Smalltalk class may take the role, although it will usually be a subclass of

Model. In the case of an application model however, it’s almost always necessary

to create a bespoke class. The internal structure of the class — in terms of its

instance variables — is usually represented by instances of those classes in the

ValueModel class hierarchy described below. These are the objects that represent

the selection in a list, the entry in a text field, the value of a slider, or the boolean

value of a button, and so on.

29.6. Class ValueModel

The abstract class ValueModel epitomises the idea of a holder  class — one that

references a value of some sort. ValueModel provides its subclasses with default

behaviour for accessing an object (via the value message) and a means of

specifying an object (via the corresponding value:  message). In the VisualWorks



Chapter 29 318

image there are two major subclasses of ValueModel, called ValueHolder

(described below) and PluggableAdaptor (described in chapter 33). (Chapter 34

describes other subclasses of ValueModel used primarily by the Canvas

mechanism.) When an instance of some subclass of ValueModel receives a value:

message, its dependents are sent the message update: #value.

Class ValueHolder provides an instance variable (called value) to reference the

object received as the argument to a value:  message. An instance of ValueHolder

is often used to act as an intermediary for another object, such as a Boolean or a

String, that does not behave like a model.

To create an instance of ValueHolder, send the class the message with:, passing the

initial value as its argument. For example:

ValueHolder with: (FinancialHistory initialBalance: 800)

Additionally, for your convenience, three other instance creation messages are

available:

newBoolean (when the value is to be initialized to false)

newFraction (when the value is to be initialized to 0.0)

newString (when the value is to be initialized to an empty

String, i.e. ' ')

An instance of ValueHolder is the typical model for each component of a free–

standing dialogue box. (See chapter 33 for examples.)

29.7. Building an MVC Application

In general, the model–view–controller mechanism is a good idea, but it is

sometimes badly used. There are some examples of quite poor coding techniques,

and (worse) poor design of the separation between the view, controller and

model. Historically, because of the lack of adequate documentation, MVC has not

been widely appreciated, although it is a very powerful general mechanism.

Chapter 32 contains a worked example of an MVC application. In order to

provide you with a complete overview of the stages involved in the

construction of an MVC application, we feel it is worth presenting a “recipe” for

you to follow.



Chapter 29 319

1) Build your domain model  — i.e. some object or objects that represent

your domain. This model may be as simple as a Boolean or a collection

but is more likely to be quite complex. Simulate any operations that

may be performed later as a result of user interaction by the use of

Inspectors and the Transcript.

2) Build your application model . In reality, this model may be same

object(s) that you created in (1) above, but typically it is a specialised

object designed to handle user interaction and re–direct messages to the

domain model if necessary. Ensure that the application model provides

the required functionality by simulating operations via Inspectors and

the Transcript. In addition, make sure that you have appropriate

“changed” messages in place. Implement the methods needed to allow

the user to manipulate the model.

3) Build your view(s). If you are lucky you will be able to use one of the

existing views (see chapter 30) or one of the “pluggable” views (see

chapter 33); but you may have to develop your view class(es) yourself.

Most of the work in a view is done by the displayOn: method, which

takes an instance of GraphicsContext as its argument (an example is

given in chapter 30). Implement a displayOn: method if you can’t

inherit it. Remember that each view should display a particular visual

representation of some aspect of the model. If you are planning to use

multiple views on your model, as part of a multiple–paned window,

then it’s a good idea to test each view in turn before arranging them in

a window. At this stage it’s best not to provide any controller

functionality; a specialised class — called NoController — is available to

fill this role.

4) Arrange your view(s) in a window (see chapter 30) and by

manipulating your application via an Inspector, ensure that the

content of each pane is modified according to the corresponding

“changed” messages.



Chapter 29 320

5) Build a controller for each view (see chapter 31), if necessary providing

a menu (chapter 28) of options via a class variable (see chapter 12). If

you have defined new menu messages, implement them as instance

methods in the controller class. If there is something special about

selection in the controller’s corresponding view then create a new

redButtonActivity  method for that controller. If something special

should happen when the pane becomes active (such as the cursor

changing shape) or inactive, then create a new controlInitialize or

controlTerminate method (respectively). Connect each controller to its

view and test that you can manipulate your model and the changes

reflected in changes to the view(s).

6) Create an opening  method for your application (possibly on the class

side of your main view) that creates an instance of ScheduledWindow

(see chapter 30), creates each of the panes (each is itself an MVC triad),

arranges it in a layout specification (see chapter 30), and then sends the

message open to the ScheduledWindow instance.

7) Iterate stages (1) to (6) until “cooked”.

Ex 29.1: Consider the possibilities of an alternative abstract structure to MVC, which would
fit within Smalltalk’s object–oriented programming paradigm. Is the separation
between user input and user output necessary and⁄or desirable?

Ex 29.2: Once you are more familiar with models, views and controllers, and have read
right through to the end of the book, you might like to consider implementing a
System Monitor similar to that shown in figure 29.3. Among other things, you might
want to monitor the amount of memory remaining to the image (ObjectMemory
current availableFreeBytes) and the number of object pointers (“oops”) remaining
(ObjectMemory current oopsLeft). You could also count the number of mouse button
and keyboard operations since the last sample and the number of file input⁄output
operations. You will probably want to have menu options allowing the style of
display, the parameter to be displayed, the sampling rate and the number of
samples displayed to be changed. You should also arrange for the displays to scale
themselves appropriately, and to change the scale as necessary. Hint : you will
probably want to have a special class of “monitor” objects, to use as the model in
this application.

29.8. Summary

All VisualWorks windows rely on the MVC mechanism. Thus, it is important

that readers have a good understanding of how the mechanism operates.

Whether you will be creating new applications or maintaining existing ones,

unless you feel familiar with the relationships between the objects that combine

to form an MVC triad, you’ll make little progress.



Chapter 29 321

Having introduced MVC in abstract, the following two chapters describe the

Smalltalk classes corresponding to views and controllers.



Chapter 30 322

Chapter 30: The VisualPart class Hierarchy and
class ScheduledWindow

This chapter explores the VisualPart class hierarchy, concentrating on the general

mechanisms it provides. The way in which panes can be arranged is also

described, and examples of the transformations managed by the wrapper

mechanism are given. The invalidation mechanism is also described.

The additional functionality provided by class ScheduledWindow is considered.

Again, many examples are provided. By the end of this chapter, you should be

able to create your own windows on the screen.

30.1. Introduction

You will by now be familiar with the user interface provided by VisualWorks

and, in particular, the way in which windows are provided to permit you to

manipulate objects within the image. This chapter explores the notion of a

VisualWorks window and its component panes, some of which may be views .

Views are part of the MVC mechanism introduced in the previous chapter. They

are responsible for communication from an underlying data structure (the

mode l ) to the user, usually by displaying in a window. In typical MVC

applications, specialised view classes — frequently subclasses of VisualPart — are

constructed especially for the application; often, these views contain much code

to convert the internal structure of a model into a form easily comprehended by

the user.

30.2. Class VisualPart

We have already seen in earlier chapters how it is possible to display directly to a

pane in a window from within VisualWorks (see chapters 19 & 20). However,

the mechanisms we have seen so far provide very little control over the way in

which the content of a pane is dynamically modified. The basic function

supported by class VisualPart is a controlled way of updating some portion of a

window.

The abstract class VisualPart is a subclass of VisualComponent, and is itself the top

of three class hierarchies, rooted at DependentPart, Wrapper , and CompositePart.

In fact, the hierarchy of classes based at VisualPart is one of the largest and most

complicated parts of VisualWorks (see figure 30.1). In this book, we cannot hope

to describe every one of these classes, but we can at least consider some of the

basic behaviour provided.



Chapter 30 323

Figure 30.1: Part of the VisualPart class hierarchy



Chapter 30 324

Ex 30.1: Browse the protocol of class VisualPart. There is quite a lot of it, and it is worth your
while getting to be familiar with the methods provided.

The abstract class DependentPart simply adds the ability to invalidate instances of

its subclasses when they receive an update:  message from one of the objects on

which they depend. This causes instances to redraw themselves and means that

instances of subclasses of DependentPart can be used to graphically represent

dynamic aspects of a model.

The only direct subclass of DependentPart in the VisualWorks image is View .

Class View  is the abstract superclass for new, application–specific panes. From

figure 30.1 you can see that there are already a very large number of View

subclasses in the image, for example text views, list views, buttons, and switches

(described in chapter 33). Class View  introduces an instance variable named

controller, so that each of its instances can be associated with an instance of a

subclass of Controller (see chapter 31) to manage user input.

It’s important to distinguish between two different uses of the word ‘view’. So

far, we have used it to describe an area of a window, similar to ‘pane’, in which

some visual aspect of a model may be displayed. This meaning should not be

confused with View , the name of the abstract class1 that provides its subclasses

with suitable behaviour to display in a window. There is no implication

intended that all views should be instances of class View .

30.3. Arranging Panes in a Window

Frequently, we will wish to arrange panes in a window. To support this, a

framework structure of panes can be created: a pane can have one or more

components . Conversely, we can say that a pane may have a container. For

example, in a System Browser, each of the panes is a separate component within

a single container. A component will always display in part of the bounds  of its

container. The uppermost container in a framework is called the top component ;

the top component has no container.

Each pane in a framework structure has its own two–dimensional co–ordinate

system, independent of the co–ordinates of its container or the screen. For

example, an application–specific view can work in a co–ordinate system

convenient for the application that is independent of the size and location of the

window on the screen. Transformation methods are available to convert from a

1Note the font.



Chapter 30 325

pane’s private co–ordinate system to that of its container, or to the co–ordinate

system of the screen.

30.4. Class ScheduledWindow

As we mentioned in chapter 19, an instance of class Window represents a graphic

medium. For constructing applications, a Window is not terribly useful as it does

not know how to participate in a framework of panes. This is the role of

ScheduledWindow, the main subclass of Window.

A ScheduledWindow is the top component in a visual parts framework, with

connections to the display screen and window manager. Although not part of the

VisualPart class hierarchy, an instance of ScheduledWindow participates in an

MVC structure, since it always has a controller (an instance of

StandardSystemController, or a subclass), and may have a model. It can also have

a label, an icon (the icon is ignored on the Macintosh), and a minimum and

maximum size. However, it can have only a single component (which may be an

instance of DependentPart, CompositePart, or Wrapper , or their subclasses).

Additionally, each ScheduledWindow has its own instance of LookPreferences

(see chapter 12) to dictate its internal appearance.

We noted above that a ScheduledWindow may have a reference to a model.

However, it’s unlikely that a ScheduledWindow will want to be dependent on a

model, since there are very few occasions in which the window will want to

change according to a change of state of its model. However, there are a few

occasions in which this dependency is useful. We have already seen some

examples of this:

closing a text window For example, you may have already noticed that if

you attempt to close a System Browser which

contains source that has not been accepted, you will

be prompted to confirm that you wish to discard the

changes you have made. This behaviour relies on

the changeRequest/updateRequest mechanism

described in chapter 27.



Chapter 30 326

changing the label of

a window

For example, when using the FileBrowser, if you

modify the path you wish to search, the label of the

window is updated to reflect the new path name.

This behaviour relies on the FileBrowser sending

itself a changed:with: message in which the first

argument is the Symbol #label and the second

argument is a String representing the new label of

the window.

When a window is opened on the screen, the platform’s window manager gives

it some form of decoration — a border and some widgets to provide access to

window manager operations such as quit, and collapse. A VisualWorks window

— an instance of (a subclass of) ScheduledWindow — may have one of three

decorations, known as normal , dialog and popUp , corresponding to the

following characteristics:

normal So–called “full” decoration, including a border and widgets

providing access to window manager operations. For example, a

Browser.

dialog A (less obvious) border and usually widgets. For example, a

Prompter.

popUp No decoration. For example, a menu.

By default, an instance of ScheduledWindow is opened with normal  decoration.

This is achieved by sending it the message open, thus:

ScheduledWindow new open

This creates a window with a default inside colour, no label and little restrictions

on its size. Nevertheless, this window will understand all the normal re–size

and re–positioning messages. Furthermore, it will automatically have an

instance of StandardSystemController attached to it (see chapter 31), so that the

usual <window> menu is available.

Normally, however, we will want a more interesting window, so further

messages will be sent to the newly–created instance of ScheduledWindow before

the open message is sent. An example is shown in the workspace in figure 30.2.



Chapter 30 327

Figure 30.2: An Example ScheduledWindow

Ex 30.2: Browse class ScheduledWindow. Try further examples creating
ScheduledWindows, like in figure 30.2. You might like to experiment with some of
the other messages understood by ScheduledWindow such as maximumSize:.

Ex 30.3: Add a method to class ScheduledWindow called fixedSize: which may be used to
fix the size of the window, preventing the user from resizing it.

30.5. Adding a Component to a Window

A window without a component isn’t particularly useful. In the example below,

we give the window a component (an Image) before opening it (see figure 30.3):

| window |
window := ScheduledWindow new.
window label: 'Example One'.
window component: Image parcPlaceLogo.
window open

Figure 30.3: An Image displayed in a ScheduledWindow

Because the Image is a component of the window, whenever the window is

resized or refreshed its contents will be re–displayed. In chapters 19 and 20, we



Chapter 30 328

saw that when we displayed directly onto a window its contents were not

retained. This property of re–displaying after a damage  event is part of the

invalidation mechanism which is described later in this chapter.

Ex 30.4: Experiment with the example above.

Ex 30.5: Substitute an instance of ComposedText for the Image in the example.

Ex 30.6: Try to substitute a Geometric object such as a Circle as a component in the example,
see chapter 20 for a description of displaying Geometrics.

30.6. Wrappers

Class Wrapper  is another subclass of VisualPart. Instances of class Wrapper

contain a single component, retained by the instance variable component.

VisualParts assume that their containers are wrappers. (We have already seen

use of wrappers for displaying Geometrics in chapter 20.) Wrappers support the

relative positioning of components, when these components are contained in an

instance of CompositePart. Although Wrapper  is not an abstract class, instances of

it are seldom used. The preferred approach is to use instances of Wrapper’s

subclasses as shown below.

Class Description Example creation
expressions

TranslatingWrapper adds to Wrapper  the ability
to translate its component
by an offset. Instances are
typically used to hold a
visual component of a fixed
size, such as an Image.

TranslatingWrapper
on: Image parcPlaceLogo
at: 40@40

BoundedWrapper adds the notion of a definite
bounds . It also supports a
layout specification
(typically, a Rectangle).

BoundedWrapper
on: Image parcPlaceLogo
in: (20@20 corner:

 100@200)

BorderedWrapper adds the notion of a
coloured border (an instance
of Border), together with an
inside colour.

BorderedWrapper
on: Image parcPlaceLogo
in: (20@20 corner:

 100@200)

Instances of VisualPart are normally contained within a BoundedWrapper (if no

border or colouring is required), or in a BorderedWrapper otherwise.

30.7. Class CompositePart

The (non–abstract) class CompositePart is yet another subclass of VisualPart. (It is

the composite equivalent of VisualPart.) Instances of this class can be included in

a framework structure to hold many components, all of which are assumed to be



Chapter 30 329

instances of a subclass of Wrapper . Each of these components will be a container

of some other instance of a subclass of VisualComponent.

A subclass of CompositePart is DependentComposite. This class allows for the

construction of a framework of parts, all of which depend on the same model.

CompositeView subclasses DependentComposite to add an overall controller; as

its name suggests, it is the composite equivalent of View .

Several messages are provided by class CompositePart which may be used to add

a visual component to an instance of CompositePart (or one of its subclasses). A

typical example is add:at:, in which the first argument is any VisualComponent

and the second argument is a Point. In the method that corresponds to this

message, the VisualComponent is first enclosed in a TranslatingWrapper (using

the Point as its offset) before being added to the collection of components. The

full set of messages (and the wrappers they create) is presented in the table below.

Message Creates Wrapper:

add: aVisualComponent at: aPoint TranslatingWrapper

add: aVisualComponent in: aLayoutObject BoundedWrapper

add: aVisualComponent borderedIn:
aLayoutObject

BorderedWrapper

add: aVisualComponent in: aLayoutObject
borderWidth: anInteger

BorderedWrapper

addWrapper: aWrapper1

Ex 30.7: Browse the messages in the table above.

In the example below, we install a CompositePart as the component of a

ScheduledWindow, and add a ComposedText to the CompositePart at an offset

point (figure 30.4):

| window composite |
window := ScheduledWindow new.
window label: 'Example Two'.
composite := CompositePart new.
window component: composite.
composite add: 'Example Two' asComposedText at: 40@40.
window open

1The argument must be an instance of one of the Wrapper classes.



Chapter 30 330

Figure 30.4: A ComposedText displayed in a ScheduledWindow

Ex 30.8: Using an instance of TranslatingWrapper, write a sequence of message expressions to
produce the same result as the example.

Alternatively, we could specify the Rectangle  in which a component should be

located, thus (figure 30.5):

| window composite |
window := ScheduledWindow new.
window label: 'Example Three'.
composite := CompositePart new.
window component: composite.
composite add: (Circle center: 100@100 radius: 100) asFiller

in: (0.25@(1/3) corner: (2/3)@0.75).
window open

Figure 30.5: Displaying a Circle in a ScheduledWindow

Ex 30.9: Using an instance of BoundedWrapper, write a sequence of message expressions to
produce the same result as the example.

Continuing in the same vein, we can modify an earlier example to enclose the

component in a Border , as follows (figure 30.6):



Chapter 30 331

| window composite  |
window := ScheduledWindow new.
window label: 'Example Four'.
composite := CompositePart new.
window component: composite.
composite add: 'Example\Four' withCRs asComposedText

borderedIn: (0.25@(1/3) corner: (2/3)@0.75).
window open

Figure 30.6: Displaying a ComposedText (enclosed in a border) in a
ScheduledWindow

Ex 30.10: Using an instance of BorderedWrapper, write a sequence of message expressions to
produce the same result as the example.

Ex 30.11: Modify your answer to exercise 30.10 to give a three–pixel wide yellow border.

In the last two examples above, the Rectangle gives the relative dimensions of

the component — its x and y co–ordinates lie between 0 and 1. Alternatively, we

could use a Rectangle to specify the absolute position of the component, as

follows (figure 30.7):

| window composite |
window := ScheduledWindow new.
window label: 'Example Five'.
composite := CompositePart new.
window component: composite.
composite add: 'Example\Five' withCRs asComposedText

borderedIn: (20@30 corner: 120@130).
window open



Chapter 30 332

Figure 30.7: Specifying the layout using a Rectangle

Ex 30.12: Modify your answers to exercises 30.9, 30.10 and 30.11 to use a Rectangle  that
specifies the absolute position of the component.

30.8. Layout Specification

We have seen how a Rectangle may be used to specify the layout of one

component within another. There are occasions, however, when a more

complex layout specification is required. For example, it’s sometimes necessary to

position a component at the right–hand edge of a variable–sized window. In

these cases, we use a layout object such as an instance of LayoutOrigin or

LayoutFrame. Both are subclasses of the abstract class Layout .

A LayoutOrigin is used when you are only concerned about the position of the

top–left of an object (when it cannot stretch or shrink, such as an Image). The

LayoutOrigin contains a leftFraction and a topFraction  (quantities between 0 and

1). These specify a relative point inside the container’s bounds, as a fraction of

the size of the area. The absolute point is obtained by adding a leftOffset and

topOffset — measured in pixels. A LayoutFrame is like a LayoutOrigin, but

additionally has a rightFraction, bottomFraction , rightOffset and bottomOffset. (Note

that the right and bottom fractions are measured from the left and top!) By

default, all these parameters are zero — i.e. occupying no space.

The two examples below demonstrate the use of a LayoutOrigin and LayoutFrame

to position a component (figures 30.8 and 30.9).



Chapter 30 333

| window composite text layout |
window := ScheduledWindow new.
window label: 'Example Six'.
composite := CompositePart new.
window component: composite.
text := 'Example\Six' withCRs asComposedText .
"Position the text at the right-hand edge of its container, one third down, no
matter what the size of the window"
layout := LayoutOrigin new

leftFraction: 1;
leftOffset: text bounds width negated;
topFraction: 1/3.

composite add: text borderedIn: layout.
window open

| window composite layout text textBounds |
window := ScheduledWindow new.
window label: 'Example Seven'.
composite := CompositePart new.
window component: composite.
text := 'Example\Seven' withCRs asComposedText.
textBounds := text bounds expandedBy: 2@2.
"Position the text one quarter along and half way down its container, ensure
that its bounds don't change when the window is resized"
layout := LayoutFrame new

leftFraction: 1/4;
rightFraction: 1/4;
rightOffset: textBounds width;
topFraction: 1/2;
bottomFraction: 1/2;
bottomOffset: textBounds height.

composite add: text borderedIn: layout.
window open

Figures 30.8 & 30.9: Using a Layout to specify the location of a component

Ex 30.13: Re–write the examples above using a BorderedWrapper.

Ex 30.14: Experiment with different layouts by modifying the examples above.



Chapter 30 334

30.9. Summary of VisualPart class hierarchy

As an example of a framework structure, figure 30.10 shows the structure of the

components of an Inspector. From this and the above description, we can

identify three characteristics:

• An instance of (some subclass of) DependentPart is usually the leaf in the

framework structure. For example, the instance of TextCollectorView in

figure 30.10.

• An instance of Wrapper  (or one of its subclasses) is an interior node of the

framework — it contains a single component. As an example, see the

many instances of BorderedWrapper in figure 30.10.

• An instance of CompositePart (or one of its subclasses) is an interior node

of the framework — it contains an arbitrary number of wrappers, each of

which contains a single component. For example, in figure 30.10, the

instance of BorderDecorator (a subclass of CompositePart).



Chapter 30 335



Chapter 30 336

Figure 30.10: The internal arrangement of an Inspector

Ex 30.15: Try inspecting the internal structure of a VisualWorks window on the screen. The
easiest way to do this is to interrupt the image (with <control–C>) with the cursor
over VisualWorks window. Use the Debugger and Inspectors to explore the window
structure.

Ex 30.16: Browse the three class hierarchies rooted at DependentPart, Wrapper and
CompositePart . Try to understand how and why new behaviour is added in each
subclass. You may find the class comments helpful.

30.10. The displayOn: Message

All views respond to the message named displayOn:. This message causes some

aspect of a model to be displayed. It usually contains a sequence of expressions

which send messages to the instance of GraphicsContext provided as the

argument.

For example, figure 30.11 shows the displayOn: method for class ListView.

Figure 30.11: An example displayOn: method

30.11. Invalidation

When a view realises that its display contents are no longer correct (perhaps due

to an update:  message from the model), it should send itself either invalidate or

invalidateRectangle: with a Rectangle  argument to indicate the invalid area. This



Chapter 30 337

message will travel up the parts framework to the object at the top (usually a

ScheduledWindow) which will accumulate all the Rectangles  and then send a

message to its component to re–draw itself (by sending a displayOn: message with

an appropriately clipped GraphicsContext).

The accumulation of invalid areas is integrated into the damage repair

mechanism: when the window is told (by the platform’s window manager) that

an area is damaged (for example, when first opened or later obscured by another

window), it uses the same mechanism to re–display the damaged areas. This

technique helps avoid unnecessary re–painting of windows and associated

flicker.

The delay between the top component being told about an invalidation, and it is

actually sending a displayOn: message to its component, can be substantial

(especially when there is significant computation). It can be told to repair damage

immediately by using the invalidateRectangle:repairNow: message with true as

the second argument. Alternatively, a view can ask for all outstanding damage

in its framework structure to be repaired immediately by sending itself the

message repairDamage.

Ex 30.17: Browse the methods described above.

30.12. Example: ClockView

In the example below, we provide a worked example of a fully–functioning view

to represent a clock. This example will reuse some of the code first described in

chapter 25.

The class ClockView is a subclass of VisualPart. It contains two instance variables

— clockProcess and running — which will be used to represent the timing

process of the clock, and to indicate if the clock is running (respectively).

VisualPart subclass: #ClockView
instanceVariableNames: 'clockProcess running'
classVariableNames: ''
poolDictionaries: ''
category: 'View examples'

We require two methods to start and stop the timing process (in protocol control):



Chapter 30 338

start
"start the clock"

running
ifFalse:

[clockProcess resume.
running := true]

stop
"stop the clock"

running
ifTrue:

[clockProcess suspend.
running := false]

We also require two methods, initialize and release, to instantiate and terminate

the timing process (in protocol initialize-release).

initialize
"initiate the clock process
This message is received when the instance is created"

| delay |
super initialize.
running := false.
delay := Delay forSeconds: 1.
clockProcess := [

[self invalidate. "Causes the window view to re-display"
delay wait] repeat] newProcess.

self start

release
"terminate the process
This message is received when the window is closed"

self stop.
clockProcess terminate.
super release

Now we add the displayOn: method, which displays the current time on the

GraphicsContext argument (in protocol displaying).

displayOn: aGraphicsContext
"display the time"

Time now printString asComposedText displayOn: aGraphicsContext

Finally, we have to add a method called preferredBounds, which will return a

Rectangle  specifying the preferred size of the ClockView (in protocol bounds

accessing).



Chapter 30 339

preferredBounds
"answer my preferred bounds (actually the bounds of the text I'm going to

display)"

^Time now printString asComposedText preferredBounds

To test the ClockView, we place an instance of it in a ScheduledWindow

(figure 30.12):

| window |
window := ScheduledWindow new.
window label: 'Clock'.
window component: ClockView new.
window open

Figure 30.12: A VisualWorks Clock

Ex 30.18: Experiment with the example above.

Ex 30.19: Using a CompositePart , create a window containing many instances of ClockView.

Ex 30.20: (Hard.) Consider modifying ClockView so that it displays a clock face in either a
conventional analogue style or a digital style.

30.13. Summary

The view component of the MVC mechanism is represented by classes VisualPart

and ScheduledWindow — class ScheduledWindow provides the outer container

view with connections to the platform window manager; and the abstract class

VisualPart provides behaviour for the components of a window. One of the most

important methods that these classes provide is displayOn:, taking an instance of

GraphicsContext as its argument. This method has multiple implementations,

specific each to view class.

The final element of the MVC triad is the controller. In the next chapter, we

describe the classes that represent this element.



Chapter 31 340

Chapter 31: Controllers

The mechanism of controllers is considered in this chapter. The basic control

loop in class Controller is described, including the way in which control is passed

from one controller to another, and from one window to another. Additionally,

we describe mouse and keyboard interaction, and give examples to modify the

cursor shape.

This chapter also considers the additional support provided by major subclasses

of Controller: StandardSystemController, ControllerWithMenu and NoController.

The interaction between StandardSystemController and ScheduledWindow is

also described.

31.1. Introduction

A controller is the final element of an MVC structure. In chapter 29, we said that

a controller provides the user with the means to interact with its view and⁄or

model. Fundamentally, therefore, a controller is concerned with user input

whereas a view is concerned with (screen) output. Views and controllers are

configured to work together in pairs (a controller must  have a view), in such a

way that the controller is invisible to the user — it makes a view appear to

respond to mouse and keyboard activity.

The responses that we expect a controller to provide, in response to user input,

include the following:

• produce a menu containing operations that may be performed on the

model or the view;

• inform the model or view about the selections (e.g. from a list) made

using the mouse;

• capture and interpret keyboard presses;

• control the location and appearance of the cursor; or

• any combination of the above.

Each instance of ScheduledWindow and each component view (an instance of

View , CompositeView, or their subclasses) has a controller. Therefore, in a

structure of visual parts, the user may interact with many controllers. For

example, in an Inspector, if you select an item from the left–hand pane with the



Chapter 31 341

mouse, the window’s controller and the list view’s controller are involved in

interpreting the mouse activity. In particular, the window’s controller would

respond to the <window> button being pressed, and the view’s controller would

respond to activity of the <select> and <operate> buttons.

This “flow of control” between controllers is managed by the controllers

themselves. The means by which a controller determines whether it wants

control, or decides to hand control to some other controller is fairly complex, but

follows a well–defined pattern.

31.2. Class Controller

It should come as no surprise to discover that controllers are represented by

instances of class Controller (or one of its subclasses).

In order to co–ordinate its view and model, class Controller has two instance

variables, view  and model, which are usually initialized by view: and model:

messages sent by the controller’s view. Class Controller also contains an

additional instance variable, named sensor , which is an instance of InputSensor

(or one of its subclasses) and which provides low–level support for the mouse

and keyboard input devices. (Class InputSensor is described later in this chapter.)

Class Controller provides a default control sequence for responding to user input.

The methods in class Controller that provide this behaviour are overridden by its

subclasses to produce specialised behaviour. Therefore, although not strictly an

abstract superclass, instances of class Controller are rarely useful.

31.3. Flow of Control

Earlier we mentioned that a controller is responsible for co–ordinating the flow

of control between it and other controllers, and the sequence of control within

itself.

It’s important here to make the distinction between the flow of control between

windows and the flow of control within  a window. Although the mechanisms

for both are generally similar, the fact that the windows are also managed by the

platform window manager introduces some small inconsistencies.

Since only one window can have control at one time, there needs to be another

object whose role is to determine which window should be given control. This

role is filled by an instance of class ControlManager. There is only one active

instance of ControlManager in the VisualWorks image, represented by the global



Chapter 31 342

variable ScheduledControllers. Its instance variable (confusingly called

scheduledControllers) is a collection containing the controller of each

ScheduledWindow1. As each instance of ScheduledWindow is opened (by sending

it the message open), its controller is added to the collection of controllers

maintained by ScheduledControllers.

ScheduledControllers determines which window controller wants control by

sending each of them in turn the message isControlWanted. The first controller

to respond true to this message is sent the message startUp. (Both of these

messages will be described later.)

It is the responsibility of the window’s controller to determine which of the

window’s sub–components desires control. It does this by sending the message

subViewWantingControl to the window. The window then asks its component

which sub–component wants control, by sending it the message

objectWantingControl.

When a component receives the message objectWantingControl, it asks its

controller (if it has one) if it wants control by sending it the message

isControlWanted. If the component is a composite, it may forward the

objectWantingControl message to each of its sub–components, and so on. The first

component to respond true to the message objectWantingControl is then sent the

message startUp by the window’s controller. The component re–directs the

message to its controller, giving it control, beginning what is known as the

“control sequence”.

When the controller first gets control, it sends itself the message controlInitialize,

then controlLoop, then controlTerminate.

Within the controlLoop method, a controller first checks to see if it still has

control by sending itself the message isControlActive. If the corresponding

method returns true, the controller sends the message controlActivity  to itself,

then repeats the isControlActive test.

If the isControlActive message returns false, the controlLoop sequence finishes.

Subsequently, control is regained by the object that sent the startUp message.

The controlActivity  method may contain code to deal with various input events,

such as key presses, and mouse activity. The default implementation of

1Hence the ‘Scheduled’ in ScheduledWindow.



Chapter 31 343

controlActivity  (in class Controller) simply passes control to the next level (a

controller of a component of this controller’s view) by sending itself the message

controlToNextLevel.

The controlToNextLevel method determines whether there is a component with

a controller wanting control (using subViewWantingControl).

The controlActivity method should be re–defined in subclasses when the

controller wants to perform some action.

Let’s go over some of the other messages that we mentioned above:

isControlWanted The controller determines whether it wants
control. This is often accomplished by sending
itself the message viewHasCursor.

isControlActive Similarly, the controller determines whether it is
active.

controlInitialize Occasionally re–defined in subclasses to perform
suitable initialization of the controller when it
gains control, for example changing the cursor
shape. The default implementation (in class
Controller) simply returns self.

controlTerminate Occasionally re–defined in subclasses to shut
down this controller cleanly, when it gives up
control. The default implementation returns self.

Ex 31.1: Browse class ControlManager and inspect the global variable
ScheduledControllers.

31.4. Specialised Controllers

The methods corresponding to the messages controlActivity , isControlActive, and

isControlWanted are the ones that are re–implemented by subclasses of class

Controller to produce specialised behaviour. (Occasionally, controlInitialize and

controlTerminate are also re–implemented — as shown later in an example.)

When building an MVC application, it may be necessary to implement your own

class of controller. However, it’s often possible to use an existing Controller

subclass directly, or use it as a superclass for your own controller class. To assist

you in your decision, in this section we present a summary of the major

subclasses of Controller.

31.4.1. Class StandardSystemController

A subclass of Controller, class StandardSystemController is unusual because it is

designed to work only with instances of ScheduledWindow (or one of its



Chapter 31 344

subclasses). It is StandardSystemController that provides the standard <window>

menu and its corresponding operations (close, move). It is also important to note

that the collection of controllers maintained by ScheduledControllers are

instances of StandardSystemController (or occasionally a subclass).

In addition to providing methods corresponding to the <window> menu

options, class StandardSystemController also re–implements the controlActivity

method. In brief, this method starts a Menu  (chapter 28) if the <window> button

is pressed, otherwise it sends the controlActivity  message to its superclass. The

Menu  is retained by a class variable named ScheduledBlueButtonMenu.

Ex 31.2: Why does StandardSystemController use a class variable to represent the menu,
rather than an instance variable?

Ex 31.3: Where is the class variable ScheduledBlueButtonMenu initialized?

Ex 31.4: Browse class StandardSystemController, paying particular attention to the other
methods that it re–implements.

31.4.2. Class NoController

Another subclass of Controller is class NoController. As its name suggests, an

instance of NoController refuses to accept control, thus preventing its view or

model from being edited or manipulated. This behaviour is especially useful for

a message view which only displays status information.

Ex 31.5: How do instances of class NoController  refuse to accept control? Hint : browse the
class, especially the methods isControlActive, isControlWanted, and startUp.

31.4.3. Class ControllerWithMenu

ControllerWithMenu is another subclass of Controller. It provides a mechanism to

start a menu when the <operate> mouse button is pressed. It acts as an abstract

superclass for application–specific controllers (although instances of it may be

used via sophisticated programming), that require a menu of options.

The menu is referenced via the controller’s instance variable menuHolder

(usually an instance of ValueHolder, or PluggableAdaptor) whose value  is a

Menu . The method that initializes menuHolder is called initializeMenu, and is

therefore ripe for re–implementing in a subclass that requires a specialised

menu.

ControllerWithMenu re–implements several of Controller’s methods. The most

interesting of these is controlActivity  (see figure 31.1). As you can see, if the

<select> or <operate> mouse buttons are pressed, the messages redButtonActivity

or yellowButtonActivity are sent to the receiver, respectively. (In chapter 4 we



Chapter 31 345

mentioned that Smalltalk  refers to the mouse buttons in terms of their colour,

so it’s necessary to remember the mappings: red (<select>), yellow (<operate>)

and blue (<window>).)The yellowButtonActivity method starts the Menu

referenced by menuHolder and sends the message selector corresponding to the

user’s menu selection to the receiver.

Figure 31.1: The controlActivity method in class ControllerWithMenu

Ex 31.6: Browse class ControllerWithMenu. What other Controller methods does the class re–
implement?

Ex 31.7: Browse the subclasses of ControllerWithMenu. How many of them re–implement the
initializeMenu method? Do all of them use a class variable to reference the Menu?

31.5. Class InputSensor

We mentioned earlier that class Controller has an instance variable named

sensor  that is expected to reference an instance of InputSensor or one of its

subclasses. In fact, all of the controllers in the VisualWorks image reference an

instance of TranslatingSensor, except those controllers that are instances of

StandardSystemController. Each StandardSystemController shares an instance of

WindowSensor with its window. Both are subclasses of InputSensor, with

TranslatingSensor providing a little extra functionality to translate co–ordinates

according to the co–ordinates of the controller’s view.



Chapter 31 346

Class InputSensor therefore provides a number of methods to determine which

mouse button is pressed, the current position of the cursor, and the characters

entered at the keyboard.

The messages are described below:

cursorPoint returns a Point indicating the cursor’s position in
local co–ordinates, i.e. in the co–ordinates of the
controller’s view.

globalCursorPoint returns the location of the cursor in screen co–
ordinates.

waitButton the cursor position the next time any button is
pressed

waitClickButton the cursor position the next time any button is
pressed and  released

waitNoButton the cursor position the next time any button is
released.

For example, evaluate the following expression, using print it to see the result.

ScheduledControllers activeController sensor waitClickButton

It’s also possible to determine which mouse button is pressed. Each of the

following return a Boolean:

redButtonPressed

yellowButtonPressed

blueButtonPressed

noButtonPressed

anyButtonPressed

Similarly, we can test if a key has been pressed on the keyboard, by sending a

sensor the message keyboardPressed.

Ex 31.8: Browse class InputSensor and its subclasses.

Ex 31.9: Hard: Write some code in a Workspace which will continuously print the location
of the cursor in the Transcript until the <select> mouse button is pressed.

31.6. Class Cursor

It’s important to distinguish between a sensor and a cursor. In the section above,

we described how a sensor may be interrogated for its cursor position. Class

Cursor  represents the physical display of a cursor shape. There are many

messages contained in the class protocol constants which, when received by class



Chapter 31 347

Cursor , produce instances of the class. Some of the messages, and their

corresponding cursor shapes, are in the table below:

wait

execute

normal

read

write

hand

crossHair

origin

corner

To display a cursor shape at the cursor position, send an instance the message

show . Alternatively, send it the message showWhile: with a block argument. For

example:

Cursor hand showWhile: [(Delay forSeconds: 5) wait]

Ex 31.10: Browse class Cursor and display some instances.

31.7. Example: ClockController

Here we will give a small example of building a controller class, to be used with

the ClockView class described in chapter 30. Initially, we will produce one that

uses the <select> and <operate> mouse buttons to start and stop the clock,

respectively. Later, we provide some exercises to modify its behaviour.

First, let’s define out new Controller subclass:

Controller subclass: #ClockController
instanceVariableNames: ''
classVariableNames: ''
poolDictionaries: ''
category: 'View-Examples'

We mentioned above that the Controller class hierarchy provided a means of

specialisation — the difficulty is knowing which method to override. In this case

we override the default controlActivity  method, since our controller has to

interpret mouse activity. The method is usually contained in the control defaults

protocol:



Chapter 31 348

controlActivity
"determine which mouse button has been pressed (if any) and send the 
appropriate message to my view"

self sensor redButtonPressed ifTrue:[^view start].
self sensor yellowButtonPressed ifTrue: [^view stop].
^super controlActivity

And that’s it! We have defined the class and added the necessary method. Now

to try it out, we must first re–define ClockView so that it is a subclass of View  (and

therefore inherits the ability to use a controller):

View subclass: #ClockView
instanceVariableNames: 'clockProcess running'
classVariableNames: ''
poolDictionaries: ''
category: 'View examples'

Finally, we have to connect the controller to the view:

| window view |
window := ScheduledWindow new.
window label: 'Controlled Clock'.
view := ClockView new.
view controller: ClockController new.
window component: view.
window open

Ex 31.11: Type in and evaluate the code above.

Ex 31.12: Add one method that causes the clock to start when the cursor enters the view.
Hint : browse the method controlInitialize.

Ex 31.13: Similarly, add one method that stops the clock when the cursor leaves the view.

Ex 31.14: Modify the two methods you added above so that the cursor changes to an
“hourglass” shape when it is within the view.

31.8. Summary

Class Controller provides the default behaviour corresponding to the last

element in the MVC triad. It manages the flow of control between windows and

between the components of a window. Subclasses of class Controller provide

specialised behaviour to support (for example) window control and menu

control. Each controller has a sensor which provides a connection to the mouse

and keyboard.

In the next chapter, we describe how to build a VisualWorks application that

brings together a model, a view and a controller, to provide an example of the

use of the MVC mechanism.



Chapter 32 349

Chapter 32: An Interactive Application — Dice

This chapter presents a step–by–step introduction to constructing MVC

applications using a very simple example: a Dice. The abstract model is

constructed first (a number between 1 and 6 which can be changed randomly),

followed by a view which can represent the value on the screen as a number. A

controller is added next, which is progressively refined to add further functions.

Finally, a view that represents the number as “spots” with the conventional

layout is given, and refined to improve its performance.

32.1. Introduction

We have considered the properties of models, views and controllers separately

in previous chapters. Here, we implement a complete package, consider its

drawbacks, and refine it in the light of our observations. Again, it is

recommended that the reader work through this example using a running

VisualWorks image.

32.2. Separating the Model and its View

What we want to achieve here is an application modelling the properties of a

Dice1. Physically, a dice is a cubical block with spots representing the numbers

from one to six on its faces. However, the function of a dice is to generate a

random number. This could be done in a number of different ways: a hexagonal

disk made into a spinning top, for example, or an electronic noise generator

circuit.

We will use this insight to separate the abstract functionality (the mode l ) from

the visible representation (the view ) in our implementation. The model is very

simple, merely requiring some way of maintaining a current value that can be

changed randomly. The view is much more complex; it has to display the

model’s state in an acceptable fashion. For example, it is the view’s function to

determine the size and position of the displayed spots (see later).

The role of the controller can also be determined by considering the real–world

situation. We interact with (“roll” or “throw”) a dice in a manner which

communicates only the desire to see another randomly–selected number. Thus,

our controller should respond to input events (clicking the mouse buttons, for

example) by informing the model to change its state randomly. As we shall see,

1Strictly speaking, the correct singular form is die. However, following modern usage, the word dice will be used
for both the singular and plural form.



Chapter 32 350

all the usual functions expected of VisualWorks windows (such as moving or

collapsing) will be provided using existing classes.

One of the problems with using the model–view–controller mechanism in

VisualWorks is deciding where to start! As the environment encourages

incremental application development, it can be difficult to know which class to

create first. As a general guide, however, the best place to start is by constructing

the model, or at least enough of the model to provide some useful operations.

Frequently, the model can be tested independently, before any view or controller

is implemented, using Inspectors or by printing messages in the Transcript.

When the model is working correctly, part of the view structure should be

implemented. Initially it should be coupled with an instance of NoController, so

that no application–specific control is provided. Again, the view–model

combination can be tested without a controller. The controller should then be

added, with the appropriate mouse and keyboard actions.

Once the first attempt at an application is completed, it should be refined to

include all desired functionality in the model, improve the quality and

performance of the view, and add further options to the controller. As new

functions can be added readily, the package can be modified to reflect changes in

requirements or feedback from users.

32.3. Developing the Model Dice

For a package using one or more new classes, we should always create a new class

category. This keeps associated classes together in the System Browser, and makes

it easier to refer to a single application. You can create a new category (call it

‘Games—Dice’) using the System Browser and the <operate> button menu item

in the top–left pane.

The model is a new class, Dice , which acts as a holder for an integer between 1

and 6. It has no special features inherited from other classes in the image, other

than making use of a dependency mechanism. For this reason we make Dice  a

subclass of Model, since we wish to inherit Model’s refined dependency

mechanism. Using the template in the System Browser, you can create a new

class Dice  with superclass Model in category Games-Dice (figure 32.1). This also

declares a single instance variable value.



Chapter 32 351

Figure 32.1: Creating a Model — Class Dice

Clearly, we require a method which permits other objects to enquire about the

value. The method value simply answers with the instance variable, and is the

sole method in this class’s accessing instance protocol.

value
"Answer with the current value held by the receiver"

^value

Since we definitely do not want other objects to be able to modify the state of the

Dice  arbitrarily, we encapsulate our state by refraining from implementing any

protocol to set the variable value. Instead, we want instances of Dice  to be able to

respond to a message roll  (in instance protocol modifying), which sets value to a

randomly–selected integer between 1 and 6.

roll
"Set my value to be a random integer between 1 and 6"

| rand |
rand := Random new.
value := (rand next * 6 + 1) truncated



Chapter 32 352

When this method is evaluated, it creates an instance of Random (see chapter 18),

called rand , which answers with a Float between 0 and 1 when it receives the

message next. This is scaled and truncated, so that a SmallInteger within the

correct range is assigned to value.

Clearly, the instance variable will need to be initialized. We can create a method

initialize in protocol initialize-release.

initialize
"Initialize the variables of the receiver"

value := 1

We would like all instances of Dice  to be initialized when they are created. The

following method in class protocol instance creation provides this.

new
"Answer with an initialized instance of the receiver"

^super new initialize

This completes the first version of our model dice. We can test our model by

creating and inspecting an instance of Dice , using the expression:

Dice new inspect

Selecting the value item displays the number referenced by the instance variable.

Typing, selecting and evaluating the expression:

self roll

in the right–hand pane of the Inspector (see figure 32.2) will modify the instance

variable1. Verify this yourself by de–selecting and re–selecting the value instance

variable in the Inspector.

1There is always the possibility that the new random value will be 1!



Chapter 32 353

Figure 32.2: Inspecting an instance of Dice

Ex 32.1: The roll method unnecessarily creates a new instance of Random each time the Dice
is “rolled”. Re–implement the method to use the same instance during the lifetime
of a dice. (Hint : another instance variable is required.)
Alternatively, use the same instance of Random for all Dice. (Hint : consider using a
class variable.)

Ex 32.2: The instance initialization method always sets the Dice model to the same value
on creation. Modify the initialization method to ensure that a Dice has a random
value after creation. (Hint : you already have a method to set the state randomly.)

Ex 32.3: When testing the view, it may be useful to have a dice that behaves more
predictably, simply incrementing value when rolled and wrapping round from 6 to 1.
Implement a subclass of Dice (called TestDice) which has this property.

Ex 32.4: Selecting self in an Inspector on a Dice displays ‘a Dice’; this uses the default
implementation of printOn: defined in class Object. Add a method to Dice that
overrides this method so that a Dice is printed with both its class name and its
current value.

32.4. A Simple View for Dice

Here, we will construct the minimum useful view for use with Dice , called

DiceView. To simplify the view structure, we will start by displaying a digit

corresponding to the value held by the model.

We will wish to make the view for Dice  scheduled, so that it behaves like all

other views in the image. Consequently, we will insert our DiceView as a

component of a window which is an instance of ScheduledWindow. This also

means that we can use the <window> button menu provided by

StandardSystemController easily.

In chapter 29, we considered how the view and controller interact with each

other, and with the model. An instance of View  (or its subclasses) has instance

variables referring to the model and the controller; similarly, an instance of

Controller (or subclasses) has instance variables referring to the model and view.



Chapter 32 354

The communication between the model and the view uses the dependency

mechanism (see chapter 27). The relationship between our model, views and

controllers is illustrated in figure 32.31.

(dependency)

Dice

DiceView

DiceController

controller view
model

model

ScheduledWindow

StandardSystemController

controller view

model

model

(top component)(application–specific view)

(model)

container

component

Figure 32.3: Views and Controllers for Dice

Class DiceView will be a subclass of View , so that we can inherit all functionality

to access models and controllers (see chapter 30). Again, you can create this new

class (with no instance variables) using the System Browser.

The basic function of a view is to display some aspect of its model appropriately.

To do this, we add a method to DiceView to override the displayOn: method in

the displaying protocol of class VisualPart (above View  in the class hierarchy)

which does nothing (remember that the displayOn: method is the means by

which a VisualPart may display some aspect of its model). For simplicity, we will

display the value from the model as a single digit at the top–left of the view. In

the method below, we transform the value to a graphic object, in this case an

instance of Text, by first creating a String:

displayOn: aGraphicsContext
"Display the model's value as a digit."

model value printString asText displayOn: aGraphicsContext at: 10@10

(The displaying of Text was covered in chapter 20.)

We will be using the dependency mechanism (chapter 27) to provide the

communication from the model to its view. We achieve this by inheriting the

1Note: compare this relationship with that described in figure 29.2.



Chapter 32 355

update:  method in class DependentPart (the superclass of View), which

invalidates the view.

However, we shall need to modify the roll  method in our Dice  class to ensure it

notifies its dependents that it has changed. We do this via the changed message.

Our original roll  method will become:

roll
"Set my value to be a random integer between 1 and 6"

| rand |
rand := Random new.
value := (rand next * 6 + 1) truncated.
self changed

Finally, we need some class protocol to create a suitable view for a Dice . More

precisely, we want to create a window which is an instance of ScheduledWindow

together with an associated StandardSystemController so that the window can be

scheduled . That is, the window’s controller should be able to be included in the

list of controllers managed by the global instance of class ControlManager called

ScheduledControllers. This means it will behave like all other VisualWorks

windows on the screen (see chapter 30). For example, the normal <window>

button menu functions, such as resizing and collapsing, are provided.

Here, we provide a method, conventionally called openOn: , which creates and

schedules an instance of DiceView as the component of a ScheduledWindow. By

convention, this method appears in the class protocol instance creation of class

DiceView. The model for both the view and the window is expected to be the

same instance of class Dice .

openOn: aDice
"Create an instance of the receiver in a ScheduledWindow"
"DiceView openOn: Dice new"

| window diceView wrapper |
window := ScheduledWindow

model: aDice
label: 'Dice'
minimumSize: 60 @ 60.

diceView := self model: aDice.
wrapper := BorderedWrapper on: diceView.
wrapper insideColor: ColorValue white.
wrapper borderWidth: 2.
diceView controller: NoController new.
window component: wrapper.
window open



Chapter 32 356

This method explicitly sets the border width and inside colour for the wrapper.

The default colour (black) is used for the border. An explicit minimum size is set

for the window, so that the window is at least big enough to display a character,

but the default maximum size is accepted. The open message to the window

causes it to become scheduled.

You should note that the controller initially associated with DiceView is an

instance of NoController, but will be replaced by a DiceController later. An

instance of the default controller class (StandardSystemController) for the

window is provided automatically.

We are now in a position to test the view–model combination, even though we

have not yet constructed a controller. Evaluating the expressions:

TempDice := Dice new.
DiceView openOn: TempDice.

causes an instance of Dice  to be assigned to the variable TempDice and then a

DiceView is created on this Dice  (see figure 32.4). TempDice should be declared as

a global variable. You may be prompted for a position and size for the window in

the usual way. Note that the usual <window> button menu options, including

collapse and close, should work.

Figure 32.4: Viewing the Dice

Once the Dice  has been opened, the expression:

TempDice roll



Chapter 32 357

causes the Dice  to change; this should be reflected in the window opened

previously. We can also demonstrate the ability to have several views on the

same model by opening a second DiceView on the same Dice , by evaluating the

expression:

DiceView openOn: TempDice.

Sending the roll  message to the model should cause its dependent views to be

updated.

Ex 32.5: Modify the displayOn:  method so that the digit is displayed in the centre of the
view. (Hint : remember that a view responds to a bounds message with a Rectangle
describing its bounding box.)

Ex 32.6: The simple displayOn:  method above does not put the digit in the exact centre of the
view. This is because the display reference point of the Text created is in its top–
left corner, which is aligned with the centre of the view’s bounds.
Re–write the displayOn:  method to place the displayed digit in the exact centre of
the view. (Hint : the expression someString asComposedText answers with an
instance of ComposedText which may be asked for its bounds.)

Ex 32.7: Try increasing the size of the digit displayed by the DiceView (Hint : Consider
specifying a style to be used by the ComposedText.)

Ex 32.8: Create a new version of the displayOn:  method in which the colour displayed
inside the wrapper is different. (Hint : You will need an expression like wrapper
insideColor: ColorValue lightGray.)

Ex 32.9: Create a new version of the openOn: method so that a fixed–size window is used.
(Hint : browse the methods in the accessing protocol of class ScheduledWindow.)

Ex 32.10: The “roll” action is not very realistic at present, as it only changes value once.
Modify the roll method in class Dice so that the dice goes through several
intermediate values, with a delay between each. What happens on the view?

Ex 32.11: For the intermediate values of the dice to be displayed, an additional update:
method must be written in class DiceView. This method will override the one
inherited from class DependentPart. Chapter 30 described the invalidation
messages available to force an immediate  damage repair. Implement the necessary
update: method so that the Dice’s intermediate values are displayed.

32.5. The DiceController

Now that we have demonstrated the Dice  and its views working correctly, we

want to create a suitable controller. In this case, we will create a class

DiceController that is a subclass of Controller. Edit and accept the template in the

System Browser to define the new Controller subclass.

Controller subclass: #DiceController
instanceVariableNames: ''
classVariableNames: ''
poolDictionaries: ''
category: 'Games–Dice'



Chapter 32 358

Note that no new instance or class variables are required in this case.

Here, we want to be able to roll the dice by clicking the <select> button over the

DiceView. To do this, we merely need to add a method to DiceController to

override the controlActivity  method defined in class Controller.

controlActivity
"If my <select> button is pressed, roll the model, then
wait for the button to be released"

self sensor redButtonPressed
ifTrue: [ model roll.

self sensor waitNoButton].
^super controlActivity

This method checks to see if the <select> mouse button is pressed, by sending

redButtonPressed to the sensor . If so, the roll  message is sent to the model; then

we wait until the <select> button is released. In either case, the controlActivity

method defined in class Controller is evaluated.

You should note that, for this controller, we do not need to perform any special

action when control is passed to the DiceController or when it gives up control.

Thus, we do not need to override the controlInitialize or controlTerminate

messages. Similarly, we are using the default isControlActive method, which

simply tests if the cursor is over the view’s displayed area and that the

<window> button is not pressed.

Finally, we have to install an instance of DiceController when a DiceView is

opened on a Dice . To do this, we modify the openOn:  method in the class

protocol of DiceView:

openOn: aDice
"Create an instance of the receiver in a ScheduledWindow"
"DiceView openOn: Dice new"

| window diceView wrapper |
window := ScheduledWindow

model: aDice
label: 'Dice'
minimumSize: 60 @ 60.

diceView := self model: aDice.
wrapper := BorderedWrapper on: diceView.
wrapper insideColor: ColorValue white.
wrapper borderWidth: 2.
diceView controller: DiceController new.
window component: wrapper.
window open



Chapter 32 359

Ex 32.12: Now that we have a controller, we do not need a global variable in order to be able
to send messages to roll the dice. Implement an open method in DiceView class
protocol instance creation, which creates a new instance of Dice for each view–
controller combination. (Hint : use the existing openOn: method.)

Ex 32.12: Modify the controlActivity method so the dice is “rolled” for as long as the mouse
button is held down. (Hint : you only have to remove one expression to achieve this.)

Ex 32.13: In some cases, it is convenient to be able to send a message to an object to “open a
view” on that object, in the way in which, for example, the message inspect is
interpreted by Object. Implement an open message in instance protocol viewing of
Dice to open a scheduled window on an instance of Dice.

Ex 32.14: Open an Inspector on the dice application and look at the instance variables.
Possibly the easiest way to do this is to interrupt the DiceController when it is
active (use <control–C> when the DiceView is selected), open a Debugger and
inspect the controller ’s view instance variable.

32.6. Refining the View

Clearly, the present approach used by DiceView for displaying the value of a Dice

as a digit is not particularly attractive. We would really like to display the values

as “spots” in their conventional positions.

The following re–implementation of the displayOn: method creates a small

EllipticalArc (called spot) contained within a FillingWrapper, with a diameter

which is one–fifth of the minimum horizontal and vertical extents of the view’s

bounds. (Class EllipticalArc is described in chapter 15.) The spot is then displayed

in the desired positions, depending on the value of the model.



Chapter 32 360

displayOn: aGraphicsContext
| box cent spotWidth spotHeight spot offset |
box := self bounds.
cent := box center.
spotWidth := box width // 5.
spotHeight := box height // 5.
spot := (EllipticalArc boundingBox:

(0@0 extent: spotWidth @ spotHeight)) asFiller.
offset := cent - (spotWidth // 2 @ (spotHeight // 2)).
(#(1 3 5 ) includes: model value)

ifTrue: [spot displayOn: aGraphicsContext at: offset].
(#(2 3 4 5 6 ) includes: model value)

ifTrue:
[spot displayOn: aGraphicsContext

at: offset - (cent - box topLeft // 2).
spot displayOn: aGraphicsContext

at: offset + (cent - box topLeft // 2)].
(#(4 5 6 ) includes: model value)

ifTrue:
[spot displayOn: aGraphicsContext

at: offset - (cent - box topRight // 2).
spot displayOn: aGraphicsContext

at: offset + (cent - box topRight // 2)].
6 = model value

ifTrue:
[spot displayOn: aGraphicsContext

at: offset - (cent - box leftCenter // 2).
spot displayOn: aGraphicsContext

at: offset + (cent - box leftCenter // 2)]

You should note how the spot size and positions are related to the view’s

bounds. Effective use is made of several messages understood by class Rectangle .

Also, you should observe how literal arrays and the includes: message are used to

perform the case analysis; this technique is useful in a variety of circumstances.

Finally, you can see how the temporary variables box and cent are used to reduce

the amount of recomputation of values.

However, experimenting with the new version of DiceView reveals that there is

a pause between clicking the mouse button and the appearance of the spots. This

is because we are creating a new “spot” EllipticalArc every time the view is

displayed, and this operation takes some time.

We can substantially improve the performance by judicious use of caching in the

view. We do not need to re–compute the spot every time, but only when the

bounds  changes; i.e. when the view is resized by the user. The simplest way to do

this is to add three instance variables to DiceView. One (called spot) retains the

EllipticalArc used to display the spot, and the other two (spotWidth and



Chapter 32 361

spotHeight) retain the width and height of the spot respectively. These variables

only need to be modified when the bounds of the view is changed. When the

view subsequently re–displays the spot, the displayOn: method uses the cached

variables. You should note that we are effectively increasing the lifetime of the

variables involved, and we should expect this to reduce the amount of re–

computation required.

First, we should redefine class DiceView, adding the instance variables described

above, as follows:

View subclass: #DiceView
instanceVariableNames: 'spotWidth spotHeight spot'
classVariableNames: ''
poolDictionaries: ''
category: 'Games-Dice'

Now, create a protocol bounds accessing. Here we add the method bounds:,

which is sent to a window’s components when it is opened or resized.

bounds: newBounds
"Re-compute my instance variables when my bounds changes"

spotWidth := newBounds width // 5.
spotHeight := newBounds height // 5.
spot := (EllipticalArc boundingBox: (0 @ 0 extent: spotWidth @

spotHeight)) asFiller.
^super bounds: newBounds

The bounds: method creates a suitably sized EllipticalArc (within a FillingWrapper)

and stores this in the instance variable spot. It also updates spotWidth and

spotHeight, before forwarding the message to its superclass.

Finally, we modify the displayOn: method to display the EllipticalArc in

appropriate places depending on the model’s value. The result of the

modifications is shown in figure 32.5.



Chapter 32 362

displayOn: aGraphicsContext
| box cent offset |
box := self bounds.
cent := box center.
offset := cent - (spotWidth // 2 @ (spotHeight // 2)).
(#(1 3 5 ) includes: model value)

ifTrue: [spot displayOn: aGraphicsContext at: offset].
(#(2 3 4 5 6 ) includes: model value)

ifTrue:
[spot displayOn: aGraphicsContext

at: offset - (cent - box topLeft // 2).
spot displayOn: aGraphicsContext

at: offset + (cent - box topLeft // 2)].
(#(4 5 6 ) includes: model value)

ifTrue:
[spot displayOn: aGraphicsContext

at: offset - (cent - box topRight // 2).
spot displayOn: aGraphicsContext

at: offset + (cent - box topRight // 2)].
6 = model value

ifTrue:
[spot displayOn: aGraphicsContext

at: offset - (cent - box leftCenter // 2).
spot displayOn: aGraphicsContext

at: offset + (cent - box leftCenter // 2)]

Figure 32.5: The final display of the Dice

Ex 32.16: Use the deterministic dice class TestDice developed in exercise 32.3 to test that the
new displayOn:  method works as expected.

Ex 32.17: We are, of course, not limited to the restrictions of the real world in our
implementation of dice. Modify the displayOn:  method in DiceView so that it can
display patterns of up to nine spots. Implement a subclass of Dice which generates
random values between one and nine, and use it to test the improved displayOn:
method.

Ex 32.18: In exercise 32.17, we allow the same view to represent several (slightly) different
models. Modify the openOn: method in class DiceView to provide the window with



Chapter 32 363

a different label, depending on the class of the model. (Hint : the expression
anObject class name answers with a Symbol representing the class of anObject .)

Ex 32.19: Experiment with different colours for the dice spots. (This is more interesting if you
have a colour monitor!)

Ex 32.20: A more ambitious task is to implement a view that can display a Dice in a quite
different manner. For example, you might like to display the dice as a six–sided
disc, or using a three–dimensional representation of a cube.

32.7. Additional Control Features

As a final refinement, we will add a menu to our DiceController. To be consistent

with the operation of other views in the image, we will provide an application–

specific menu which is attached to the <operate> mouse button, and retain the

present function of the <select> button.

In order to use menus effectively, we will have to redefine DiceController to be a

subclass of ControllerWithMenu (see chapter 31). We will also require one class

variable (DiceMenu) to hold an instance of Menu  (see chapter 28), which is

common to all instances of DiceController. No instance variables are required.

You should define the new version of DiceController as illustrated below.

ControllerWithMenu subclass: #DiceController
instanceVariableNames: ''
classVariableNames: 'DiceMenu'
poolDictionaries: ''
category: 'Games–Dice'

Make sure that you remove all the old methods in class DiceController.

For our initial version, we will have only one item on the <operate> button

menu, which simply rolls the dice. We will need some class initialization

protocol to set up the Menu .

initialize
"Initialize the class variable"

"DiceController initialize"

DiceMenu := Menu labels: 'roll' values: #(rollDice)

Note the inclusion of the expression DiceController initialize in the comments.

Remember to evaluate this expression after you have accepted the method in

order to initialize the class variable. This expression should be re–evaluated

whenever the class initialization method is re–defined.



Chapter 32 364

The implementation of the method controlActivity  in ControllerWithMenu sends

one of several messages to self, depending on which mouse button is pressed.

For example, if the <select> button is pressed, the message redButtonActivity  is

sent. We want to override the default implementation of redButtonActivity  in

order to send the roll  message to the model. We do this as follows:

redButtonActivity
model roll.
self sensor waitNoButton

The default implementation of yellowButtonActivity in class ControllerWithMenu

is to start up the menu contained by its instance variable menuHolder (see

chapter 31). This variable is assigned by the method initializeMenu, which should

be added to our instance protocol, as below:

initializeMenu
self menuHolder: (ValueHolder with: DiceMenu)

The message corresponding to the item selected from the menu is sent to the

designated message receiver; by default, the receiver is the controller which

started the menu. In this case, there is only one message (rollDice) which can be

sent, as defined in the class initialization method above, so we must add an

instance method corresponding to that message:

rollDice
model roll

The method rollDice corresponds to the roll option on the Menu  and sends the

message roll  to the model.

This completes the new version of the DiceController. Evaluating the expression:

DiceView open

should create a DiceView with an instance of the new DiceController attached (see

figure 32.6). You should verify that the <select> and <operate> button functions

are as expected, and that the normal <window> button functions are still

available.



Chapter 32 365

Figure 32.6: Using the new DiceController

We might also like to include keyboard input to our dice application. We can

override the controlActivity  method in ControllerWithMenu to check for keyboard

input before passing control to its superclass.

controlActivity
self sensor keyboardPressed

ifTrue:
[| char |
char := self sensor keyboardEvent keyCharacter asLowercase.
char = $r

ifTrue: [model roll]
ifFalse: [view flash]].

^super controlActivity

If a key is depressed on the keyboard, the character code is read from the sensor

(via the message keyboardEvent) and converted to lower case. If the character is

$r, a message roll  is sent to the model, otherwise the message flash is sent to the

view .

Ex 32.21: Add a spawn option to the DiceController <operate> button menu, which creates
and schedules a new DiceView on the same model. You might also like to add a
keyboard command (use the character <s>) to spawn a new view.

Ex 32.22: If the controller  instance variable is not initialized when an instance of View (or a
subclass) is created, then a controller of a default class is created when required.
The method defaultControllerClass implemented in class View answers with class
Controller.
Modify the implementation of DiceView to use this default controller mechanism.
(Hint : you should remove the controller creation expression in the openOn:
method.)

Ex 32.23: (Hard) Try putting several instances of Dice and their corresponding DiceViews into
a single window. (Hint : browse class CompositePart .)

Ex 32.24: Consider implementing better (or just different) ways of viewing a Dice.



Chapter 32 366

32.8. Summary

This chapter stresses the importance of incremental development of MVC

applications, constructing first the “model”, then the “view” and finally the

“controller”.

Note that the model Dice  contains no reference to a user interface. By using the

dependency mechanism, we ensure that when the model changes (e.g. the value

of the Dice), the view is informed.

The view of the Dice  is represented by class DiceView, which we implemented as

a subclass of View . By inheriting the behaviour of View , it was only necessary to

implement a displayOn: method to display the value of the Dice . Similarly, by

inheriting the behaviour provided by Controller, we only had to implement a

controlActivity  method to provide user interaction. The second version of

DiceController inherited from ControllerWithMenu, so that we could easily

provide a menu.

We continue our description of MVC in the next chapter, where we examine

how to programmatically create Dialogue Boxes, extending the ones already

described in chapter 28.



Chapter 33 367

Chapter 33: Building a Dialogue Box

To round off our description of the “Model–View–Controller” structure, we will

briefly examine some view–controller components which support push–button

actions. We have already seen some of these in operation — chapter 28 gave

examples of how to use existing Prompters and Confirmers. In this chapter, we

will look at how to build some of your own.

VisualWorks provides several classes that assist in the construction of dialogues.

These are useful for a variety of user interactions (some of which you have used)

including prompters, field–based entry, buttons, sliders, etc. (Chapter 34 discusses

the use of “canvasses” which facilitates the creation of dialogues using a

window–building metaphor.)

33.1. Class DialogView

The DialogView class is a subclass of CompositeView (chapter 30). It provides

methods for constructing composite dialogues that contain a variety of visual

components, some of which we have already mentioned. We shall see more

kinds of components shortly.

The default controller of a DialogView is an instance of

DialogCompositeController. This decides which of the components require

control and enhances the usual control sequence to provide the user with the

ability to “tab” between text fields.

Components can be added to an instance of DialogView from top–to–bottom

using a variety of messages:

addColumn: aCollection fromX: leftFraction toX: rightFraction collect: aBlock

addRow: aCollection fromX: leftFraction toX: rightFraction collect: aBlock

addTextFieldOn: aModel initially: aString

addTextLabel: aString

addWrapper: aWrapper atX: aFraction

addVerticalSpace: anInteger

We’ll look at examples of several of these messages later.

Ex 33.1: Browse some of the class messages of DialogView (e.g.,
choose:labels:values:default:).



Chapter 33 368

33.2. Dialogue Components

Each active component view in a DialogView (i.e. one with which the user may

interact) must have a model. The model can be any object, but is typically either

an instance of ValueHolder (see chapter 29) or a PluggableAdaptor (see later).

Having populated an instance of DialogView, it may be sent the message open.

This creates and schedules a ScheduledWindow containing the DialogView. The

controller of a ScheduledWindow containing a DialogView is an instance of

DialogController. Class DialogController is a subclass of

StandardSystemController, and disables the <window> button menu. It also

retains control until the user has responded to the dialogue.

Instead of building a specialised component view it’s often possible to use an

instance of an existing view class, providing suitable parameters. In the

following sections, we briefly describe three of the most commonly used views:

LabeledBooleanView, FractionalWidgetView, and ComposedTextView:

33.2.1. Class LabeledBooleanView

A LabeledBooleanView allows the state of a boolean variable to be toggled, and

may also be used as a “trigger” (see later). An instance sends its model the

message value to discover its current state, and value:  to change that state.

Instances of ValueHolder are useful here!

Instances of LabeledBooleanView can take on many visual representations.

Sending one of the following messages causes its visual appearance to be

modified accordingly:

Message Off On

beCheckBox

beRadioButton

beSwitch

beToggle

beTrigger (no image)

Additionally, the programmer may specify an Image or a ComposedText to be

displayed, passing it as the argument to a beVisual: message. To specify two

different visual objects, one for “off” and one for “on”, use the following

message:

beVisual: offImage ifTrue: onImage

To set the label of the view, use the label: message.



Chapter 33 369

The view’s controller (an instance of WidgetController) only responds to the

<select> button. It should be initialized to behave suitably using one of the

following messages:

beButton set model to true only while  the <select> button is

pressed. For example, a scroller.

beSwitch set model to true as soon as the <select> button is

pressed. For example, using a widget to start up a

pull–down menu.

beToggle toggle the model’s state when the <select> button

is clicked. For example, a check box.

beTriggerOnUp set model to true when the <select> button is

released. For example, the class–instance switch

on the System Browser.

The following expressions first create and populate an instance of DialogView,

and then schedule it on the screen (figure 33.1):

| dialog model typeButton quitButton |
model := ValueHolder newBoolean.
dialog := DialogView model: model.
dialog addTextLabel: 'Car Specification'.
dialog addVerticalSpace: 10.
typeButton := LabeledBooleanView model: ValueHolder newBoolean.
typeButton label: 'Estate'; beRadioButton.
typeButton controller beToggle.
dialog addWrapper: (BoundedWrapper on: typeButton) atX: 0.
dialog addTextFieldOn: ValueHolder newString initially: 'model'.
quitButton := LabeledBooleanView model: model.
quitButton label: 'Quit'; beTrigger.
quitButton controller beTriggerOnUp.
dialog addVerticalSpace: 10.
dialog addWrapper: (BorderedWrapper on: quitButton) atX: 0.5.
dialog open



Chapter 33 370

Figure 33.1: An example of a DialogView

Note that in the example above, the final message is to an instance of

DialogView, not a ScheduledWindow. This causes the dialogue to be modal.

Ex 33.2: Modify the appearance and behaviour of the button in the example above.

33.2.2. Class FractionalWidgetView

The class FractionalWidgetView provides “sliders”. The model of an instance of

this class must respond to the message value with a number between 0 and 1 (or

a Point with co–ordinates between 0 and 1). Similarly, the model must

understand value:  — the argument is a number between 0 and 1 (or a Point).

ValueHolders are useful here too.

A slider may be one–dimensional — vertical or horizontal — or two–

dimensional; the following messages are used to initialize its orientation:

beHorizontal

beVertical

beTwoDimensional

Ex 33.3: Extend exercise 33.2 to include an instance of FractionalWidgetView.

33.2.3. Class ComposedTextView

Class ComposedTextView is an (indirect) subclass of View  (chapter 30). Its

instances expect a model to respond to value and value:  (i.e., an instance of some

subclass of ValueModel). Additionally, the model should respond with an

instance of String or Text. We give an example of using a ComposedTextView

later in this chapter.

33.3. Class PluggableAdaptor

When a dialogue does not stand alone but is integrated into a larger model, a

ValueHolder will not be sufficient within a LabeledBooleanView, as the binary

state will be part of the model. A class called PluggableAdaptor (a subclass of



Chapter 33 371

ValueModel — chapter 29) provides a level of indirection between instances of

LabeledBooleanView and the model. The view and its controller send the

standard messages value and value:  to the PluggableAdaptor, which it converts

into arbitrary actions defined by three blocks (instance variables of the

PluggableAdaptor): getBlock , putBlock  and updateBlock.

Overview of mechanism:

• getBlock  is evaluated to get the value. The getBlock  is evaluated with one

argument, the model.

• putBlock  is evaluated to set the value. The putBlock  is evaluated with two

arguments, the model and the new value. (The putBlock  may also be used

to indicate a trigger message to be sent to the model.)

• updateBlock is evaluated to handle an update from the model; if it returns

true, the dependents of the PluggableAdaptor (i.e. its view) are notified.

The updateBlock is evaluated with three arguments, the model, the

update aspect, and the update parameter.

In addition to an explicit message to specify the contents of the blocks, there are

four convenience messages provided to initialize instances of PluggableAdaptor:

getBlock: firstBlock
putBlock: secondBlock
updateBlock: thirdBlock

explicitly specify the contents of each block

selectValue: aValue This initializes the receiver to act like a
boolean that is true when the model’s value
is equal to aValue.

getSelector: getSymbol
putSelector: putSymbol

substitute getSymbol and putSymbol for
value and value:  respectively

collectionIndex: anIndex access the given element of the model,
which should be some kind of collection
that responds to at: , etc.

performAction: aSymbol send the selector aSymbol to the model
when the PluggableAdaptor receives the
message value: .

For example, the code below provides an alternative user interface to an instance

of Dice , introduced in the previous chapter (figure 33.2). Note how a

PluggableAdaptor is used as the model for an instance of ComposedTextView.



Chapter 33 372

| comp model adaptor trigger button textView window |
window := ScheduledWindow new.
window label: 'Dice'.
model := Dice new.
comp := CompositePart new.
adaptor := (PluggableAdaptor on: model).
adaptor getBlock: [:m | m value printString]

putBlock:[:m :v | ]
updateBlock: [:m :v :p | true].

textView := ComposedTextView model: adaptor.
textView controller: NoController new.
comp add: textView in: (0 @ 0 extent: 1 @ 0.5).
trigger := PluggableAdaptor on: model.
trigger performAction: #roll.
button := LabeledBooleanView model: trigger.
button label: 'Roll'; beTrigger.
button controller beTriggerOnUp.
comp add: button borderedIn: (0 @ 0.5 corner: 1 @ 1).
window component: comp.
window open

Figure 33.2: An alternative interface to a Dice

Ex 33.4: Experiment with modifications to the example above.

Ex 33.5: Browse and try the example in class WidgetController.

33.4. Summary

As you have seen in this chapter and chapters 30 & 32, programmatically creating

a window or a Dialogue box can be a time–consuming affair. In the next chapter

we explore the use of Canvasses, which provide a means of creating a window by

using the mouse to position widgets on a window.



Chapter 34 373

Chapter 34: Using a Canvas1

We have seen how to build interactive applications using MVC and the

dependency mechanism. In this chapter we introduce a simplifying layer that sits

on top of MVC that takes care of many of the details of window development

such as the layout of widgets and their properties. The same application may be

deployed on several different window systems by emulating the appropriate

look–and–feel.

We will not attempt to give detailed coverage in this chapter, for that we refer

you to the VisualWorks’ manuals from ParcPlace; however we will attempt to

provide a brief review of the functionality provided by the Canvas mechanism,

an explanation of where it fits into the development process and a discussion of

its benefits and limitations.

34.1. Overview

VisualWorks provides window painting functionality. The “design” for a

window is created by “painting” on a “Canvas”, and is called a “window

specification”. A window specification is represented as a class method of some

application–specific class (usually a user–defined subclass of ApplicationModel —

see later), and is usually named #windowSpec. The contents of the specification

are used by a builder object (an instance of UIBuilder) at run time to create a

window. The window is associated with an instance of the class which contains

the specification method.

There are a number of tools provided to help with the painting, defining and

testing of Canvasses; these will be covered in more detail in later in the chapter.

In brief, the iterative process for developing or modifying a Canvas is as follows:

• Open a new or existing Canvas.

• Drag widget icons from the “Palette” to an appropriate place on the

Canvas.

• Enter properties for each widget. These properties include colour, layout

and font, etc. as well as an aspect selector that is sent to an instance of the

application–specific class to return the model for the widget. Properties are

entered using a “Properties Tool” which is divided into pages (see later).

1This chapter was written in collaboration with Laura Hill.



Chapter 34 374

• Install the Canvas — this creates a window specification method in a class

determined by the programmer. If the class has not yet been defined, a

class definition dialogue will appear.

• Use the “Definer” Tool to create instance variables and instance methods

in the class, corresponding to the models and methods expected to be

found. (Optional.)

• Write supporting code (for example, the message selector sent by an

Action Button).

• Test the interface.

You may have noticed that this sequence contradicts the “recipe” we presented in

chapter 32. In a later section we provide a modified recipe for use with

Canvasses.

34.2. Summary of Parts

The Canvas mechanism introduces many extensions to those that we have

described thus far in this book. In the following sections we discuss these in more

detail.

34.2.1. Class ApplicationModel

In chapter 29, we discussed the difference between an application model and a

domain model. Using a Canvas, the definition of the application model is largely

unchanged, except that perhaps it includes more functionality than might be the

case in a traditional MVC application. For simple applications, it may not be

necessary to have complex models for many of the views. Quite often, an

instance of ValueHolder will suffice. In that case, the idea of a domain model can

sometimes get lost.

The abstract class ApplicationModel is the class intended to be the superclass of

almost all application models (just as Model is intended to be the superclass for

all domain models). It defines behaviour to open, close and co–ordinate

windows. To open a window defined in a subclass of ApplicationModel, send the

message openInterface: aWindowSpecName to the class. If the name of the

window specification is #windowSpec, the message may be shortened to open.

The method corresponding to this message is implemented in class

ApplicationModel; it creates an instance of the application model class and assigns

it an instance of UIBuilder. It is this latter object that then interprets the window

specification, causing MVC structures to be instantiated, i.e. views to be created,



Chapter 34 375

models to be connected to those views and controllers to be attached. These

views are inserted into a new instance of ApplicationWindow that is then opened

on the screen. The model for the window is the instance of the class that was sent

the open message.

In addition to class ApplicationModel described above, VisualWorks provides

three more abstract superclasses which are used to represent different kinds of

application. All four are described in the table below.

VisualWorks
Description

Abstract Superclass Comment

Application ApplicationModel Basic application model
behaviour

Dialog SimpleDialog Modal dialogue application
model

Data Form LensDataManager Application Model for
database windows, holding
query specifications as well
as window specifications.

Database Application LensMainApplication Database Application root
class, holding main
window specification, data
model specification and
database connection.

The application model class that contains your window specification will be a

subclass of one of the abstract superclasses described in the table, and become the

application model for the application. All windows opened from the application

will emulate the default look–and–feel specified in the Settings Tool unless

specifically overridden.

Ex 34.1: Browse class ApplicationModel.

34.2.2. Widgets

VisualWorks comes with a set of ready–made widgets that can be placed directly

on a Canvas using a drag–and–drop interaction. The widgets are contained in a

Palette (figure 34.1), usually positioned adjacent to the Canvas.



Chapter 34 376

Figure 34.1: The Palette

The following widgets are included (described left–to–right, top–to–bottom):

Action Button A button that triggers some action when clicked.

Check Box A button that represents a boolean state of its model.

Radio Button A button, usually one of a group, which displays as “on”
when its select property is equal to the value held by its
model.

Label A textual or graphical label.

Input Field A field in which data may be entered and displayed in
one of many formats, including: string, symbol, text,
number, password, date, time, boolean. May be read–
only.

Text Editor Resembles a Workspace, has the same properties as an
Input Field.

Menu Button A button that displays a menu and puts the user’s
selection into the button’s model. May also be used to
select actions to be performed.

List A list of objects (may be single or multiple selection).

Combo Box A combination of a Menu Button and an Input Field.
Used to restrict user input.

Divider A horizontal or vertical line.



Chapter 34 377

Box A box drawn around a particular region of the window.
May have a label.

Region A rectangular or elliptical visual region. May have color
properties.

Slider A widget to provide selection from a numeric range.

Table A tabular representation of information. May be a two–
dimensional list or a collection of objects displayed in
rows.

Data Set A list of similar objects, for example, the rows of a
database. Information is presented in a tabular form
similar to a Table. Provides more extensive control over
columns than a Table.

Notebook Similar to that seen in the Help Browser.

Subcanvas Another Canvas, used within the current Canvas.

View Holder A place holder for a widget not available from the
Palette. The view  property is a selector that, when sent to
the application model, returns an instance of some
subclass of VisualPart.

The Charts package, available from ParcPlace, adds a “chart” icon to the palette.

Additionally, third party vendors are beginning to provide new widgets fully

integrated with the Palette.

34.2.3. Models

Most of the widgets mentioned above are designed to have a model that

responds to ValueModel protocol (often instances of ValueHolder) so that the

interface between widget and model is clear, concise and consistent across the

entire VisualWorks framework.

The model for a particular widget is determined by sending the selector specified

in the widget’s aspect property to the instance of the defining class associated

with the UIBuilder. Widgets that do not require a model have no aspect property.

Dividers, Boxes and VisualRegions need no model — they are merely

decorative. Action Buttons and Labels reference an instance of the defining class

as their model. Check Boxes, Radio Buttons, Input Fields, Text Editors, Menu

Buttons, Combo Boxes and Sliders expect an instance of ValueHolder (or an

instance of a class that behaves like ValueHolder) as their model.

A List widget, a DataSet widget, and a Notebook widget each expect an instance of

SelectionInList as its model. SelectionInList is a subclass of Model that has two

instance variables: listHolder and selectionIndexHolder. Both of these are



Chapter 34 378

ValueHolders, one containing the list itself and one containing the selected

numeric index into the list (in a MultiSelectionInList the selectionIndexHolder

contains a Set  of indices).

A Table widget requires the most complex model of all, an instance of

TableInterface. Instances of TableInterface contain much information on the

presentation of the table (e.g. the width, format and label for each column). In

addition, TableInterface has an instance variable — selectionInTable — that

references an instance of SelectionInTable. (This class provides similar

behaviour to SelectionInList.) The class has two instance variables: tableHolder

and selectionIndexHolder that contain respectively a table (either an instance of

TwoDList  or TableAdaptor) and a selectionIndex (an instance of Point).

A Subcanvas does not have a model per se — it is merely a collection of other

widgets according to the layout and definition of some other Canvas. Each of

those widgets will have a model according to the above guidelines.

A View Holder must define its own model (if necessary) according to the needs

of the particular instance of VisualPart returned.

Ex 34.2: Browse classes SelectionInList, TableInterface and SelectionInTable.

34.2.4. Dependencies

As described in chapter 29, a model uses a dependency mechanism to notify its

views that it has changed. Views and controllers have direct access to each other

and to their model, but the model has no direct knowledge of its views. Using a

Canvas does not alter this paradigm. Part of a UIBuilder’s task when transforming

a Canvas specification into a window, is to set up the dependencies. It does a

good job! You don’t need to do anything. That is part of the beauty of requiring

all models to be polymorphic with ValueModel, VisualWorks knows just what to

expect.

Because the underlying models all have ValueModel behaviour, there are some

additional ValueModel methods that help a programmer to create further

dependencies. For example,

onChangeSend: aSelector to: anObject

This method creates an instance of DependencyTransformer that watches for

update:  messages coming from the receiver, and sends aSelector to anObject

when one is received. This saves the developer from having to implement an

update: method in the class of anObject . It further limits the update traffic



Chapter 34 379

because anObject  will only receive update messages from those instances of

ValueModel in which it has registered an interest.

34.3. Tools

VisualWorks comes with a variety of graphical tools to help you build your

application. The Launcher (figure 34.2) offers access to some of the tools by way of

two icons, the remainder are available from the Tools menu (figure 34.3).

Figure 34.2: The Launcher

Figure 34.3: The Tools menu of the Launcher

Canvas Opens a new Canvas, usually accompanied by a Palette and a
Canvas Tool window.

Resource
Finder

A window that lists all the classes in the image for which
Resources have been defined. A Resource may be a Canvas, a
Menu  or an Image. From the Resource Finder you can start
the application, edit a Resource, browse a class or remove a
Resource.



Chapter 34 380

The other tools are described later in this chapter.

When a Canvas is opened for editing, it is accompanied by a Palette (see earlier)

and a Canvas Tool window (figure 34.4).

Figure 34.4: The Canvas Tool

The Canvas Tool provides access, via its menu bar, to operations also available

from the <operate> menu of the Canvas (figure 34.5). The first six icons of the

Canvas Tool are used for the horizontal and vertical alignment of widgets. The

next four icons are used for vertical and horizontal distribution, and the last two

icons are used for vertical and horizontal size equalisation. The bottom row of

buttons are used in the stages of the Canvas specification process described

earlier. Each button becomes enabled as its stage in the process is reached. For

example, the Define button is disabled until the Canvas is installed.

Figure 34.5: The <operate> menu from a Canvas

The Grid sub–menu offers control of the mechanism used to position widgets

(figure 34.6) and the Look sub-menu offers a choice of look–and–feel preferences



Chapter 34 381

(figure 34.7). However, the selection made here only applies to the current

Canvas (to allow the developer to see how the Canvas would look on other

platforms). When a window is opened, its look–and–feel will be derived from

the preferences specified in the Settings Tool (chapter 5).

Figure 34.6: The Grid Control menu

Figure 34.7: The menu to control look–and–feel

The Definer is one additional tool that may be launched from the Canvas Tool,

or the <operate> menu of a Canvas. The Definer writes class and method

definitions in the class on which the Canvas is installed according to the

properties specified for each widget. Usually this involves adding an instance

variable to the class definition for each widget’s aspect and accessing methods in

the ‘aspect’ protocol for each instance variable. The Definer contains an

Add Initialization option, which (if checked) causes the accessing methods to

return defaults if the variable is uninitialized. (If the instance variable is nil , the



Chapter 34 382

method creates a new instance of the expected model for that widget (e.g.

ValueHolder with: nil, SelectionInList new) and returns that after assigning it to

the instance variable.)

Ex 34.2: Browse classes SelectionInList, TableInterface and SelectionInTable.

34.4. Building an Application

Let’s revisit the MVC “recipe” from chapter 29. Using a Canvas may simplify

some steps:

1) Build your data model . This step is still necessary for most applications.

However, if your data model is very simple — for example, a counter

that simply holds a number and increments, you may not need to

define separate classes. In this case, you may derive the variables for the

application model class directly from the Canvas. This does not mean,

however, that you should start building an application by going directly

to Canvas painting. It is important to design you data model, even if

you later simplify into ValueHolder models in the application model

rather than separate classes.

2) Build your application model . First, design your application model —

make sure you understand what responsibilities it has.

Here we depart from the recipe in chapter 29:

3) Design your Canvas. Use the iterative process described earlier to paint

the Canvas, select properties and define models. If you need specialised

views (i.e. views that are not included in the Palette) use the View

Holder widget to set a place in the Canvas for them. Then you need to

build a view, build a controller for that view if necessary and hook this

view up to the View Holder widget by way of its property selector.

4) As long as you have subclassed your application model class from

ApplicationModel you are done. The window may be opened by sending

the message open to your class, or openInterface: aSpecName if the

name of your specification is not #windowSpec.

5) Iterate until cooked.



Chapter 34 383

34.5. Example: A different Dice

Let’s look at the Dice example from chapter 32. If we were to create the Dice

application using a Canvas, much of the code would remain the same because

we would have to create a specialised view (to display the dots), with specialised

controller behaviour (to roll the Dice). However, until the point when we

decided to use a special controller, we could have used a Canvas to design the

window, run the Definer and our application would be complete.

However, as an example, let us produce a slightly different Dice example — one

in which we display the value of the Dice in an Input Field and use an Action

Button or a menu option to roll the Dice.

First, open a new Canvas, and set the “Basics” properties of the window

according to figure 34.8.

Figure 34.8: The properties of the window

Install the Canvas on a new class, called VWDice, and define it as an

“Application”, as a subclass of ApplicationModel. Use the default specification

name #windowSpec. Now browse the class and add two instance variables: value

and rand .



Chapter 34 384

In figure 34.8, we have defined a menu, named #diceMenu, as the menu for the

window. Open a Menu Editor to define a menu as in figure 34.9, build it and test

it, then install it in class VWDice as #diceMenu. (Note that ‘Roll’ and ‘rollDice’ are

separated by a <tab>.)

Figure 34.9: The definition for the window’s menu

Now, add a Label, Input Field and Action Button to the Canvas, similar to

figure 34.10. (Note that the appearance of your Canvas may differ from

figure 34.10, according to the platform on which you are working.)

Figure 34.10: The Canvas for the dice.

For each of the widgets, set their properties according to figures 34.11 to 34.15.



Chapter 34 385

Figure 34.11: The properties for the Label widget.

Figure 34.12: The “Basics” properties for the Input Field



Chapter 34 386

Figure 34.13: The “Details” properties for the Input Field

Figure 34.14: The “Basics” properties for the Action Button



Chapter 34 387

Figure 34.15: The “Details” properties for the Action Button

Install the Canvas again, to save the changes you have made, and then add the

following two methods to class VWDice:

initialize
"Initialize the instance variables of the receiver."

super initialize.
value := ValueHolder with: 1.
rand := Random new.

rollDice
"Roll the dice."

value value: (rand next * 6 + 1) truncated.

Note that for this example we are assuming that our domain model (value) is

simple enough to be represented by an instance of ValueHolder.

Finally, select the Input Field widget on the Canvas and define a model for it, as

shown in figure 34.16.



Chapter 34 388

Figure 34.16: Defining a model for the Input Field

If you now start the application (from the Canvas, the Canvas Tool, or the

Resource Finder), you should find that the application works as intended,

appearing similar to figure 34.17.

Figure 34.17: The complete Dice application

Ex 34.3: Modify the look–and–feel selection to discover how your application would appear
on other platforms.

Ex 34.4: Experiment with changing the properties such as font, colour and position on the
widgets in the example above, as well as the alignment options available in the
Canvas Tool.

Ex 34.5: (Hard.) Modify the example above to incorporate class DiceView from chapter 32.



Chapter 34 389

34.6. Benefits of Using a Canvas

Why learn MVC? It’s hard! Using a Canvas is a great time saver. It gives

immediate feedback during user interface design and greatly simplifies the

process of arranging the components. However, underneath the simplicity of

predefined views and controllers and models that all behave the same way, lies

the full power and complexity of MVC. Your knowledge of MVC will allow you

to debug errors, to develop new views when they are not found on the Palette,

and to extend VisualWorks to satisfy your requirements more fully.

In summary, the benefits of using the Canvas mechanism are:

1) It masks MVC making many applications far easier to program.

2) It is not a limiting paradigm — although it does contain many consistent

views and models, others may be incorporated easily.

3) It supports visual reuse by consolidating window information in small ,

accessible components which may then be used as building blocks in other

user interfaces, used directly in other applications, or even inherited.

4) It provides a good start for novices, especially for interfaces to applications

that browse databases.

5) It greatly assists cross–platform development, being able to “adopt” look–

and–feel.

However, don’t assume that you can get away without knowing the Smalltalk

language!

Ex 34.6: In chapter 33 we introduced an example to use instances of DialogView and
LabeledBooleanView; try to re–write that example using a Canvas.

34.7. Summary

This chapter concludes our description of VisualWorks. We hope that you have

enjoyed reading the book and found it a valuable addition to the ParcPlace

manual set. You may have noticed that VisualWorks is a large system,

containing hundreds of classes and thousands of methods. Consequently, we

have only been able to cover a small fraction of what VisualWorks has to offer.

However, we hope that you now feel confident enough to explore other parts of

the system. We have both been using Smalltalk–80 (in its various guises) for

nearly ten years, and yet we still encounter parts of the system that are new to us!



Chapter 34 390

In the Appendix that follows, we provide some extra pointers for those of you

wishing to learn more about the Smalltalk language and the VisualWorks

environment.



Appendix 391

Appendix: References and Pointers

No, this isn’t a chapter about the problems of de–referencing, or how to manage

pointers to objects — after all this is Smalltalk, not C++!

Here we briefly outline some references to other useful material, user groups,

and other sources of information. In addition we provide some pointers to

available Smalltalk source code. Lastly, we give solutions to the most common

“bugs” encountered by newcomers to VisualWorks.

A.1. References

There are four magazines that cover Smalltalk and other object–oriented issues,

all published by SIGS publications in the USA: Object Magazine, The Journal of

Object Oriented Programming and The Smalltalk Report. These frequently

contain articles on Smalltalk, ranging from low–level implementation problems

to higher level issues such as programming style. (Roxanna Rochat’s technical

report In Search of Good Smalltalk Programming Style1 provides sound advice

for those embarking on Smalltalk development.)

For those with an interest in wider object–oriented programming issues we

recommend Brad Cox’s excellent book: Object–Oriented Programming: An

Evolutionary Approach. David Taylor’s book, Object–Oriented Technology: A

Manager’s Guide, provides an alternative perspective on the use of object–

oriented techniques.

One topic that we deliberately decided not to address in this book was that of

object–oriented analysis and design, for which there are numerous books

available. Some of the most popular are given below:

Booch, G., Object–Oriented Analysis and Design with Applications, (Second

Edition) Benjamin⁄Cummings, 1991.

Coad, P. and Yourdon, E., Object–Oriented Analysis, (Second Edition)

Yourdon Press, 1991.

Jacobson, I., Christerson, M., Jonsson, P., and Overgaard, G., Object–Oriented

Software Engineering, Addison–Wesley, 1992.

1Tektronix Technical Report CR8619.



Appendix 392

Rumbaugh, J., Blaha, M., Prelermani W., Eddy F., and Lorensen, W., Object–

Oriented Modeling and Design, Prentice–Hall, 1991.

Wirfs–Brock, R., Wilkerson, B., and Wiener, L., Designing Object–Oriented

Software, Prentice–Hall, 1990.

As well as paper–based media, there are several electronic sources of

information. The most widespread of these is UseNet, the bulletin board system

used by huge numbers of people to communicate about computing matters and

many others besides. (Available via the Internet.)

UseNet consists of thousands of “news groups”, each of which has a name

indicating its contents. The news groups are arranged in a hierarchical structure,

so that the name of each news group indicates its place within that structure. For

example, there is a group for computer languages called ‘comp.lang’ and one

specific to Smalltalk called ‘comp.lang.smalltalk’. Additionally, there is a general

news group for all things relating to object technology called ‘comp.object’.

There is also a Smalltalk frequently–asked–questions (“FAQ”) document,

distributed by Craig Latta1 that contains a list of frequently–asked questions (and

their answers) about the Smalltalk programming language and environment. It

is posted to the UseNet news group ‘comp.lang.smalltalk’ and is available via

anonymous FTP from xcf.berkeley.edu as file misc/smalltalk/FAQ/SmalltalkFAQ. It

can also be obtained by sending electronic mail to Smalltalk-

request@xcf.berkeley.edu with the subject line ‘request for FAQ’.

For those of you wanting a more interactive means of communication, there are

several special interest groups you can join. Because of the British bias of the

authors, the one with which we are most familiar is the Object–Oriented

Programming and Systems special interest group of the British Computer Society

(BCS–OOPS)2. It produces a regular newsletter and holds frequent seminars,

including an annual “Object Technology” three–day event.

(Those readers on the other side of the Atlantic may be interested in the annual

ACM SIGPLAN Conference on Object–Oriented Systems, Languages and

Applications — OOPSLA.)

1latta@xcf.berkeley.edu,
2Note: Membership is not restricted to British residents.



Appendix 393

A.2. Pointers

The last five years has seen a huge increase in the number of Smalltalk–related

products and services. We don’t have the space to describe all of them here, so

we will concentrate on some of the more popular. For further information,

consult The Smalltalk Resource Guide, which contains a directory of Smalltalk

products and services. It is published and distributed by Creative Digital

Solutions, 293 Corbett Avenue, San Francisco, USA. Alternatively, the annual

International OOP Directory (published by SIGS) contains a wider selection of

contacts and reference material.

Before we outline a few of the commercial products, it’s worth describing some

of the vast amount of material that’s available in the public domain, either as a

result of research projects or the altruism of a few individuals. First, the research

projects1:

A.2.1. CoolDraw

CoolDraw is a constraint–based object–oriented drawing framework (originally

called “ThingLab”). CoolDraw is similar to other MacDraw–like packages with

one major exception: everything in CoolDraw is done with constraints. The

system is written in Smalltalk–80 release 4.1. CoolDraw is available via

anonymous FTP from ursamajor.uvic.ca in ftp/ursa/constraints/CoolDraw.

A.2.2. The Grapher

You have already seen the result of using the “Grapher”: it was used to produce

the figure of the VisualPart class hierarchy in chapter 30.

The current version of the Grapher was written by Mario Wolczko, and is based

loosely on the one written for version 2 of Smalltalk by Steve Messick and Chris

Jacobson of Tektronix. It is available from the Manchester “Goodies” Library (see

below).

A.2.3. SmallDraw

SmallDraw is a very simple structured graphics editor that was originally written

to run under Smalltalk–80 release 4.0, by Dan Benson of Siemens Corporate

Research, Inc. (dbenson@scr.siemens.com). SmallDraw is available via

anonymous FTP from st.cs.uiuc.edu as /pub/st80_vw/SmallDraw.VW.

1Much of this information was drawn from the Smalltalk–FAQ described above.



Appendix 394

A.2.4. Smallmusic

Based at Berkeley, a work group has been formed to discuss and develop an

object–oriented software system for music, using Smalltalk–80. The electronic

mail address for the group is smallmusic@xcf.Berkeley.EDU. The abstract and

outline to their working paper is available via anonymous FTP from

ccrma-ftp.stanford.edu  as pub/st80/OOMR6.t.

In the descriptions above, we indicated the anonymous FTP sites where access to

source code was available. Two sites act as large Smalltalk archives containing

many interesting and varied sources:

A.2.5. The Manchester Smalltalk “Goodies” Library

Host: mushroom.cs.man.ac.uk (Manchester University, Dept of Computer

Science).

This archive contains much Smalltalk source code (“goodies”), all of which can

be “filed–in”, mostly for Smalltalk–80 (ParcPlace releases 2.1 to 4.1, and

VisualWorks), and some for Smalltalk⁄V. (A few items cannot be copied outside

the Manchester Univ. Dept of Computer Science — these are unreadable by ftp

users. If you try to access an item and permission is denied, you may assume that

it is one of these items.)

The directory hierarchy is (roughly) organised by origin of goodie. Thus, the top–

level directories include: ‘lancaster’ (source from Lancaster University),

‘manchester’ (local source, sub–divided by Smalltalk version), ‘misc’

(miscellaneous sources), ‘parc’ (sources from ParcPlace), ‘uiuc’ (a mirror of the

Smalltalk archive on st.cs.uiuc.edu — see below), ‘usenet’ (sources from

comp.lang.smalltalk).

Should you have any problem accessing the archive, or queries of any sort, please

send electronic mail to the manager, at lib-manager@cs.man.ac.uk.

A.2.6. The UIUC Archive

Host: st.cs.uiuc.edu (University of Illinois at Urbana–Champaign, Dept of

Computer Science).

UIUC keeps local files and a “mirror” of the files at Manchester.

In the following sections we describe several of the commercial software

products with which we have experience. Contact names and addresses can be

found in The Smalltalk Resource Guide mentioned earlier.



Appendix 395

A.2.7. ENVY/Developer

ENVY⁄Developer1 is a multi–user environment designed for Smalltalk

development. The product’s configuration management and version control

system provides the controls necessary for large–scale Smalltalk development.

ENVY⁄Developer  also includes a framework to promote corporate reuse of

object–oriented components and enable multi–platform development. It

additionally includes a high–speed object storage and retrieval utility.

A.2.8. HP Distributed Smalltalk

HP Distributed Smalltalk is an implementation of the CORBA2 1.1 standard for

distributed object systems. It is supported on the HP 9000 series 700 and 800

systems running HP–UX, IBM RS/6000 running AIX and Sun Sparcstations

running SunOS and Solaris.

HP Distributed Smalltalk is a tool set that enables rapid development of multi–

user enterprise–wide Smalltalk solutions. It extends VisualWorks 2.0 to make an

object–oriented development environment for creating and running CORBA

compliant distributed applications.

A.2.9. ObjectExplorer

The Object Explorer for VisualWorks is a visual object inspection and

documentation tool. (You may have noticed that we have used it to produce

some of the figures in this book to explore the relationships between objects.) It is

being used in some of the largest (and smallest) Smalltalk projects to reduce

training time, improve development productivity, and document finished code.

A.2.10. ReportWriter

ReportWriter is a query and reporting application that is fully integrated with

VisualWorks. ReportWriter supports queries and reports using the domain

model contained in Smalltalk as well as database schema oriented reports. It

supports fonts, control breaks, full event driven formatting, device independent

output, and a callable runtime reporting engine. Any data which is accessible

from Smalltalk can be included in reports including SQL, OODB, image, and file

based information.

A.2.11. Runtime Packager

From Advanced Boolean Concepts, this product automates the process of

creating VisualWorks images for deployment to end–users. It provides the

1ENVY is a registered trademark of Object Technology International Inc.
2The Object Management Group (OMG) consortium’s specification of a Common Object Request Broker
Architecture.



Appendix 396

necessary facilities to locate referenced versus unreferenced classes and methods

and to remove the unreferenced items from the runtime image. In addition, it

can strip and save a ready–to–run image without additional runtime support

code. Runtime Packager can also significantly reduce runtime image size,

permitting applications to run on smaller end–user machines with greater

responsiveness.

A.3. Troubleshooting

During the many years we have been using Smalltalk, we have noticed that

newcomers to the environment often make similar mistakes or encounter

similar problems. In the following sections we describe some of these and

provide example solutions.

A.3.1. Closed Launcher?

If you inadvertently close the Launcher, you’ll soon discover that you no longer

have access to the usual means of opening new windows, saving your image, etc.

As long as you have a window open in which you can evaluate code — such as a

Workspace, Transcript, etc. — you can open a new Launcher by evaluating the

expression

VisualLauncher open

A.3.2. Missing Sources?

If you move the location of your VisualWorks image you may find that when

browsing sources you see t1, t2, etc., instead of the more familiar variable names.

In addition you may find that methods no longer have comments.

Remember that the source of all code in the image is kept in two files: the

sources file (containing the code of the basic classes — called visual.sou) and the

changes file (with all the changes and additions you have made — initially called

visual.cha). When you are browsing code, the System Browser asks the default

instance of SourceFileManager (there’s only ever one) to find the sources and

changes files. If the SourceFileManager refers to non–existent files, then the

Browser de–compiles the bytecodes, resulting in t1, t2, etc.

To solve the problem, open the Settings Tool and find the page that specifies the

location of files (figure A.1). (The Settings Tool is described in chapter 5.) Amend

the locations appropriately, and accept the changes.



Appendix 397

Figure A.1: Setting the location of the source files

A.3.3. Growing Image?

If you find that your image “grows” whenever you save it (i.e. the size of the

image file increases), this may be the result of two possible causes:

a) You have decided to store objects in the image, rather than using an

external database or filing system — no problem.

b) You are inadvertently storing objects in the image, because for some

reason they are not being destroyed by the garbage collector — this is  a

problem.

The usual reason for an object not being destroyed by the garbage collector is

because the object is “rooted” — i.e. it is referenced by, or has a reference to, one

or more objects that are global variables. For example, a window is not garbage–

collected until its controller is removed from the collection of

scheduledControllers managed by the global instance of ControlManager.



Appendix 398

Typically, there are three possible solutions:

A.3.3.1. Release  Methods

We noted in chapter 27 that the dependency relationships (e.g. used by an MVC

application) may need to be taken apart explicitly. This usually requires a release

method containing expressions to set variables to nil , terminated by the

expression super release.

Ex A.1: Browse all implementors of release.

A.3.3.2. DependentsFields

If you remember (from chapter 27) DependentsFields is a class variable (an

IdentityDictionary) of class Object. It is used as part of the dependency mechanism

for those classes that are not a subclass of Model. Although DependentsFields is

not a global variable, because it is a class variable of class Object, it may be

accessed as if it were — therefore you should be able to inspect DependentsFields

by evaluating the expression DependentsFields inspect in a Workspace.

If your release methods have been correctly implemented, you should find that

DependentsFields is empty (after closing all the windows connected with your

VisualWorks application)1. However, if DependentsFields is not empty, this

does not necessarily imply that your release methods are not correctly

implemented — for example, during the development stages of your application

the release mechanism may not have functioned correctly (due to bugs), causing

several entries in DependentsFields.

Removing the entries is simple. Open an Inspector on DependentsFields, select

an item from the left pane and remove it using the remove option from the

<operate> menu. Once you have emptied DependentsFields, force the image to

collect its garbage by selecting the Collect Garbage option from the File menu

of the Launcher — note the messages in the Transcript.

Ex A.2: Inspect DependentsFields and take any action necessary.

A.3.3.3. Undeclared Variables

The global variable Undeclared is a PoolDictionary that references all those

variables that are “undeclared”. Each item has one of two reasons for being in

Undeclared:

1This is not strictly true — for example, certain advanced programming techniques rely on an entry for classes
ObjectMemory and⁄or SystemDictionary.



Appendix 399

a) When accepting a method, or evaluating a message expression, you

identified a variable as “undeclared” from a Confirmer (figure A.2); or

b) You redefined a class by removing or renaming instance (or class)

variables, yet those variables were referenced by some methods of the

class.

Figure A.2: Identifying an “undeclared” variable

Whatever the reason, the variables should be removed from the PoolDictionary.

However, it’s always wise to check first if there are any references to the variables

(as in case (b) above). To find references to undeclared variables open an

Inspector on Undeclared, and for each variable in turn, select the references

option from the <operate> menu. If there are references for a variable, you will

be provided with a Browser containing the methods in which the variable is

referenced. It’s usually fairly straightforward to fix this: either remove the

methods (if they are no longer required), or declare the variable. After tidying up

the references to each undeclared variable (or if it has no references), remove it

from the Dictionary using the remove option from the <operate> menu.

It’s worthwhile inspecting Undeclared occasionally, as undeclared variables can

often be the source of subtle bugs (an Undeclared variable behaves as if it is a

global variable).

Ex A.3: Inspect Undeclared  and take any action necessary.

A.4. Summary

Object–oriented technology seems to be the current “flavour of the month” —

portrayed by the computing press as the next “silver bullet”. All aspects of

software development are now considering the use of object–oriented



Appendix 400

techniques: analysis and design, software engineering, user–interface design,

database design, to name but a few. From its beginnings as a language to “support

children of all ages in the world of information”1, Smalltalk has consistently

been one of the leaders of the object–oriented movement.

For those of you new to Smalltalk, or object–oriented technology in general, the

references at the beginning of this Appendix provide a good starting point for

your journey of discovery.

1Ingalls, D., “The Smalltalk–76 Programming System Design and Implementation”, Proceedings of the Fifth Annual
ACM Symposium on Principles of Programming Languages, ACM, p.9.




