
Computer
Programming
using GNU Smalltalk

Canol Gökel

Last updated: 18.10.2009

Cover photo by: Tibor Fazakas over www.sxc.hu

Content on this book is licensed under a Creative
Commons Attribution 3.0 License or, at your choice,
under the GNU Free Documentation License 1.3,

with no invariant sections, front-cover texts, or back-cover texts

To the ant I accidentally crushed yesterday...

Canol Gökel

I

Preface
Computers are machines composed of hardware and software written for the
hardware. Whether you are an amateur user who uses his/her computer just to surf
the Internet or an average user who uses computer for daily tasks, you may need to
write a program for a specific duty. Maybe you are just a curious user who wants
to dominate the box in front of him before it starts dominating you. Programming
is the key word here because you make the computer do what you want by
programming it. Programming is like putting the soul inside a body.

This book intends to teach you the basics of programming using GNU Smalltalk
programming language. GNU Smalltalk is an implementation of the Smalltalk-80
programming language and Smalltalk family is in general a little bit different than
other common programming languages like C or Java. So, we will apply a
different approach to teach you programming compared to other computer
programming books out there.

You will see chapters of this book are mostly short compared to other
programming books. This is because of mainly two reasons. First one is my
laziness. Second one is that Smalltalk is a small and orthogonal language. By
small, we mean there are fewer programming concepts you should learn compared
to other languages. Smalltalk is built on a few carefully designed rules and
concepts. By orthogonality, we mean there are very few exceptions on Smalltalk
compared to other languages. Because of this two reasons you will learn almost
the whole language in less than 100 pages.

This doesn't mean the things you can do with Smalltalk is limited. In contrast, this
small set of rules and orthogonality gives you great flexibility so that the only limit
is your imagination. Also, one of the greatest strength of Smalltalk is its powerful
and rich library which gives you most of the tools you need out-of-the-box. GNU
Smalltalk adds even more tools to this valuable toolbox. But because we will
concentrate in the core language in this first edition of the book we are going to
show you only the tip of the iceberg, namely, only the most important and most
frequently used functionality of the library.

If you are an experienced programmer who wants to learn Smalltalk, then you will
be surprised by the elegance of this carefully implemented language. Andrew S.
Tanenbaum says: "Fight Features. ...the only way to make software secure,
reliable, and fast is to make it small.". Smalltalk is certainly designed by scientists
with this mentality in mind.

II

Who is This Book for?

This book assumes that the reader does not have any experience with
programming but does have experience with using the computer, meaning, how to
open/close it, how to run programs, how to save files etc.

For experienced programmers:

We will often use this kind of box to speak to experienced programmers, referring a
person who has knowledge of another programming language than Smalltalk.
Newcomers do not have to read the contents of this box.

For experienced programmers:

This book can also be used by experienced programmers. Actually, this book is the
one you should read because, most probably, GNU Smalltalk is pretty different than
what you have seen so far and this book teaches you Smalltalk as if it is your first
programming language.

How to Use This Book

If you are an absolute beginner then we suggest you to read the chapters in order
and look at the appendixes anytime they are referred. We tried to write this book
in an order that you won't need to look at a future chapter because of unseen
concepts, so you may need to turn a lot of pages to look at appendixes but not for
anything in the main text. We tried to keep the examples as simple as possible, so
that they won't confuse you with unnecessary details and just demonstrate the
concept in discussion.

During the learning process of a programming language, it is very important to
practice the theoretical subjects you learned. We tried to give a lot of examples
after introducing new concepts. Trying to code and run this sample programs by
yourself will not only assure that you understand the concept, it will give you both
confidence and motivation needed to continue. There are also little questions
waiting for you inside the chapters to guess (and probably apply) its solution.
Finally, we have prepared review questions so that after reading a chapter, you can
intensify your knowledge about the new concepts. We strongly suggest you trying
to solve this questions. The answers of the review questions can be found in
Appendix B at the end of this book.

Also, most of the programs are available online at:

http://www.canol.info/books/computer_programming_using_gnu_smalltalk/source

III

_code.zip

Font Conventions

We used some font conventions throughout the text so that you can differentiate
different kind of materials we are talking about, easily.

Beside the Times New Roman font we use for normal content, we used an italic
text to emphasize a first appearance, or a definition of a word.

We used a fixed sized font while mentioning about a code piece.

We used an italic fixed sized font while mentioning about a code part you
are supposed to put a different code according to your tastes, the context of the
program or your computer's settings etc.

The codes which are meaningful even as they are, are showed with a sweet purple
rectangle at their left side, like below:

a stand-alone meaningful code

Outputs (results) of complete programs are given with a purple background, like
this:

Output of a program

The input part of a program which is entered by user while the program is running
are showed in bold face at the output:

Please enter your name: Canol

When we mention about keys on your keyboard, we'll write them between angle
brackets like <CTRL>, <Enter> or <Backspace>1.

We also have some special boxes:

Note:

This kind of boxes contain important details, some additional information or
suggestions.

For experienced programmers:

1 We will use <Enter> throughout the book for both <Enter> key on PCs and the
<Return> key on Macintosh computers.

IV

This kind of boxes contain some hints for people who knows some other language but
reading this book to learn GNU Smalltalk. Beginner users or even experienced
programmers don't have to read or understand things written in this boxes.

Question:

This kind of boxes contain some special questions which are answered at the and of its
chapter.

V

Contents

Preface..I

Who is This Book for?..II

How to Use This Book...II

Font Conventions..III

Chapter 1: Introduction to Programming World.....................................1

What is Programming and What are Programming Languages?........................1

Programming Language Types...1

Number Systems..6

File Formats...9

Word Processors, Text Editors and IDEs..10

Review Questions..11

Chapter 2: Introduction to GNU Smalltalk...13

Small Talk About Smalltalk..13

General Logic Behind Smalltalk...14

First Program...14

Review Questions..17

Chapter 3: Objects, Messages and Classes: Part I...............................19

Objects and Messages...19

Another Way to Display Output on Terminal...23

Message Chaining...24

Message Cascading...24

Classes...25

Common Classes and Their Usage: Part I...25

Variables..35

Getting User Input...37

Common Classes and Their Usage: Part II...37

Review Questions..44

Chapter 4: Controlling the Flow of Execution.......................................47

VI

Blocks..47

Selective Controlling...49

Repetitive Controlling...50

Review Questions..54

Chapter 5: Objects, Messages and Classes: Part II..............................57

Encapsulation..57

Inheritance...57

Polymorphism...60

Creating Your Own Classes..60

Creating Objects from Classes..65

Example...66

Extending and Modifying Classes...71

self and super...76

Review Questions..82

Chapter 6: What to Do Next..85

How Can I Improve Myself?...85

Further Reading...85

Useful Sites..86

Mailing Lists..86

IRC..87

Appendix A: Installing Programming Environment..............................89

Installing GNU Smalltalk on Linux Platforms..89

Installing GNU Smalltalk on Windows Platforms..91

Appendix B: ASCII Table...93

Appendix C: Answers of Review Questions...95

Chapter 1...95

Chapter 2...97

Chapter 3...99

Chapter 4...101

VII

Chapter 5...106

Postface..115

About the Author...115

The Star Trek computer doesn't seem that interesting. They
ask it random questions, it thinks for a while. I think we can

do better than that.

Larry Page

Introduction to Programming World 1

Chapter 1: Introduction to Programming World
In this chapter we will dive into programming world. See what programming is,
what programming languages are, talk about some basic topics you should be
familiar with before starting programming.

What is Programming and What are Programming
Languages?

Programming is making the computer do whatever we want it to do. And program
(or software) is the name given to a series of computer code to complete a specific
task. Sometimes the procedure of writing a program is also named as solving a
problem because all programs are written to do a specific task, in other words to
solve a problem you faced in real world.

Because of the hardware design, computers can only understand two states. We
represent this two states with digits 0 and 1 (We will mention about this, more
detailed, later in this chapter.). Combinations of zeros and ones generate some
commands that computer hardware understands. We call these command groups
which provide a communication between us and computer hardware as
programming languages.

We can write commands with just zeros and ones but this is a very painful method
for humans. Imagine a stack full of zeros and ones. To be able to recognize the
commands from it at first sight would took years of experience for a reasonable
human being. So, humans solved this problem by developing an intermediate step
between writing programs and executing it. They write it in a more
understandable, most probably in an English like grammar, and then convert it into
hardware understandable zeros and ones, which is called machine language or
machine code. This converting process is done also with programs called
compilers or interpreters.

Programming Language Types

Programming languages are classified according to their various properties. We
will just mention a few of them.

High Level and Low Level Programming Languages

As we mentioned earlier, machine codes are hard for humans to understand. So,
humans developed languages which are like languages that we today speak. A
language can be categorized according to how close it is to a human language. As
closer a language is to a machine language, as lower level it is. In other words; as

2 Computer Programming with GNU Smalltalk

closer a language is to human languages, as higher level it is.

Below you see what a machine code looks like:

011010111010001011000101

You cannot even guess what this means right? Now, below we will give an
example how the language called Assembly looks like:

MOVE d'3', W

ADD d'4'

I don't know if you can guess what this code does but it is obvious that it is more
readable than a machine code. So we can say that Assembly language is a higher
lever language than machine code. By the way, if you are curious about what the
code above does, it just sums up two numbers.

Now look at the same code above written in a language named GNU Smalltalk
(Hmm, I never heard of it before):

3 + 4

I won't ask if you have guessed what the code above does because I don't know of
any way to describe it better than the code line above, if you say no. So, the
highest level language when we compare machine code, Assembly and GNU
Smalltalk is GNU Smalltalk.

Although, the examples we have given to describe the language levels are pretty
simple and obvious, don't expect GNU Smalltalk as almost the same with English.
It can get sometimes as confusing as Assembly, although it has a reputation as
being a very high level language compared to other programming languages
commonly used today.

We will finish this topic with an important statement, being a higher level
language does not mean being a better language. Assembly is also a very
commonly used language today because when a language is close to hardware, the
control of you over hardware becomes stronger. So, for doing very fundamental
hardware programming Assembly is probably a good choice. Also the lower level
the language you use the higher control of you over optimization of the code
which results in faster programs. Of course, using Assembly to code an office suit
like Microsoft Office just because of the advantages of Assembly would be a silly
choice because it will result hundreds of times longer, more complex, unreadable
and that's why unmaintainable code when it would be coded in a higher level
language. So, you should consider all the pros and cons before choosing a

Introduction to Programming World 3

programming language for the current project. This also means that you may need

Compiled and Interpreted Languages

We mentioned that writing a program is done by using programming languages
and there is a step of converting the programs we write from human
understandable form to computer understandable form. This process is called
compilation if the entire program is converted into machine language at once and
kept in computer memory in that form. If the software written in a programming
language requires to be compiled before run then this language is called a
compiled language. The software doing the compiling process is called compiler.

But if the program is converted as we write, that is line by line or more correctly
statement by statement then this process is named as interpretation and such
languages are called interpreted languages. Software written in interpreted
languages are kept in computer memory as the way we write them and every time
we execute (or launch, run) them, they are interpreted again into machine
language. The software doing the interpretation process is called interpreter.

Portable

Easy-to-Maintain

Slower

Away from
Hardware

Not Portable

Hard-to-Maintain

Faster

Close to
Hardware

Higher Level Lower Level

4 Computer Programming with GNU Smalltalk

The code we wrote in a programming language (not the result of a compilation or
interpretation process) is called source code.

The figure above demonstrates the difference between launching a compiled
program and an interpreted program. A user can reach directly to the compiled
program which is kept as machine code in computer memory while she can reach
only the source code of an interpreted language. The system then recognizes the
file format and sends it to the interpreter to interpret it into machine code.
Sometimes, the system may not be able to recognize the file format and we might
need to send the file to the interpreter manually. The main thing to notice is that
interpreted languages require additional steps to be launched and it slows down the
execution time.

Actually, there could be both compilers and interpreters for the same language
depending on its structure but most languages are designed with one of them in
mind, so there could be differences between the compiled version and the
interpreted version of a language.

Although the two types of programming languages are much popular in this scene,
there is also another type which is between this two paradigms. This paradigm
compiles the source code into an intermediate level which is still not
understandable by hardware nor by humans. This level of conversion is generally
called byte-code compilation. This process is done so that the code's level is made
more close to hardware and converting it to completely understandable form by

1100001
1000101
1001010
0111101

'Hello
World!'

1100010
1000010
1001010
0111101

'Hello
World!'

Compiler Interpreter

Source Code

Compilation/Interpretation
Process

Machine Code

Introduction to Programming World 5

hardware is much faster. The converting process from byte-code to machine code
is done by programs called virtual machines. The thing virtual machines do is
interpreting the byte-code into machine code when the program is executed by
user.

Why there is this third type of language? Because interpretation is slow compared
to executing a compiled program but has an advantage of being cross-platform.
Cross-platform is the name for being able to run a software on different computer
architectures, like different operating systems or different processors. So you can
launch a program written in an interpreted language if there is an interpreter for it
on the computer you are working on. The hardware you have or the operating
system you use does not matter. If you had programmed the software with a
compiled language you should have done compilation first for the processor and
operating system you have before launching the program. This has its own
advantages like being executed much faster after compilation and disadvantages
like compiling the program every time you make a change in source code and
every time you move your program from one platform to another. Compiling a
program into byte-code speeds up this interpretation process and still has the
advantages of an interpreted language.

Although, GNU Smalltalk functions more like an interpreter, Smalltalk is designed
as a language which uses a virtual machine. We can give Java programming
language as an example of this type of languages (and a very successful one,
indeed).

Procedural, Functional and Object Oriented Programming

Another categorization of programming languages are according to their
paradigms. A programming paradigm is how a programming language looks at
the problems to be solved. There are mainly 3 types of programming paradigms:
Procedural, functional and object oriented. To keep it simple and not confuse you
with words you don't know yet we will only mention about object-oriented
programming which is the heart of Smalltalk language.

Object oriented programming looks at the world as an object compound of other
objects. According to this paradigm everything can be considered as an object. For
example, a computer, a television, a book etc. are all objects. Also all of this
objects are compound of other objects. For example, a computer is made by
bringing a main board, a graphics card, a hard disk and some other hardware
together, which are all again objects.

Object oriented programming is generally considered as the most close
programming paradigm to human thinking. So, when you write object oriented

6 Computer Programming with GNU Smalltalk

programs you feel more comfortable and you can focus into solving the problem
instead of worrying about the programming language structure, rules etc..

There is no rule that a programming language should be based on only one
paradigm and built itself on it. Actually, there is even a name given languages
which allow the coder to use more than one paradigm during programming, multi-
paradigm programming languages. Programming languages which allow
programmer to use only one programming paradigm are called single-paradigm
programming language.

Smalltalk is one of the first object oriented programming languages and it is a
purely object oriented programming language. So, it is a single-paradigm
programming language and you will look everything as an object.

Number Systems

We briefly mentioned that computer hardware can only understand ones and zeros.
Now we will explain the reason a little more detailed. The hardware used
commonly in computers today can track only two states because of their design.
We can call this states as on and off, for example. So humans needed a way to
describe the world in just two symbols. Ways to describe mathematics in two
symbols are already implemented so they just needed to represent other things in
two symbols. For example, how can you represent a refrigerator in computer
world? We can represent it as a collection of some strings. Then how can we
represent strings with just two symbols? Humans developed ways to represent
strings in two symbols which we will show you in topic File Formats. We
presented some states but we should be able to change these states. We achieve
this via defining some basic commands and constructing more complex ones on
top of the more basic ones. This is the way from machine language to Assembly
language and to higher level languages like the ones we mentioned before in this
chapter.

Question:

Although we tried to give you an idea of what happens in a computer, we won't cover
this techniques in detail. Maybe you can try yourself to imagine how to create a world
in just two symbols. This will be really helpful to create an understanding of computer
and will be an interesting practice for you. After imagining yourself a little bit you may
look at the Assembly language to see how Assembly solved this problem. Of course, it
will be very hard for beginners so we recommend that you finish this text before.

Now we will mention about the arithmetic part of the two symbol world. Though
we won't cover it detailed not to bore you with mathematics concepts. You can
always look at any algebra book to get a deep insight of the materials we will

Introduction to Programming World 7

introduce you next.

Base-10 (Decimal) Number System

We use ten symbols (0, 1, 2, 3, 4, 5, 6, 7, 8 and 9) to represent the numbers in our
daily life. Why ten and not nine or eleven? Is this how the world is created, in ten
symbols to represent numbers? Of course not. We can represent numbers in as
many symbols as we want. The reason we use ten symbols is that we are used to it.
It is thought to be used by first Indians and spread the world from there. Why
Indians choose ten is thought to be because humans have ten fingers.

Base-2 (Binary) Number System

Mathematics allows us to use as many symbols as we want to represent numbers.
Because we can use just two symbols in computer architecture, base-2 system is
ideal for this job. Base-2 numbers are usually called binary numbers. We choose
usually 0 and 1 as the two symbols but have chosen whatever symbol we want.

We want to show you first how to convert the value of a number written in base-x
(x being a natural number) to base-10. When we write a number in base-x, you can
calculate the value of that number in base-10 by multiplying the digit value of
each digit by the base number raised to digit's algebraic order and summing all of
them. Definition is a little bit confusing, isn't it? Let's give an example. Suppose
we have a number written in base-10 like this: 345. We can evaluate the same
value of this number like this:

345=5⋅1004⋅1013⋅102

So, in base-2 we can write the same number like, 101011001:

101011001=1⋅200⋅210⋅221⋅231⋅240⋅251⋅2 60⋅271⋅28

This is how we convert a base-x number into base-10. Now, we will show you
how we can convert a base-10 number into a base-2 number. Suppose that we
want to represent number 345 in base-2. All we have to do is to divide 345 to 2
repetitively until we reach a number that can be represented in base-2. Then we
write the resulting number and the remainders of previous divisions next to each
other from right to left. To show this process:

345/2=172 remainder 1

172/2=86 remainder 0

86 /2=43 remainder 0

43 /2=21 remainder 1

21/2=10 remainder 1

8 Computer Programming with GNU Smalltalk

10/2=5 remainder 0 

5 /2=2 remainder1 

2 /2=1 remainder0 

When we write the result of last division and the remainders of the divisions back
to beginning from right to left (we boldfaced that numbers in the above equations)
we get 101011001, which is the same as the 2-base equal we proposed.

Each digit of a binary number is called a bit and 8 bits next to each other are called
a byte in computer jargon.

Base-8 (Octal) Number System

Sometimes we use numbers written in base-8 to represent binary numbers because
octal numbers are shorter and there is an easy converting method from octal to
binary number system and vice versa. There are also some historical reasons for
that, so, learning it would be, sure, an honor for us.

We use digits 0, 1, 2, 3, 4, 5, 6 and 7 to represent octal numbers. We can convert a
number written in binary to octal by grouping every 3 digits beginning from right
of the number to the left and replacing every group with the octal equivalent of it.
For example, the number 101011001 written in binary system may be represented
in octal system like:

101
5

011
3

001
1

=531

If the number cannot be evenly divided into groups of three digits we can add 0 to
the left of number until it can.

The reverse operation, converting an octal number to a binary number is also
straightforward. You just convert every digit of an octal number into its binary
equivalent and write them next to each other. For example, the converting process
of octal number 531 to binary can be showed like this:

5
101

3
011

1
001

=101011001

Question:

Can you explain why such conversions are always true?

Base-16 (Hexadecimal) Number System

Now, we will see a number system which is usually harder to imagine, at first.
Base-16 means we will use 16 symbols for writing numbers. But we have only 10
of Arabic number symbols. So what are we going to do? It is acceptable to use any

Introduction to Programming World 9

symbol we want for the rest of it. Usually, we use the first 6 letters of Latin
alphabet; A, B, C, D, E and F for values 10, 11, 12, 13, 14 and 15, respectively.

In this case, while you say that there are "12 chocolates in front of you", maybe an
alien who comes from a planet using base-16 numbers in their daily life would say
that there are "C chocolates" in front of it and it would be totally acceptable.

Converting from base-2 to base-16 and vice versa is very alike with conversions
between base-2 and base-8 except that this time you deal with 4 digit groups.

File Formats

A file format is how a file is kept in the memory of a computer. Files may be
categorized mainly in two: Binary files and text files. We will use files extensively
during our programming practice. Actually, you are using files every time you use
computer because every program you use are composed of a file or some files. So
it might be handy to know a little bit more about the files.

Binary Files

Binary files are files which are used by some special programs written to read that
special file format. They are represented as zeros and ones in computer memory
and their content is created according to some specifications. .jpeg, .pdf, .doc, .exe
are all examples of binary files and need special programs like image viewer or
PDF reader to be used.

Text Files

Humans use some files which are just composed of characters so extensively, that
they created simple text files. Text files include just alphanumerical characters and
some special control characters which are all presented according to a special
encoding system which are called character encoding. The characters they can
include are limited with the capabilities of the character encoding they use. A list
of characters which can be presented are listed in tables called character sets.
Every character is presented with a number in a character set. There are special
programs called text editors which are capable of reading and writing text files.

The most commonly used character encoding is ASCII (American Standard Code
for Information Interchange) which uses a simple encoding that can be expressed
in a single sentence: Every character is presented in seven bits. A text editor which
supports ASCII character encoding can read any ASCII encoded text file. This
along with the simplicity of the character encoding specifications provide an
enormous portability between digital equipment. You can find the ASCII table at
Appendix B of this text.

10 Computer Programming with GNU Smalltalk

Because ASCII has a 7-bit limit and you can only write 128 different number with
7 bits, ASCII can represent only up to 128 different characters. The world is big
and there are hundreds of different alphabets with thousands of different
characters. There are some languages which use alphabets that have more than 128
characters so it might be even impossible to represent a single alphabet in a 7-bit
encoding. That's why there are a lot of different character sets and encodings. For
example, UTF-8 character encoding, which may be used along with Unicode
character set, can represent characters via 1 to 4 bytes. Unicode character set has a
character collection of about 100.000 characters.

Our GNU Smalltalk interpreter can read text files encoded with ASCII or UTF-8
so it would not be a problem whether your editor supports ASCII or UTF-8.

Word Processors, Text Editors and IDEs

We will type our source codes into text files and we are going to use a program to
write our source codes just like we use a program to create documents.

When typing is in discussion most probably a word processor like Microsoft
Word, iWork Pages or OpenOffice.org Writer comes to an average computer
user's mind. But word processors are not created for simple text files. They use
binary files to keep the fancy document formatting like bold, big, colored text,
images and the layout of this kind of things. They most probably have an option
for creating plain text files but then we can't take advantage of the usefulness and
speed of text editors. This is like using a limousine to harvest.

Text editors provide an easy to use and fast solution for a programmer. There are
also some text editors which are especially designed for programmers. They have
some useful features to make a programmer's life easier.

So we will use text editors to create and manipulate our text files. Most of them
are specialized for different character sets and encoding. On Linux, you can use
Gedit on Gnome, Mousepad on Xfce or Kate on KDE. There are also some
advanced text editors like Vim or Emacs. On Windows you can use Notepad but
Notepad is awfully less advanced so you can download a little more advanced
ones like Notepad22 or EditPad Lite3.

Using a search engine like Google or Yahoo with keywords "text editor" will
always give you good results.

A programmer usually needs some others programs during coding, compiling and

2 http://www.flos-freeware.ch/notepad2.html

3 http://www.editpadpro.com/editpadlite.html

Introduction to Programming World 11

testing of programs. Instead of installing and using separate programs you can use
programs called integrated development environment (IDE) which include almost
all the necessary things for you. Some of the well known IDEs are Anjuta or
KDevelop for Linux, Microsoft Visual Studio for Windows or cross platform ones
like Eclipse and Komodo. We won't use such environments because it is not
necessary when you are just at the beginning of learning how to program.

In the next chapter we will be introduced to some fundamental concepts of GNU
Smalltalk programming language and write our first program.

Review Questions

1. What is a programming language, why do we need it?

2. Explain briefly the differences between compiled and interpreted programming
languages. What are the advantages and disadvantages of them? How can we
classify GNU Smalltalk in this manner?

3. What are programming paradigms?

4. Can a programming language support more than one programming paradigm?
Is the secret feature of GNU Smalltalk, which differentiates it from other
languages, supporting more than one paradigm?

5. Write the decimal number 543 in binary, octal and hexadecimal format.

6. Write the binary number 10110100 in decimal, octal and hexadecimal format.

7. Write the hexadecimal number A93F in binary, octal and decimal format.

8. What are binary files and text files? Can you give some other examples of
binary files other than given in this chapter? Can you specify a method to
determine whether a file format is binary or text?

9. Explain the differences between text editors and word processors. Why
shouldn't we use word processors to write programs?

12 Computer Programming with GNU Smalltalk

Unfortunately, the current generation of mail programs do not
have checkers to see if the sender knows what he is talking

about.

Andrew S. Tanenbaum

Introduction to GNU Smalltalk 13

Chapter 2: Introduction to GNU Smalltalk
We will dive into GNU Smalltalk world and write our first program in this
chapter. This chapter is rather short compared to others but it has two reasons.
Firstly, you are going to need to read the necessary portion of the Appendix B;
secondly, writing your first program is probably one small step for mankind but
one giant leap for you.

Small Talk About Smalltalk

We are going to use Smalltalk programming language to learn about computer
programming but actually any programming language, although differs in some
methodology, can be used as a teaching tool as more or less what we do to
program the computer is the same, in the end.

Smalltalk has a very special place in computer science history. It appeared
publicly around the early 80s as a product of Xerox PARC (Palo Alto Research
Center). It was pretty different than the programming languages that far in regards
to its vision in object oriented programming and the syntax and environment it
used to realize this method of thinking. Also it was using a virtual machine
concept that was not popular at the time.

Note:

Smalltalk has some features which makes it not only a programming language but a
whole programming environment. But to avoid too much repetition of ourselves, we will
use the words "Smalltalk programming language" and "Smalltalk programming
environment" in exchange.

Smalltalk, interestingly, was the first programming environment to use a graphical
user interface (GUI) which is like we all use today: several windows arranged on
monitor (which is, as a whole, called desktop) and things like scroll bars, buttons
and menus placed in windows. Smalltalk environment was also being used for
networking in Xerox PARC which was not also common at the time.

So, when we look at the history of Smalltalk, today, we realize that it was ahead of
its time and influenced the programming languages released after. Some of the
concepts introduced in Smalltalk is essential today in computer programming.

If you came across some of the words you haven't seen before, in this section,
don't worry. We will learn all the concept we need to know as we go. And using
this carefully designed, elegant, simple and yet powerful programming language
as the teaching tool will help us understand programming concepts easily than any
other.

14 Computer Programming with GNU Smalltalk

General Logic Behind Smalltalk

Being a purely object oriented programming language, Smalltalk treats everything
as an object. The communication between objects are provided by sending
messages to them. For example, you create a computer object and tell it (send it a
message) to open your office suit and it opens. Maybe you can create a human
object before, who owns a computer object. Then you can send her a message to
send her computer a message to open her office suit. The detail level you create
depends on the application needs. Sometimes you may need to create a human
sometimes you don't. We will mention more about objects later.

For experienced programmers:

In contrast of other popular programming languages like C++ or Objective-C; Smalltalk
does not allow you to do procedural programming.

First Program

Now we are going to write our first program, in 2 ways. But before we start
writing, you should make sure you got the programming environment installed. If
you have not installed it yet, you should now and Appendix A will help you to do
that.

Our first program will make computer display a text to the terminal (or command
prompt in Windows terminology). Now open up your terminal and type:

gst

GNU Smalltalk ready

st>

GNU Smalltalk interpreter is started and now waiting for commands to execute.
This is called interactive mode. Now we are ready to write our program. Type the
code below and hit <Enter>:

'Hello World!' printNl

'Hello World!'

'Hello World!'

Note:

If you are using an old version of GNU Smalltalk, you may need to append an

exclamation mark at the end of the code like: this: 'Hello World!' printNl!.

Introduction to GNU Smalltalk 15

We strongly suggest that you get a newer version of GNU Smalltalk to be able to run
all the examples on this book.

As you can see from the output, the computer printed the string, 'Hello
World!', two times to the terminal, which might also be named as standard
output in programming terminology. Now, we will explain this code and why the
computer printed the string two times rather than one time.

As we mentioned, everything in Smalltalk is an object and we communicate with
them by sending messages. Then, they response us accordingly. In the code above
we have a string object and a message. Characters written between single quotes
create string objects. So, here, 'Hello World!' is a string object. We want this
object to print itself to the terminal so we should send a message to it. The
message for this purpose is printNl. The "print" part is obvious, the "Nl" part
indicates that it is going to insert a new line character afterwards.

If you understand so far, you should still be wondering why it displayed the string
two times and not just one time. It printed the string for the first time because we
want it to and it printed that string second time because the overall expression
evaluated the value 'Hello World!' and, in interactive mode, the last evaluated
expression is printed to the terminal. If we would have written a value directly,
then it would be printed, as well, because a value always evaluates to itself. We
can try it by writing a digit as a command. Actually, a digit is also an object and it
will obviously evaluates its own value. Let's try it, write 3 to the command line:

3

3

You see? I hope you saw that you can count on me...

That's it. We've already written two computer programs! But we said that we are
going to write the program in two ways. So, lets do it in an alternative way. Now,
we are going to write the program into a text file and have the GNU Smalltalk
interpreter read the instructions from it and then execute it. So, we won't be in
interactive mode this time. These text files are called source code. Now, open your
favorite text editor like Gedit, Kate on Linux or Notepad on Windows and write
the below code in a new file:

"hello_world.st"

"A program to print 'Hello World!' to the terminal."

'Hello World!' printNl

16 Computer Programming with GNU Smalltalk

Now, save it as hello_world.st. This is the source code of our program. The
characters between double quotes are comments. Comments have two purposes;
one of them is to make the source code clear to reader so that he/she understands it
faster. So, they are omitted by the interpreter. The second function of them is for
documentation purposes. We will explain when it is counted as a comment and
when a documentation string later. For now, just know that above strings are
comments. When we are writing source codes we will write into first line the
-suggested- file name, so that you won't waste time thinking about how to name
the file (How thoughtful we are...). We will write into the second line a brief
explanation of what the program does so that if you wonder what the program
does later on, these strings will remind you of it. Note that these comment strings
are optional. You can omit them if you want. But don't forget that writing
comments into source code is a good programming habit because sometimes you
will need to maintain your programs months after you write them and even you, as
the writer of that program, will have difficulty remembering why you have written
some of the commands. Also if you are working with some other coders in a big
project then you will need comments so that you understand each others code,
easily.

So, how are we going to have the interpreter execute it? Now, if GNU Smalltalk
(GST) program is still running, in other words your terminal is still showing
something like this:

st>

then press <CTRL> + d in Linux or <CTRL> + z and then <Enter> in Windows to
quit the program. Now, your terminal should be waiting your commands. We will
start the GST program again but this time we will send it the path to our source
code as an argument. Please go to the directory where your hello_world.st file
is located and type the command below:

gst hello_world.st

'Hello World!'

After executing the codes written in the source code, the GST program will
automatically terminate, leaving you alone with the forsaken terminal... Note that,
because we are out of the interactive mode, the string is printed only once.

Writing your source code into a file has many advantages. You can execute it as
many times as you want and keep them for later use so that you don't have to
retype all of the program again. But using the command line to type a program can

Introduction to GNU Smalltalk 17

be very handy for small tasks or experimental coding, which you will frequently
do throughout your learning process.

In the next chapter we will explain the object, message and class concepts.

Review Questions

1. Write a program which displays a diamond like below onto the screen:

 /\

 / \

/ \

\ /

 \ /

 \/

(Hint: Use forward/back slash and space characters.)

2. What can be the advantages and disadvantages of writing a program into a
source code file or entering it directly to the terminal, in interactive mode?

3. What are comments for in GNU Smalltalk source files? How can we write
them?

4. The power of computers comes from being able to deal with huge amount of
data, amazingly fast and without doing a mistake. Can you write a program
which displays numbers from 1 to 1000 onto the screen? Would you? Imagine
how would it be easily possible.

5. We called terminal as our standard output. Then there should be more output
devices. Can you think of a few examples?

18 Computer Programming with GNU Smalltalk

If you don't fail at least 90 percent of the time, you're not
aiming high enough.

Alan Kay

Objects, Messages and Classes: Part I 19

Chapter 3: Objects, Messages and Classes:
Part I

Objects and Messages

An object is a unit which represents a thing in the program. It has its states, which
are called instance variables, and it has some definitions which defines how to
respond to certain messages it receives from outside (usually from us or from other
objects) which are called methods. We communicate with objects via messages we
send them. Then the object responses back if he understands our message. We
have certain syntax rules to write messages and to define objects, its instance
variables and methods. We did quite make some definitions and most probably
you didn't understand them completely. If so, we suggest that you read the above
paragraph once more and continue because this concepts are hard to catch if you
firstly encounter them. After giving a few examples, these concepts will be more
clear to you.

Now we will give you some example object & message expressions. How about
some arithmetic expressions first? Write the code below to GNU Smalltalk
interpreter and hit <Enter> from your keyboard:

3 + 4

7

The spaces are not important, you can place as many spaces as you want or don't
place any space at all. You can even put new line characters around + character.
Now we are introduced to a new concept called white spaces.

White spaces are the name given to space, tab and new line characters. They are
called white space because we simply can't see them. Usually, white spaces does
not have a meaning in programming languages, so, compilers and interpreters omit
them if they are not inside a string expression.

Now, we can return to our arithmetic expression. Here, our main object in concern
is 3. The object we send messages to are called receiver and 3, here, is the
receiver. + 4 characters form the message we send to our receiver, 3. The message
says to 3: "Sum yourself with the number I sent and return the result.".

Selectors and Arguments

Now we will look into the message we sent above a little more deeply. There are
actually two parts of this message. One is a selector, which is + character; and the

20 Computer Programming with GNU Smalltalk

other is an argument, which is the object 4. You can get the selector by removing
argument parts of the message (We will give an example for that later.).

Selectors form a system to help objects decide how to respond to messages. For
example, here + selector is actually defined in object 3 so that 3 knows what to do
when it receives this message.

Arguments are the additional data the object should use while evaluating the
response. Objects know how to use these additional data while evaluating the
response. We will see how objects know all about these when we see how we can
define our custom objects. Note that a message don't have to have any arguments.
Actually, we will try a message without an argument, next. Here it is:

'Hello World!' size

12

Here, we have a string object 'Hello World!' and a message size. This
message tells string objects to return their length, in other words, how many
characters they have. As you can see, size message does not have any arguments
because it does not need to, in other words, it has all the information needed, in
other words, the answer is in the question, alright it's enough.

Let's look at one last example and then we will mention about message types. We
said that computers understand only ones and zeros. So, the number 3 is actually
written to the memory of the computer in base-2, like this4:

00000011

We have written it with 8 digits representing 1 byte of memory. Now, given the
information above, try typing the following code:

3 bitAt: 3 put: 1

7

This expression has an object of number 3 and a message bitAt: 3 put: 1. We
have the selector: bitAt:put: and two arguments: 3 and 1 in this message.
Remember how we get the selector name? We get rid of the arguments and put
together the rest of the message.

4 Actually, the format the integer is kept in the memory might be a little more complex
for optimization purposes but for the example we will give, you can rely on this
assumption.

Objects, Messages and Classes: Part I 21

This message tells the integer object 3 to reach 3th bit of itself and replace it with
1. The bits are numbered from right to left starting from 1. We had 0 at the 3th bit
of 3 before. But it is now 1. So we have:

00000111

which corresponds to 7 at base ten. After sending the message, the expression is
evaluated and printed to the terminal.

Unary, Binary and Keyword Messages

There are 3 types of messages. The difference between them is about the selectors,
arguments and the precedence. What is precedence? It will be explained in a few
minutes.

Unary messages are messages without any argument. It is called unary because the
resulting expression involves only one object. An example for an expression with
unary message would be:

'Hello World!' size

As you can see there are no arguments here and the overall expression involves
only the string object 'Hello World!'.

Binary messages are messages with an argument. But the other characteristic of
binary messages is that their selectors have up to 2 characters which are not
alphanumeric. An example for an expression with binary message would be:

3 + 4

+ is a selector here and 4 is the argument for it. The expression involves two
integer objects of 3 and 4. + is one character long and it is not an alphanumeric
character. So it meets the requirements of being called as a binary message.

Finally, keyword messages are messages with one or more arguments whose
selectors are composed of alphanumeric characters. They usually have a colon at
the end of each selector word which indicates that it is demanding an argument.
An example for an expression with keyword message would be:

3 bitAt: 3 put: 1

Our selector here is bitAt:put: where our arguments are 3 and 1. Overall
expression involves three objects but it could have been one or two or another
number greater than three.

We gave the selector and argument features of message types, but we didn't

22 Computer Programming with GNU Smalltalk

mention about precedence of them. Precedence is a concept used for deciding
which one of the messages will be executed first, if there are many messages in
one expression. If you cannot imagine an expression with many messages don't
worry, here it is:

3 + 5 bitAt: 3 put: 1 printNl

As you might see, here are three messages: +, bitAt:put: and printNl. Which
one should be evaluated first? It depends on precedence rules.

There are some basic rules for message precedence in Smalltalk, they are:

1. Unary messages are evaluated first,

2. Binary messages are evaluated second,

3. Keyword messages are evaluated last,

4. If you encapsulate an expression between parenthesis then it is evaluated
first,

5. If the messages have the same precedence, then the messages are
executed from left to right, respectively.

Now we will give two examples to illustrate this precedence rules. The first one is
the above example we have given:

3 + 5 bitAt: 3 put: 1 printNl

1

12

Now, we will investigate why the output is 1 and 12. When our interpreter first
meets with this expression it sees the unary message printNl and executes it with
the object in front of it which is 1. So the first output is 1. Then this expression
evaluates 1 itself and returns it. Our expression turns into something like this:

3 + 5 bitAt: 3 put: 1

We have two messages here. One of them is +, which is a unary message and the
other one is bitAt:put:, which is a keyword message. According to the rules
above the expression with binary message will be evaluated first which yields the
integer 8. So, our expression turned into:

8 bitAt: 3 put: 1

Now we have only 1 message which is a keyword message and it evaluates to

Objects, Messages and Classes: Part I 23

integer 12 (You can try to do that operation on paper by yourself.). As the last
thing to do, the interpreter prints that object onto terminal.

Our second example will be the expression below:

(3 + 5 bitAt: 3 put: 1) printNl

12

12

The only difference here is that we parenthesized all the messages before
printNl. But the result is a very different one as you can see, because the
expression in parenthesis is first evaluated and then sent the message printNl.

Another Way to Display Output on Terminal

Before continuing to the next section, we will show you another way to display a
text on our terminal, which we will use frequently throughout this book along with
printNl message.

With printNl message, we told to a string object to write itself onto terminal. But
think of this process in a reverse way: we could send a message, this time, to the
terminal to write a string object's value onto itself. Although the name comes from
another concept, standard output has the name Transcript in GNU Smalltalk.
And the message selector to have it display a text is show:. As you can guess
from colon character at the end of the selector, it needs an argument which is the
string object we want to display. Here is an example; execute the GNU Smalltalk
interpreter via gst command, type the below code to the interpreter and hit
<Enter>:

Transcript show: 'Hello World!'

Hello World!

You might have noticed some differences than when we used printNl message
on a string object. For example, this time there are no single quotes around our
output. Also there is no new line after the output. We will show you how to put a
newline character at the end of the output when using Transcript, in the
Message Cascading section, just a few minutes later. Lastly, the output is printed
only once while it was printed twice every time we used printNl message. This
is because the overall object returned is the Transcript itself and it does not have a
representation as a string.

24 Computer Programming with GNU Smalltalk

Message Chaining

If you write more than one message next to an object name, all messages will be
sent to the resulting object of the preceding message. This is called message
chaining. The general syntax for message chaining is like this:

objectName message1 message2 message3 ... messageN

So, while message1 is sent directly to objectName, message2 is sent to the
resulting object of expression objectName message1. Using the same logic we
can say that message3 is sent to the resulting object of expression objectName
message1 message2..

Here is a real life example of message chaining:

'Canol' reverse asUppercase

'LONAC'

We manipulated the string Canol multiple times with two messages to reach the
resulting string object 'LONAC'.

Message Cascading

GNU Smalltalk allows us to send multiple messages to an object without writing
object's name over and over. This is called message cascading. The general syntax
for message cascading is as follows:

objectName message1; message2; message3; ... ; messageN

We put semicolon between the messages we want to send. Beware that this is
different than message chaining in which semicolons are absent and every
message is sent to the resulting object of preceding message.

Here is an example for message cascading:

Transcript show: 'Canol'; cr

cr is a message which causes Transcript to put a newline character which is
also called carriage return. So, we first sent the message show: 'Canol' and
then the message cr to the Transcript.

You have to be careful when using message cascading because, sometimes,
precedence rules may cause results that you don't expect.

Objects, Messages and Classes: Part I 25

Classes

Classes may be summarized as the templates of the objects we want to create. We
first define a class, then produce objects from it. That's why objects are also called
instances of their classes. It is like the blue print of houses.

Every object has a class related to it. For example, 'Hello World!' object is
created from the String class or numbers like 2 or 3 are created from a class
called SmallInteger. We will mention about the theory of classes later on
Chapter 5 in more detail.

Common Classes and Their Usage: Part I

GNU Smalltalk has a library which provides a rich set of classes. In this part, we
will see some of the most commonly used classes and the messages we can send to
their instances. Although there are hundreds of classes and thousands of messages,
we cannot cover all of them. We will try to give a lot of examples, though, to
make you familiar with GNU Smalltalk code.

Number

Numbers are one of the most commonly used data types in computing. Computers
are much faster and more accurate than a human being when it comes to
manipulate large numbers and doing mathematical operations on them. GNU
Smalltalk has a Number class which provides a large set of behavior we can

We can think of the blue print as a House class and
the actual houses as the instances of it.

26 Computer Programming with GNU Smalltalk

benefit from.

But how are numbers presented in GNU Smalltalk? Here are some presentations of
numbers:

We can represent a natural number just like on paper:

3

15

1000000

We can add a hyphen character to the beginning of the number to make it
negative:

-3

-15

-1000000

We can add a dot character as a decimal point:

3.5

-15.7

0.1

We can represent numbers in other bases then decimal. We just have to add the
base number (in decimal) we want and an r character to the beginning of the
number (We use letters starting from A to represent digits greater than 9 while
using a base greater then ten):

8r312 (202 in decimal)

16r312 (786 in decimal)

16rABC (2748 in decimal)

Scientific notation can be used on GNU Smalltalk, too. In scientific notation, we
use an e character to represent exponent of ten. So the number we've written is
multiplied by ten's exponent which is specified after the e character:

1e2 (is equal to 100)

0.3e5 (is equal to 30000)

0.0015e4 (is equal to 15)

Fractions can also be represented on GNU Smalltalk by writing two integers
around a slash character. Fractions are automatically simplified if they can be:

Objects, Messages and Classes: Part I 27

3/5

5/3

Now, we saw how to represent the numbers we will use, let's learn how to do math
on those numbers. It is a good idea to start with basic mathematical operations.

+

We have a binary message named + for summation:

3 + 5

8

0.3 + 0.01

0.31

-

Hyphen is used for subtraction:

5 - 3

2

3 - 5

-2

*

* character (not x character) is used for multiplication:

2 * 3

6

0.1e-2 * 1e2

0.1

/

A slash character is used for division. GNU Smalltalk will give us a number in
fraction or decimal representation whichever it decides is appropriate:

50/4

25/2

28 Computer Programming with GNU Smalltalk

0.5/5

0.1

\\

Double backslash character is used for modulus operation:

5 \\ 3

2

3 \\ 3

0

between:and:

We can control whether a number is between other numbers or not by using
between:and: selector. For example, to control if 3 is between 1 and 5:

3 between: 1 and: 5

true

As you can see GST returned an object named true. This is an instance of
Boolean class which is used for determining the accuracy of a logical statement.
Then, how is logical inaccuracy represented? Let's look at the result of this code:

3 between: 4 and: 6

false

As you can see it is represented by an object named false. We will see how to
use this Boolean objects more detailed on Chapter 4, Controlling the Flow of
Execution.

abs

We use abs message to get the absolute value of a negative number:

-3 abs

3

degreesToRadians

We can convert a magnitude in degrees to a magnitude in radians by using
degreesToRadians message. This will be useful for doing some trigonometric
calculations:

Objects, Messages and Classes: Part I 29

180 degreesToRadians:

3.141592653589793

GST calculated pi number quite accurately and quite fast, didn't it?

cos

We can calculate cosine of an angle with cos message:

180 cos

-0.5984600690578581

Wait a minute, isn't the cosine of 180, -1? Be careful of units. cos message wants
to be sent to a magnitude of radians not degrees. So, you have to first convert it
into radians with degreesToRadians. You will see how to use the result of
degreesToRadians message to be sent cos message later.

negated

We use negated message to find out the negative of a number:

3 negated

-3

Watch out! If you send this message to an already-negative number then you will
get the positive of that number:

-3 negated

3

raisedTo:

To find out the nth power of a number, we use raisedTo: message:

3 rasiedTo: 4

81

As you know, 0th power of a number is always 1:

3 raisedTo: 0

1

GST can also calculate negative powers of a number by returning nice fractional
numbers:

30 Computer Programming with GNU Smalltalk

3 raisedTo: -2

1/9

squared

We can find out the square of a number by using squared message instead of
using raisedTo: 2:

3 squared

9

even

We can determine if a number is even or not by using the even message:

4 even

true

2222222221 even

false

odd

...And we can test if a number is odd or not by using the odd message:

3 odd

true

sign

sign message returns 1 if the number is positive and -1 if the number is negative:

6 sign

1

-0.3

-1

Now, we will see some messages you can use with floating point numbers.

integerPart

integerPart message gives us the integer part of a floating point number:

0.7 integerPart

Objects, Messages and Classes: Part I 31

0.0

3.1 integerPart

3.0

truncated

To truncate a decimal number we use truncated message:

17.2 truncated

17

Note that this is not rounding:

17.6 truncated

17

To round decimal numbers we use...

rounded

rounded message:

17.6 rounded

18

Let us see some messages special to fractional numbers.

denominator

To get the denominator of a fractional number we use denominator message:

(3/4) denominator

3

Notice that we parenthesized the expression 3/4. The reason is that if we didn't do
that then the unary message denominator would be calculated before the
expression 3/4 because, as we said before, unary messages are evaluated before
binary messages.

numerator

We use numerator message to get the numerator of a fractional number:

(3/4) numerator

32 Computer Programming with GNU Smalltalk

4

setNumerator:setDenominator:

To set the numerator and the denominator of a fraction, we use
setNumerator:setDenominator message:

3/4 setNumerator: 5 setDenominator: 6

5/6

Note that, this time we didn't need to use parenthesis because this time we send a
keyword message to the expression 3/4 and binary messages already have a
precedence over keyword messages.

Character

Characters are the single symbols we use to represent data. For example; letters,
special characters like %, and digits like 9 are all characters. They are individual
objects in Smalltalk. Though, to tell Smalltalk environment that we want to treat a
symbol as a character, we have to put a $ (dollar sign) in front of it. For example:

$a

$%

$9

And we use the same methodology to represent dollar sign itself:

$$

We have a lot of methods to apply on characters, some of which are mentioned
below.

asLowercase

If you have a letter to convert into lowercase then you can use asLowercase
message:

$D asLowercase

$d

asUppercase

Uppercase counterpart of asLowercase is asUppercase.

$d asUppercase

$D

Objects, Messages and Classes: Part I 33

isAlphaNumeric

If you have a suspicion whether a symbol is alphanumeric, then you can use
isAlphaNumeric message:

$% isAlphaNumeric

false

$3 isAlphaNumeric

true

You might need such methods when you expect some input from user, for
example. Since you cannot know what a person might enter as data you should use
this kind of methods to ensure that data entered is in a valid format.

isDigit

Maybe you just want to determine if a symbol is a digit:

$4 isDigit

true

$c isDigit

false

isLetter

Or you might be interested in whether the data is a letter or not:

$c isLetter

true

$4 isLetter

false

String

Strings are object compound of several character objects. We use strings to
represent words, sentences, paragraphs etc. To tell Smalltalk environment that we
are creating a string we put ' (single quote) character before and after a sequence of
characters. For example:

'Canol'

34 Computer Programming with GNU Smalltalk

'I want a cup of coffee'

are all string objects. We use two single quote character, consecutively, to
represent a single quote character in a string:

'Eiffel Tower''s height varies as much as six inches, depending on

the temperature.'

Note that it is two single quote and not a double quote.

Since strings are used by programmers heavily, we have a lot of useful methods
for them. Below are some messages I selected. Editor's Choice Awards go to:

includes:

If you wonder whether a string object includes a specific character object in it, you
can use includes: message:

'Canol' includes: $n

true

Note that this message is case-sensitive:

'Canol' includes: $N

false

indexOf:

Sometimes, just knowing whether a string includes a character is not enough. You
also want to know exactly where it is. You can use indexOf: message to learn it:

'Canol' indexOf: $n

3

If a character is not present in the string then this method returns 0. And if
character exists more than one time then it returns the index of the first appearance
of that character in the string.

reverse

This is one of my favorite messages in Smalltalk. You can reverse a string via
reverse message:

'.dlrow eht ni remmargorp tseb eht si lonaC' reverse

'Canol is the best programmer in the world.'

Isn't this fun?

Objects, Messages and Classes: Part I 35

countSubCollectionOccurrencesOf:

You can count how many occurrences of a certain string are there in another string
via countSubCollectionOccurrencesOf: message:

'Thomas Edison, the inventor of the light bulb, was afraid of the

dark.' countSubCollectionOccurrencesOf: 'the'

3

,

If you want to concatenate two strings into one String object you can place a ,
(comma) character between them:

'Best', ' friends'

'Best friends'

Actually you can concatenate as many strings as you want via message chaining:

'Best', ' friends', ' should', ' never', ' be', ' separated.'

'Best friends should never be separated.'

asUppercase

You can convert a whole sentence into uppercase using asUppercase message:

'Hey I''m talking to you!' asUppercase

'HEY I''M TALKING TO YOU!'

And you can use asLowercase message to lowercase your sentence, though we
won't give an example for that.

size

You can learn how many characters a string has by sending it the size message:

'There are 39 characters in this string.' size

39

Variables

Variables in Smalltalk is a lot like variables we use in mathematics. You may keep that
in mind while reading this topic to imagine this concept easier.

While writing a program, we will have a lot of objects. They will be created,

36 Computer Programming with GNU Smalltalk

manipulated and destroyed. But after creating an object, how can we refer to it at
any place in our program? Suppose that we have a Human class (not a class
provided by the standard library of GNU Smalltalk but an imaginary one) and we
create new instances from it. Like humans in our world, they need a name so that
we can communicate with them. Remember that we communicate with objects via
sending messages to them and before message, we should reach that object to
specify which object we want to be the receiver. This can be achieved with an
expression which returns the object or referring the name of the object.

Suppose we have a Human instance named Carl. We can send him a message like:

Carl tellUsYourLastName

Here Carl refers to a Human instance.

Giving a name to an object is called assignment and we call this names variables
in programming jargon. This is because although a name refers to only one object,
the object it refers to can be changed any time in the program. Before learning
how to assign a name to an object, first discuss why would we want to do such a
thing. Most probably, in an example like above, which we created a human, you
wouldn't want to change the referred object. But let us take another example:
suppose that we have a program which tracks the number of customers who visits
a restaurant in a day. This program should increment the number by one every
time a customer comes in. How can we achieve such a mission? Well, first we
create a variable which refers to object 0. Than every time a customer comes in;
we call that variable, get the object it refers, sum it with 1 and assign it back to that
variable. So, every time a customer comes in; the object, variable refers to, is
changing.

Now it is time to learn the syntax for doing assignment. Before doing any
assignments, we should create variables. The general structure for creating
variables is:

| aVariable anotherVariable andAnotherVariable |

Here we created three variables named aVariable, anotherVariable and
andAnotherVariable. We put the variable names we want to create between
pipe characters. We separate variables with spaces and can create as many variable
as we want. The general syntax for assignment is like this:

aVariableName := anObject

We use an operator called assignment operator which is composed of a colon and
an equal sign without any whitespace in between. This operator assigns the object

Objects, Messages and Classes: Part I 37

on its right to the variable on its left.

Every object created occupies space in computer memory and the task of variables
is actually to hold the memory address of an object.

Getting User Input

In this section, we will introduce a code to obtain information from user via
standard input device (most probably keyboard). If you ever used a console
program before then you probably faced "Are you sure you want to do this? (y/n)"
kind of questions which expect you to enter y or n. This is the technique used for
getting that kind of user inputs from terminal.

"user_input.st"

"A program to demonstrate how to get input from user."

| userName |

Transcript show: 'What is your name? '.

userName := stdin nextLine.

Transcript show: ('Hello ', userName, '!'); cr.

What is your name? Canol

Hello Canol!

This program asks user for his/her name and displays a hello message including
the name entered. The part which gets the user input is userName := stdin
nextLine. stdin nextLine expects a keyboard input which is terminated by a
newline character. The user, in this case, enters whatever he/she wants and presses
<Enter> key to terminate the input process. stdin nextLine returns the input
string, so we assigned it to the variable userName. Assignment operator has a
lower precedence compared to sending any kind of message to an object, so first
stdin nextLine is executed and then the assignment.

Common Classes and Their Usage: Part II

Now we will introduce some other useful classes you will probably use,
frequently. We will also use the variable concept in our examples.

Array

We often need to group some kind of data together and do some tasks on them
altogether. Usually, the data we grouped is connected in some way. Maybe a
grocery list, the movies we like, the books we read etc. So we need an object that

38 Computer Programming with GNU Smalltalk

is capable of holding a collection of other objects. Array, Set and Dictionary
classes are all capable of holding several objects together, in different ways.

The first one we will see is the Array class. This class holds a limited number of
objects, in an order.

new:

You can create a new Array object by sending new: message to the Array class.
You should supply a number to determine how many objects the array will be able
to hold. The code below shows an example:

| anArray |

anArray := Array new: 10

(nil nil nil nil nil nil nil nil nil nil)

You can enter the lines above, respectively or write them into a file and then
execute it via sending the script file to the GST interpreter. Please enter the lines
as we write here because we will take advantage of the GNU Smalltalk memory so
that we don't have to create a variable over and over.

Now, our anArray variable refers to an Array object which can hold ten other
objects. If you entered above lines respectively, you should have got an output like
above. It shows the current state of our Array object. At first, all of the objects of
an Array object are initialized as nil object which is a special object to represent
nothing.

at:

To get a single object at a certain position we can use at: message. Please keep
entering the commands like we write here:

anArray at: 1

nil

We get the first object in our array which is, of course, the nil object. The
positions of an array are called indexes. In Smalltalk indexes begin with the
number 1.

For experienced programmers:

In contrast to C based languages, in Smalltalk, indexes begin with 1, not with 0.

Objects, Messages and Classes: Part I 39

at:put:

To place an object to a certain position we use at:put: message:

anArray at: 1 put: 'Toothbrush'

'Toothbrush'

We can see what the objects in our array are by simply writing its name:

anArray

('Toothbrush' nil nil nil nil nil nil nil nil nil)

As you can see, now, the first object in our array is the String instance
'Toothbrush'. Let's put a soap to our array:

anArray at: 2 put: 'Soap'

'Soap'

anArray

('Toothbrush' 'Soap' nil nil nil nil nil nil nil nil)

includes:

We can investigate if an array has a certain object in it by sending it the
includes: message along with the object we are searching:

anArray includes: 'Soap'

true

anArray includes: 'Toothpaste'

false

reverse

Remember, we said that Array objects are ordered collections. There are ways to
manipulate this order. One of them is to reverse it via reverse message:

anArray reverse

(nil nil nil nil nil nil nil nil 'Soap' 'Toothbrush')

Set

Sets are a lot like Arrays except that they do not hold their content in any order
and they don't have any predefined limits like Arrays. A Set is the GNU

40 Computer Programming with GNU Smalltalk

Smalltalk counterpart of the sets in mathematics so it behaves much like the sets in
mathematics.

new

We create a Set instance again with new message but without an argument this
time:

| aSet |

aSet := Set new

Set ()

The output shows us that initially, our set does not contain any object in it.

add:

We can add an object into a Set by using add: message:

aSet add: 'Toothbrush'

'Toothbrush'

aSet

Set ('Toothbrush')

Now, our set holds a String object which has the value of 'Toothbrush'. Now
let's add another String object:

aSet add: 'Soap'

'Soap'

aSet

Set ('Soap' 'Toothbrush')

As you can see GST put it before the 'Toothbrush' object. Actually, it didn't put
it before, it just put it into the set, randomly. The place of 'Soap' or
'Toothbrush' object is unpredictable, in other words they don't have any certain
placement inside the Set.

Question:

Can you tell why Set class does not have a reverse method?

Maybe one more example may help you understand it better:

Objects, Messages and Classes: Part I 41

aSet add: 'Toothpaste'

'Toothpaste'

aSet

Set ('Soap' 'Toothpaste' 'Toothbrush')

Now, the last object we added went in between the other two old objects. But
again, this is just a representation, actually they don't have any order.

There is an interesting result of not having an order inside Set object. When you
try to add the same object twice into a Set object, you end up having it only once:

aSet add: 'Toothbrush'

'Toothbrush'

aSet

Set ('Soap' 'Toothpaste' 'Toothbrush')

What does matter to the GST is if an object is in the Set or not. As you can see
this is much like the sets in mathematics.

remove:

To remove an element from a Set you can use the remove: message:

aSet remove: 'Toothpaste'

'Toothpaste'

Note that remove: message didn't return the Set object, instead returned the
removed object.

aSet

Set ('Soap' 'Toothbrush')

As you see we didn't use an index to reach and remove the element, instead we
used the element itself because elements inside a set does not have an index.

Note that removing an element from a set does not necessarily delete that object
from the system. The object just does not belong to that set anymore. Let's
demonstrate that:

| anElement |

42 Computer Programming with GNU Smalltalk

anElement := 'Perfume'

'Perfume'

We created a separate variable pointing to a String object. Now, add it to our set:

aSet add: anElement

'Perfume'

aSet

Set ('Soap' 'Toothbrush' 'Perfume')

Let's remove it:

aSet remove: anElement

'Perfume'

aSet

Set ('Soap' 'Toothbrush')

Now, it is removed from the Set, let's control whether our variable is still alive:

anElement

'Perfume'

As you see, it is still alive and well. The remove: message we sent to the Set
didn't affect our variable and the String object it points.

Dictionary

The last class we are going to show you is called Dictionary. Dictionarys,
again, provide a way to group a bunch of objects together like Arrays and Sets.

Dictionarys are like Arrays in that they keep their data associated with an
index key, but the difference is that the keys don't have to be numbers. You can
define any object as a key for a data.

And Dictionarys are like Sets in that they don't keep their data in any order and
they don't have a predefined limitation how much object you can keep in it.

new

We create a dictionary with new message just like Sets:

| aDictionary |

Objects, Messages and Classes: Part I 43

aDictionary := Dictionary new

Dictionary (

)

The output shows us that, initially, our Dictionary does not contain any object
in it.

at:put:

We can add an object into a dictionary by using at:put: message:

aDictionary at: 'Canol' put: 'Gokel'

'Gokel'

aDictionary

Dictionary (

'Canol'->'Gokel'

)

Our dictionary now holds a string named Gokel associated with another string
named Canol. Now, let's add another String object:

aDictionary at: 'Paolo' put: 'Bonzini'

'Bonzini'

aDictionary

Dictionary (

'Canol'->'Gokel'

'Paolo'->'Bonzini'

)

keys

We can get all the keys inside a Dictionary by using keys message. GST will
return a Set object which includes all the keys:

aDictionary keys

Set ('Canol' 'Paolo')

removeKey:

To remove an element from a Dictionary you can use the removeKey:
message:

44 Computer Programming with GNU Smalltalk

aDictionary removeKey: 'Canol'

'Gokel'

aDictionary

Dictionary (

'Paolo'->'Bonzini'

)

removeKey: message like remove: message from Set returned the removed
object.

Review Questions

1. What is an object, a message and a class?

2. What is a variable? Why do we need them?

3. What are the types of messages? Can you classify two messages for each of the
type, among the messages we saw on section, Common Classes and Their
Usage?

4. What type of numbers can we deal with in GNU Smalltalk? Give some
example numbers for each type.

5. Write a program which gets a number from user and displays its cube.

6. Write a program which gets two numbers from the user separated by a space
and displays their arithmetic average.

(Hint: You will get an input like 3 4 from the user which is a String holding
two numbers. Use tokenize: aString message on this string to separate the
numbers from each other. tokenize: message separates a string into pieces,
which are called tokens, wherever it finds its argument inside the receiver and
returns an Array which consists of all the tokens.)

7. Write a program which holds definitions of some concepts we saw in Chapter
1 in a Dictionary object. The program should ask the user to enter a word
and then display the corresponding definition.

8. What is the difference between Arrays and Dictionarys? Why would we
use an Array when there is a more featured and charismatic class named
Dictionary?

Objects, Messages and Classes: Part I 45

46 Computer Programming with GNU Smalltalk

An intellectual is a man who says a simple thing in a difficult
way; an artist is a man who says a difficult thing in a simple

way.

Charles Bukowski

Controlling the Flow of Execution 47

Chapter 4: Controlling the Flow of Execution
The programs we have seen so far executed the codes line by line in the order we
write them. But real life isn't like this. We have to grow up and make some
decisions. And because programs are to mimic real life problems, they, as well,
involve decisions. Decisions make the execution of the code lines out of order.
Some lines of code are executed according to a decision and some lines may never
executed at all. For example, you should get your coat on if the weather is cold or
shouldn't if it is hot.

There is more. Controlling the flow of execution of our programs does not just
made of decisions. There are also repetitions, a thing that is not present at real life
but a huge reason of why programming languages are present. For example, you
may want to do something thousands of times. The first sample that comes to our
minds is mathematical problems. Consider we want to find all the prime numbers
up to 100 billion. Trying this on paper with a pencil is obviously not good for your
health. Instead, we develop an algorithm to find whether a number is prime or not
and then apply it on all the numbers from 1 to 100 billion. Thanks to the hardware
capabilities today, we can find the solution of such problems in milliseconds and,
importantly, without a mistake.

So we divide controlling into two main types: Selective and repetitive. Selective
controlling selects a part of our code to be executed according to a condition
(decision). And repetitive controlling will allow us to execute a part of the code
over and over.

Before going on with how to do selective or repetitive controlling with GNU
Smalltalk, we will see a concept named block which we will extensively use along
with controlling messages.

Blocks

Blocks are objects to bring together some expressions and hold them together for
later use. They are nothing but a series of code written between square brackets.
This is an example of a block:

['Hello World!' printNl.

(3 + 7) printNl]

The key things are to remember that blocks are also objects and when you create a
block, the code in it won't be executed right away. You should send it a message
named value, like this:

48 Computer Programming with GNU Smalltalk

['Hello World!' printNl.

(3 + 7) printNl] value

'Hello World!'

10

10

Note that the object 10 is printed twice because the last expression is returned as
the result of the block which is the object 10. Again, this is only the case when
you are entering the codes above interactively via terminal.

As we will see in control expressions, blocks are very useful object structures. But
before going on with control expressions we should also mention about a feature
of blocks, block arguments.

Sometimes blocks may need additional data to evaluate the codes in it. We can
then create one or more block arguments to pass as many additional data as we
want The general structure of a block with arguments is:

[:blockArgument1 :blockArgument2 | block-expression-1. block-

expression-2]

The block arguments are at the beginning of a block and every argument is
declared with a preceding colon. Then the argument part of the block is separated
from the main content via a pipe character.

We will mostly use this kind of blocks with special messages which know how to
use them. But if you ever need to use such a block manually then you should send
it a message whose selector includes as many value: as the argument number.
For example, for a block with three arguments you should use the selector
value:value:value:.

Let's finish this subject with an example program:

"blocks.st"

"A program which involves a block with an argument."

| greetings |

greetings := [:platesOfCornFlakes | 'I have eaten ',

platesOfCornFlakes printString, ' plates of corn flakes this

morning!'].

('Hello ma! ', (greetings value: 3)) printNl.

Controlling the Flow of Execution 49

'Hello ma! I have eaten 3 plates of corn flakes this morning!'

Here we first created a variable named greetings to hold a block we will create.
Then we created a block object with an argument and assigned it to the variable.
Note that when we used the argument inside the expressions, we didn't write the
preceding colon. It is only written in declaration time and then omitted. Finally,
we used this block with an expression greetings value: 3. Don't forget to
parenthesize the necessary groups for the sake of the precedence rules.

Now, we are ready to go on with controlling expressions.

Selective Controlling

ifTrue:

Our first selective control message is ifTrue:. Its general structure is like this:

anObject ifTrue: [block-expression-1. block-expression-2]

When it is sent to a Boolean object, it executes the expressions inside the code
block if it is true, ignores if it is false.

Let's give an example:

| ourVariable |

ourVariable := true.

ourVariable ifTrue: [

'Our variable is true.' printNl.

]

'Our variable is true.'

We first created a variable called ourVariable and then set it as a true object.
Then sent it a ifTrue: message. Because ourVariable is set as true, it
executed the code block.

Question:

Please try the same code with ourVariable is set as false object.

ifFalse:

ifFalse: message is the same with ifTrue: message except that its code block
is executed if the object refers to a false object.

50 Computer Programming with GNU Smalltalk

ifTrue:ifFalse:

There will be times that you want to do something if your object is true and want
to do something else if it is false. This message gives you the opportunity to do
that in an easy way. The general structure is like this:

anObject ifTrue: [block-expression-1. block-expression-2] ifFalse:

[block-expression-3. block-expression-4]

Of course nothing can stop you if you want to write it in a better-looking shape
like:

an-object

ifTrue: [

the-code-block-to-execute

] ifFalse: [

the-code-block-to-execute

]

We will finish the selective control messages by giving an example for
ifTrue:ifFalse: message. Here it is:

| ourVariable |

ourVariable := false.

ourVariable ifTrue: [

'Our variable is true.' printNl.

] ifFalse: [

'Our variable is false.' printNl.

]

'Our variable is false.'

Repetitive Controlling

Time has come to learn one of the main reasons to use programming languages or
machines. Because machines do not get tired or do not make mistakes, we can
order them to do the same thing millions of times and they won't only fulfill, they
will fulfill it also very fast, mostly in milliseconds. So today, we cannot think
some of the areas without getting help of computers. For example, military
hardware should be fast to be able to do thousands of complex calculations in very
limited time, accurately. Or some science branches like astronomy require to make
calculations which are almost impossible to do with paper and pencil.

Controlling the Flow of Execution 51

Smalltalk is not an exceptional language for this kind of purposes. We will now
see the most commonly used messages to create repetitive expressions.

whileTrue:

The general structure of this message is like this:

aBlock whileTrue: anotherBlock

This message is designed to be sent to block objects. When it is sent, the receiver
block object is evaluated and if the evaluated value is to be a true object, then the
block sent as the argument is executed. Up to this point, it is very much like an
ifTrue: message except that it is sent to a block object, not directly to a
Boolean object. But the main difference appears from this point on. If the
receiver object evaluated to true and the argument block is executed, then the
receiver block is controlled once more. If it still evaluates to true, then the
argument block is executed once more. This cycle will be run until the receiver
block evaluates to false.

While loops are called indefinite loops because generally it is not known how
many times the loop will be executed. If it is known, then you should consider
checking your design again because most probably the upcoming loop techniques
are better for your case.

Let's give an example to understand this message better:

"average.st"

"A program which evaluates the sum of the numbers entered to

demonstrate the whileTrue: message."

| sum enteredIntegers lastEnteredInteger |

sum := 0.

enteredIntegers := 0.

[lastEnteredInteger ~= -1] whileTrue: [

Transcript cr; show: 'Please enter a number. To exit the

program enter -1: '.

lastEnteredInteger := stdin nextLine asInteger.

sum := sum + lastEnteredInteger.

enteredIntegers := enteredIntegers + 1.

52 Computer Programming with GNU Smalltalk

Transcript show: 'The average of the numbers entered so far

is: ', (sum / enteredIntegers) printString; cr.

]

Please enter a number. To exit the program enter -1: 3

The average of the numbers entered so far is: 3

Please enter a number. To exit the program enter -1: 4

The average of the numbers entered so far is: 7/2

Please enter a number. To exit the program enter -1: 3432

The average of the numbers entered so far is: 3439/3

Please enter a number. To exit the program enter -1: -1

The average of the numbers entered so far is: 1719/2

This example demands user to enter a number and then calculates and prints the
average of them. The only way to stop program is to enter the number -1. We hold
the entered number in variable called lastEnteredInteger and in every loop
we control whether it is -1 or not at the part:

[lastEnteredInteger ~= -1] whileTrue: [

...

]

The operator ~= checks if the object on its left is not equal to the object on its
right.

While we progress with different inputs, GNU Smalltalk virtual machine gives us
the average in a fractional form.

to:do:

General structure of this message is:

aNumber to: anotherNumber do: aBlock

This structure starts from number aNumber and evaluates the aBlock object until
it reaches anotherNumber. It increases one at every loop. aBlock object also
includes a block argument so that programmer can use the current index in
expressions of aBlock.

We mentioned that whileTrue: message is usually used with indefinite cases.
to:do: on the contrary, is used when it is known how many loops we needed.
That's why it is sometimes called definite loop.

For experienced programmers:

Controlling the Flow of Execution 53

Being a definite loop, you might guess that this message is used in Smalltalk instead of

for loop of C based languages.

Now let's look at this structure via an example:

"5_lines.st"

"A program which prints 5 lines to demonstrate the usage of to:do:

message."

1 to: 5 do: [:x |

Transcript show: 'This is the ', x printString, '. line.';

cr.

]

This is the 1. line.

This is the 2. line.

This is the 3. line.

This is the 4. line.

This is the 5. line.

This program prints five lines to the output each indicating their own index. Note
that we used a block argument, x, for getting the index of each loop. If we didn't
write an argument for block object then we would get an error.

to:by:do:

Sometimes we might not want to increase the index of to:do: message one by
one. There is an alternative message called to:by:do: for this purpose. Its
general structure is like this:

aNumber to: anotherNumber by: step do: aBlock

It allows us to reach the number anotherNumber in steps of the number defined
by step. For example, write the same example above, this time by using this
alternative message to increase the index two by two. Also count until ten, this
time, so that the loop does not end very quickly:

"tobydo.st"

"A program to demonstrate the usage of to:by:do: message."

1 to: 10 by: 2 do: [:x |

Transcript show: 'This is the ', x printString, '. line.';

cr.

]

54 Computer Programming with GNU Smalltalk

This is the 1. line.

This is the 3. line.

This is the 5. line.

This is the 7. line.

This is the 9. line.

You can see the effect from the output. This message can also be used to make
counting backwards, like:

"tobydo_backwards.st"

"A program to demonstrate the backward capability of to:by:do:

message."

5 to: 1 by: -1 do: [:x |

Transcript show: 'Oh my god! I''m counting backwards! This is

the ', x printString, '. line!'; cr.

]

Oh my god! I'm counting backwards! This is the 5. line!

Oh my god! I'm counting backwards! This is the 4. line!

Oh my god! I'm counting backwards! This is the 3. line!

Oh my god! I'm counting backwards! This is the 2. line!

Oh my god! I'm counting backwards! This is the 1. line!

This is the end of this chapter. In the next chapter we will continue our journey of
learning the base concepts of object oriented programming and also learn how to
create our own classes.

Review Questions

1. What is the ultimate goal of the control messages? What kind of control
messages are there? Give a few examples for each type.

2. What are blocks? Why do we need them?

3. What are definite and indefinite loops? Specify one message for each type of
loops.

4. Write the program in Chapter 2, Review Questions, which was displaying a
diamond, like this:

 /\

 / \

/ \

\ /

Controlling the Flow of Execution 55

 \ /

 \/

again, using the concepts we have seen in this chapter. Write the program in a
way that we can specify how many slashes a side has, easily, so that we can
form smaller or bigger diamonds.

5. Write a program which controls if a given number is prime or not and displays
the result. The program should continue asking new numbers until number -1
is encountered.

6. This one comes from the inspiration of 99-bottles-of-beer.net web site. Write a
program which outputs the lyrics of the 99 Bottles of Beer song which can be
found at http://99-bottles-of-beer.net/lyrics.html

7. Write a program twice which displays numbers from 1 to 10 by using definite
and indefinite loop techniques. Which version feels the right one for this task
and why?

8. Write a program which always asks user to enter a new number and calculates
the arithmetic average of numbers entered that far by using either definite or
indefinite loop technique. If the user wants to finish entering new numbers, she
should enter the string finish.

9. Now, can you write the one-line program mentioned in Review Question 4 in
Chapter 2?

56 Computer Programming with GNU Smalltalk

My brain: it's my second favorite organ.

Woody Allen

Objects, Messages and Classes: Part II 57

Chapter 5: Objects, Messages and Classes:
Part II

Encapsulation

Ever wondered how the electronic circuits inside your cell phone works? Ever
needed to know that? Most probably not. Because, we don't need to know all the
manufacturing details about our cell phone to use it. Just reading the manual is
enough to use all of its features. So, we cannot know all details, all scientific laws,
all properties of an object we use and we don't need to. Object oriented
programming introduces encapsulation concept to apply this real life fact in our
applications.

Smalltalk does not allow you to directly modify internal state of an object. Objects
can only be communicated by sending messages to them. So, Smalltalk
encapsulates the unnecessary information.

Beside encapsulation allows us to think in a real world manner, it also provides
some kind of information hiding which helps our program to be solid and reusable.
This means, if you hide an object's implementation from the programmer and
provide him/her just a protocol to communicate with that object then the
programmer won't be affected by implementation changes made in the future as
long as the protocol is preserved.

For example, you created a Calculator class which is able to calculate the roots
of a second degree equation. You just send the equation's information to it and it
returns the roots... Maybe it uses an inefficient algorithm which causes it to
calculate the roots in hours. But, well, it is better than nothing and you distributed
the code to friends (we shall call them clients). Maybe, after distribution, you
found a revolutionary approach which reduces the calculation time into seconds.
The algorithm is changed but the protocol does not need to because the clients just
need to provide the equality to the calculator and want it to solve the equation.
How calculator solves the equation is not their business. So you can benefit the
advantages of encapsulation and distribute your new code to clients. Clients just
need to replace the Calculator class and does not need to change their own
program.

Inheritance

Human beings like categorizing things. Because categorizing brings order and
order brings easy-manipulation. Similar elements come together to form groups

58 Computer Programming with GNU Smalltalk

(or categories) and some special properties of them are the thing which
distinguishes them from other group members. We may group some groups
together, according to their similarities to form some other groups and also group
them to form other groups. This process can go on until we reach one main group
which is an ancestor of all others. This is actually a simulation of life itself.

The elements we mentioned above are objects and the groups are classes. What is
the most general expression we use for elements? The answer is object. We can
call everything as an object and then derive a special kind of object from it to
which we give names like car, house, animal etc. But remember, we call objects
which we use to create instances as classes. So, when we say car, house, animal
we are actually talking about classes.

In this diagram each node represents a class. Some classes are derived from other
classes. Branches are to represent them. For example; Class2, Class3 and
Class4 are all derived from Class1. Also Class5, Class6 and Class7 are
derived from Class2. And finally Class8 and Class9 are derived from Class4.
We will make two definitions to represent this kind of relationships between
classes.

The classes derived from other classes are called subclasses of the class used for
derivation. For example; Class2, Class3 and Class4 are all subclasses of
Class1. Also Class5, Class6 and Class7 are all subclasses of Class2.

Every class is the superclass of its subclasses. For example; Class1 is the
superclass of Class2, Class3 and Class4.

Derived classes (subclasses) inherit all the properties and behavior of their
ancestors (superclasses).

Some classes in the above diagram have subclasses and every class has a

Class2

Class6

Class1

Class3 Class4

Class5 Class7 Class8 Class9

Objects, Messages and Classes: Part II 59

superclass except Class1. Notice that classes may have more than one subclasses
but they cannot have multiple superclasses.

An example figure is given below, which shows how to create a car and a plane in
point of view of the object concept.

In this figure, each node represents a class. There are 8 classes, namely Object,
Engine, Body, Wing, Tire, Vehicle, Car and Plane. Engine, Body, Wing and
Vehicle are all subclasses of Object; Car and Plane are subclasses of
Vehicle. A class may consist of instances of other classes. We see examples of
that in the Vehicle, Car and Plane classes. Vehicle class has instances of
Engine and Body classes. As Car and Plane classes are subclasses of Vehicle
they inherited all the properties and behavior of their superclass, Vehicle. After
inheriting the Engine and Body objects we added Car class four Tire objects and
Plane class two Wing objects to distinguish them.

There are two definitions we should make in order not to confuse you about
inheritance. There might be two kind of relations between objects. First, an object
might have been derived from another object. This is called is-a relation. For
example, Car is a Vehicle. Second, an object can consist of other objects. This is
called has-a relation. For example, Vehicle has a Body.

The inheritance concept is related with is-a relation and not has-a relation.

Multiple Inheritance and Single Inheritance

Some programming languages allow programmers to create classes which inherits
properties and behavior from more than one class. So, some classes have more

Engine

Object

Body Tire Wing Vehicle

Engine

Body

Plane

Engine

Body

Wing1 Wing2

Car

Engine

Body

Tire1 Tire2

Tire3 Tire4

60 Computer Programming with GNU Smalltalk

than one superclass. This is called multiple inheritance. Other inheritance type,
which allows only one superclass per class is called single inheritance.

The examples we have given so far are of single inheritance and the examples we
will give from now on will also be of single inheritance because Smalltalk uses
single inheritance to manage classes. It is still very arguable whether multiple
inheritance is needed in object oriented design or only makes the inheritance more
complex.

Polymorphism

In a world full of different kinds of objects, some objects may response the same
message although they are different kind of objects, meaning they are instances of
different classes. That's why some programming languages allow us to define
methods with same selector in different classes. Or they allow a subclass to change
a selector's behavior which it inherited from its superclass. This is called
polymorphism.

Note:

The special case where a subclass changes the behavior of a method it inherited from
its superclass is named as overriding.

We will now give a classical but very explanatory example for this concept. Think
of a class called Animal and its two subclasses Dog and Cat. A method we would
implement in Animal class would be speak because every animal communicates
somehow with other livings by making some kind of noise (although dogs prefer
to bite sometimes!). But when this message is sent, dogs would bark while cats
would miaow. So they response to the same message but in a different way.

Creating Your Own Classes

GNU Smalltalk has hundreds of classes built-in but the universe has uncountable
of them so GNU Smalltalk gives us the opportunity to create the classes we want
for our needs. We will sometimes call the classes we made as custom classes.

First, we should talk about what classes are made of. Classes are the blue prints of
objects so they definitely should describe all the things that objects have. For
example, they have instance variables to define the properties of an object. They
should have method definitions to make objects responsive to some certain
messages. But they have more. There are class variables. Class variables hold the
information about the state of the class. There are also class methods which only
classes can execute and not the instances of them.

The general syntax for creating classes is below:

Objects, Messages and Classes: Part II 61

SuperclassName subclass: SubclassName [

| instanceVariable1 instanceVariable2 |

classVariable1 := anObject.

classVariable2 := anotherObject.

<comment: 'Comment to describe our class'>

SubclassName class >> aClassMethod: aParameter [

"Comment to describe this class method"

<category: 'Category of this class method'>

| localVariable1 localVariable2 |

...

^objectToReturn

]

anInstanceMethod [

"Comment to describe this instance method"

<category: 'Category of this instance method'>

| localVariable1 localVariable2 |

...

^objectToReturn

]

]

Above pseudo-code shows how to create a class, add class and instance variables,
add class and instance methods to it. We will explain it line by line but before that,
we want to mention about some general concepts. Most of the things above are
optional, for example you don't need to have class variables or methods. Or you
don't need to write comments for anything or define the category of a method. But
these are good software engineering habits and we recommend you to always write
comments and define categories for methods.

Also another interesting thing in above code is the usage of white spaces. Some
lines are indented by tabs or spaces, but why is that? It is just because for polishing
the code for human eye, and there is no rule for how to use them. Mostly, we will

62 Computer Programming with GNU Smalltalk

indent a body of some new structure. For example, when we are writing the body
of a class then we will indent it one level compared to the context. Interpretation of
one level depends to the programmer. A programmer may choose as many spaces
or tabs to insert as she wants for indenting a line but the important thing is to be
consistent throughout the program so that it does not look messed up.

Other than the indentation, also most of the white spaces we used were
programmer-dependent. You can choose not to place or even place more white
spaces around anything. If it is a wrong usage (whenever it causes an ambiguity)
then the interpreter will give you an error. For example, you cannot join the
variable name and a keyword selector because interpreter cannot detect where the
variable name ends and where the keyword selector begins. So you should put at
least one space there.

Let's look at the code above line by line. The first thing we do is to define a class
with the code piece below:

SuperclassName subclass: SubclassName [

...

]

The three dots in our code always mean that there are more expressions there but
we cut it short to emphasize the really important part. So you should not put three
dots in your code. With the part above, we told SuperclassName class to create a
subclass named SubclassName. We did this to inherit the properties and behavior
of the superclass so we don't have to create them again. After doing that, we
opened a bracket to specify the class variables, instance variables, class methods
and instance methods.

The part up to the opened bracket is called the header of the class. The part
between the square brackets is called the body of the class.

The names we put between pipes are instance variables of our class:

| instanceVariable1 instanceVariable2 |

Instance variable names are separated by white spaces. We have two instance
variable here named instanceVariable1 and instanceVariable2.

Then we define class variables by using assignment syntax:

classVariable1 := anObject.

classVariable2 := anotherObject.

:= is another message which makes the receiver an object referring to the

Objects, Messages and Classes: Part II 63

argument object. So whenever we use classVariable1 in our code from now
on, the interpreter will understand that we are actually referring to the anObject
object. We will use this assignment message also for changing the instance
variables.

Mentioning about a variable for the first time is called declaring a variable. We
should first declare a variable before being able to use it.

Next expression adds a comment to the class:

<comment: 'Comment to describe our class'>

They are only for documentation purposes and appear on IDEs we use for
explaining what a class or method does so that we can get an idea of what it does
without looking at its code which would took much longer and be harder. They do
not affect the execution of the program, so, we can omit them.

And the time comes to defining the class and instance methods. We first created a
class method:

SubclassName class >> aClassMethod: aParameter [

"Comment to describe this class method"

<category: 'Category-of-this-class-method'>

| localVariable1 localVariable2 |

...

^objectToReturn

]

We again have a header part and a body part here. The header of the class
definition is:

SubclassName class >> aClassMethod: aParameter

SubclassName class >> part of this header tells us that we are going to create
a method for the class, not for the instances of the class. If we'd omitted this part
then the method would be a part for the instances of this class. After this part we
specify our method's message. The selector of this message is aClassMethod:. It
takes a parameter named aParameter. Parameters are the names given to the
argument names when they are used in the header of methods, so these words are
actually not that different from arguments and sometimes used in exchange. We
may use the parameter names inside our method to refer to the argument passed to

64 Computer Programming with GNU Smalltalk

the method.

After specifying the selector we opened the bracket to define the method content
which is called the body of the method:

[

"Comment to describe this class method"

<category: 'Category of this class method'>

| localVariable1 localVariable2 |

...

^objectToReturn

]

The content of a method can be made of a comment, a category, some local
variables and the expressions to execute which are shown as three dots. After
writing a comment with:

"Comment to describe this class method"

we specify the category of this method with:

<category: 'Category of this class method'>

These were optional things. So we don't have to write a comment or specify a
category for our method.

The body of our method does the crucial thing. We first declare our local
variables:

| localVariable1 localVariable2 |

It is the same as declaring some instance variables. Local variables are local to the
method and cannot be used out of the method body.

Then we return the object represented by objectToReturn variable back to the
caller with a ^ character in front of it:

^objectToReturn

This is called a return expression and will be the famous evaluated value of our
message. For example when we do 2 + 3, 5 is returned via such an expression.
Returning a value using a return expression is also optional because of two
reasons. First, the task you are trying to achieve might not need to get any object

Objects, Messages and Classes: Part II 65

back. Like, printing some characters to the standard output. Second, a method
returns the last evaluated expression in the method no matter if we wrote a return
expression explicitly or not. But it is usually a good programming habit to
explicitly return values so that the returned value is more obvious to the reader of
the source code.

The last thing to talk about is the instance method we created:

anInstanceMethod [

"Comment to describe this instance method"

<category: 'Category of this instance method'>

| localVariable1 localVariable2 |

...

^objectToReturn

]

We won't mention about the details of this code because it is almost identical with
class method except that it does not have any class name in its header which
makes it an instance method. So, it will be present in all of the instance objects we
create from this class.

Creating Objects from Classes

After creating a class, you can create objects from it by using the pseudo-code
below:

ourObjectName := SubclassName new

We sent the message new to create an object from SubclassName. But wait! We
didn't defined a method called new! Then how is it possible to use a method called
new? This is related with the concept of inheritance. Every class and hence object
has some methods defined by default and new is one of them. It provides a way for
creating objects from classes and you don't need to define it for yourself every
time, thanks to inheritance.

ourObjectName is a reference name which points to the newly-created object. It
is also called a variable. Now, whenever we write ourObjectName somewhere in
our program, the interpreter will know which object we are talking about. For
example, if you remember, we have defined a method named
anInstanceMethod to use with our objects. We can send this message to our

66 Computer Programming with GNU Smalltalk

object by writing an expression like this:

ourObjectName anInstanceMethod

We first, wrote our variable's name and then write the message we want to sent to
it. This expression will return (or evaluate to) objectToReturn.

We learned how to use instance methods but how about using class methods? This
expression will give an error:

ourObjectName aClassMethod

Because aClassMethod is not for the instances, it is for the class itself. We can
execute a method for class like this:

SubclassName aClassMethod

Or we can get some help -again- from the inherited method class for reaching the
class of our object and send it the message like this:

ourObjectName class aClassMethod

Here we used chained message concept. Note that because the messages are
evaluated from left to right our expression turned into

SubclassName aClassMethod

first.

Example

Now let's write a real example to illustrate all the concepts we learned so far. In
this example we will create a class for animals. A class named Animal will hold
information belonging to every animal while two special classes, Dog and Cat
derived from it will hold information special to that kind of animal:

"animal.st"

"A program which creates some animal classes to illustrate the

object oriented concepts."

Object subclass: Animal [

| name |

animalNumber := 0.

<comment: 'A class for defining animals.'>

Objects, Messages and Classes: Part II 67

Animal class >> setAnimalNumber: number [

"A class method to set the animal number."

<category: 'accessing'>

animalNumber := number.

^animalNumber

]

Animal class >> getAnimalNumber [

"A class method to get the animal number."

<category: 'accessing'>

^animalNumber

]

setName: newName [

"An instance method to set the animal's name."

<category: 'accessing'>

name := newName.

]

getName [

"An instance method to get the animal's name."

<category: 'accessing'>

^name

]

]

Animal subclass: Dog [

<comment: 'A dog class.'>

makeNoise [

"An instance method to get the dog's noise."

<category: 'accessing'>

'Woof!' printNl.

]

]

68 Computer Programming with GNU Smalltalk

Animal subclass: Cat [

<comment: 'A cat class.'>

makeNoise [

"An instance method to get the cat's noise."

<category: 'accessing'>

'Miaow!' printNl.

]

]

dog := Dog new.

Animal setAnimalNumber: 1.

dog setName: 'Karabash'.

dog getName printNl.

dog makeNoise.

cat := Cat new.

Animal setAnimalNumber: 2.

cat setName: 'Minnosh'.

cat getName printNl.

cat makeNoise.

'Karabash'

'Woof!'

'Minnosh'

'Miaow!'

2

Now we will investigate this program line by line. We first create our class by
inheriting an object named Object which is a special object: ancestor of all
classes we will create. It comes with some useful methods predefined for us like
new:

Object subclass: Animal [

...

]

Next thing we do is to declare an instance variable named name and a class
variable named animalNumber. We will give a name to our animals and keep the
number of the animals we created in the class variable:

Objects, Messages and Classes: Part II 69

| name |

animalNumber := 0.

For documentation purposes we write a class comment:

<comment: 'A class for defining animals.'>

Now, we start defining our methods which provides the behavior of our class.
First, we create a class method to be able to set the animal number:

Animal class >> setAnimalNumber: number [

...

]

Then we create a class method to get the animal number:

Animal class >> getAnimalNumber [

...

]

This kind of set-get pairs appear frequently in programming and they are called
getters and setters or accessors.

After that we create our accessors for setting and getting the name of the animal:

setName: newName [

...

]

getName [

...

]

Now that we finished our first class, we will create two other classes which derives
from it, called Dog and Cat:

Animal subclass: Dog [

...

]

Animal subclass: Cat [

...

]

Each class derives from Animal class so they already have setName: and

70 Computer Programming with GNU Smalltalk

getName methods. We don't need to (and should not) write them again. But we
added method with selector makeNoise to each of them. We chose such a way
because each of the classes make their own sound.

The rest of the code is for testing purposes. We create two objects and try out their
methods by sending them appropriate messages:

dog := Dog new.

Animal setAnimalNumber: 1.

dog setName: 'Karabash'.

dog getName printNl.

dog makeNoise.

cat := Cat new.

Animal setAnimalNumber: 2.

cat setName: 'Minnosh'.

cat getName printNl.

cat makeNoise.

We first created a Dog object, then set the animal number to 1 and the name of the
dog to 'Karabash'. Then we printed the name of our dog and made her bark.

Secondly, we created a Cat object and applied the same process we applied onto
our dog. This time we chose the name 'Minnosh' and set the animal number to 2
because we now have two animals.

For experienced programmers:

Actually, the inheritance tree and other things like manually updating the animal
number is of course a bad programming practice in real applications but we wanted to
keep the sample simple.

The last statement merely prints the animal number which is kept inside our
Animal class.

Animal getAnimalNumber printNl.

With this example we have seen, inheritance via the accessor methods. Accessor
methods provided us communication with the inner status of the object which is
composed of the class and instance variables. We've also seen polymorphism via
the makeNoise method which behaves differently according to the class of the
object we are sending the message to. And we've lastly seen the inheritance
concept by observing the presence of the setName: and getName methods on
every class which is derived from Animal class.

Objects, Messages and Classes: Part II 71

Extending and Modifying Classes

Suppose you are going to use a number's cube in your program, a lot. Wouldn't it
be great to have a method in Number class named cubed so that we can send that
message to get the 3rd power of the receiver? Programmers often need to do such
modifications to a class and GNU Smalltalk provides a way to do it. The class
might be a built-in one or a class written by the programmer.

So, you can add new methods to and modify existing methods in a class. General
syntax to modify a class is:

className extend [

| newInstanceVariable1 newInstanceVariable2 |

methodSelector [

...

]

]

Every instance variable you create will be added to the class.

If a method with the same selector has already been defined than the last one will
override it and becomes the new implementation.

If a method with the same selector is not present, then it is added.

If you want to modify the class itself, then you should write class after the
className, like this:

className class extend [

| newClassVariable1 newClassVariable2 |

methodSelector [

...

]

]

Notice that this time we create class variables and class methods.

Now, let's create a Human class and then modify it in some ways. The core version
of Human class will have some common properties and be able to answer to
fundamental messages.

"human.st"

"The core version of the Human class."

72 Computer Programming with GNU Smalltalk

Object subclass: Human [

| name age |

setName: aName [

name := aName.

]

getName [

^name

]

setAge: anAge [

age := anAge.

]

getAge [

^age

]

introduceYourself [

Transcript show: 'Hello, my name is ', name, ' and

I''m ', age printString, ' years old.'; cr.

]

> aHuman [

^age > aHuman getAge

]

< aHuman [

^age < aHuman getAge

]

= aHuman [

^age = aHuman getAge

]

]

| me myBrother |

me := Human new.

me setName: 'Canol Gökel'.

Objects, Messages and Classes: Part II 73

me setAge: 24.

myBrother := Human new.

myBrother setName: 'Gürol Gökel'.

myBrother setAge: 27.

me introduceYourself.

myBrother introduceYourself.

(me < myBrother) printNl.

Hello, my name is Canol Gökel and I'm 24 years old.

Hello, my name is Gürol Gökel and I'm 27 years old.

true

Our Human class is pretty simple. It has two instance variables named name and
age. After defining the accessors (setName:, getName etc.) we defined a method
named introduceYourself. When a Human object is sent this message, it
introduces itself by telling some information about itself. We have also written
methods to compare two Human's age. If a comparison is wanted to be done among
two Human objects, you can use >, < or = binary messages. Notice that we have
used the instance variable age for the receiver and sent the getAge message to the
argument object to reach the ages of them which are integer numbers. The
comparison methods are already defined for Integer objects so we don't have to
go deeper.

This implementation is pretty simple. Suppose that we needed to add a few more
details to this class. We can modify the above code directly but there will be times
that we don't want to modify the original code. For example, maybe more than one
program is sharing the code and only one of them is requiring the extended
version. Then keeping the original code would be a good idea. So, let's extend our
Human class in our new test program. Copy and paste the code of older Human
class to the indicated area:

"human_extended.st"

"A program which has an extended version of Human class."

... -> Put here the code of old Human class.

Human extend [

| occupation experience |

getOccupation [

74 Computer Programming with GNU Smalltalk

^occupation

]

setOccupation: anOccupation [

occupation := anOccupation.

]

getExperience [

^experience

]

setExperience: anExperience [

experience := anExperience.

]

introduceYourself [

Transcript show: 'Hello, my name is ', name, ' and

I''m ', age printString, ' years old. I am ', occupation, '.'; cr.

]

> aHuman [

^experience > aHuman getExperience

]

< aHuman [

^experience < aHuman getExperience

]

= aHuman [

^experience = aHuman getExperience

]

]

| me myFriend |

me := Human new.

me setName: 'Canol Gökel'.

me setAge: 24.

me setOccupation: 'an Engineer'.

me setExperience: 1.

myFriend := Human new.

Objects, Messages and Classes: Part II 75

myFriend setName: 'İsmail Arslan'.

myFriend setAge: 23.

myFriend setOccupation: 'an Engineer'.

myFriend setExperience: 3.

me introduceYourself.

myFriend introduceYourself.

(me > myFriend) printNl.

Hello, my name is Canol Gökel and I'm 24 years old. I am an

Engineer.

Hello, my name is İsmail Arslan and I'm 23 years old. I am an

Engineer.

false

We have done a lot of things, let's look at them one by one. The first thing we did
was adding two new instance variables named occupation and experience to
keep the occupation of the human and its experience: on the job:

| occupation experience |

Then we wrote the accessor methods for these new instance variables:

getOccupation [

^occupation

]

setOccupation: anOccupation [

occupation := anOccupation.

]

getExperience [

^experience

]

setExperience: anExperience [

experience := anExperience.

]

Because these accessors are not written before, they are added to the class'
behavior. We then rewrote some methods:

introduceYourself [

Transcript show: 'Hello, my name is ', name, ' and

76 Computer Programming with GNU Smalltalk

I''m ', age printString, ' years old. I am ', occupation, '.'; cr.

]

> aHuman [

^experience > aHuman getExperience

]

< aHuman [

^experience < aHuman getExperience

]

= aHuman [

^experience = aHuman getExperience

]

They have overridden the old implementations. New introduction method includes
the occupation of the Human. We also changed the comparison methods so that the
comparison is being made according to the experiences of the Human objects, this
time. This changes sound like they are made by an employment agency which uses
Human class inside their applications.

self and super

It is time to learn two new keywords of GNU Smalltalk. The purposes of these two
keywords we will see in a few seconds are the same: referring to the receiver
object of the message while writing the class definition. The difference becomes
apparent when we try to invoke a method on the referred object.

self

The first keyword to see is self. When we use this keyword in a class definition,
it is treated as the receiver object. For example, we could define the basic Human
class like this:

"human_self.st"

"The second version of the Human class written using self

keywords."

Object subclass: Human [

| name age |

setName: aName [

name := aName.

]

Objects, Messages and Classes: Part II 77

getName [

^name

]

setAge: anAge [

age := anAge.

]

getAge [

^age

]

introduceYourself [

Transcript show: 'Hello, my name is ', self getName, '

and I''m ', self getAge printString, ' years old.'; cr.

]

> aHuman [

^self getAge > aHuman getAge

]

< aHuman [

^self getAge < aHuman getAge

]

= aHuman [

^self getAge = aHuman getAge

]

]

| me myBrother |

me := Human new.

me setName: 'Canol Gökel'.

me setAge: 24.

myBrother := Human new.

myBrother setName: 'Gürol Gökel'.

myBrother setAge: 27.

me introduceYourself.

78 Computer Programming with GNU Smalltalk

myBrother introduceYourself.

(me < myBrother) printNl.

Hello, my name is Canol Gökel and I'm 24 years old. I am an

Engineer.

Hello, my name is İsmail Arslan and I'm 23 years old. I am an

Engineer.

false

The difference is that we used the self keyword to reach the attributes of our
object instead of using them directly. For example, self getName means: "Send
the message, getName, to the receiver object.".

The trick here is that the search for the method will begin directly at the class of
the receiver object and continue to its ancestors until a definition is found.
Remember this because it is the difference between self and super keywords.

We suggest you to use the accessors to handle the attributes like the above
example, even if you are in the class definition and be able to reach the attributes,
directly. This is the encapsulation property of object oriented design and a good
programming practice because in real life you cannot know what is going to
happen inside an object if you change something in it. For example, think that you
have a Molecule object. When you add atoms in it, a lot of properties of the
molecule might also change like the bond type, the geometrical shape etc. So you
shouldn't just do oxygen := oxygen + 1 you should use something like
addOxygenAtom. which takes care of all the details that you cannot predict or
remember.

Of course, at some point you have to use direct manipulation (like in setters or
getters itself) but abstract as much as you can.

super

When writing custom classes and overriding a behavior we will sometimes need to
refer to the ancestor's definition of the method inside our method. This might be
the case when we just want to add some additional statements and not want to
change the behavior completely. Let's see an example. In this example we will
have a class for creating watches and we will have another class for water resistant
watches derived from it:

"watches.st"

"A program which defines classes about watches to demonstrate the

usage of the super keyword."

Objects, Messages and Classes: Part II 79

Object subclass: Watch [

 | style chronometerCapability |

 <comment: 'A class for defining ordinary watches.'>

 setStyle: theStyle [

 "A method to set the style of the watch."

 style := theStyle.

]

 getStyle [

 "A method to get the style of the watch."

 ^style

]

 setChronometerCapability: theChronometerCapability [

 "A method to specify if the watch has chronometer

capabilities."

 chronometerCapability := theChronometerCapability.

]

 getChronometerCapability [

 "A method to determine if the watch has chronometer

capabilities."

 ^chronometerCapability.

]

 listYourFeatures [

 "A method to print out the features of the watch."

 Transcript show: 'Style: ', self getStyle; cr.

 Transcript show: 'Chronometer capabilities: ', self

getChronometerCapability printString; cr.

]

]

Watch subclass: WaterResistantWatch [

 | resistanceDepth |

80 Computer Programming with GNU Smalltalk

 <comment: 'A class for defining water resistant watches.'>

 setResistanceDepth: aDepth [

 "A method to set the resistance depth of the watch."

 resistanceDepth := aDepth.

]

 getResistanceDepth [

 "A method to get the resistance depth of the watch."

 ^resistanceDepth.

]

 listYourFeatures [

 "A method to print out the features of the water resistant

watch."

 super listYourFeatures.

 Transcript show: 'Resistance depth: ', self

getResistanceDepth printString; cr.

]

]

| watch1 watch2 |

watch1 := Watch new.

watch1 setStyle: 'Analog'.

watch1 setChronometerCapability: true.

watch2 := WaterResistantWatch new.

watch2 setStyle: 'Digital'.

watch2 setChronometerCapability: false.

watch2 setResistanceDepth: 30.

Transcript show: 'The features of the 1st watch:'; cr.

Transcript show: '------------------------------'; cr.

watch1 listYourFeatures.

Transcript cr.

Objects, Messages and Classes: Part II 81

Transcript show: 'The features of the 2nd watch:'; cr.

Transcript show: '------------------------------'; cr.

watch2 listYourFeatures.

The features of the 1st watch:

Style: Analog

Chronometer capabilities: true

The features of the 2nd watch:

Style: Digital

Chronometer capabilities: false

Resistance depth: 30

In this program we started by defining a class named Watch to represent ordinary
watches. It has some properties like style which determines whether the watch is
analog or digital and chronometerCapability which determines whether the
watch has chronometer capabilities. After defining the accessor methods for these
properties we created another method named listYourFeatures to print out the
features of the watch to standard output. So far, we didn't see anything unusual.

After defining the Watch class we derived a new class named
WaterResistantWatch to represent, well, water resistant watches. We added a
new property named resistanceDepth to determine the depth the watch can
stand without leaking the water inside. Now, the tricky part comes: we overrode
the listYourFeatures method of its superclass and put the line below to the
beginning of the method:

 super listYourFeatures.

This sends the listYourFeatures message to itself but the difference of the
keyword super from the keyword self is that it will start looking up the
definition of the method starting from the ancestor of the class, which is the class
Watch in this case. So the listYourFeatures method of Watch is invoked
instead of the listYourFeatures method of WaterResistantWatch class.

Why do we do this? Because Watch class already has some of the properties
WaterResistantWatch has and it already has the capability of listing those
features. We can either copy and paste the same code into the new
listYourFeatures method or we can call the method defined inside the
superclass. The latter way is preferred by programmers because it reduces the
repetition of the code which provides less work when refactoring your application.

82 Computer Programming with GNU Smalltalk

For example, our code won't be affected whenever a new property is introduced to
the Watch class because the changes are automatically reflected to the output by
using the super keyword, otherwise we would have to copy the changed code into
our WaterResistantWatch every time.

It would be erroneous if we used the self keyword instead, because it would call
itself recursively and this would cause an infinite cycle. Also it wouldn't give us
the effect we wanted because the code we need is written in superclass' definition
not in the class we are doing implementation right now.

In the rest of the program we define two watches which are of Watch and
WaterResistantWatch class and list their features after setting their properties.
As we expected, the second watch displayed the properties it inherited from its
superclass, as well as its special property resistanceDepth.

Review Questions

1. Explain polymorphism, inheritance, and encapsulation in a few sentences.

2. Now, think of symbol > as better than and not greater than. Create a Man class
which inherits from the Human class we created before with additional instance
variables money and handsomeness. You know for us, men, appearance is
not important, the important thing is the beauty inside. So create the Woman
class with additional instance variables honesty and generosity. All this
instance variables will get an integer point over ten.

Implement the > method in Man class such that it sums the points of money and
handsomeness and returns true if the receiver's point is higher. Add an
exception to this rule, which is, if the name of one of the Man objects is "Canol
Gökel" then it is always the better Man.

Implement the > method in Women class in a similar manner. Sum the points of
honesty and generosity, than return a true or false object, accordingly.
There is no need for an exception this time, after all, all the womens are the
same...

3. Extend the Number class so that it can respond the cubed message by
returning the cube of the receiver.

4. Explain the purpose of self and super keywords and their difference from
each other.

Objects, Messages and Classes: Part II 83

84 Computer Programming with GNU Smalltalk

One of my most productive days was throwing away 1000 lines
of code.

Kenneth Thompson

What to Do Next 85

Chapter 6: What to Do Next

How Can I Improve Myself?

Although Smalltalk is a small language syntactically, the things that can be done
using it is almost unlimited and hundreds of the built-in classes and their methods
are there to help you. We've covered almost all of the grammatical part of GNU
Smalltalk and some of the most commonly used built-in classes of it. There are
still many classes waiting for you to explore and the most effective way to do it is
doing practice. In programming world practicing means simply writing programs.
Maybe you already have a project on your mind but if you don't, then there are
plenty of interesting problems that you can try to solve using GNU Smalltalk.
Some web sites are given at section, Further Reading, later in this chapter.

Another important thing for improving yourself is always being in contact with
other Smalltalkers so that you can be informed about latest news on Smalltalk
world and also don't feel alone. Again some web site, mailing list and blog
addresses are given at the end of this chapter.

These were generally advises to improve your practical side because you have
been already learning the theoretical things of Smalltalk by reading these book. At
some point you may get a feeling that you should also improve your theoretical
knowledge, after all, this book is a work in progress and although it covers all the
essentials needed to do practical programming, it lacks some general advanced
programming concepts and some advanced subjects special to the Smalltalk
language. Also looking at this beautiful language from different point of views
would never be harmful. That's why we also gave some reading material at the
next section.

Further Reading

Smalltalk-80: The Language and its Implementation by Adele Goldberg
and David Robson

This is the official book which describes the Smalltalk-80 programming language
and also mentions about how to implement it. This book is also known as the Blue
Book. You can get a lot of details about Smalltalk programming language by
reading this book.

GNU Smalltalk Documentation - http://smalltalk.gnu.org/documentation

This is where you can find further information about GNU Smalltalk. There is a
user manual as well as library references.

86 Computer Programming with GNU Smalltalk

Useful Sites

GNU Smalltalk - http://smalltalk.gnu.org

The official GNU Smalltalk site. You can get the latest version of GNU Smalltalk,
news and documentation here. Also there is a blog section where developers write
entries as well as other members of the site.

Smalltalk.org - http://www.smalltalk.org

A huge source for every kind of information about Smalltalk.

Stephane Ducasse :: Free Online Books -
http://stephane.ducasse.free.fr/FreeBooks.html

A site which gives a lot of links to freely available books related with Smalltalk
language.

Planet Smalltalk - http://planet.smalltalk.org

A blog planet where Smalltalk related blog entries from all over the internet is
published. One of the best ways to keep you informed about Smalltalk world. You
can also have your blog posts published on this site by posting to GNU Smalltalk
blogs!

Project Euler - http://projecteuler.net

This is a site where there are several hundred programming problems you can find
and people try to get a higher rank by solving this problems with any language
they want. The problems need a little bit mathematics knowledge. The site is well
organized and solving a problem is a lot of fun. You can improve your GNU
Smalltalk knowledge and algorithm ability significantly by solving a few of these
problems. Also you can contribute to improve the rank of the Smalltalk language!

Smalltalk Jobs - http://smalltalkjobs.dabbledb.com

If you are searching for jobs related with Smalltalk language then you can look at
this page to get one.

Mailing Lists

Mailing lists are a great way to reach as many people as possible regarding to your
problems/suggestions/thoughts. Just send an email to the mailing list and
everybody who subscribed to the list will get your message and be able to reply.

You can go http://smalltalk.gnu.org/community/ml to get more information about
how to subscribe to the mailing list or to search previously posted messages.

What to Do Next 87

IRC

The fastest way to get help from GNU Smalltalk community is to ask your
question at IRC (Internet Relay Chat). The address for GST in IRC world is #gnu-
smalltalk channel at irc.freenode.net. You can use an IRC client like XChat on
Linux or mIRC on Windows to connect to this channel.

88 Computer Programming with GNU Smalltalk

Wait a minute...

Pope Alexander VI (Last words of him)

Installing Programming Environment 89

Appendix A: Installing Programming
Environment
At the time of writing, GNU Smalltalk was distributed, mostly, via its source code.
That means you download the source code of GNU Smalltalk, compile it and use
it. If you are lucky, then you might have a binary distribution for your operating
system. We will mention about all this possibilities in this chapter.

Installing GNU Smalltalk on Linux Platforms

There two main ways to install GNU Smalltalk into your Linux system. One of
them is using the package manager which comes with your Linux distribution and
the other one is to compile GNU Smalltalk from its source code.

Installing via a Package Manager

There are several package managers but to name a few of famous ones: it is named
YUM in Fedora, Synaptic Package Manager in Ubuntu and PiSi on Pardus. So,
simply search for Smalltalk with your package manager and install the GNU
Smalltalk package with highest version number. A version number 3.0 or above
would be fine but if it is as old as 2.x then I suggest installing from source code
like explained below.

Installing via Compiling the Source Code

Package managers does not always have an up-to-date GNU Smalltalk package.
Also it might be the case that your distribution does not come with a package
manager at all. Then you don't have any choice but to compile GNU Smalltalk by
yourself. Although it is not as easy as the first case, it is not that hard either. If you
follow the steps we will give below, your GNU Smalltalk environment will be
ready to use in a few minutes.

GNU Smalltalk is implemented in C and GNU Smalltalk programming languages.
So you should have a C compilation environment installed first. There is a strong
probability that you have them already installed but if it is not the case then you
may get your system administrator to install them for you or get help from web
page of your Linux distribution to learn how to get them installed. GNU Smalltalk
uses some GNU tools to provide an easier compilation experience.

Here are the 10 golden steps for being successful in your life:

1. GNU Smalltalk has some extra packages which extends the capabilities
of it. One of them is named Blox which provides us a way to create

90 Computer Programming with GNU Smalltalk

graphical user interfaces with GNU Smalltalk. Also there is a very useful
feature called Class Browser for GNU Smalltalk which requires Blox.
But Blox package is dependent to two other software called Tcl and Tk.
So we will first download the source codes of Tcl/Tk and compile them.

Enter the site below:

http://www.tcl.tk/software/tcltk/download.html

and download one of the Tcl and one of the Tk source code packages
with tar.gz extension. In my case, I downloaded tcl8.4.19-src.tar.gz and
tk8.4.19-src.tar.gz.

2. Extract the source code packages into a convenient folder.

3. Open your terminal and go to the unix folder under the Tcl source code
folder where you extracted the Tcl source code into. In my case:

cd /home/canol/Desktop/tcl8.4.19/unix

4. Enter the following commands, respectively. This will compile the source
codes of Tcl and make them ready to be used by GNU Smalltalk (This
steps may take a few minutes):

./configure

make

make install

If you get an error after doing make install like "Permission Denied"
or similar, this means you have to log in as super user before applying
that command.

1. Open your terminal and go to the unix folder under the Tk source code
folder where you extracted the Tk source code into. In my case:

cd /home/canol/Desktop/tk8.4.19/unix

2. Enter the following commands, respectively. This will compile the source
codes of Tk and make them ready to be used by GNU Smalltalk:

./configure

make

make install

3. Now we are ready to compile GNU Smalltalk itself. Enter the site below:

ftp://ftp.gnu.org/gnu/smalltalk

Installing Programming Environment 91

and download the latest source code package. In my case, I downloaded
smalltalk-3.1.tar.gz

4. Extract the source code package into a convenient folder.

5. Go to the GNU Smalltalk source code folder where you extracted the
GNU Smalltalk source code into. In my case:

cd /home/canol/Desktop/smalltalk-3.1

6. Enter the following commands, respectively. This will compile the source
codes of GNU Smalltalk:

./configure

make

make install

If you didn't get an error while doing these ten steps above, then you are now
ready to do some coding.

Installing GNU Smalltalk on Windows Platforms

At the time of writing, there is unfortunately no Windows installer so to install
GNU Smalltalk interpreter to your computer you should compile it from the
source. GNU Smalltalk can be successfully compiled via MinGW system which
you can find from:

http://www.mingw.org

But you will also need to download the dependencies of the extra packages and
compile them before GNU Smalltalk. You can get a little bit more information
about compiling GNU Smalltalk from "Installing GNU Smalltalk on Linux
Platform" section of this chapter as compiling process in MinGW is alike
compiling process on Linux.

However a process is going on and there is a possibility that a Windows installer
will be published soon. You can get the installer from GNU Smalltalk official site:

http://smalltalk.gnu.org/download

as soon as it is released. So keep an eye on the official web site and/or send mails
to the mailing list if there is a progress on the Windows installer.

92 Computer Programming with GNU Smalltalk

ASCII Table 93

Appendix B: ASCII Table
Number

(Decimal /
Binary)

Character
Number

(Decimal /
Binary)

Charac
ter

Number
(Decimal /
Binary)

Charac
ter

Number
(Decimal /
Binary)

Charact
er

0 / 000 0000 NUL (Null
Character) 32 / 010 0000 64 / 100 0000 @ 96 / 110 0000 `

1 / 000 0001 SOH (Start of
Header)

33 / 010 0001 ! 65 / 100 0001 A 97 / 110 0001 a

2 / 000 0010 STX (Start of
Text) 34 / 010 0010 " 66 / 100 0010 B 98 / 110 0010 b

3 / 000 0011 ETX (End of Text) 35 / 010 0011 # 67 / 100 0011 C 99 / 110 0011 c

4 / 000 0100 EOT (End of
Transmission)

36 / 010 0100 $ 68 / 100 0100 D 100 / 110 0100 d

5 / 000 0101 ENQ (Enquiry) 37 / 010 0101 % 69 / 100 0101 E 101 / 110 0101 e

6 / 000 0110 ACK
(Acknowledgment) 38 / 010 0110 & 70 / 100 0110 F 102 / 110 0110 f

7 / 000 0111 BEL (Bell) 39 / 010 0111 ' 71 / 100 0111 G 103 / 110 0111 g

8 / 000 1000 BS (Backspace) 40 / 010 1000 (72 / 100 1000 H 104 / 110 1000 h

9 / 000 1001 HT (Horizontal
Tab)

41 / 010 1001) 73 / 100 1001 I 105 / 110 1001 i

10 / 000 1010 LF (Line Feed) 42 / 010 1010 * 74 / 100 1010 J 106 / 110 1010 j

11 / 000 1011 VT (Vertical Tab) 43 / 010 1011 + 75 / 100 1011 K 107 / 110 1011 k

12 / 000 1100 FF (Form Feed) 44 / 010 1100 , 76 / 100 1100 L 108 / 110 1100 l

13 / 000 1101 CR (Carriage
Return) 45 / 010 1101 - 77 / 100 1101 M 109 / 110 1101 m

14 / 000 1110 SO (Shift Out) 46 / 010 1110 . 78 / 100 1110 N 110 / 110 1110 n

15 / 000 1111 SI (Shift In) 47 / 010 1111 / 79 / 100 1111 O 111 / 110 1111 o

16 / 001 0000 DLE (Data Link
Escape)

48 / 011 0000 0 80 / 101 0000 P 112 / 111 0000 p

17 / 001 0001 DC1 (Device
Control 1) 49 / 011 0001 1 81 / 101 0001 Q 113 / 111 0001 q

18 / 001 0010 DC2 (Device
Control 2)

50 / 011 0010 2 82 / 101 0010 R 114 / 111 0010 r

19 / 001 0011 DC3 (Device
Control 3) 51 / 011 0011 3 83 / 101 0011 S 115 / 111 0011 s

20 / 001 0100 DC4 (Device
Control 4)

52 / 011 0100 4 84 / 101 0100 T 116 / 111 0100 t

21 / 001 0101 NAK (Negative
Acknowledgment) 53 / 011 0101 5 85 / 101 0101 U 117 / 111 0101 u

22 / 001 0110 SYN (Synchronous
Idle)

54 / 011 0110 6 86 / 101 0110 V 118 / 111 0110 v

23 / 001 0111
ETB (End of
Transmission

Block)
55 / 011 0111 7 87 / 101 0111 W 119 / 111 0111 w

24 / 001 1000 CAN (Cancel) 56 / 011 1000 8 88 / 101 1000 X 120 / 111 1000 x

25 / 001 1001 EM (End of
Medium) 57 / 011 1001 9 89 / 101 1001 Y 121 / 111 1001 y

26 / 001 1010 SUB (Substitute) 58 / 011 1010 : 90 / 101 1010 Z 122 / 111 1010 z

27 / 001 1011 ESC (Escape) 59 / 011 1011 ; 91 / 101 1011 [123 / 111 1011 {

28 / 001 1100 FS (File
Separator)

60 / 011 1100 < 92 / 101 1100 \ 124 / 111 1100 |

29 / 001 1101 GS (Group
Separator) 61 / 011 1101 = 93 / 101 1101] 125 / 111 1101 }

30 / 001 1110 RS (Record
Separator)

62 / 011 1110 > 94 / 101 1110 ^ 126 / 111 1110 ~

31 / 001 1111 US (Unit
Separator) 63 / 011 1111 ? 95 / 101 1111 _ 127 / 111 1111

DEL
(Delete

)

94 Computer Programming with GNU Smalltalk

Answers of Review Questions 95

Appendix C: Answers of Review Questions

Chapter 1

1. Because of the hardware design, computers can only understand two states. We
represent this two states with digits 0 and 1. Combinations of zeros and ones
generate some commands that computer hardware understands. We call these
command groups which provide a communication between us and computer
hardware as programming language.

We need them to communicate with computer hardware, because computer
hardware can understand only two states and the programming language we
use is eventually translated into the sum of combinations of this two states
which is called machine language.

2. Programs written in a compiled language should be translated into machine
language by other programs called compiler before the execution by the user.

Programs written in an interpreted language is converted to machine code
during the execution time by other programs called interpreter. They do not
need a compilation process before they can be executed by the user but they
are a little bit slower than compiled machines, though this is mostly not a
problem anymore for modern computers and for not-so-performance sensitive
projects.

Although Smalltalk is designed as a language which uses a virtual machine to
work, GNU Smalltalk acts more like an interpreted language.

3. A programming paradigm is how a programming language looks at the
problems to be solved.

4. Yes. Such programming languages are called multi-paradigm programming
languages.

No, GNU Smalltalk allows programmers to use only object-oriented
programming paradigm.

5. From decimal to binary:

543/2=271 remainder 1

271/2=135 remainder 1

135/2=67 remainder 1

67 /2=33 remainder 1

33/2=16 remainder 1

96 Computer Programming with GNU Smalltalk

16/2=8 remainder 0

8 /2=4 remainder0 

4 /2=2 remainder 0 

2 /2=1 remainder0 

So the answer is: 1000011111

From decimal to octal:

We can use the same method to convert it from base-10 to base-8 but we
learned an easier way, so let's use it:

54310=001
1

000
0

011
3

111
7

=10378

From decimal to hexadecimal:

54310=0010
2

0001
1

1111
F

=21F16

6. From binary to decimal:

101101002=0⋅2
0
0⋅211⋅220⋅231⋅241⋅250⋅261⋅27

101101002=004016320128=18010

From binary to octal:

010110100 2=010
4

110
6

100
4

=464 8

From binary to hexadecimal:

101101002=1011
B

0100
4

=B416

7. From hexadecimal to binary:

A93F16=1010
A

1001
9

0011
3

1111
F

=10101001001111112

From hexadecimal to octal:

We can look at place value of each digit, treat them as octal numbers and sum
them up again in octal rules but this is hard for humans because we used to and
tend to treat numbers as they are decimal so converting a hexadecimal number
to binary and converting it to octal is usually simpler:

A93F16=001
1

010
2

100
4

100
4

111
7

111
7

=124477 8

From hexadecimal to decimal:

Answers of Review Questions 97

Now, we can use the method we mentioned above:

A93F16=15⋅16
0
3⋅1619⋅16210⋅163

A93F16=1548230440960=4332710

8. Binary files are composed of zeros or ones placed according to a format
specification. They can specify any kind of information from a document to
image or video. Text files are however specially designed binary files to
contain only character data using a character set and encoding.

.zip and .avi files may be given as examples of other binary files.

You can try to open a file with a text editor and if it contains only meaningful
characters and not funny symbols all around, it is most probably a text file.
Also some text editors might detect that a file is not written in a recognized
text encoding and warn the user about it.

9. Text editors are designed only to work with text files while word processors
have most probably have their own binary file format to save documents.
Like .doc for Microsoft Word and .odt for OpenOffice.org Writer. Word
processors have a lot of fancy formatting tools to write a text in bold, italic,
colored etc. which we don't use when writing text files.

Most word processors have options to work with text files but they have so
much unnecessary features we won't use that using them is like using a
limousine to harvest.

Chapter 2

1.

"answer_2_1.st"

Transcript show: ' /\ '; cr.

Transcript show: ' / \ '; cr.

Transcript show: '/ \'; cr.

Transcript show: '\ /'; cr.

Transcript show: ' \ / '; cr.

Transcript show: ' \/ '; cr.

 /\

 / \

/ \

\ /

 \ /

98 Computer Programming with GNU Smalltalk

 \/

2. When we have a small task to complete or when we are experimenting things,
using terminal to enter the program instructions is very practical. But if we
have to write a big program, saving it to hard disk by writing its source code
into a text file will make it easy for us to work on it later on. Also saving the
source code provides us the opportunity to use that program again whenever
we want.

3. Comments provide the reader of the source code additional information so that
he/she understands the code faster. The reader might be another programmer or
the programmer who wrote that program himself. Even we might not
remember what we intended to do with a specific part of the source code when
reading it a few weeks later. Also in GNU Smalltalk they are used for
documentation purposes which we will see later.

In GNU Smalltalk whatever we write between double quotes are treated as
comments by interpreter, except double quotes itself. If we want to write
double quotes in a comment, we should write two double quotes, consecutively
or we might use single quotes if appropriate for reader.

4. We can do that with our current knowledge by writing every single number
manually like:

1 printNl.

2 printNl.

3 printNl.

.

.

.

998 printNl.

999 printNl

1000 printNl.

But of course, this is not practical and nobody can force us to do that. Later on
this book, we will learn about loops and see how we can achieve this task
easily in just one line of code.

If we imagine about it, we will probably come to a point that: "We should be
able to define a range and make the printNl command act on that range.",
which is the exact solution we will see.

5. Everything the computer generously give us is an output. It can be an image, a
sound, a movement etc. So, actually, beside our monitor image which is in the

Answers of Review Questions 99

form of a terminal text in this case, our speakers or a printer may also be
classified as output devices.

Also, keyboard is not the only input device. Every device which give us the
opportunity to send information to the computer is an input device. For
example, a mouse, a scanner, a web cam, a touch screen may all be specified as
input devices.

Programming languages usually give us to change standard input and output
devices so that the computer and the user interacts with each other using
different ways and GNU Smalltalk is not an exception.

Chapter 3

1. An object is a unit which represents a thing in the program. It has some
definitions how to respond to certain messages it receives from outside
(usually from us or from other objects) which are called methods. We
communicate with objects via messages we send to invoke the methods inside
them. Classes are the templates of the objects we want to create. We first
define a class, then produce objects from it.

2. Giving a name to an object is called assignment and we call this names
variables in programming jargon. This is because although a name refers to
only one object, the object it refers to can be changed any time.

We need them to hold a data for later use in a program. The data might
expected to be changing in different parts of a program so giving it a name
would be easier for us instead of dealing with its value, directly.

3. Messages are classified as unary, binary and keyword messages. We can count
reverse and asUppercase as examples of unary messages; count + and * as
binary messages; count at:put: and removeKey: as keyword messages.

4. We can deal with natural numbers like 3, 10, 25; real numbers like 3.5, 8.2,
0.4e5 or fractions like 4/7, 8/13, 25/138.

5.

"answer_3_5.st"

| theNumber |

Transcript show: 'Please enter a number to get its cube: '.

theNumber := stdin nextLine.

100 Computer Programming with GNU Smalltalk

Transcript show: 'The cube of ', theNumber, ' is ',

(theNumber asInteger squared * theNumber asInteger)

printString, '.'; cr.

Please enter a number to get its cube: 3

The cube of 3 is 27.

6.

"answer_3_6.st"

| theNumbers arithmeticAverage |

Transcript show: 'Please enter two numbers separated by

space to get their arithmetic average: '.

theNumbers := stdin nextLine tokenize: ' '.

arithmeticAverage := ((theNumbers at: 1) asInteger +

(theNumbers at: 2) asInteger) / 2.

Transcript show: 'The arithmetic average of ', (theNumbers

at: 1), ' and ', (theNumbers at: 2), ' is ',

arithmeticAverage printString, '.'; cr.

Please enter two numbers separated by space to get their

arithmetic average: 10 20

The arithmetic average of 10 and 20 is 15.

7.

"answer_3_7.st"

| definitions theWord |

definitions := Dictionary new.

definitions at: 'programming language' put: 'We call the

command groups which provide a communication between us and

computer hardware as programming languages.'.

definitions at: 'source code' put: 'The code we wrote in a

programming language (not the result of a compilation or

interpretation process) is called source code.'.

definitions at: 'virtual machine' put: 'The converting

process from byte-code to machine code is done by programs

Answers of Review Questions 101

called virtual machines.'.

definitions at: 'cross-platform' put: 'Cross-platform is the

name for being able to run a software on different computer

architectures, like different operating systems or different

processors.'.

Transcript show: 'Please enter a word to get its definition:

'.

theWord := stdin nextLine.

Transcript show: theWord, ': ', (definitions at: theWord

asLowercase); cr.

Please enter a word to get its definition: programming

language

programming language: We call the command groups which

provide a communication between us and computer hardware as

programming languages.

We put an asLowercase message to the last expression because the keys are
case sensitive and via this method, the program will be able to find the correct
key even if the user enters, for example, Programming Language.

8. In Arrays, we have a collection of data which is held in order and accessed by
a numbered index. In Dictionarys, we also have a collection data but not
held in any order. So, one of the reasons might be about the structure we want
to use. For example, we can create a Students object as Array and reach the
information of a student by a numbered index like Student at: 1. Or we
can choose to keep students according to their name via a Dictionary class
and reach a student's information by writing Student at: Canol Gökel.

An other reason might about the performance. Arrays keep their data
consecutively inside the computer memory and the access time for an
individual element is always the same while in Dictionarys the time
increases as the element size increases. Though it is not a significant increase
for not too big Dictionarys.

Chapter 4

1. The ultimate goal of control messages is to give the user opportunity to change
the flow of the program instructions. Otherwise we won't be able to make
decisions or execute a part of the program more than once.

102 Computer Programming with GNU Smalltalk

There are two types of control messages: selective and repetitive. ifTrue: and
ifFalse: are examples of selective control messages while whileTrue: and
to:do: are examples of repetitive control messages.

2. Blocks are groups of expressions which we can pass to control messages. They
are one of the things that make it possible to have control messages.

3. Definite loops are loops we know how many times it will repeat itself. The end
of indefinite loops, however, depends on a certain condition to occur. to:do:
is an example of definite loop messages while whileTrue: is an example of
indefinite loops.

4.

"answer_4_4.st"

| theLength |

Transcript show: 'Please enter the length of the edge of the

diamond: '. t

heLength := stdin nextLine asInteger.

1 to: theLength do: [:x |

 1 to: (theLength - x) do: [:y |

 Transcript show: ' '.

].

 Transcript show: '/'.

 1 to: ((x - 1) * 2) do: [:y |

 Transcript show: ' '.

].

 Transcript show: '\'; cr.

].

1 to: theLength do: [:x |

 1 to: (x - 1) do: [:y |

 Transcript show: ' '.

].

 Transcript show: '\'.

Answers of Review Questions 103

 1 to: ((theLength - x) * 2) do: [:y |

 Transcript show: ' '.

].

 Transcript show: '/'; cr.

].

Please enter the length of the edge of the diamond: 5

 /\

 / \

 / \

 / \

/ \

\ /

 \ /

 \ /

 \ /

 \/

5.

"answer_4_5.st"

| theNumber isPrime i |

Transcript show: 'Please enter a number: '.

theNumber := stdin nextLine asInteger.

i := 2.

[theNumber \\ i = 0] whileFalse: [

 i := i + 1.

].

(i = theNumber) ifTrue: [

 Transcript show: theNumber printString, ' is a prime

number.'; cr.

] ifFalse: [

 Transcript show: theNumber printString, ' is not a prime

number. It is devidable by ', i printString, '.'; cr.

].

Please enter a number: 3

3 is a prime number.

104 Computer Programming with GNU Smalltalk

6.

"answer_4_6.st"

99 to: 1 by: -1 do: [:x |

 Transcript show: x printString, ' bottles of beer on the

wall, ', x printString, ' bottles of beer.'; cr.

 (x > 1) ifTrue: [

 Transcript show: 'Take one down and pass it around,

', (x - 1) printString, ' bottles of beer on the wall.'; cr.

] ifFalse: [

 Transcript show: 'Take one down and pass it around,

no more bottles of beer on the wall.'; cr.

].

 Transcript cr.

].

Transcript show: 'No more bottles of beer on the wall, no

more bottles of beer.'; cr.

Transcript show: 'Go to the store and buy some more, 99

bottles of beer on the wall.'; cr.

7. With definite loop:

"answer_4_7_a.st"

1 to: 10 do: [:x | x printNl]

1

...

10

With indefinite loop:

"answer_4_7_b.st"

| x |

x := 1.

[x <= 10] whileTrue: [

Answers of Review Questions 105

 x printNl.

 x := x + 1.

]

1

...

10

First one feels the right one because we didn't have to declare a variable and
didn't have to increment it manually. Also we didn't spend time thinking about
the right conditional, we just wrote the range. This shows we should write a
loop using definite loop techniques whenever the range of the loop is known
before we enter into it.

8. It is impossible to write this program with definite loops because we don't
know when the user is going to finish the program.5 In other words, how many
times the loop will repeat executing itself depends on the task user want to
accomplish, which the program cannot know, so we (as the programmer) don't
know the range of the loop before entering into it.

By using indefinite loop:

"answer_4_8.st"

| newNumber howManyNumbers sum arithmeticAverage |

newNumber := 0.

howManyNumbers := 0.

sum := 0.

arithmeticAverage := 0.

[newNumber = 'finish'] whileFalse: [

 Transcript show: 'Arithmetic averages of the numbers so

far is: ', arithmeticAverage printString; cr.

 Transcript show: 'Please enter a new number or "finish"

to exit '.

 newNumber := stdin nextLine.

 (newNumber isNumeric) ifTrue: [

 sum := sum + newNumber asInteger.

5 Actually, it is possible but it is hard and unnecessary.

106 Computer Programming with GNU Smalltalk

 howManyNumbers := howManyNumbers + 1.

 arithmeticAverage := sum / howManyNumbers.

].

 Transcript cr.

].

Arithmetic averages of the numbers so far is: 0

Please enter a new number or "finish" to exit: 2

Arithmetic averages of the numbers so far is: 2

Please enter a new number or "finish" to exit: 4

Arithmetic averages of the numbers so far is: 3

Please enter a new number or "finish" to exit: finish

9.

1 to: 1000 do: [:x | x printNl].

1

...

1000

1

Chapter 5

1. Polymorphism is the name of the concept to determine which method to
execute according to the type of the class of the object we sent the message.

Observing the attributes and behavior of the ancestor class when deriving a
new class from it is called inheritance.

Encapsulation is hiding the inner working details of an object from outside
world.

2.

"answer_5_2.st"

Object subclass: Human [

 | name age |

 setName: aName [

 name := aName.

]

Answers of Review Questions 107

 getName [

 ^name

]

 setAge: anAge [

 age := anAge.

]

 getAge [

 ^age

]

 introduceYourself [

 Transcript show: 'Hello, my name is ', name, ' and

I''m ', age printString, ' years old.'; cr.

]

 > aHuman [

 ^age > aHuman getAge

]

 < aHuman [

 ^age < aHuman getAge

]

 = aHuman [

 ^age = aHuman getAge

]

]

Human subclass: Man [

 | money handsomeness |

 setMoney: amountOfMoney [

 "Amount of money out of 10"

 money := amountOfMoney.

]

 getMoney [

 ^money

108 Computer Programming with GNU Smalltalk

]

 setHandsomeness: rateOfHandsomeness [

 "Handsomeness rate out of 10"

 handsomeness := rateOfHandsomeness.

]

 getHandsomeness [

 ^handsomeness

]

 > aMan [

 (self getName = 'Canol Gökel') ifTrue: [

 ^true

] ifFalse: [

 ^(self getMoney + self getHandsomeness) > (aMan

getMoney + aMan getHandsomeness)

]

]

 < aMan [

 (self getName = 'Canol Gökel') ifTrue: [

 ^false

] ifFalse: [

 ^(self getMoney + self getHandsomeness) < (aMan

getMoney + aMan getHandsomeness)

]

]

 = aMan [

 (self getName = 'Canol Gökel') ifTrue: [

 ^false

] ifFalse: [

 ^(self getMoney + self getHandsomeness) = (aMan

getMoney + aMan getHandsomeness)

]

]

]

Human subclass: Woman [

 | honesty generosity |

Answers of Review Questions 109

 setHonesty: rateOfHonesty [

 "Honesty rate out of 10"

 honesty := rateOfHonesty.

]

 getHonesty [

 ^honesty

]

 setGenerosity: rateOfGenerosity [

 "Generosity rate out of 10"

 generosity := rateOfGenerosity.

]

 getGenerosity [

 ^generosity

]

 > aWoman [

 ^(self getHonesty + self getGenerosity) > (aWoman

getHonesty + aWoman getGenerosity)

]

 < aWoman [

 ^(self getHonesty + self getGenerosity) < (aWoman

getHonesty + aWoman getGenerosity)

]

 = aWoman [

 ^(self getHonesty + self getGenerosity) = (aWoman

getHonesty + aWoman getGenerosity)

]

]

| man1 man2 man3 woman1 woman2 |

man1 := Man new.

man1 setName: 'Michael Cooper'.

man1 setAge: 32.

man1 setMoney: 9.

110 Computer Programming with GNU Smalltalk

man1 setHandsomeness: 7.

man2 := Man new.

man2 setName: 'Paul Anderson'.

man2 setAge: 28.

man2 setMoney: 7.

man2 setHandsomeness: 8.

man3 := Man new.

man3 setName: 'Canol Gökel'.

man3 setAge: 24.

man3 setMoney: 1.

man3 setHandsomeness: 1.

woman1 := Woman new.

woman1 setName: 'Louise Stephney'.

woman1 setAge: 26.

woman1 setHonesty: 6.

woman1 setGenerosity: 7.

woman2 := Woman new.

woman2 setName: 'Maria Brooks'.

woman2 setAge: 32.

woman2 setHonesty: 8.

woman2 setGenerosity: 6.

(man1 > man2) printNl.

(man1 < man2) printNl.

(man3 > man1) printNl.

(woman1 > woman2) printNl.

(woman1 < woman2) printNl.

true

false

true

false

true

3.

"answer_5_3.st"

Number extend [

Answers of Review Questions 111

 cubed [

 ^self * self * self

]

]

3 cubed printNl.

27

4. These two keywords are used to refer to the receiver object of the message,
inside the class definition. Whenever we send a message to self or super
keyword, the interpreter sends the message to the current object in context.

The difference of super keyword from self is that when we send a message
to super, the search of the method begins from the superclass of the receiver
object. So the method inside the superclass is invoked instead of the method of
the receiver object's class.

112 Computer Programming with GNU Smalltalk

Answers of Review Questions 113

Alphabetical Index
accessor 69

Argument 20

Assembly 2

assignment 36

assignment operator 36

Binary file 9

Binary message 21

binary number 7

bit 8

Block 47

block argument 48

Blox 89

Blue Book 85

body 62

byte 8

byte-code 4

carriage return 24

character encoding 9

character set 9

class 58

Class 25

Class Browser 90

class method 60

class variable 60

command prompt 14

comment 16

compilation 3

compiled language 3

compiler 1, 3

Cross-platform 5

custom class 60

declaring a variable 63

definite loop 52

encapsulation 57

experienced programmers II

expression 15

file format 9

getter 69

GNU Smalltalk I

GST 16

GUI 13

has-a 59

header 62

indefinite loop 51

indent 61

index 38

information hiding 57

instance 25

instance variable 19

interactive mode 14

interpretation 3

interpreted language 3

interpreter 1, 3

is-a 59

114 Computer Programming with GNU Smalltalk

keyword message 21

loops 98

machine code 1

machine language 1

message 14, 19

message cascading 24

message chaining 24

method 19

multi-paradigm programming language
6

multiple inheritance 60

object 19

Object oriented programming 5

operator 36

overriding 60

Parameter 63

polymorphism 60

precedence 21

Precedence 22

program 1

Programming 1

programming language 1

programming paradigm 5

protocol 57

receiver 19

repetitive controlling 47

Selective controlling 47

Selector 20

self 76

setter 69

single inheritance 60

single-paradigm programming language
6

Smalltalk-80 I

software 1

source code 4, 15

standard output 15

subclass 58

superclass 58

terminal 14

text editor 9

Text editor 10

token 44

Unary message 21

variable 36, 65

virtual machine 5

White space 19

Windows installer 91

word processor 10

Xerox PARC 13

Postface 115

Postface
Now, we are at the end of the book, our survey of learning the basics of computer
programming using GNU Smalltalk. We hope you enjoyed this book. You can
always send feedback to me via the email address in the section below.

About the Author

Canol Gökel is a student at Hacettepe University,
Department of Electrical and Electronics
Engineering, Turkey. He is also a member of
Hacettepe Robotics Society. He likes programming
computers, microcontrollers and also likes learning
(not using :P) new programming languages. You can
reach him via the email address: canol@canol.info

	Preface
	Who is This Book for?
	How to Use This Book
	Font Conventions

	Chapter 1: Introduction to Programming World
	What is Programming and What are Programming Languages?
	Programming Language Types
	High Level and Low Level Programming Languages
	Compiled and Interpreted Languages
	Procedural, Functional and Object Oriented Programming

	Number Systems
	Base-10 (Decimal) Number System
	Base-2 (Binary) Number System
	Base-8 (Octal) Number System
	Base-16 (Hexadecimal) Number System

	File Formats
	Binary Files
	Text Files

	Word Processors, Text Editors and IDEs
	Review Questions

	Chapter 2: Introduction to GNU Smalltalk
	Small Talk About Smalltalk
	General Logic Behind Smalltalk
	First Program
	Review Questions

	Chapter 3: Objects, Messages and Classes: Part I
	Objects and Messages
	Selectors and Arguments
	Unary, Binary and Keyword Messages

	Another Way to Display Output on Terminal
	Message Chaining
	Message Cascading
	Classes
	Common Classes and Their Usage: Part I
	Number
	+
	-
	*
	/
	\\
	between:and:
	abs
	degreesToRadians
	cos
	negated
	raisedTo:
	squared
	even
	odd
	sign
	integerPart
	truncated
	rounded
	denominator
	numerator
	setNumerator:setDenominator:

	Character
	asLowercase
	asUppercase
	isAlphaNumeric
	isDigit
	isLetter

	String
	includes:
	indexOf:
	reverse
	countSubCollectionOccurrencesOf:
	,
	asUppercase
	size

	Variables
	Getting User Input
	Common Classes and Their Usage: Part II
	Array
	new:
	at:
	at:put:
	includes:
	reverse

	Set
	new
	add:
	remove:

	Dictionary
	new
	at:put:
	keys
	removeKey:

	Review Questions

	Chapter 4: Controlling the Flow of Execution
	Blocks
	Selective Controlling
	ifTrue:
	ifFalse:
	ifTrue:ifFalse:

	Repetitive Controlling
	whileTrue:
	to:do:
	to:by:do:

	Review Questions

	Chapter 5: Objects, Messages and Classes: Part II
	Encapsulation
	Inheritance
	Multiple Inheritance and Single Inheritance

	Polymorphism
	Creating Your Own Classes
	Creating Objects from Classes
	Example
	Extending and Modifying Classes
	self and super
	self
	super

	Review Questions

	Chapter 6: What to Do Next
	How Can I Improve Myself?
	Further Reading
	Smalltalk-80: The Language and its Implementation by Adele Goldberg and David Robson
	GNU Smalltalk Documentation - http://smalltalk.gnu.org/documentation

	Useful Sites
	GNU Smalltalk - http://smalltalk.gnu.org
	Smalltalk.org - http://www.smalltalk.org
	Stephane Ducasse :: Free Online Books - http://stephane.ducasse.free.fr/FreeBooks.html
	Planet Smalltalk - http://planet.smalltalk.org
	Project Euler - http://projecteuler.net
	Smalltalk Jobs - http://smalltalkjobs.dabbledb.com

	Mailing Lists
	IRC

	Appendix A: Installing Programming Environment
	Installing GNU Smalltalk on Linux Platforms
	Installing via a Package Manager
	Installing via Compiling the Source Code

	Installing GNU Smalltalk on Windows Platforms

	Appendix B: ASCII Table
	Appendix C: Answers of Review Questions
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5

	Postface
	About the Author

