

Smalltalk
Best Practice

Patterns

Kent Beck

Library of Congress Cataloging-in-Publication Data
Beck, Kent.

Smalltalk best practice patterns / Kent Beck.
p. cm.

Includes index.
ISBN 0-13-476904-X (pbk.)
1. Smalltalk (Computer program language) I. Title.

QA76.73.S59B43 1997
005.13’3--dc20 96-29411

CIP

Editorial/Production Supervision: Joe Czerwinski
Acquisitions Editor: Paul Becker
Manufacturing Manager: Alexis R. Heydt
Cover Design Director: Jerry Votta
Cover Design: Design Source

©1997 by Prentice Hall PTR
Prentice-Hall, Inc.
A Division of Simon and Schuster
Upper Saddle River, NJ 07458

The publisher offers discounts on this book when ordered
in bulk quantities. For more information, contact:

Corporate Sales Department
Prentice Hall PTR
One Lake Street
Upper Saddle River, NJ 07458
Phone: 800-382-3419
Fax: 201-236-7141
E-mail: corpsales@prenhall.com

All rights reserved. No part of this book may be reproduced
in any form or by any means, without permission in writing
from the publisher.

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

ISBN: 0-13-476904-X

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall of Canada Inc., Toronto
Prentice-Hall Hispanoamericana, S.A., Mexico
Prentice-Hall of India Pte. Ltd., New Delhi
Prentice-Hall of Japan, Inc., Tokyo
Simon & Schuster Asia Pte. Ltd., Singapore
Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro

PREFACE . vii

1. IINTRODUCTION . 1

CODING . 1
Talking Programs . 3

GOOD SOFTWARE. 4
STYLE . 6
WHAT’S MISSING? . 7
BOOK ORGANIZATION . 9
ADOPTION . 9
LEARNING A PATTERN . 10

2. PATTERNS . 13

WHY PATTERNS WORK . 14
ROLE OF PATTERNS . 15

Reading . 15
Development . 15
Review . 16
Documentation. 16
Clean Up . 16

FORMAT. 16

III

Contents

3. BEHAVIOR . 19

METHODS . 20
Composed Method . 21
Constructor Method . 23
Constructor Parameter Method. 25
Shortcut Constructor Method . 26
Conversion . 28
Converter Method . 28
Converter Constructor Method . 29
Query Method . 30
Comparing Method . 32
Reversing Method . 33
Method Object. 34
Execute Around Method . 37
Debug Printing Method . 39
Method Comment . 40

MESSAGES . 43
Message . 43
Choosing Message . 45
Decomposing Message . 47
Intention Revealing Message . 48
Intention Revealing Selector . 49
Dispatched Interpretation . 51
Double Dispatch . 55
Mediating Protocol . 57
Super . 59
Extending Super . 60
Modifying Super . 62
Delegation. 64
Simple Delegation. 65
Self Delegation . 67
Pluggable Behavior . 69
Pluggable Selector . 70
Pluggable Block . 73
Collecting Parameter. 75

4. STATE. 79

INSTANCE VARIABLES . 80
Common State . 80
Variable State . 82
Explicit Initialization. 83
Lazy Initialization. 85
Default Value Method . 86
Constant Method. 87
Direct Variable Access . 89
Indirect Variable Access . 91

IV S M A L L T A L K B E S T P R A C T I C E P A T T E R N S

Getting Method. 93
Setting Method . 95
Collection Accessor Method . 96
Enumeration Method . 99
Boolean Property Setting Method . 100
Role Suggesting Instance Variable Name . 102

TEMPORARY VARIABLES . 103
Temporary Variable . 103
Collecting Temporary Variable . 105
Caching Temporary Variable . 106
Explaining Temporary Variable. 108
Reusing Temporary Variable . 109
Role Suggesting Temporary Variable Name . 110

5. COLLECTIONS . 113

CLASSES . 114
Collection . 115
OrderedCollection . 116
RunArray . 118
Set . 119
Equality Method . 124
Hashing Method . 126
Dictionary . 128
SortedCollection. 131
Array. 133
ByteArray . 135
Interval . 137

COLLECTION PROTOCOL . 139
IsEmpty . 139
Includes: . 141
Concatentation . 143
Enumeration . 144
Do. 146
Collect . 147
Select/Reject . 149
Detect . 150
Inject:into: . 152

COLLECTION IDIOMS . 153
Duplicate Removing Set. 154
Temporarily Sorted Collection . 155
Stack . 156
Queue . 157
Searching Literal . 159
Lookup Cache . 161
Parsing Stream. 164
Concatenating Stream . 165

B E H A V I O R V

6. CLASSES. 167

Simple Superclass Name . 168
Qualified Subclass Name . 169

7. FORMATTING . 171

Inline Message Pattern . 172
Type Suggesting Parameter Name. 174
Indented Control Flow. 175
Rectangular Block. 177
Guard Clause . 178
Conditional Expression . 180
Simple Enumeration Parameter . 182
Cascade . 183
Yourself . 186
Interesting Return Value . 188

8. DEVELOPMENT EXAMPLE . 191

PROBLEM . 191
START . 192
ARITHMETIC . 194
INTEGRATION . 198
SUMMARY . 201

APPENDIX A: QUICK REFERENCE . 203

INDEX . 217

VI S M A L L T A L K B E S T P R A C T I C E P A T T E R N S

This preface will explain what this book is about. It will con-
vince you to buy this book, or you will know why you shouldn’t
(more of the former than the latter, I hope).

What’s it all about?
This book is about the simple things experienced, successful

Smalltalkers do that beginners don’t. In a sense, it is a style guide.
I have tried to penetrate beneath the surface, though, to get at the
human realities that make the rules work instead of focusing solely
on the rules themselves.

The topics covered are the daily tactics of programming:

• How do you choose names for objects, variables, and
methods?

• How do you break logic into methods?

• How do you communicate most clearly through your
code?

These are small scale issues. There are also many bigger techni-
cal reasons why projects fail (and many more nontechnical reasons).

VII

Preface

The attraction of this set of issues is that they are so tractable. You don’t have
to be a programming wizard to pick good names, you just have to have good
advice.

The advice is broken into 92 patterns. Each pattern presents:

• a recurring daily programming problem;

• the tradeoffs that affect solutions to the problem; and

• a concrete recipe to create a solution for the problem.

For example, here is a summary of a pattern called “Role Suggesting
Temporary Variable Name”:

Problem: What do you name a temporary variable?

Tradeoffs:

• You want to include lots of information in the name.

• You want the name to be short so it is easy to type and doesn’t
make formatting difficult.

• You don’t want redundant information in the name.

• You want to communicate why the variable exists.

• You want to communicate the type of the variable (i.e. what
messages it is sent).

Solution: Name the variable after the role it plays. The type can be
inferred from context, and so doesn’t need to be part of the name.

You will see in the body of the book that each pattern occupies a page or
two. Each pattern includes examples (and counter-examples) from the stan-
dard Smalltalk images. Each pattern also talks about related patterns.

The patterns don’t stand in isolation, 92 independent bits of advice.
Patterns work together, leading you from larger problems to smaller. Together
they form a system or language. The system, as a whole, allows you to focus
on the problem at hand, confident that tomorrow you can deal with tomorrow’s
problems.

Why should you read it?
Learning—If you are just learning Smalltalk, these patterns will give

you a big jump start on making effective use of the system. Because the pat-
terns aren’t just rules, you can smoothly go from merely following the pat-
terns, to understanding why they are the way they are, to formulating your
own patterns. You will need a good basic introduction to Smalltalk in addition
to this book, but reading them together will greatly accelerate your learning.

VIII S M A L L T A L K B E S T P R A C T I C E P A T T E R N S

Programming—If you program in Smalltalk, these patterns will give you
a catalog of techniques that work well. You will have discovered or invented
many of them yourself, but the patterns may give you a fresh perspective on
why they work or present nuances you hadn’t considered.

Teaching—If you teach Smalltalkers, either as a mentor or in classroom
training, these patterns will give you large bag of instructional material. If you
are trying to explain why code should be different, it is much more satisfying
for you and the learner to be able to discuss the pattern and how it applies to
the particular situation.

Managing—If you manage Smalltalk projects, you may be struggling
with how to apply good software engineering principles to Smalltalk. These
patterns don’t address that topic directly, but they can become the basis of a
common vocabulary for your developers.

What isn’t it about?
This is not a book of methodology. It will not guide your entire develop-

ment process. You can use it with your existing process, whether you invented
it or it came out of a book. This book is about making code that works for you.

This is not a book of philosophy. If you want to understand what makes
programs good in the abstract, if you want to learn to write patterns yourself,
or understand their philosophical or psychological basis, you won’t find any
help here. This book is for people who have programs to write and want to do
so as quickly, safely, and effectively as possible.

This is not a book of design. If design is the process of defining the rela-
tionships among small families of objects, the resulting problems repeat just
as surely as do implementation problems. Design patterns are very effective at
capturing that commonality. They just aren’t the topic of this book. This book
is about making Smalltalk work for you. Making objects work for you is an
entirely different topic.

Acknowledgments
I would like to thank the many people who contributed to this volume.

First I would like to thank the Xerox PARC Learning Research Group (Alan
Kay, Adele Goldberg, Dan Ingalls, Diana Merry-Shapiro, Ted Kaehler, Larry
Tesler, and Bob Flegel) for having the insights in the first place, so I had some-
thing to write down. I would like to thank my mentor and intellectual partner,
Ward Cunningham, for showing me the way and sharing his insights. Many of
the patterns here he identified and/or named. Thanks to my reviewers (Dirk
Riehle, David N. Smith, Mitchell Model, Bill Reynolds, Dave Smith, Trygve

P R E F A C E IX

Reenskaug, Ralph Johnson, John Brant, Don Roberts, Brian Foote, Brian
Marick, Joe Yoder, Ian Chai, Mark Kendrat, Eric Scouten, Charles Herring,
Haidong Ye, Kevin Powell, Rob Brown, Kyle Brown, Bobby Woolf, Harald
Mueller, Steve Hayes, Bob Biros, David Warren, Gert Florijn, Mark L. Fussell,
Martin Fowler, Chuck Siska, Chris Bird, Ron Jefferies, Volker Wurst, Peter
Epstein, Thomas Murphy, Michel Brassard, Ron Jefferies, John Sellers, Steve
Messick, Darrow Kirkpatrick, Phoenix Tong, Doug Lea, Randy Stafford, Sharry
Fealk and all the reviewers who didn’t put their names on their comments) for
reading early rough drafts carefully. Finally, this book would never have been
finished without my ever patient but gently prodding editor, Paul Becker.

X S M A L L T A L K B E S T P R A C T I C E P A T T E R N S

Let’s start by taking a close look at the title: Smalltalk Best
Practice Patterns. That’s a mouthful. What does it mean?

Smalltalk—That part is easy. I assume you know at least
something about Smalltalk or you wouldn’t be reading this book.

Best Practice—Best practice is a legal term. Looked at posi-
tively, best practice is the set of procedures and skills that profes-
sionals recognize and use. Looked at negatively, if you can prove
that you were using the current best practice when you did a piece
of work, you can’t be sued for negligence. I prefer to look at it posi-
tively. At least, I hope this book is never held up in court!

Patterns—A pattern is a decision an expert makes over and
over. For example, naming an instance variable after the role it
plays is a pattern. Even though all the results (in this case, all the
variable names) are different, they have a quality that is constant.
The heart of this book is 92 such patterns.

Coding
I’d like to say a bit about coding to give you a clearer idea of

the activities covered by the patterns.

1

Introduction

1

When computers were the province of the physics department or the
math department, there was no such thing as coding as a separate activity.
People had ideas, they implemented them, they looked at the results.

Developer castes appeared with the advent of commercial software devel-
opment. At the top were the systems analysts, lofty intellects too important to
actually use computers. Below them were the programmers, who knew how to
turn the vague mutterings of the analysts into something the assembler or
(later) compiler could recognize. At the bottom were coders, who took the
sheets, filled out by the programmers, and created punched cards.

Better interface technology has long rendered the coder-as-typist obso-
lete. The word has come to mean all the low level activities of programming.
The stigma remains, however. When I became a consultant, I was told, “Don’t
let them know you can code, or you’ll never be able to charge premium rates.”

I think the time has come for a redefinition of coding. Not really redefin-
ition, I suppose, but a rehabilitation. I like the definition just fine. I think the
stigma attached to it is short-sighted and dangerous.

To me, development consists of two processes that feed each other. First,
you figure out what you want the computer to do. Then, you instruct the com-
puter to do it. Trying to write those instructions inevitably changes what you
want the computer to do, and so it goes.

In this model, coding isn’t the poor handmaiden of design or analysis.
Coding is where your fuzzy, comfortable ideas awaken in the harsh dawn of
reality. It is where you learn what your computer can do. If you stop coding,
you stop learning.

We aren’t always good at guessing where responsibilities should go.
Coding is where our design guesses are tested. Being prepared to be flexible
about making design changes during coding results in programs that get bet-
ter and better over time. Insisting that early design ideas be carried through
is short sighted. Often, I see some ugly code in an object. Based on the patterns
in this book (most often Composed Method), I’ll suggest that the code be moved
to another object. For example, I saw code that looked like this:

Station>>computePart: aPart
^self multiplyPartTimesRate: aPart

Station>>multiplyPartTimesRate: aPart
^Part

amount: aPart amount * self rate
date: aPart date

2 S M A L L T A L K B E S T P R A C T I C E P A T T E R N S

I said, “we seem to be using a lot of the Part’s data in
multiplyPartTimesRate:. Why don’t we move this code into Part?” “But we did-
n’t design Parts to do arithmetic!” “Since the code seems to be telling us to do
this, let’s try it.”

Part>>* aRate
^Part

amount: amount * aRate
date: date

Station>>computePart: aPart
^aPart * self rate

The result is simpler, shorter, and exposes less of a Part’s details to the
Station. Being open to design insights during coding, we learned something
that made our whole system simpler.

My inspiration for the material in this book is my experience reviewing
code. As I write, I remember more and more incidents, “Oh, yeah. That client
was doing that wrong and it was really killing them. What can I say about
that?” The advice I give in such situations is tactical, coding advice of necessi-
ty. I don’t have time for a deep understanding of their problem. I’m constant-
ly amazed at how even a little help cleaning up small problems reveals the
source and solution of much bigger problems.

n Talking Programs

Did you know that your program talks to you? I don’t mean those “Buy
more Jolt Cola” messages. I mean important stuff about how your system
ought to be structured.

If you’re programming along, doing nicely, and all of a sudden your pro-
gram gets balky, makes things hard for you, it’s talking. It’s telling you there
is something important missing.

Many of the patterns tell you what to do when your program talks to you.
Sometimes you need to create a new method, sometimes a new object, some-
times a new variable. Whatever the needed response, you have to be listening
before you can react.

As programmers, we have all been through terrible experiences with sys-
tems that seemed designed to make life difficult (this word processor, for
instance). It is easy to get numbed to pain and frustration, or treat it as if it

I N T R O D U C T I O N 3

were part of the territory. Your programs don’t have to be like that. You can
make them clean and simple and easy to read.

“It looks like we need to put this over here.”

“We can’t do that. That’s not how it works.”

“Wait a minute. The code would be easier to read and more flexible if
we did it this way.”

“But that’s not what that object does.”

“Let’s just do it and see if we like it.”

...murmel, murmel, murmel...

“Hey, that is better.”

I can’t begin to count how many times I’ve been through this scenario.
The good news is, it’s not that I’m any smarter than my clients or that I can
see how to improve code where they can’t. It’s just that I know what to pay
attention to (what patterns to look for) and I have the confidence to simply fol-
low where the code leads.

Some of the biggest improvements come from figuring out how to eliminate:

• Duplicate code (even little bits of it)

• Conditional logic

• Complex methods

• Structural code (where one object treats another as a data structure)

These patterns will give you a toolbox of problems to look for and ways to
fix them. As time goes on, you’ll find yourself creating fewer and fewer prob-
lems in the first place. I hope you get better than me, though, at writing pat-
terns correctly the first time. I still get myself into a pickle far too often.

Good Software
The patterns here form a system; one that I have developed during my

years as a Smalltalk programmer. Most of it is really the work of the
Smalltalkers who came before me and left their wisdom in the image. Some
small part is my own invention. I consider myself part of a culture. As with any
culture, there is a core set of values that drives what the culture sees as good
and what it sees as bad. What are those values?

Well, what makes a good program? There are, of course, lots of definitions
of what makes a good program, and even lots of valid definitions. In telecommu-
nications or medical instrumentation, an absolutely reliable program is a good
program. In derivatives trading, a quickly shipped program is a good program.

4 S M A L L T A L K B E S T P R A C T I C E P A T T E R N S

Most commercial software isn’t so extreme. The life of most programs
goes like this:

1. It is developed in a hurry by a team of developers. Time to market
is critical for reducing the business risk of a new product. The prod-
uct itself is technically challenging to build but doesn’t break new
ground in lots of areas at once.

2. The product lives for several years, during which time its capabili-
ties are refined and extended, often by developers who weren’t part
of the original team.

3. Bits and pieces of the product are cannibalized for new projects,
again, not by the original developers.

A good program balances the needs of these activities. No one phase can
be allowed to dominate the others without risking the business viability of a
system.

Sometimes, you will find a pattern supports all the phases—you will
be able to develop code faster, with less risk and have it be easier to main-
tain and reuse. Often, though, you have to rob Peter to pay Paul. Most of
the patterns are designed to preserve a balance between short-term and
long-term needs.

I can’t say it often enough—the bottlenecks throughout development
come from limitations in human communication. Over and over in the pat-
terns, you will read “You could do this or you could do that, but this over here
communicates best, so that’s what you should do.” If there’s a radical thought
here, that’s it; that when you program, you have to think about how someone
will read your code, not just how a computer will interpret it.

Here are the criteria I considered in writing these patterns, and the
accommodation I made to them.

• Productivity—You can spend productivity gains any way you’d
like—shorter time to market, reduced development cost, reduced
technical risk, or improved quality. I wrote the patterns so develop-
ers of all skill levels could learn more quickly and spend less time
on the mechanics of engineering good software in Smalltalk.

• Lifecycle Cost—If there is one driving force behind these patterns,
it is the reduction of the lifecycle costs of software. Too many devel-
opment organizations get into a deadly embrace with their own pro-
jects, where they are spending so much time and energy just keep-
ing the last system alive and limping that they can’t meet the needs
of today’s market, much less tomorrow’s. I wrote the patterns so
they could be taught to developers and maintainers, used day to day

I N T R O D U C T I O N 5

in development and documentation, so that throughout the life of a
project it remains easy to enhance.

• Time to Market—When pressure become intense to get a product to
market, it is tempting to cut corners. However, the very act of decid-
ing what corners to cut slows down development. Using these pat-
terns lets you program flat out, applying patterns as fast as your
fingers will go, and get results as quickly as possible, without pay-
ing an exorbitant cost in the long run.

• Risk—Risk is the great taboo in software. Everybody knows that
lots of projects fail. Everybody knows that you can’t really schedule
software development reliably and still produce interesting prod-
ucts. Everybody knows that software development is risky, but
nobody talks about it. When I review a project at risk, I am amazed
at how often the big picture is in place, but a slew of little mistakes
are gumming up the works. I wrote these patterns from my experi-
ence of seeing which little things most often hurt projects.

Style
Good programming style is one of those things that everyone knows when

they see it but is very hard to articulate precisely. The capitalist’s cant—a good
programming style is one that makes money—is objectively measurable but
hard to apply day to day.

There are a few things I look for that are good predictors of whether a
project is in good shape. These are also properties I strive for in my code.

• Once and only once—If I only have one minute to describe good
style, I reduce it to a simple rule: In a program written with good
style, everything is said once and only once. This isn’t much help in
creating good code, but it’s a darned good analytic tool. If I see sev-
eral methods with the same logic, several objects with the same
methods, or several systems with similar objects, I know this rule
isn’t satisfied. This leads us to the second property:

• Lots of little pieces—Good code invariably has small methods and
small objects. Only by factoring the system into many small pieces
of state and function can you hope to satisfy the “once and only
once” rule. I get lots of resistance to this idea, especially from expe-
rienced developers, but no one thing I do to systems provides as
much help as breaking it into more pieces. When you are doing
this, however, you must always be certain that you communicate
the big picture effectively. Otherwise, you’ll find yourself in a big

6 S M A L L T A L K B E S T P R A C T I C E P A T T E R N S

bowl of “Pasta à la Smalltalk,” which is every bit as nasty a dish as
“Fettucine à la C.”

• Replacing objects—Good style leads to easily replaceable objects. In
a really good system, every time the user says “I want to do this rad-
ically different thing,” the developer says, “Oh, I’ll have to make a
new kind of X and plug it in.” When you can extend a system solely
by adding new objects without modifying any existing objects, then
you have a system that is flexible and cheap to maintain. You can’t
do this if you don’t have lots of little pieces.

• Moving objects—Another property of systems with good style is that
their objects can be easily moved to new contexts. You should be
able to say, “This object in this system does the same job in that sys-
tem.” Warning—the first time you try to move an object, you will
discover you have done it wrong, that it doesn’t generalize well.
Don’t try to move it too early in the game. Ship a couple of systems
first. Then, if you have a system built with lots of little pieces, you
will be able to make the necessary modifications and generaliza-
tions fairly easily.

• Rates of change—A simple criteria I use all the time is checking
rates of change. I learned this criteria from something Brad Cox
said a long time ago. I’ve since generalized it to—don’t put two rates
of change together. Don’t have part of a method that changes in
every subclass with parts that don’t change. Don’t have some
instance variables whose values change every second in the same
object with instance variables whose values change once a month.
Don’t have a collection where some elements are added and
removed every second and some elements are added and removed
once a month. Don’t have code in an object that has to change for
every piece of hardware, and code that has to change for every oper-
ating system. How do you avoid this problem? You got it, lots of
little pieces.

What’s Missing?
There are a few coding topics I don’t cover here; not because they aren’t

important, but because I don’t yet understand them well enough to turn them
into patterns. I hope I learn enough about them to include them in a second
edition. Here are the topics I deliberately do not cover:

• Exception handling—I use exception handling as sparingly as pos-
sible, generally, only around the highest level invocation of objects

I N T R O D U C T I O N 7

from the user interface. Lots of handlers make debugging difficult,
because the code just runs to completion but provides the wrong
answer. When you use exception handling, you have to think like
the writer of a new programming language, not just an application
developer.

• Copying—Fixing bugs by making copies of objects before operating
on them is nice and simple. Unfortunately, when copying becomes a
habit, you can end up slowing down your system by making unnec-
essary copies or introducing bugs by not changing objects that need
to be changed.

• Become—There are legitimate uses of become, but debugging code
that uses it is so difficult already, if you have any other option for
solving your problem, you’re probably better off. If you are experi-
enced enough to be an exception to this rule, then you won’t be tak-
ing what I write as gospel anyway, so I’m not afraid to be doctrinaire
on this point.

• Performance—Performance tuning is a whole topic unto itself. Its
biggest problem in this context is that all the patterns here maxi-
mize the communication value of code. Performance tuning often
sacrifices clarity for speed.

The definition of “coding” in the first section of this chapter, namely tac-
tical programming decisions, excludes many topics. Here are some of the top-
ics I hope to cover in future volumes:

• Design—There are a host of techniques that are just upstream (to
my view) of the material covered here. They are the patterns where-
by two objects can do a better job than one, or when turning a
method or set of methods into an object provides leverage. For now,
I will refer you to “Design Patterns” by Gamma et. al.

• Modeling—The patterns here resolve constraints imposed by
Smalltalk. Many of the most important decisions you make must
also resolve constraints imposed by the problem you are modeling.

• Requirements—How you agree with the client about what must be
done, and more importantly what need not be done, has an enor-
mous impact on the success of your development. If you don’t do
what’s needed, the client will not be satisfied with the result. If you
do what isn’t needed, you add cost, time, and most importantly, risk
to your project.

• User Interface Design and Implementation—Designing interfaces
that users find valuable is an art. Implementing them simply, flex-
ibly, and reusably is the test of a solid Smalltalker.

8 S M A L L T A L K B E S T P R A C T I C E P A T T E R N S

Book Organization
Here are the chapters:

• Patterns—The philosophy behind patterns.

• Behavior—Patterns for methods and messages. The problems you
can solve by creating a new method. You will also find method pat-
terns scattered throughout the remainder of the patterns, if a par-
ticular kind of method (like accessors) is tied to another pattern.
The quick reference guide gathers all the method patterns together
for easy reference.

• State—Patterns for using instance and temporary variables. You
will find a discussion of the pros and cons of using accessor methods
and direct variable access.

• Collections—The major collection classes and messages in the form
of patterns. You will also find common tricks using collections.

• Classes—A brief introduction to how to use classes, since most of
the topics regarding class creation are outside the scope of this book.

• Formatting—My rules of code formatting, cast as patterns.

• Development Example—An example of developing objects with
explicit reference to the patterns, as they apply.

Adoption
How can you learn and use these patterns?

• Bag of tricks—This is the toe-dipper’s approach to these patterns. If
you feel like you already have a pretty good handle on Smalltalk but
you want to make sure your golf bag is full of clubs, you can skim
these patterns looking for new techniques. I suggest the sections on
Collection Idioms and Messages as a starting point.

• Custom style guide—I’ve seen many development organizations,
recently, where one or two experienced Smalltalkers are asked to
provide leadership for a group of new Smalltalk developers. One of
the first tasks of the gurus is generally to educate the troops and
develop a style guide. You gurus can pick your favorite patterns
from the ones presented here, add important ones that I left out, or
fix ones I messed up, and use your new list as the basis for training
and standards.

• Whole hog—Read the patterns through once quickly. Then set this
book on your lap as you program. Every time you are about to do

I N T R O D U C T I O N 9

anything—write a method, name a variable, name a message—look
it up first. When you are sure you are following a pattern, you can
quit looking it up. At first, this is sure to be frustrating, and the more
experience you have before you start, the more frustrating it will be.

My experience going “whole hog” was that I spent a couple of frustrating
weeks programming at less than full speed. After that, I memorized enough
patterns to get back up to my old productivity, but the code I was producing
was cleaner than before. After a couple more weeks, I no longer had to look up
any patterns, and my productivity shot up while my code kept getting cleaner
and cleaner.

Why does this work? I think it is because when I used to program, I
would constantly have two parallel conversations going on in my head—what
should I name this variable and how should I approach naming this variable.
I was always looking for exceptions to my rules, trying to gain some small
advantage. When I chose to follow the patterns explicitly, that second conver-
sation disappeared and I paid more attention to the problem I was solving.

Learning a Pattern
If you’ve programmed before, whether in Smalltalk or another language,

you will certainly recognize some of the patterns immediately. However, some
patterns will present material that is new to you, or at least present it in a way
that is unfamiliar. What do you do when faced with a pattern you don’t imme-
diately understand? The following suggestions are in no particular order.

• Context—Have a look at the preceding and following patterns. Each
pattern solves a small part of the problem of building good systems.
Sometimes, putting a pattern in context helps you understand what
part of the problem the pattern is solving.

• Example—Each pattern has an example towards the end. Look at
the example and see if you can guess what rule created it. Then,
check with the pattern’s solution to see if your answer is the same
as mine.

• Problem/Solution—I like reading the patterns just as problems and
solutions. The Quick Reference Card is organized like that. The
intervening material supports the pattern, but sometimes it can be
distracting. Once you understand the problem and solution, the dis-
cussion may clarify your understanding.

• Look for Examples—Go through your Smalltalk image looking for
examples or counter-examples to a pattern. When you see a possi-

10 S M A L L T A L K B E S T P R A C T I C E P A T T E R N S

ble example, try to understand whether the purpose of the pattern
is the same as the purpose of the writer of the code.

• Try to Write an Example—Apply the pattern to some of your own
code. Use your best understanding of the pattern.

I N T R O D U C T I O N 11

This page intentionally left blank

Developers don’t ever develop from scratch. Many problems
recur in various guises throughout development. Mature engineer-
ing disciplines capitalize on the repetitive nature of development by
collecting handbooks of adequate solutions to recurring problems. A
bridge designer designs using the solutions in the handbook, like I-
beams, not the laws of physics.

Interest in software reuse reveals a recognition that software
engineering is just as repetitious as other engineering disciplines. If
leveraging the commonality in software development is the prob-
lem, though, large scale code reuse has not proven to be the answer.

Patterns form a more flexible basis for producing systematic
variations on the common themes of software engineering. Each
pattern records a solution to a single recurring problem, including
how to recognize the presence of the problem and how to generate
the solution so that it fits the context. Patterns lead naturally one
to the other, forming a kind of flexible fabric of decisions that can
solve large scale problems.

13

Patterns

2

Why Patterns Work
Here is the Big Assumption: There are only so many things objects can

do. Not in the sense that there are a limited number of applications, because
there will always be new domains to model, but in the sense that the same
structures of objects keep appearing over and over, regardless of the applica-
tion. The problems in the construction of objects are universal. You have to
name classes, relate classes via inheritance and delegation, relate methods in
the same class and different classes, name variables, and so on. Patterns
record these problems and how to approach solving them.

Communicating with our computers used to be the hardest thing about
developing systems. It has taken years, but advances in programming lan-
guages, programming environments, and programming style have largely
eliminated the barriers to instructing the computer.

When the hardest problem is solved, something else becomes the hardest
problem. The next bottleneck in software engineering is human communica-
tion. When we say that 70 percent of the development budget is spent on main-
tenance, we mean that the poor maintainers have to wade through piles of doc-
umentation and code to discover the intent of the original programmer. The
advent of widespread reuse exacerbates the problem. No longer is one main-
tainer the audience for one develope., Hundreds, thousands, or hundreds of
thousands of elaborators are trying to understand the intent of an abstractor.

When you want to improve communication, you have two choices; either
increase the bandwidth so you can communicate more bits or increase the con-
text shared between sender and receiver so the same number of bits mean
more. The first is impractical, especially in the presence of reuse (one devel-
oper can only be sliced into so many pieces), so we must find some way to make
our words mean more.

When you want to optimize any process, the first strategy to employ is to
find how the common case is simpler than the general case. For software engi-
neering, the general case is the programming language. Commonly, though,
we don’t go all the way back to the programming language to solve problems.
We look at what we did last week and last year, and what our friends did last
week and last year, and do something similar.

Small, tightly knit development organizations demonstrate the cumulative
effects of this kind of optimization. Because everyone shares the same experi-
ences, a simple word or phrase takes on a big meaning. “I’ve got this problem,
how am I going to solve it?” “Well, you could try that graphics editor trick.”
“Exactly. That should work great.” Small organizations become dramatically
more productive when they gather a critical mass of these “catch phrases.”

14 S M A L L T A L K B E S T P R A C T I C E P A T T E R N S

There are two problems with relying on an oral tradition to transmit this
information. First, members of the team become almost incomprehensible to
someone not initiated into the dialect. Second, the process doesn’t scale. The
team can’t grow big without losing the benefits of its private language, and one
team’s experience can’t transfer easily to another.

Patterns are a literary form for capturing and transmitting common
practice. Each pattern records a recurring problem, how to construct a solu-
tion for the problem, and why the solution is appropriate. By carrying along
their justification, patterns avoid the problem of most “style guides” that sim-
ply prescribe solutions without discussing why or when the solution is appro-
priate. If you are faced with the recurring problem named in a pattern, after
you read the pattern, you should be convinced that the solution called for in
the pattern is appropriate—or you should know why it isn’t.

Patterns exist and can be articulated at all levels of development. There
are patterns that tell you how to schedule and sequence system development,
how to create an application with a particular class library, how to design new
objects, and how to format source code so that it communicates as clearly as
possible.

Individual patterns become valuable when they are woven together to
form a sort of flexible recipe for development. Expertise in development often
hinges on knowing what problems should be solved first and what problems
can be safely ignored. When each pattern names patterns that precede and
complete it, the result is a rich language for capturing software engineering
expertise.

Role of Patterns

n Reading

These patterns are used (sometimes not in precisely the form they
appear here) in the construction of the Smalltalk images sold by the vendors.
Early in your Smalltalking career, you will spend most of your time reading
code from the image. If you know what to expect and you understand why the
code is the way it is, you will be able to read and understand more quickly
and thoroughly.

n Development

During development, you will run into the same Smalltalk problems over
and over. You can use these patterns as a guide for how to solve these prob-
lems. “What should I name this instance variable?” —flip to Role Suggesting

P A T T E R N S 15

Instance Variable Name and follow the solution. After you use a pattern a few
times, you will internalize it, so you won’t have to go continuously looking up
the details. You can put the quick reference guide up so you don’t have to pro-
gram with this whole book on your lap.

n Review

Group reviews will go much more smoothly if everyone knows and uses
the patterns. You can use the patterns to point out opportunities for improve-
ment in code—“I see, you need a Constructor Method for that class so these
three methods can be simpler.”

n Documentation

You can describe a system using patterns much more simply than if you
use ordinary prose. A few words can take the place of many paragraphs and do
a better job because so much is implied by the patterns. If I say, “#x:y: and
#r:theta: are the Constructor Methods for Point,” you know exactly what I am
talking about (or will when you read Constructor Method on page 23).

n Clean Up

When I am consulting, I clean up code using the patterns as a way of both
understanding what is there and preparing for making quick changes once I
understand what’s wrong and what’s required. I generally start with the for-
matting patterns (page 171), then simplify methods with Composed Method
(page 21) and Explaining Temporary Variable (page 108). Once I am done with
this, it is easy to see where there is duplicated code, the sign of an opportunity
for improvement.

Format
Each pattern records an atomic decision made repeatedly by experienced

Smalltalk developers. They are written so you can follow them almost blindly,
as just “good advice.” As your understanding matures, each pattern gives you
enough information that you can begin to delve into the “why” of the pattern.
After you have used a pattern enough, you should begin to understand its lim-
itations and when you should break the rule.

Each pattern has the same format, so you can quickly scan them when
you are looking for a solution to a particular problem. The following elements
appear in every pattern:

16 S M A L L T A L K B E S T P R A C T I C E P A T T E R N S

Element Purpose
Title Names the thing created as a result of exe-

cuting the pattern. Intended to be used
conversationally to refer to the pattern—
“Oh, I think you need a State Object here.”

Preceding patterns Briefly describes which pattern precedes
this one and why. Some patterns are non-
sense taken out of order. Other orderings
are the result of experience about which
problems are most important and which
can be safely deferred. Appears in Avant
Garde Bold Italic.

Problem Stated as a question. Reading the problem
will quickly tell you whether you are inter-
ested in the rest of the pattern. Appears in
Avant Garde.

Forces Describes the constraints on any solution to
the problem and argues for the solution
called for in this pattern. After reading the
forces section, you should either be con-
vinced that the solution is valid for your sit-
uation or you should know why the solution
isn’t valid. Sometimes it takes the form of a
description of alternatives and why they
don’t work, sometimes it’s just a discussion
of the influences on the design decision.

Solution Gives you an unambiguous, concrete
recipe for creating the thing named by the
title of the pattern. These will typically be
development environment actions—sub-
class this, name this variable thus-and-so,
etc. Appears in Avant Garde Italic.

Discussion Tells you how to make practical use of the
pattern. May contain an example of use or
give you issues to watch out for. Appears
in Avant Garde.

Following patterns Tells you what patterns should be consid-
ered next. Appears in Avant Garde Bold
Italic.

P A T T E R N S 17

You can learn a lot about the patterns by just reading the titles, prob-
lems, and solutions. Indeed, that is what the quick reference card contains.
When you want to go beyond the simple recipes, though, you will need to study
the forces section and the links between patterns to understand their intent.

18 S M A L L T A L K B E S T P R A C T I C E P A T T E R N S

Objects model the world through behavior and state. Behavior
is the dynamic, active, computational part of the model. State is
what is left after behavior is done, how the model is represented
before, after, and during a computation.

Of the two, behavior is the more important to get right. The
primacy of behavior is one of the odd truths of objects; odd because
it flies in the face of so much accumulated experience. Back in the
bad old days, you wanted to get the representation right as quickly
as possible because every change to the representation bred
changes in many different computations.

Objects (done right) change all that. No longer is your system
a slave of its representation. Because objects can hide their repre-
sentation behind a wall of messages, you are free to change repre-
sentation and only affect one object.

Behavior in systems of objects is specified in two ways; with
messages and methods. I saw a great comment at OOPSLA
(the Object Oriented Programming Languages, Systems and
Applications conference). It said, “This seems an awful fuss for a
fancy procedure call.” Well, separating computation into messages
and methods and binding the message to the method at run time,

19

Behavior

3

based on the class of the receiver, may seem like a small change from an ordi-
nary procedure call, but it is a small change that makes a big difference.

This section tells you how to specify behavior so that your intent is clear-
ly communicated to your reader. Many constraints affect your choices when
specifying behavior. The more centralized the flow of control, the easier it is to
follow in the sense that you don’t have to go bouncing around all over the place
to understand how work is accomplished. However, centralizing control kills
flexibility. You want to have lots of objects involved so you have many oppor-
tunities to replace objects to change the system, and so you can completely
factor code.

Methods
Methods are important to the system because they are how work gets

done in Smalltalk. Just as important, methods are the way you communicate
to readers how you intended for work to get done. You must write your methods
with both of these audiences in mind. Methods must do the work they are sup-
posed to do but they must also communicate the intent of the work to be done.

Methods decompose the function of your program into easily digestible
chunks. Carefully breaking a computation into methods and carefully choos-
ing their names communicates more about your intentions to a reader than
any other programming decision, besides class naming.

Methods are the granularity of overriding. A well factored superclass can
always be specialized by overriding a single method, without having to copy
part of the superclass code into the subclass.

Methods don’t come for free. Managing all those bits and pieces of code—
writing them in the first place, naming them, remembering, rediscovering,
and communicating how they all fit together—all take time. If there is no ben-
efit to be gained, bigger methods would be better than small because of the
reduced management overhead.

Methods cost in performance as well. Each method invocation takes pre-
cious computer cycles. The trick to getting good performance is using methods
as a lever to make your performance measurement and tuning more effective.
In my experience, better factored code, with lots of small methods, both allows
more accurate and concise performance measurement (because there aren’t
little snippets of code duplicated all over) and provides leverage for tuning
(through techniques like Caching Instance Variable).

Overall, the goal of breaking your program into methods is to communi-
cate your intent clearly with your reader, provide for future flexibility, and set
yourself up for effective performance tuning where necessary.

20 S M A L L T A L K B E S T P R A C T I C E P A T T E R N S

Composed Method

You are implementing a method named with an Intention Revealing Selector (p. 49).

• How do you divide a program into methods?

Programs need to do more than just instruct a computer, they need to
communicate to people as well. How your program is broken into methods (as
well as how big those methods are) is one of the most important decisions you
will make as you refine your code so that it communicates as clearly as possi-
ble. The decision is complicated by the many factors affecting it and the his-
tory of programming practice that has traditionally optimized machine
resources at the cost of people’s time.

Messages take time. The more small methods you create, the more mes-
sages you will execute. If all you were worried about was how fast your pro-
gram would run, you would arrange all of your code in a single method. This
radical approach to performance tuning invokes enormous human costs and
ignores the realities of performance tuning well-structured code, which often
results in several order-of-magnitude improvements.

Simple minded performance tuning is not the only factor suggesting that
large methods are best. Following the flow of control in programs with many
small methods can be difficult. Novice Smalltalk programmers often complain
that they can’t figure out where any “real” work is getting done. As you gain
experience, you will need to understand the flow of control through several
objects less often. Well chosen message names let you correctly assume the
meaning of invoked code.

The opportunity to communicate through intention revealing message
names is the most compelling reason to keep methods small. People can read
your programs much more quickly and accurately if they can understand them
in detail, then chunk those details into higher level structures. Dividing a pro-
gram into methods gives you an opportunity to guide that chunking. It is a
way for you to subtly communicate the structure of your system.

Small methods ease maintenance. They let you isolate assumptions.
Code that has been written with the right small methods requires the change
of only a few methods to correct or enhance its operation. This is true whether
you are fixing bugs, adding features, or tuning performance.

Small methods also make inheritance work smoothly. If you decide to
specialize the behavior of a class written with large methods, you will often
find yourself copying the code from the superclass into the subclass and chang-
ing a few lines. You have introduced a multiple update problem between the

B E H A V I O R 21

superclass method and the subclass method. With small methods, overriding
behavior is always a case of overriding a single method.

• Divide your program into methods that perform one identifiable
task. Keep all of the operations in a method at the same level of
abstraction. This will naturally result in programs with many small
methods, each a few lines long.

You can use Composed Method top-down. While you are writing a
method, you can (without having an implementation yet) invoke
several smaller methods. Composed Method becomes a thought
tool for breaking your development into pieces. Here is an example
of a top-down Composed Method:

Controller>>controlActivity
self controlInitialize.
self controlLoop.
self controlTerminate

You can also use Composed Method bottom-up, to factor com-
mon code in a single place. If you find yourself using the same
expression (which might be only 3 or 2 or even 1 line of code), you
can improve your code by putting the expression in its own method
and invoking it as needed.

Perhaps most importantly, you can use Composed Method to dis-
cover new responsibilities while you are implementing. Any time
you are sending two or more messages from one object to anoth-
er in a single method, you may be able to create a Composed
Method in the receiver that combines those messages. Such meth-
ods are invariably useful from other parts of your system.

Create objects with a Constructor Method (p. 23). Put boolean expressions into a
Query Method (p. 30). Invoke Messages to get work done elsewhere, sometimes
by Delegation (p. 64). Use a Temporary Variable (p. 103) for temporary storage.
Represent constants with a Constant Method (p. 87).

22 S M A L L T A L K B E S T P R A C T I C E P A T T E R N S

Constructor Method

A Composed Method (p. 21) has had to create an object.

• How do you represent instance creation?

The most flexible way to represent instance creation is by a simple “new”
method, followed by a series of messages from the client to the new instance.
That way, if there are different combinations of parameters that make sense,
the client can take advantage of just those parameters it needs.

Creating a Point in this style looks like this:

Point new x: 0; y: 0

Further flexibility is provided in this approach to half-way construct an
object in one place, and then pass it off to another to finish construction. This
can simplify communications if you don’t have to modify the design to put all
the creation parameters in one place.

On the other hand, what is the first thing you want to know about a class,
once you’ve decided it may do what you want it to do? The first question is
“What does it take to create an instance?” As a class provider, you’d like the
answer to this question to be as simple as possible. With the style described
above, you have to track down references to the class and read the code before
you get an inkling of how to create a useable instance. If the code is complex,
it may take a while before you figure out what is required and what is option-
al in creating an instance.

The alternative is to make sure that there is a method to represent each
valid way to create an instance. Does this result in a proliferation of instance
creation methods? Almost never. Most classes only have a single way to create
an instance. Almost all of the exceptions only have a handful of variations. For
the rare case where there really are hundreds or thousands of possible correct
combinations of parameters, use Constructor Methods for the common cases
and provide Accessor Methods for the remainder.

With this style of instance creation, the question “How can I create a
valid instance?” can be simply answered by looking at the “instance creation”
protocol of the class methods. The Intention Revealing Selectors communicate

B E H A V I O R 23

what the instance will do for you, while the Type Suggesting Parameter
Names communicate the parameters required.

• Provide methods that create well-formed instances. Pass all
required parameters to them.

Point class>>x:y: is a Constructor Method because it takes both of
the required numbers as parameters.

Some people think that the keywords in the Constructor Method
have to be named the same as the instance variables that will
eventually be initialized while constructing an instance. You
should always look for a way of expressing more intention with
a selector (Intention Revealing Selector). For example, Point
class>>r:theta: is a Constructor Method I add when I am working
in polar coordinates:

Point class>>r: radiusNumber theta: thetaNumber
^self

x: radiusNumber * thetaNumber cos
y: radiusNumber * thetaNumber sin

SortedCollection class>>sortBlock: aBlock is a Constructor Method
because it returns a SortedCollection that is ready to use.
SortedCollection class>>new is also a Constructor Method because
it returns a SortedCollection that is ready to use, too. It just has a
default sort block.

Put Constructor Methods into a method protocol called “instance
creation.”

If the method takes parameters, you will need a Constructor Parameter Method
(p. 25). Give your method an Intention Revealing Selector (p. 49) that describes
the roles of the parameters, not their type. A Constructor Method that is used
extensively may deserve a Shortcut Constructor Method (p. 26).

24 S M A L L T A L K B E S T P R A C T I C E P A T T E R N S

Constructor Parameter Method

A Constructor Method (p. 23) needs to pass parameters on to the new instance.
You need to initialize Common State (p. 80).

• How do you set instance variables from the parameters to a
Constructor Method?

Once you have the parameters of a Constructor Method to the class, how
do you get them to the newly created instance?

The most flexible and consistent method is to use Setting Methods to set
all the variables. Thus, a Point would be initialized with two messages:

Point class>>x: xNumber y: yNumber
^self new

x: xNumber;
y: yNumber;
yourself

The problem I have run into with this approach is that Setting Methods can
become complex. I have had to add special logic to the Setting Methods to check
whether they are being sent during initialization; if so I just set the variable.

Remember the rule that says “Say things once and only once?” Special
casing a Setting Method for use during initialization is a violation of the first
part of that rule. You have two circumstances—state initialization during
instance creation and state change during computation—but only one method.
You have two things to say and you’ve only said one thing.

The Setting Method solution also has the drawback that if you want to
see the types of all the variables, you have to look at the Type Suggesting
Parameter Names in several methods. You’d like the reader to be able to look
at your code and quickly understand the types of the Instance Variables.

• Code a single method that sets all the variables. Preface its name
with “set,” then the names of the variables.

Using this pattern, the code above becomes:

B E H A V I O R 25

Point class>>x: xNumber y: yNumber
^self new

setX: xNumber
y: yNumber

Point>>setX: xNumber y: yNumber
x := xNumber.
y := yNumber.
^self

Note the Interesting Return Value in setX:y:. It is there because the
return value of the method will be used as the return value of the
caller.

Put Constructor Parameters Methods in a method protocol called
“private.”

If you are using Explicit Initialization (p. 83), now is a good time to invoke it, to
communicate that initialization is part of instance creation.

Shortcut Constructor Method

You have identified a pervasive Constructor Method (p. 23).

• What is the external interface for creating a new object when a
Constructor Method is too wordy?

The typical way you create a new object is to send a message to the class
that creates a new instance for you; “Point x: width y: height”. This is good
because it is very explicit about what object is being created. If you want to
find out what happens as a result of this expression, you know just where to
look.

There are two problems with this style of interface for object creation.
The most important is that it is wordy. If Point class>>x:y: were the only inter-
face for creating points, I dare say the Smalltalk source file would grow by a
few percent. For very commonly used objects, you can create a more concise
interface by sending a message to one of the arguments that then turns
around and sends the longer form.

26 S M A L L T A L K B E S T P R A C T I C E P A T T E R N S

The second problem with an explicit class-based interface for object cre-
ation is that it can be misleading. There are times when differences in the
classes of the arguments change the concrete class returned by the message.
For example, different kinds of Collections might need different kinds of
Streams.

The very conciseness of representing object creation as a message to one
of the arguments is also its weakness. Such a message can easily be mistaken
for built in language syntax (“@” is the classic example). It puts a burden on
the programmer to remember the message. It cannot be easily looked up by
looking at the instance creation methods of the class. However, the clarity or
concision gains for a constructor method can be substantial.

• Represent object creation as a message to one of the arguments
to the Constructor Method. Add no more than three of these
Shortcut Constructor Methods per system you develop.

The classic example in Smalltalk is Point creation. The Constructor
Method is:

Point class>>x: xNumber y: yNumber
^self new

setX: xNumber
y: yNumber

The Shortcut Constructor Method is:

Number>>@ aNumber
^Point

x: self
y: aNumber

Interestingly, the ParcPlace image has been moving away from
using Point>>extent: and Point>>corner: as Shortcut Constructor
Methods for Rectangles.

Put Shortcut Constructor Methods in a method protocol called “converting.”

B E H A V I O R 27

Conversion

• How do you convert information from one object’s format to
another’s?

Different clients may need the same information presented with different
protocol. For example, one object may need to look at a Collection sorted,
another with duplicates removed.

The simplest solution is to add all of the possible protocol needed to every
object that may be asked of it. This might result in unnecessarily large public
protocols with the resulting difficulty in publication and understanding. The
same selector might need to mean different things to different clients, making
this approach simply unworkable.

• Convert from one object to another rather than overwhelm any
one object’s protocol.

Some conversions are between similar objects, like changing a
String of 8-bit ASCII characters to a String of 16-bit ISO characters.
Some conversions are between different objects, like changing a
String to a Date or a Number to a Pointer.

Conversions that return objects with similar responsibilities should use a Converter
Method (p. 28). To convert to an object with different protocol use a Converter
Constructor Method (p. 29).

Converter Method

You are implementing a Conversion.

• How do you represent simple conversion of an object to another
object with the same protocol but different format?

For a long time, it bothered me that there was a String>>asDate method.
I couldn’t quite put my finger on what it was that bothered me about it,
though. Then, I walked into a project where they had taken the idea of con-
version to extremes. Every domain object had twenty or thirty different con-
version methods. Every time a new object was added, it had to have all twen-
ty or thirty methods before it would start working with the rest of the system.

28 S M A L L T A L K B E S T P R A C T I C E P A T T E R N S

One problem with representing conversion as methods in the object to be
converted is that there is no limit to the number of methods that can be added.
The protocol grows and grows without limit. Another is that it ties the receiv-
er, however tenuously, with a class of which it would otherwise be oblivious.

I avoid the protocol explosion problem by only representing conversions
with a message to the object to be converted when:

• The source and destination of conversion share the same protocol.

• There is only one reasonable way to implement the conversion.

• Provide a method in the object to be converted that converts to
the new object. Name the method by prepending “as” to the
class of the object returned.

Here are some examples. Notice that the object returned has the
same protocol as the receiver (Sets act like Collections, Floats act
like Numbers).

Collection>>asSet
Number>>asFloat

Put Converter Methods in a method protocol called “private.”

Choose an Intention Revealing Selector (p. 49) for your conversion.

Converter Constructor Method

You need to implement Conversion (p. 28) to a new kind of object.

• How do you represent the conversion of an object to another with
different protocol?

In many ways, the simplest way to communicate the presence of a con-
version is a Converter Method. If I am explaining Date to you and you already
know about Strings, it is tempting to say, “You can just convert a String to a
Date by sending asDate to the String.”

B E H A V I O R 29

This solution risks cluttering common sources of conversion like Strings
and Numbers with protocol that is irrelevant to their primary mission. The
Visual Smalltalk implementation of String has 36 as... methods, half of which
return objects with completely different protocols. I have seen applications
where String has been “enhanced” with more than 100 Conversion Methods.

• Make a Constructor Method that takes the object to be convert-
ed as an argument.

For example, Date class>>fromString: is a Converter Constructor
Method. It takes the String to be converted as an argument and
returns a Date.

Put Converter Constructor Methods in a protocol called “instance
creation.”

You need to choose an Intention Revealing Selector (p. 49) for the method.

Query Method

A Composed Method (p. 21) has had to execute a boolean expression.

• How do you represent testing a property of an object?

There are actually two decisions here. The first is deciding what to return
from a method that tests a property. The second is what you should name the
method.

Designing the protocol for a Query Method provides you with two alter-
natives. The first is to return one of two objects. For example, if you have a
switch that can be either on or off, you could return either #on or #off.

Switch>>makeOn
status := #on

Switch>>makeOff
status := #off

Switch>>status
^status

30 S M A L L T A L K B E S T P R A C T I C E P A T T E R N S

That leaves clients needing to know how Switch stores its status:

WallPlate>>update
self switch status = #on ifTrue: [self light makeOn].
self switch status = #off ifTrue: [self light makeOff]

A maintenance programmer who innocently decides to change the
Symbols to #On and #Off will break the client.

It is far easier to maintain a relationship based solely on messages.
Rather than status returning a Symbol, it is better for Switch to provide a sin-
gle method that returns a Boolean; true if the Switch is on and false if the
Switch is off.

Whether this is represented in the Switch as a variable holding a Boolean
or a variable holding one of two Symbols is irrelevant to designing the protocol.

The naming question is a bit more sticky. The simplest name for a
method that tests a property and returns a Boolean is just a simple name. In
the example above, I’d be tempted to call the method “on”:

Switch>>on
“Return true if the receiver is on, otherwise return false.”

However, this leads to confusion. Does “on” mean “is it on?” or “make it on?”

• Provide a method that returns a Boolean. Name it by prefacing
the property name with a form of “be”—is, was, will, etc.

Here are some examples from Smalltalk:

isNil
isControlWanted
isEmpty

B E H A V I O R 31

If you use the logical inverse of a Query Method a lot, also provide
an inverse method, like notNil or notEmpty. Actually, if you can find
a positive way of saying the inverse, that’s even better. On the
other hand, isUseful and isFull don’t make much sense.

Put Query Methods in a protocol called “testing.”

Comparing Method

• How do you order objects with respect to each other?

The comparison messages <, <=, >, >= are implemented mostly in
Magnitude and its subclasses. They are used for all sorts of purposes—sorting,
filtering, and checking for thresholds.

When you create new objects, you have the option of implementing com-
parison methods yourself. When I was a year or two into Smalltalk, I seem to
remember implementing comparison methods any time I put a kind of object
into a SortedCollection. As time went on, I used the sort block (see
SortedCollection) more and more and implemented “<=“ less and less.

I still implement “<=” when there is one overwhelming way to order a
new object. That way, those using it can take a collection containing those
objects and sort them just by saying “asSortedCollection.”

Most uses of sorting in the user interface require more flexibility than
can be provided by a single comparison order. Expect to use sort blocks with
Temporarily Sorted Collection.

• Implement “<=” to return true if the receiver should be ordered
before the argument.

Numbers are the obvious example of Comparing Methods.
Characters and Strings also implement Comparing Methods.

If you had a Collection of timed Events, the Comparing Method
could order them by time:

Event>><= anEvent
^self timestamp <= anEvent timestamp

Put Comparing Methods in a protocol called “comparing.”

32 S M A L L T A L K B E S T P R A C T I C E P A T T E R N S

Ordering is often done in terms of Simple Delegation (p. 65) to the ordering of
other objects. For multiple orderings, use a Temporarily Sorted Collection (p. 155).

Reversing Method

A Composed Method (p. 21) may not read right because messages are going to
too many receivers. You may have a Cascade (p. 183) that doesn’t look quite
right because several different objects need to receive messages.

• How do you code a smooth flow of messages?

Good code has a rhythm that makes it easy to understand. Code that
breaks the rhythm is harder to read and understand.

Point>>printOn: aStream
x printOn: aStream.
aStream nextPutAll: ‘ @ ‘.
y printOn: aStream

Here we have messages going to three different objects. We want to read
this as a three part operation, but because the operations are on three differ-
ent objects it is hard to put the pieces together.

We can solve the problem by making sure that all messages go through a
single object. However, creating new selectors just for the fun of it is a bad
idea. Each selector in the system must justify its existence by solving a real
problem; encoding an important decision.

Adding a new method with a new selector to make code read more
smoothly is a good use of the selector namespace.

• Code a method on the parameter. Derive its name from the origi-
nal message. Take the original receiver as a parameter to the
new method. Implement the method by sending the original mes-
sage to the original receiver.

By defining Stream>>print:, we can smooth out the above method:

B E H A V I O R 33

Stream>>print: anObject
anObject printOn: self

Point>>printOn: aStream
aStream

print: x;
nextPutAll: ‘ @ ‘;
print: y

This pattern seems to veer perilously close to the realm of pure aes-
thetics. However, I often find that the desire to use it is followed
closely by the absolute need to use it. As soon as you have all the
messages going to a single object, that object can easily vary with-
out affecting any of the parameters.

Put Reversing Methods in a method protocol named after the mes-
sage being reversed. For example, Stream>>print: is in the method
protocol “printing.”

Method Object

You have a method that does not simplify well with Composed Method (p. 21).

• How do you code a method where many lines of code share
many arguments and temporary variables?

The behavior at the center of a complex system is often complicated. That
complexity is generally not recognized at first, so the behavior is represented
as a single method. Gradually that method grows and grows, gaining more
lines, more parameters, and more temporary variables, until it is a monstrous
mess.

Far from improving communications, applying Composed Method to such
a method only obscures the situation. Since all the parts of such a method gen-
erally need all the temporary variables and parameters, any piece of the
method you break off requires six or eight parameters.

The solution is to create an object to represent an invocation of the
method and use the shared namespace of instance variables in the object to

34 S M A L L T A L K B E S T P R A C T I C E P A T T E R N S

enable further simplification using Composed Method. However, these
objects have a very different flavor than most objects. Most objects are
nouns, these are verbs. Most objects are easily explainable to clients, these
are not because they have no analog in the real world. However, Method
Objects are worth their strange nature. Because they represent such an
important part of the behavior of the system, they often end up at the cen-
ter of the architecture.

• Create a class named after the method. Give it an instance vari-
able for the receiver of the original method, each argument, and
each temporary variable. Give it a Constructor Method that takes
the original receiver and the method arguments. Give it one
instance method, #compute, implemented by copying the body
of the original method. Replace the method with one that creates
an instance of the new class and sends it #compute.

This is the last pattern I added to this book. I wasn’t going to include
it because I use it so seldom. Then it convinced an important client
to give me a big contract. I realized that when you need it, you
REALLY need it.

The code looked like this:

Obligation>>sendTask: aTask job: aJob
| notProcessed processed copied executed |
...150 lines of heavily commented code...

First, I tried Composed Method. Every time I tried to break off a
piece of the method, I realized I would have to send it both para-
meters and all four temps:

Obligation>>prepareTask: aTask job: aJob notProcessed:
notProcessedCollection processed: processedCollection
copied: copiedCollection executed: executedCollection

Not only was this ugly, but the resulting invocation didn’t save any
lines of code (see Indented Control Flow, below). After fifteen min-
utes or so of struggle, I went back to the original method and used
Method Object. First I created the class:

B E H A V I O R 35

Class: TaskSender
superclass: Object
instance variables: obligation task job notProcessed

processed copied executed

Notice that the name of the class is taken directly from the selector
of the original method. Notice also that the original receiver, both
arguments, and all four temps became instance variables.

The Constructor Method took the original receiver and both argu-
ments as parameters:

TaskSender class>>obligation: anObligation task: aTask
job: aJob

^self new
setObligation: anObligation
task: aTask
job: aJob

Next I copied the code from the original method. The only change
I made was textually replacing “aTask” with “task” and “aJob” with
“job,” since parameters are named differently than instance vari-
ables. Oh, I also deleted the declaration of the temps, since they
were now instance variables.

TaskSender>>compute
...150 lines of heavily commented code...

Then I changed the original method to create and invoke a
TaskSender:

36 S M A L L T A L K B E S T P R A C T I C E P A T T E R N S

Obligation>>sendTask: aTask job: aJob
(TaskSender

obligation: self
task: aTask
job: aJob) compute

I tried out the method to make sure I hadn’t broken anything. Since
all I had been doing was moving text around, and I did it carefully,
the revised method and its associated object worked the first time.

Now came the fun part. Since all the pieces of the method now
shared the same instance variables, I could use Composed
Method without having to pass any parameters. For example, the
piece of code that prepared a Task became a method called
#prepareTask.

The whole job took about two hours, but by the time I was done the
#compute method read like documentation; I had eliminated
three of the instance variables, the code as a whole was half of its
original length, and I’d found and fixed a bug in the original code.

Execute Around Method

• How do you represent pairs of actions that have to be taken
together?

It is common for two messages to an object to have to be invoked in tan-
dem. When a file is opened, it has to be closed. When a context is pushed, it
has to be popped.

The obvious way to represent this is by publishing both methods as part
of the external protocol of the object. Clients need to explicitly invoke both, in
the right order, and make sure that if the first is called, the second is called as
well. This makes learning and using the object more difficult and leads to
many defects, such as file descriptor leaks.

• Code a method that takes a Block as an argument. Name the
method by appending “During: aBlock” to the name of the first

B E H A V I O R 37

method that needs to be invoked. In the body of the Execute
Around Method, invoke the first method, evaluate the block, then
invoke the second method.

I learned this pattern from Cursor>>showWhile:

Cursor>>showWhile: aBlock
| old |
old := Cursor currentCursor.
self show.
aBlock value.
old show

I use it lots of places. For example, I use it for making sure files get
closed.

File>>openDuring: aBlock
self open.
aBlock value.
self close

You will often want to wrap the Block evaluation in an exception
handler so you are assured the second message gets sent.

File>>openDuring: aBlock
self open.
[aBlock value] ensure: [self close]

38 S M A L L T A L K B E S T P R A C T I C E P A T T E R N S

Put Execute Around Methods in a method protocol named after
the operations they encapsulate. For example, File>>openDuring:
goes in the method protocol “opening.”

You need to give your method an Intention Revealing Selector (p. 49).

Debug Printing Method

• How do you code the default printing method?

Smalltalk provides a single mechanism for turning objects into printable
strings; printOn:. Strings are great because they fit nicely into generic inter-
face components; lists display strings; tables display strings; text editors and
input fields display strings.

Strings are also useful in generic programming tools, like the Inspector.
As a programmer, you can often look at the string generated by an object and
instantly diagnose a problem.

The two audiences for strings generated by objects, you and your client,
are often in conflict. You want all the internal, structural details of your object
laid out in one place so you don’t have to go searching layers and layers of
objects to find what you want. Your client assumes the object is working cor-
rectly and just wants to see externally relevant aspects of the object in the
string.

VisualWorks has taken the valuable step of separating these two uses of
object-to-string conversion. If you want a client-consumable string, you send
“displayString.” If you want a programmer-consumable string, you send
“printString.” For Smalltalks with a single message for printing, you need to
choose which audience you will address.

• Override printOn: to provide information about an object’s struc-
ture to the programmer.

Associations print so that programmers can read them:

B E H A V I O R 39

Association>> printOn: aStream
aStream

print: self key;
nextPutAll: ‘->’;
print: self value

The saving grace of this pattern is that all the user interface builders
have ways of parameterizing which message they will send to
objects to get strings. Thus, when you create a list and send it some
objects, you can also say “...and send the message ‘userString’ to
the objects to get strings.”

Put Printing Methods in the method protocol “printing.”

Method Comment

You have written a Composed Method (p. 21).

• How do you comment methods?

Back in the days of assembly language programming, the distance
between what you intended as a programmer and how the computer forced you
to express that intention was enormous. Every few lines (sometimes on every
line), you needed a little story to help you understand what the next few
instructions really meant.

As programming languages progressed, moving the expression closer to
what it really meant, the habit of commenting every few lines relaxed some-
what. Many commenting standards settled on a comment at the beginning of
a procedure, explaining the purpose of the procedure and describing the argu-
ments and return value.

I find no value in this kind of “template” comment. Someone recently
asked me point blank, “What percentage of your methods have comments?” I
answered, “Between 0 and 1 percent.” Oh the uproar! As a sanity check, I
asked a developer at one of my clients (where I had taught Smalltalk based on
an earlier version of these patterns) what percentage of the methods of their
200 class system had comments. His answer, “between 0 and 1 percent.” “Has
that ever been a problem?” “No, never.”

40 S M A L L T A L K B E S T P R A C T I C E P A T T E R N S

I have certainly heard extravagant claims of “self documenting” code over
the years. Shoot, Forth was supposed to be self documenting. What is it about
Smalltalk code written with these patterns that lets it communicate tactical
information without any supporting prose?

The information in the “template” comment is captured in the code with
various patterns; Intention Revealing Selector communicates what the
method does; Type Suggesting Parameter Name says what the arguments are
expected to be; and various types of method patterns suggest return types, like
Query Method for methods returning Booleans.

There is another important topic to communicate about a procedure—
how it handles the various cases it is coded for. In Smalltalk, important cases
become objects in their own right (see Choosing Message below), so each
method only computes a single case. The result is code that communicates all
the necessary tactical information to the reader.

Regardless of how well the system as a whole is put together, the big pic-
ture cannot easily be read method by method. There has to be another way of
teaching the reader about the system as a whole. I use literate programs,
although class and package comments will do in a pinch. However, trying to
shoehorn a description of the architecture into a method comment is unlikely
to work well, if only because the reader most likely won’t stumble across it.

• Communicate important information that is not obvious from the
code in a comment at the beginning of the method.

Here are examples of information that can be difficult to commu-
nicate solely through the code:

• Method dependencies—Sometimes one method must be
invoked before another can execute correctly. A comment
can warn the reader not to invoke one without the other.
Sometimes you can use Composed Method or Execute
Around Method to communicate the same information.

• To-do—I often write comments while I am prototyping to
remind myself of some thought I don’t want to lose. “Look at
using a Dictionary later for efficiency,” for example. When I
reconsider the thought later, I delete the comment after
choosing whether to follow it.

• Reasons for change, particularly base class—If you need to
change something, the reason for the change is often not
immediately apparent in the code. This often occurs when

B E H A V I O R 41

changing a method supplied by a Smalltalk vendor. A com-
ment helps a reader understand why you did what you did if
you can’t make the code say it.

Here is my favorite example of a useless comment:

(self flags bitAnd: 2r1000) = 1 “Am I visible?”
ifTrue: [...]

A quick look at Composed Method yields:

isVisible
^(self flags bitAnd: 2r1000) = 1

And the original code turns into:

self isVisible
ifTrue: [...]

I expect you to be skeptical of this pattern. Here’s an experiment
you can perform in the privacy of your own workstation. Write code
with comments for every method. Go through your methods one
by one and delete only those comments that duplicate exactly
what the code says. If you can’t delete a comment, see if you can
refactor the code using these patterns (Composed Method and
Intention Revealing Selector are especially useful) to communicate
the same thing. I will be willing to bet that when you are done you
will have almost no comments left.

One last example from client code:

42 S M A L L T A L K B E S T P R A C T I C E P A T T E R N S

Bin>>run
“Tell my station to process me.”
self station process: self

You can translate the code directly into the comment:

English Code

Tell my station self station
to process process:
me self

Messages
Messages are the heartbeat of a Smalltalk program. Without messages,

there would be no program. Deftly managing this heartbeat is the first skill of
the expert Smalltalk programmer. When you learn to see your program in
terms of patterns of messages and you learn what can be done to that stream
of messages to solve problems, then you will be able to solve any problem you
can imagine in Smalltalk.

Procedural languages explicitly make choices. When you code up a case
statement, you say once and for all what all the possibilities are. In Smalltalk,
you use messages to make choices for you. The extra added bonus is that the
set of choices is not set in concrete. You can come along later and add new
choices without affecting the existing choices just by defining a new class.

This section talks about the tactical ways you can use the message
stream. It gives you a toolbox of techniques for solving problems by manipu-
lating the communication between objects.

Message

A Composed Method (p. 21) needs work done.

• How do you invoke computation?

In the earliest days of computing, this wasn’t even a question. A program
was one big routine that executed from start to finish.

B E H A V I O R 43

As soon as programs got at all complicated, “program-as-a-routine” broke
down. Conceptually, it was just too hard to manipulate the whole program at
once. The limited resources of the era also came into play. When you had the
same code duplicated in many places, you could save space by using a single
copy of the code and invoking it everywhere you needed. The two factors, men-
tal overload and memory overload, worked with each other. By giving the bro-
ken-out parts of the routine names, you saved space and you got a convenient
tool for understanding the program a piece at a time.

Here things stood for a number of years. The client would invoke a sub-
routine. The subroutine would run. The client would regain control.

At the same time, there was a growing realization that a disciplined use
of control structures was critical to the quality and cost of a program. If-then-
else and case statements were invented to capture common ways to vary the
execution of a program.

Simula brilliantly combined these two ideas. Conditional code says “exe-
cute this part of the routine or that part.” A subroutine call says “execute that
code over there.” A message says “execute this routine over here or that rou-
tine over there, I don’t really care.”

Smalltalk went a step further by making messages the sole control struc-
ture in the system. All procedural control structures, conditionals and loops,
are implemented in terms of messages. For the most part, explicit conditional
logic plays a much smaller role in a Smalltalk program than a procedural pro-
gram. Messages do most of the work.

• Send a named message and let the receiving object decide
what to do with it.

Since everything in Smalltalk happens as a result of a message, it’s
tough to pick out one or two examples. #size is a message you can
send to any object to get the number of elements (exclusive of
named variables) it contains.

Use Delegation (p. 64) to get another object to do work for you. A Choosing
Message (p. 45) invokes one of several alternatives. A Decomposing Message
(p. 47) documents intent and provides for later refinement. An Intention Revealing
Message (p. 48) maps intention to implementation. Use Super (p. 59) to invoke
behavior in a superclass.

44 S M A L L T A L K B E S T P R A C T I C E P A T T E R N S

Choosing Message

You are using a Message (p. 43).

• How do you execute one of several alternatives?

The long term health of a system is all about managing themes and vari-
ations. When you first write a program, you have a particular theme in mind.
Setting the program free in the world inevitably suggests all sorts of varia-
tions on what you first thought was a simple task.

Procedural programs implement variations with conditional logic, either
if-then-else or case statements. Two problems arise from such hard-coded
logic. First, you cannot add a new variation without modifying the logic. This
can be a ticklish operation, getting the new variation in without disturbing the
existing variations. Second, such logic tends to propagate. You do not have to
account for the variation in one place, you have to account for it in several.
Adding a new variation means tickling all of the places where the logic lives.

Messages provide a disciplined way to handle theme-and-variation pro-
gramming. Because the variations live in different objects, they have much
less opportunity to interfere with each other than just putting the variations
in different parts of the same routine. The client, the object invoking the vari-
ations, is also isolated from what variation is currently active.

Adding a new variation is as simple as adding a new object that provides
the same set of messages the other variations provide and introducing it to the
object that wants to invoke the variations.

Sometimes, even when beginners have several kinds of objects, they still
resort to conditional logic:

responsible := (anEntry isKindOf: Film)
ifTrue: [anEntry producer]
ifFalse: [anEntry author]

Code like this can always be transformed into communicative, flexible
code by using a Choosing Message:

B E H A V I O R 45

Film>>responsible
^self producer

Entry>>responsible
^self author

Now you can write:

responsible := anEntry responsible

But you probably don’t need the Explaining Temporary Variable any
more.

• Send a message to one of several different kinds of objects, each
of which executes one alternative.

When you begin a program, you won’t be able to anticipate the
variations. As your program matures, you will see explicit condition-
al logic creep in. When you can see the same logic repeated in
several places, it is time to find a way to represent the alternatives
as objects and invoke them with a choosing message.

Here are some examples of choosing messages:

Message Alternatives

Number>>+ aNumber Different code will be invoked
depending on what kind of Number
the receiver is. Floats add differently
than Integers, which add differently
than Fractions.

Object>>printOn: aStream Every object has the opportunity to
change how it is represented to the
programmer as a String.

Collection>>includes: Different collections implement this
very differently. The default imple-
mentation takes time proportional to
the size of the collection. Others take

46 S M A L L T A L K B E S T P R A C T I C E P A T T E R N S

constant time.

If a Choosing Message is sent to self, it is done so in anticipation of
future refinement by inheritance.

Give the message an Intention Revealing Selector (p. 49). Look at the section on
Methods (p. 20) for examples of the kind of code that can be invoked as variations.

Decomposing Message

You are using a Message (p. 43) to break a computation into parts.

• How do you invoke parts of a computation?

A Choosing Message gets work done. It is the equivalent of a case state-
ment in procedural languages. Depending on the circumstance, different code
is invoked.

Another way messages are used is to break a computation down into
pieces. As you are writing the code, you don’t think about possible variations.
A method is getting too big and you need to break it into parts so you can
understand it better. Alternatively, you may have noticed that two or more
methods have similar parts and you’d like to put the parts in a single method.

This is very similar to the way subroutines are used in procedural pro-
gramming. You take a big routine and break it into pieces.

Smalltalk code reveals a much more aggressive attitude towards decom-
posing code than other languages. Most style guides say, “Keep the code for a
routine on one page.” Most good Smalltalk methods fit into a few lines, cer-
tainly less than ten and often three or four.

Partly this is possible because the abstractions Smalltalk provides are
higher level than what you find in most languages. You don’t spend three or
four lines expressing iteration, you spend one word. Partly, it is possible
because Smalltalk’s programming tools let you manage smaller pieces easily.

• Send several messages to “self.”

The classic example of this from the original Smalltalk image was:

B E H A V I O R 47

Controller>>controlActivity
self

controlInitialize;
controlLoop;
controlTerminate

Later, these messages all became Choosing Messages because
they were all overridden a hundred different ways.

Use Composed Method (p. 21) to break the method into pieces. Give each
method an Intention Revealing Selector (p. 49). Use Intention Revealing Messages
(p. 48) to communicate intent separate from implementation.

Intention Revealing Message

You are using a Message (p. 43) to invoke a computation. You may be hiding the
use of Pluggable Behavior (p. 69).

• How do you communicate your intent when the implementation is
simple?

These messages have to be the most frustrating part of learning
Smalltalk. You see a message like “highlight:” and you think, “This has to be
something interesting.” Instead, you see:

ParagraphEditor>>highlight: aRectangle
self reverse: aRectangle

What’s going on?

Communication. Most importantly, one line methods are there to com-
municate. If I have the above method, the rest of the code in the object can be
written in terms of highlighting. I want to highlight an area, so I send high-
light. Makes sense.

48 S M A L L T A L K B E S T P R A C T I C E P A T T E R N S

I could mechanically replace all the invocations of highlight with invoca-
tions of reverse. The code would run the same. However, all the invoking code
reveals the implementation—“I highlight by reversing a Rectangle.”

The other advantage of code written to reveal intention and conceal
implementation is that it is much easier to refine by inheritance. If I want a
ParagraphEditor that highlights in color, I can make a subclass of
ParagraphEditor and override a single method—highlight:.

Intention Revealing Messages are the most extreme case of writing for
readers instead of the computer. As far as the computer is concerned, both ver-
sions are fine. The one that separates intention (what you want done) from
implementation (how it is done) communicates better to a person.

• Send a message to “self.” Name the message so it communicates
what is to be done rather than how it is to be done. Code a sim-
ple method for the message.

Here are some examples of Intention Revealing Messages and their
implementation:

Collection>>isEmpty
^self size = 0

Number>>reciprocal
^1 / self

Object>>= anObject
^self == anObject

Give the message an Intention Revealing Selector (p. 49).

Intention Revealing Selector

You may be naming a method: a Constructor Method (p. 23), Conversion Method
(p. 28), Converter Constructor Method (p. 26), or Execute Around Method (p. 37).
You may be naming a message: Decomposing Message (p. 47), Choosing
Message (p. 45), or Intention Revealing Message (p. 48). You may be implement-
ing Double Dispatch (p. 55).

B E H A V I O R 49

• What do you name a method?

You have two options in naming methods. The first is to name the method
after how it accomplishes its task. Thus, searching methods would be called:

Array>>linearSearchFor:
Set>>hashedSearchFor:
BTree>>treeSearchFor:

The most important argument against this style of naming is that it
doesn’t communicate well. If I have code that invokes three other objects, I
have to read and understand three different pieces of implementation before I
can understand the code.

Also, naming methods this way results in code that knows what kind of
object it is dealing with. If I have code that works with an Array, I can’t sub-
stitute a BTree or a Set.

The second option is to name a method after what it is supposed to
accomplish and leave “how” to the various method bodies. This is hard work,
especially when you only have a single implementation. Your mind is filled
with how you are about to accomplish the task, so it’s natural that the name
follow “how.” The effort of moving the names of method from “how” to “what”
is worth it, both long term and short term. The resulting code will be easier to
read and more flexible.

• Name methods after what they accomplish.

Applying this to the example above, we would name all of the mes-
sages “searchFor:.”

Collection>>searchFor:

Really, though, searching is a way of implementing a more gener-
al concept, inclusion. Trying to name the message after this more
general “what” leads us to “includes:” as a selector.

50 S M A L L T A L K B E S T P R A C T I C E P A T T E R N S

Collection>>includes:

Here’s a simple exercise that will help you generalize names of mes-
sages with a single implementation. Imagine a second, very differ-
ent implementation. Then, ask yourself if you’d give that method
the same name. If so, you’ve probably abstracted the name as
much as you know how to at the moment.

Once you name a method, write its body using Composed Method (p. 21).
Format the selector in the method with an Inline Message Pattern (p. 172). Add a
Collecting Parameter (p. 75)if necessary to collect results.

Dispatched Interpretation

• How can two objects cooperate when one wishes to conceal its
representation?

Encoding is inevitable in programming. At some point you say, “Here is
some information. How am I going to represent it?” This decision to encode
information happens a hundred times a day.

Back in the days when data was separated from computation, and seldom
the twain should meet, encoding decisions were critical. Any encoding decision
you made was propagated to many different parts of the computation. If you
got the encoding wrong, the cost of change was enormous. The longer it took
to find the mistake, the more ridiculous the bill.

Objects change all this. How you distribute responsibility among objects
is the critical decision, encoding is a distant second. For the most part, in well
factored programs, only a single object is interested in a piece of information.
That object directly references the information and privately performs all the
needed encoding and decoding.

Sometimes, however, information in one object must influence the behav-
ior of another. When the uses of the information are simple, or the possible
choices based on the information limited, it is sufficient to send a message to
the encoded object. Thus, the fact that boolean values are represented as
instances of one of two classes, True and False, is hidden behind the message
#ifTrue:ifFalse:.

B E H A V I O R 51

True>>ifTrue: trueBlock ifFalse: falseBlock
^trueBlock value

False>>ifTrue: trueBlock ifFalse: falseBlock
^falseBlock value

We could encode boolean values some other way, and as long as we pro-
vided the same protocol, no client would be the wiser.

Sets interact with their elements like this. Regardless of how an object is
represented, as long it can respond to #= and #hash, it can be put in a Set.

Sometimes, encoding decisions can be hidden behind intermediate
objects. An ASCII String encoded as eight-bit bytes hides that fact by convers-
ing with the outside world in terms of Characters:

String>>at: anInteger
^Character asciiValue: (self basicAt: anInteger)

When there are many different types of information to be encoded, and
the behavior of clients changes based on the information, these simple strate-
gies won’t work. The problem is that you don’t want each of a hundred clients
to explicitly record in a case statement what all the types of information are.

For example, consider a graphical Shape represented by a sequence of
line, curve, stroke, and fill commands. Regardless of how the Shape is repre-
sented internally, it can provide a message #commandAt: anInteger that
returns a Symbol representing the command and #argumentsAt: anInteger
that returns an array of arguments. We could use these messages to write a
PostScriptShapePrinter that would convert a Shape to PostScript:

52 S M A L L T A L K B E S T P R A C T I C E P A T T E R N S

PostScriptShapePrinter>>display: aShape
1 to: aShape size do:

[:each || command arguments |
command := aShape commandAt: each.
arguments := aShape argumentsAt: each.
command = #line ifTrue:

[self
printPoint: (arguments at: 1);
space;
printPoint: (arguments at: 2);
space;
nextPutAll: ‘line’].

command = #curve...
...]

Every client that wanted to make decisions based on what commands
were in a Shape would have to have the same case statement, violating the
“once and only once” rule. We need a solution where the case statement is hid-
den inside of the encoded object.

• Have the client send a message to the encoded object. Pass a
parameter to which the encoded object will send decoded mes-
sages.

The simplest example of this is Collection>>do:. No matter what kind
of collection you have, you can always send it #do:. By passing a
one argument Block (or any other object that responds to #value:),
you are assured that the code will work, no matter whether the
Collection is encoded as a linear list, an array, a hash table, or a
balanced tree.

This is a simplified case of Dispatched Interpretation because there
is only a single message coming back. For the most part, there will
be several messages. For example, we can use this pattern with the
Shape example. Rather than have a case statement for every
command, we have a method in PostScriptShapePrinter for every
command. For example:

B E H A V I O R 53

PostScriptShapePrinter>>lineFrom: fromPoint to: toPoint
self

printPoint: fromPoint;
space;
printPoint: toPoint;
space;
nextPutAll: ‘line’

Rather than Shapes providing #commandAt: and #argumentsAt:,
they provide #sendCommandAt: anInteger to: anObject, where
#lineFrom:to: is one of the messages that could be sent back. Then,
the original display code could read:

PostScriptShapePrinter>>display: aShape
1 to: aShape size do:

[:each |
aShape

sendCommandAt: each
to: self]

This could be further simplified by giving Shapes the responsibility to
iterate over themselves:

Shape>>sendCommandsTo: anObject
1 to: self size do:

[:each |
self

sendCommandAt: each
to: anObject]

With this, the original display code becomes:

54 S M A L L T A L K B E S T P R A C T I C E P A T T E R N S

PostScriptShapePrinter>>display: aShape
aShape sendCommandsTo: self

The name “dispatched interpretation” comes from the distribution
of responsibility. The encoded object “dispatches” a message to
the client. The client “interprets” the message. Thus, the Shape
dispatches messages like #lineFrom:to: and #curveFrom:mid:to:.
It’s up to the clients to interpret the messages, with the
PostScriptShapePrinter creating PostScript and the ShapeDisplayer
displaying on the screen.

You will have to design a Mediating Protocol (p. 57) of messages to be sent back.
Computations where both objects have decoding to do need Double Dispatch (p. 55).

Double Dispatch

You have a Dispatched Interpretation (p. 51) between two families of objects. You
may be implementing a complex Equality Method (p. 124).

• How can you code a computation that has many cases, the cross
product of two families of classes?

This pattern helps manage another of Smalltalk’s engineering compro-
mises—method dispatch. When you send a message to an object, and you
include an argument, only the class of the receiver is taken into account when
looking for a corresponding method. Ninety-nine percent of the time this
causes you no trouble. There are a few cases, though, where the logic to be
invoked really depends not just on the class of the receiver, but the class of one
of the arguments as well. In fact, which object is the receiver and which is the
argument may be entirely arbitrary.

Argument

C D

Receiver A Method 1 Method 2
B Method 3 Method 4

One classic example where this relationship exists is arithmetic. When
you add an Integer to an Integer you want one method, when you add a Float

B E H A V I O R 55

to a Float you want another, an Integer and a Float another, and a Float and
an Integer another.

The procedural solution to this situation is to have a big case statement.
Like all explicit case logic, this is difficult to maintain and extend, even though
it has the advantage of putting all the program logic in one place.

The solution is adding a layer of messages that get both objects involved
in the computation. As with Self Delegation, this causes you to create more
messages, but the additional complexity is worth it.

• Send a message to the argument. Append the class name of the
receiver to the selector. Pass the receiver as an argument.

The arithmetic example can be coded as follows. Integer and Float
both Double Dispatch to the argument:

Integer>>+ aNumber
^aNumber addInteger: self

Float>>+ aNumber
^aNumber addFloat: self

Integer and Float both have to implement both flavors of addition.
The Integer-Integer and Float-Float cases are handled as primitives.

Integer>>addInteger: anInteger
<primitive: 1>

Float>>addFloat: aFloat
<primitive: 2>

When you have one number of each class, you have to convert
the Integer to a Float and start over:

56 S M A L L T A L K B E S T P R A C T I C E P A T T E R N S

Integer>>addFloat: aFloat
^self asFloat addFloat: aFloat

Float>>addInteger: anInteger
^self addFloat: anInteger asFloat

In the worst case, Double Dispatch can lead to N × M methods,
where N is the number of classes of the original receiver and M is
the number of classes of the original argument. Practically speak-
ing, the receiver classes are usually related by inheritance, as are
the argument classes, so many common implementations can be
factored out.

A reviewer suggested another good use for Double Dispatch—
implementing drag-and-drop operations. You want to execute dif-
ferent code depending on what kind of object is being dragged
over what kind of receiver. The simplest and most flexible way to
implemement this is with Double Dispatch.

Create a Mediating Protocol (p. 57) with which the objects communicate. Type
Suggesting Parameter Names (p. 174) are important for keeping track of how
much you know at any stage of the process.

Mediating Protocol

You are implementing Dispatched Interpretation (p. 51) or Double Dispatch (p. 55).

• How do you code the interaction between two objects that need
to remain independent?

For the most part, when you write a program that involves the coopera-
tion of two objects, you create methods as needed. The dialog grows organical-
ly. When you finish, the two objects work together, but you don’t necessarily
have a strong sense of all the messages flowing back and forth.

B E H A V I O R 57

Most of the time, this sort of ad hoc interaction doesn’t cost you much.
The changes you need to make involve changing one object or the other and
occasionally adding to the messages going between them.

You need to make the protocol between the objects more visible when you
decide to replace one or the other of them. The important question for you then
becomes, “Exactly what messages flow between these two objects?”

When you find the answer, a list of message selectors, you will probably
have some work to do. First, you need to look at the words in the selectors and
see if they form a coherent system. Protocols that grow piecemeal tend to accu-
mulate little inconsistencies. Sometimes, you will not have consistent oppo-
sites in the messages, as in #show being the opposite of #makeInvisible.
Sometimes, you will not have consistently made selectors plural, as in
#addEmployees: being the opposite of #removeAllEmployees:.

Because you are finding it necessary to replace one of the objects in the
interaction, it is likely that others will have to create other replacements in
the future. If the words in the protocol are consistent and clearly presented,
they will be able to quickly create their replacements, using your code as
examples.

• Refine the protocol between the objects so the words used are
consistent.

In VisualWorks, #value and #value: is the Mediating Protocol
between the user interface components and the application
model.

In the Double Dispatch example, the Mediating Protocol is
#addFloat: and #addInteger:. Of course, if we finished mixed mode
arithmetic the protocol would be much larger.

I worked with Smalltalk/V for the Macintosh for a couple of years.
One of the exercises I tried was replacing the Smalltalk-pro-
grammed TextPane with a wrapper around the native Macintosh
text editor. Smalltalk/V used a Model/Pane/Dispatcher-based user
interface framework, so there was a TextDispatcher associated with
the pane. Its purpose was to interpret user input and pass along
meaningful messages to the pane.

For a while, I tried just sticking the new pane in and debugging my
way to health. It didn’t take long before I realized there was no way
that was going to work. There was just too much going on between
the TextPane and the TextDispatcher. So I sat down with the code
and recorded every message that went from the pane to the dis-

58 S M A L L T A L K B E S T P R A C T I C E P A T T E R N S

patcher and vice versa. In the end, I had only a handful of mes-
sages going from the pane to the dispatcher, but the dispatcher
was sending the pane 56 different messages.

With this Mediating Protocol of 56 messages in place, I could sit
down and design the new pane to support those messages. When
I got them all implemented, I knew I was done.

Put all the methods to support a Mediating Protocol in a single
method protocol, so they are easy to find and duplicate.

Examine each message to make sure it has an Intention Revealing Selector (p. 49).

Super

You are sending a Message (p. 43).

• How can you invoke superclass behavior?

An object executes in a rich context of state and behavior, created by com-
posing together the contexts of its class and all of its class’ superclasses. Most
of the time, code in the class can be written as if the entire universe of meth-
ods it has available is flat. That is, take the union of all the methods up the
superclass chain and that’s what you have to work with.

Working this way has many advantages. It minimizes any given method’s
reliance on inheritance structure. If a method invokes another method on self,
as long as that method is implemented somewhere in the chain, the invoking
method is happy. This gives you great freedom to refactor code without having
to make massive changes to methods that assume the location of some method.

There are important exceptions to this model. In particular, inheritance
makes it possible to override a method in a superclass. What if the subclass
method wants some aspect of the superclass method? Good style boils down to
one rule: say things once and only once. If the subclass method were to contain
a copy of the code from the superclass method, the result would no longer be
easy to maintain. We would have to remember to update both or (potentially)
many copies at once. How can we resolve the tension between the need to over-
ride, the need to retain the illusion of a flat space of methods, and the need to
factor code completely?

• Invoke code in a superclass explicitly by sending a message to
“super” instead of “self.” The method corresponding to the mes-
sage will be found in the superclass of the class implementing the

B E H A V I O R 59

sending method.

One example of where you want to extend superclass behavior is
initialization, where not only does the state defined by the super-
class need to be initialized, but also the state defined by the
subclass.

Always check code using “super” carefully. Change “super” to
“self” if doing so does not change how the code executes. One of
the most annoying bugs I’ve ever tried to track down involved a use
of super that didn’t do anything at the time I wrote it and invoked a
different selector than the one for the currently executing method. I
later overrode that method in the subclass and spent half a day try-
ing to figure out why it wasn’t being invoked. My brain had over-
looked the fact that the receiver was “super” instead of “self,” and
I proceeded on that assumption for several frustrating hours.

Extending Super (p. 60) adds behavior to the superclass. Modifying Super (p. 62)
changes the superclass’ behavior.

Extending Super

You are using Super (p. 59).

• How do you add to a superclass’ implementation of a method?

Any use of super reduces the flexibility of the resulting code. You now
have a method that assumes not just that somewhere there is an implemen-
tation of a particular method, but that the implementation has to exist in the
superclass chain above the class that contains the method. This assumption is
seldom a big problem, but you should be aware of the tradeoff you are making.

If you are avoiding duplication of code by using super, the tradeoff is
quite reasonable. For instance, if a superclass has a method that initializes
some instance variables, and your class wants to initialize the variables it has
introduced, super is the right solution. Rather than have code like:

60 S M A L L T A L K B E S T P R A C T I C E P A T T E R N S

Class: Super
superclass: Object
instance variables: a

Super class>>new
^self basicNew initialize

Super>>initialize
a := self defaultA

and rather than extending initialization in a subclass like this:

Class: Sub
superclass: Super
instance variables: b

Sub class>>new
^self basicNew

initialize;
initializeB

Sub>>initializeB
b := self defaultB

using super you can implement both initializations explicitly:

Sub>>initialize
super initialize.
b := self defaultB

B E H A V I O R 61

and not have Sub override “new” at all. The result is a more direct expression
of the intent of the code. Make sure Supers are initialized when they are cre-
ated and extend the meaning of initialization in Sub.

• Override the method and send a message to “super” in the over-
riding method.

Another example of Extending Super is display. If you have a sub-
class of a Figure that needs to display just like the superclass, but
with a border, you could implement it like this:

BorderedFigure>>display
super display.
self displayBorder

Modifying Super

You are using Super (p. 59).

• How do you change part of the behavior of a superclass’ method
without modifying it?

This problem introduces a tighter coupling between subclass and super-
class than Extending Super. Not only are we assuming that a superclass
implements the method we are modifying, we are assuming that the super-
class is doing something we need to change.

Often, situations like this can best be addressed by refactoring methods
with Composed Method so you can use pure overriding. For example, the fol-
lowing initialization code could be modified by using super.

62 S M A L L T A L K B E S T P R A C T I C E P A T T E R N S

Class: IntegerAdder
superclass: Object
instance variables: sum count

IntegerAdder>>initialize
sum := 0.
count := 0

Class: FloatAdder
superclass: IntegerAdder
instance variables:

FloatAdder>>initialize
super initialize.
sum := 0.0

A better solution is to recognize that IntegerAdder>>initialize is actual-
ly doing four things: representing and assigning the default values for each of
two variables. Refactoring with Composed Method yields:

IntegerAdder>>initialize
sum := self defaultSum.
count := self defaultCount

IntegerAdder>>defaultSum
^0

IntegerAdder>>defaultCount
^0

FloatAdder>>defaultSum
^0.0

However, sometimes you have to work with superclasses that are not
completely factored (i.e. the superclass does not implement #defaultSum). You
are faced with the choice of either copying code or using super and accepting
the costs of tighter subclass/superclass coupling. Most of the time, the addi-

B E H A V I O R 63

tional coupling will not prove to be a problem. Communicate your desired
changes with the owner of the superclass. In the meantime:

• Override the method and invoke “super,” then execute the code
to modify the results.

Another example from the display realm is if you have a subclass
whose color is different from the superclass’.

SuperFigure>>initialize
color := Color white.
size := 0@0

SubFigure>>initialize
super initialize.
color := Color beige

Again, the better solution would be to use a Default Value Method (p. 86) to rep-
resent the default color, and then override just that method.

Delegation

A Composed Method (p. 21) needs work done by another object. A Message (p.
43) invokes computation in another object.

• How does an object share implementation without inheritance?

Inheritance is the primary built-in mechanism for sharing implementa-
tion in Smalltalk. However, inheritance in Smalltalk is limited to a single
superclass. What if you want to implement a new object like A but also like B?
Also, inheritance carries with it potentially staggering long-term costs. Code
in subclasses isn’t just written in Smalltalk. It is written in the context of
every variable and method in every superclass. In deep, rich hierarchies, you
may have to read and understand many superclasses before you can under-
stand even the simplest method in a subclass.

Factored Superclass explains how to make effective use of inheritance at
minimal development cost. You will encounter situations where you will rec-

64 S M A L L T A L K B E S T P R A C T I C E P A T T E R N S

ognize common implementation, but where Factored Superclass is not appro-
priate. How can you respond?

• Pass part of its work on to another object.

For example, since many objects need to display, all objects in the
system delegate to a brush-like object (Pen in Visual Smalltalk,
GraphicsContext in VisualAge and VisualWorks) for display. That
way, all the detailed display code can be concentrated in a single
class and the rest of the system can have a simplified view of dis-
playing.

Use Simple Delegation (p. 65) when the delegate need know nothing about the
original object. Use Self Delegation (p. 67) when the identity of the original object
or some of its state is needed by the delegate.

Simple Delegation

You need Delegation (p. 64) to a self-contained object. You may be implement-
ing one of the following methods: Collection Accessor Method (p. 96), Equality
Method (p. 124), or Hashing Method (p. 126).

• How do you invoke a disinterested delegate?

When you use delegation, there are two main issues that help clarify
what flavor of delegation you need. First, is the identity of the delegating
object important? This might be true if a client object passes itself along,
expecting to be notified of some part of the work actually done by the delegate.
The delegate doesn’t want to inform the client of its existence so it needs
access to the delegating object. Second, is the state of the delegating object
important to the delegate? Delegates are often simple, even state-less objects,
in order to be as widely useful as possible. If so, the delegate is likely to require
state from the delegating object to accomplish its job.

There are many cases of delegation where the answer to these two ques-
tions is “no.” The delegate has no reason to need the identity of the delegating
object. The delegate is self-contained enough to accomplish its job without
additional state.

• Delegate messages unchanged.

B E H A V I O R 65

The typical example of this is an object that acts like a Collection
(at least a little) but has lots of other protocol. Rather than waste
inheritance by subclassing one of the collection classes, your
object refers to a Collection. From a client’s perspective, though,
you respond to protocol like do: or at:put:.

The Collection doesn’t care who invoked it. No state from the del-
egating object is required. The identity of the delegating object is
irrelevant.

Here’s an example—a Vector that holds only Numbers. We could
implement it by subclassing Collection, but there are likely to be
many messages that don’t make sense for a Vector. Rather than
subclass Collection and block out scads of messages, we can sub-
class object and delegate only those messages we want.

Vector
superclass: Object
instance variables: elements

We create a Vector with a given number of elements:

Vector class>>new: anInteger
^self new setElements: (Array new: anInteger)

Vector>>setElements: aCollection
elements := aCollection

We’ll ignore the arithmetic nature of Vectors and focus on how it
delegates. Sometimes, clients want to treat a Vector as a
Collection of Numbers. When someone iterates over a Vector, it
delegates to its “elements” instance variable:

Vector>>do: aBlock
elements do: aBlock

This is an example of Simple Delegation. You can imagine imple-
menting at:, at:put:, size, etc. the same way.

66 S M A L L T A L K B E S T P R A C T I C E P A T T E R N S

Self Delegation

You are using Delegation (p. 64).

• How do you implement delegation to an object that needs refer-
ence to the delegating object?

The issues are the same for Self Delegation as for Simple Delegation. Do
you need the identity of the original delegating object? Do you need state from
the delegating object?

If the answer to either of these questions is “yes,” Simple Delegation
won’t work. Somehow, the delegate needs access to the delegating object.

One way to give the delegate access is to include a reference from the del-
egate back to the delegating object. This approach has a number of drawbacks.
The backwards reference introduces additional programming complexity.
Every time the delegate changes, the reference in the old delegate has to be
destroyed and the reference in the new delegate set. More importantly, each
delegate can only be used by one delegating object at a time. If creating mul-
tiple copies of the delegate is expensive or impossible, this simply won’t work.

The other approach, the one suggested here, is to pass the delegating object
along as an additional parameter. This introduces a variant of the original
method, which isn’t great, but the additional flexibility of this approach is worth
the cost.

• Pass along the delegating object (i.e. “self”) in an additional
parameter called “for:”

The Digitalk Visual Smalltalk 3.0 image has an excellent example of
Self Delegation. The implementation of hashed collections, like
Dictionaries, is divided into two parts. The first is the Dictionary, the
second is a HashTable. There are variants of HashTables that are
efficient in different circumstances. The same collection might del-
egate to different HashTables at different times, depending on its

B E H A V I O R 67

Dictionary
elements

Association
key: #ABC
value: 5

Association
key: #DEF
value: 7

HashTable
1
2
3

characteristics (how big, how full, etc.)

The hash value of an object is implemented differently for different
kinds of Collections. Dictionaries compute hash by sending “hash.”
IdentityDictionaries compute it by sending “basicHash.” This is
implemented using Self Delegation. When the Collection sends a
message to the HashTable to add an element, it passes itself along:

Dictionary>>at: keyObject put: valueObject
self hashTable

at: keyObject
put: valueObject
for: self

The HashTable computes the hash value by sending back a mes-
sage to the Collection:

HashTable>>at: keyObject put: valueObject for: aCollection
| hash |
hash := aCollection hashOf: keyObject.
...

Dictionaries and IdentityDictionaries implement this message
differently:

Dictionary>>hashOf: anObject
^anObject hash

IdentityDictionary>>hashOf: anObject
^anObject basicHash

Self Delegation allows the hierarchy of hashed Collections to be

68 S M A L L T A L K B E S T P R A C T I C E P A T T E R N S

independent of the hierarchy of HashTables.

If the delegate needs different logic depending on who is delegating, use Double
Dispatch (p. 55).

Pluggable Behavior

• How do you parameterize the behavior of an object?

The conventional model of objects is that different instances of the same
class have different state and the same behavior. Every Point can have differ-
ent values for x and y, but they all use the same logic to compute
“translatedBy:.” When you want different logic, you use a different class.

Using classes to specify behavior is simple. The programming tools are
set up to help readers understand the behavior of your system statically, with-
out necessarily having to run the code.

This model works for 90 percent of the objects you will create. Creating
classes comes at a cost, though, and sometimes different classes don’t effec-
tively communicate how you think about a problem.

Classes are an opportunity. Each one will be useful to instantiate and/or
specialize. However, each class you create places a burden on you, as the
writer, to communicate its purpose and implementation to future readers. A
system with hundreds or thousands of classes will intimidate a reader.
Managing a namespace across many classes is expensive. You would like to
invoke the costs of a new class only when there is a reasonable payoff. A large
family of classes with only a single method each is unlikely to be valuable.

The other problem with specializing behavior only through classes is that
classes are not flexible. Once you have created an object of a certain class, you
cannot change that object’s class without completely ruining the ability to
understand the code statically. Only watching carefully while single stepping
will give you insight into how such code runs. Smalltalk’s single inheritance
also does not allow specialization along several different axes at the same
time.

If you are going to use Pluggable Behavior, here are the issues you need
to consider:

• How much flexibility do you need?

• How many methods will need to vary dynamically?

B E H A V I O R 69

• How hard is it to follow the code?

• Will clients need to specify the behavior to be plugged, or can it be
hidden within the plugged object?

How can you specify different logic in different instances when creating
lots of little classes or changing classes at run time won’t work?

• Add a variable that will be used to trigger different behavior.

Typical examples of pluggable behavior are objects that have to
interface with a variety of other objects, like user interface compo-
nents that have to display the contents of many different objects.
Using Pluggable Behavior is a much better solution than creating a
hundred different subclasses, each differing from each other in only
one or two methods.

For simple behavior changes, use a Pluggable Selector (p. 70). A Pluggable Block
(p. 73) gives you more flexibility. Hide the implementation of pluggability behind
an Intention Revealing Message (p. 48).

Pluggable Selector

You need simple Pluggable Behavior (p. 69).

• How do you code simple instance specific behavior?

The simplest way to implement Pluggable Behavior is to store a selector
to be performed.

Let’s say we have implemented a ListPane. We create a method that
takes one of the elements of the collection to be displayed and returns a String:

ListPane>>printElement: anObject
^anObject printString

After awhile, we notice that there are many subclasses of ListPane that
only override this one method:

70 S M A L L T A L K B E S T P R A C T I C E P A T T E R N S

DollarListPane>>printElement: anObject
^anObject asDollarFormatString

DescriptionListPane>>printElement: anObject
^anObject description

It hardly seems worth the cost of all these subclasses if all they are going
to do is override one method. A simpler solution is to make ListPane itself a
little more flexible, so different instances send different messages to their ele-
ments. We add a variable called “printMessage” and modify #printElement:

ListPane>>printElement: anObject
^anObject perform: printMessage

To preserve the previous behavior, we would have to initialize the
printMessage:

ListPane>>initialize
printMessage := #printString

Pluggable Selector meets the Pluggable Behavior criteria as follows:

Readability—Pluggable Selector is harder to follow than simple class-
based behavior. By looking at an object with an inspector, you can tell how it
will behave. You don’t necessarily have to single step through the code.

Flexibility—The methods for the Pluggable Selectors must be imple-
mented in the receiving object. The set of possible methods to be invoked
should change at the same rate as the rest of the object.

Extent—Pluggable selectors should be used no more than twice per
object. Any more than that and you risk obscuring the intent of the program.
Use State Object if you need more dimensions of variability.

B E H A V I O R 71

• Add a variable that contains a selector to be performed.
Append “Message” to the Role Suggesting Instance Variable
Name. Create a Composed Method that simply performs the
selector.

Pluggable Selector is also useful for a simple kind of constraint. For
example, if you wanted to locate one visual component relative to
some part of another, we could use Pluggable Selector to create a
RelativePoint:

Class: RelativePoint
superclass: Object
instance variables: figure locationMessage

Here is the Constructor Method:

RelativePoint class>>centered: aFigure
^self new

setFigure: aFigure
message: #center

RelativePoint>>setFigure: aFigure message: aSymbol
figure := aFigure.
locationMessage := aSymbol

To use a RelativePoint, you send it messages like #x and #y, just like
a regular Point.

RelativePoint>>asPoint
^figure perform: locationMessage

RelativePoint>>x
^self asPoint x

72 S M A L L T A L K B E S T P R A C T I C E P A T T E R N S

Once you have this, you can go crazy duplicating all the necessary
Point protocol, re-engineering for performance, etc. As an exam-
ple of Pluggable Selector, however, the interesting observation is
that you don’t have to make a subclass for CenteredRelativePoint,
TopLeftRelativePoint, etc.; you can capture the variability in a single
selector.

Pluggable Block

You need complex Pluggable Behavior (p. 69) that is not implemented by the
plugged object.

• How do you code complex Pluggable Behavior that is not quite
worth its own class?

Pluggable Selector works when the behavior to be invoked lives within
the plugged object. Sometimes, though, the behavior can’t live within the
plugged object either because it is complex and not related to the plugged
object’s other responsibilities, because it is already implemented in another
object not easily accessible to the plugged object, or because the range of
behavior to be plugged was not known when the object was created.

The common solution in this case, particularly when the behavior is
already implemented, is to plug in a Block to be evaluated rather than a selec-
tor to be performed. The block can be created anywhere, can access objects oth-
erwise inaccessible to the plugged object through the use of a Block Closure,
and can involve arbitrary amounts of logic.

Blocks used in such a general way come at enormous cost. You can
never statically analyze the code to understand the flow of control. Even
inspecting the plugged object is unlikely to unearth its secrets. Only by sin-
gle stepping through the invocation of the block will the reader understand
what is going on.

Blocks are also more difficult to store on external media than Symbols.
Some Object Streams and object databases cannot store and retrieve Blocks.

• Add an instance variable to store a Block. Append “Block” to the
Role Suggesting Instance Variable Name. Create a Composed
Method to evaluate the Block to invoke the Pluggable Behavior.

The VisualWorks object PluggableAdaptor is a good example of a
Pluggable Block. All the objects in the ValueModel family, of which

B E H A V I O R 73

PluggableAdaptor is one, provide the protocol #value and #value:.
PluggableAdaptor implements these messages with a PluggableBlock.
Here is a simplified implementation:

Class: PluggableAdaptor
superclass: ValueModel
instance variables: getBlock setBlock

The Constructor Method sets the blocks:

PluggableAdaptor class>>getBlock: getBlock setBlock:
setBlock

^self new
setGetBlock: getBlock
setBlock: setBlock

Notice that the Constructor Parameter Method has to use a variant
of Type Suggesting Parameter Name because the obvious para-
meter names are already used for instance variable names.

PluggableAdaptor>>setGetBlock: gBlock setBlock: sBlock
getBlock := gBlock.
setBlock := sBlock

We can implement #value and #value: by invoking the Pluggable
Blocks.

74 S M A L L T A L K B E S T P R A C T I C E P A T T E R N S

PluggableAdaptor>>value
^getBlock value

PluggableAdaptor>>value: anObject
putBlock value: anObject

Now we can connect any object that expects #value and #value:
to any other object:

Car>>speedAdaptor
^PluggableAdaptor

getBlock: [self speed]
putBlock: [:newSpeed | self speed: newSpeed]

Collecting Parameter

You have written an Intention Revealing Selector (p. 49).

• How do you return a collection that is the collaborative result of
several methods?

One of the downsides of Composed Method is that it occasionally creates
problems because of linkages between the small methods. A state that would
have been stored in a temporary variable now has to be shared between methods.

The simplest solution to this problem is to leave all the code in a single
method and use temporary variables to communicate between the parts of the
method. All the benefits you expect from Composed Method vanish if you take
this approach. The code is less revealing, more difficult to reuse and refine,
and harder to modify.

B E H A V I O R 75

Another solution is to add an instance variable to the object that is
shared only between the methods. This variable is very different than the
other variables in the object. It is only valid while the methods are executing,
not for the lifetime of the object. Instance variables should exist to communi-
cate and store only state that must go together.

We can solve the problem by adding an additional parameter that is
passed to all the methods. I hesitate to add layers of methods like this, except
when they do useful work. In this case, because the other solutions aren’t
valid, this is the right solution.

• Add a parameter that collects their results to all of the submethods.

Here’s an example. The following code extracts all the married men
and unmarried women from a collection of people:

marriedMenAndUnmarriedWomen
| result |
result := OrderedCollection new.
self people do: [:each | each isMarried & each isMan

ifTrue: [result add: each]].
self people do: [:each | each isUnmarried & each

isWoman ifTrue: [result add: each]].
^result

Using Composed Method, we put each iteration into its own
method:

marriedMen
| result |
result := OrderedCollection new.
self people do: [:each | each isMarried & each isMan

ifTrue: [result add: each]].
^result

unmarriedWomen
| result |
result := OrderedCollection new.
self people do: [:each | each isUnmarried & each

isWoman ifTrue: [result add: each]].
^result

76 S M A L L T A L K B E S T P R A C T I C E P A T T E R N S

Now the question is how to compose the two methods. For an
example this simple, I would probably use Concatenation to write:

marriedMenAndUnmarriedWomen
^self marriedMen , self unmarriedWomen

but that doesn’t demonstrate this pattern very well. If several layers
of methods, or several objects, are involved, it is more clear to mod-
ify the submethods. Instead of returning a Collection, each adds its
objects to a Collection. The code then becomes:

marriedMenAndUnmarriedWomen
| result |
result := OrderedCollection new.
self addMarriedMenTo: result.
self addUnmarriedWomenTo: result.
^result

addMarriedMenTo: aCollection
self people do: [:each | each isMarried & each isMan

ifTrue: [aCollection add: each]]
addUnmarriedWomenTo: aCollection

self people do: [:each | each isUnmarried & each
isWoman ifTrue: [aCollection add: each]]

This code contains fewer lines and is more direct than the original.
(If this were production code, I would probably continue factoring
via Composed Method to concentrate the similarities between
addMarriedMenTo: and addUnmarriedWomenTo:.)

In general, use an OrderedCollection (p. 116) as the Collecting Parameter. You
may use a Concatenating Stream (p. 165) as the Collecting Parameter if the
objects to be collected are bytes or Characters. Use a Set (p. 119) if you want to
avoid duplicates.

B E H A V I O R 77

This page intentionally left blank

Sure, how you specify behavior is most important in coding
Smalltalk objects, but you still won’t get anywhere without state.
Before you start a computation, something has to record what the
problem is. While you are computing, you often need to store inter-
mediate results. When you finish a computation, you have to
remember the answer.

Most state-related decisions have more to do with modeling
and less with coding, so the patterns here don’t tell anything like
the whole story. However, the tactical decisions you make about rep-
resentation will have an important impact on how well your code
communicates with others.

This section talks about two kinds of state: instance variables
and temporary variables. Of the two, temporary variables are cov-
ered much more thoroughly because they are a complete artifact of
coding, living only as long as a method is computing. Instance vari-
ables also have an important role to play in coding, however, so
their role in coding, and even some of their roles in modeling, is
covered here.

79

State

4

Instance Variables
I wrote the section on Temporary Variables before I wrote this section. I

was pleased with how the section on temps came out. I expected this section
to turn out to be the same sort of cut-and-dry, “Here’s how it goes” list of pat-
terns. It didn’t.

The problem is that temporary variables really are all about coding. They
are a tactical solution to a tactical problem. Thus, they fit very well in the
scope of this book.

Most uses of instance variables are not tactical. Along with the distribu-
tion of computational responsibility, the choice of how to represent a model is
at the core of modeling. The decision to create an instance variable usually
comes from a much different mind-set and in a different context than the deci-
sion to create a temp.

I leave this section here because there are still important coding reasons
to create instance variables, and there are some practical, tactical techniques
to be learned when using instance variables.

Common State

• How do you represent state, different values for which will exist in
all instances of a class?

In the dawn of computing time, state was all there was. What is a box of
punched cards but a bunch of state made manifest? Unit record equipment
existed to re-order and transform the state, but all the transformations were
hard-coded (like with wires and pulleys and gears) into the machines. State
was king.

The first thing electronic computing did was make state virtual. No
longer did it only exist in physical form, that physical form was turned into
electrons so it could be more easily and quickly manipulated. The manipula-
tions were still physically manifested in the form of patch cords, but they were
getting easier to change.

The stored program computer changed all this. Now, the manipulations
and the state were on par. They were both virtual parts of the same machine,
stored as charges that could easily be changed.

Because of the extreme resource limitations of those early machines, the
unification of program and state became complete. You could encode a pro-
gram in fewer bytes if you were willing to treat it like data sometimes—

80 S M A L L T A L K B E S T P R A C T I C E P A T T E R N S

changing the program as circumstances changed. Of course, you could never
hope to just read program source and understand what was happening, you
had to watch the program in action under lots of different conditions before
you understood it.

Once we had enough memory that we no longer needed to commit atroc-
ities in the name of space efficiency, state still bit us on the backside. Huge
programs were written where many many functions used many many differ-
ent bits of state. No part of the state could be changed without changing many
parts of the program.

The enormous cost of such programs led to a backlash. Programs as state
were bad. State must be bad, too. This led to the development of functional
programming, where there is no state, only programs.

In spite of their conceptual and mathematical elegance, functional pro-
gramming languages never caught on for commercial software. The problem is
that programmers think and model in terms of state. State is a pretty darn
good way to think about the world.

Objects represent a middle ground. State is good, but only when proper-
ly managed. It is manageable if it is chopped into little pieces, some alike and
some different. Similarly, related programs are chopped into little pieces, some
alike, some different. That way, changing part of the representation of the
state of a program need lead to only a few, localized changes in the program.

• Declare an instance variable in the class.

A Cartesian Point has instance variables to hold its horizontal and
vertical offsets. A Point in polar coordinates has instance variables
to hold its radius and angular offset. A House has an instance vari-
able to hold a collection of all of its rooms.

Instance variables have a very important communicative role to
play. They say once and for all and out in the open, “Here’s what
I’m modeling with this object.” A set of objects reveals a lot that
was in the mind of the original programmer just by what the
instance variables are and what they are named.

Be sure to declare instance variables in order of importance in the
class definition.

Name the variable using Role Suggesting Instance Variable Name (p. 110). Initialize
the instance variable either with Lazy Initialization (p. 85), Explicit Initialization (p.
83), or a Constructor Parameter Method (p. 25). You need to choose whether to use
the variable with Direct Variable Access (p. 89) or Indirect Variable Access (p. 91).

S T A T E 81

Variable State

• How do you represent state whose presence varies from instance
to instance?

Warning! This is not a pattern you should use often, if ever. It is here
because you will see code written with it and you will have to understand what
is going on.

This pattern is here for all the LISP programmers who come to
Smalltalk. Some LISP cultures value flexibility over all else. Their objects
tend to have no fixed parts. A Point might have an x, it might have a y, it might
have a color, who knows?

The symptom of code like this is that classes declare a single instance
variable that holds a Dictionary mapping of Strings or Symbols (the names of
variables) to Objects. Some of the values of the Dictionary might be Numbers,
others Collections, others Strings. Moreover, if you look at several instances of
this class, all of their Dictionaries have the same keys.

The problem with code like this is that you can’t read it and understand
what is going on. The programming tools don’t support this style of program-
ming well. There is no equivalent of “browse instance variable references” for
code that stores all its state in Dictionaries.

It is certainly legitimate to build models where state is sometimes pre-
sent and sometimes not, even in instances of the same class. You wouldn’t
want to declare a hundred variables, almost all of which are nil in almost all
instances, just because a few instances will need them.

• Put variables that only some instances will have in a Dictionary
stored in an instance variable called “properties.” Implement
“propertyAt: aSymbol” and “propertyAt: aSymbol put: anObject”
to access properties.

Visual Smalltalk uses properties connected to its graphical widgets
to communicate between various parts of the program. For exam-
ple, an EntryField has a property called ‘PreviousContents,’ which is
used to determine whether the field’s contents have changed.

VisualWorks 2.5 has a perfect example of when NOT to use this pat-
tern. Their Package object uses Variable State. The Constructor
Method takes a name for the Package, so every Package has to
have a name (Common State, right?). However, instead of being
stored in an instance variable, it is stored as part of the Variable
State.

82 S M A L L T A L K B E S T P R A C T I C E P A T T E R N S

Make sure that with any variables, all or nearly all instances shared
are implemented as instance variables, not as entries on the prop-
erty list. Variable State is often used as a temporary convenience
and never revisited, even though its generality is not used.

You may want to hide the difference between variables stored as instance vari-
ables and variables stored on the property list with a Getting Method (p. 93) and
Setting Method (p 95).

Explicit Initialization

You’ve found Common State (p. 80) that always starts at the same value. A
Constructor Parameter Method (p. 25) has just set the state of some variables.

• How do you initialize instance variables to their default value?

Usually, in these patterns, I have tried to avoid ambiguity. If there are
two equally valid ways to accomplish some task, I pick one.

Initialization is an issue for which I cannot in good conscience pick one
solution. There are two ways to solve the problem of instance variable initial-
ization, each valid in different circumstances—circumstances you are certain
to encounter.

This pattern emphasizes readability over flexibility. You should use an
initialize method when you want people to read your code as easily as possible
and you aren’t terribly concerned about future subclasses. By putting all the
initialization in one place, Explicit Initialization makes it easy to figure out
what all the variables are.

Flexibility is impaired by Explicit Initialization because all of the vari-
ables are mentioned in a single method. If you add or remove an instance vari-
able, you will have to remember to edit the Explicit Initialization.

Explicit Initialization can also be more costly than Lazy Initialization
Methods because they spend the effort to initialize all the values at instance
creation time. If computing some of the initial values is expensive and the val-
ues aren’t used right away (or perhaps not at all), you may be able to improve
performance by not initializing them right away.

• Implement a method “initialize” that sets all the values explicitly.
Override the class message “new” to invoke it on new instances.

S T A T E 83

For example, consider a Timer that defaults to executing every 1000
milliseconds. It also keeps track of how many times it has gone off:

Class: Timer
superclass: Object
instance variables: period count

Use basicNew to create the instance to avoid accidentally setting
“initialize” off twice, should a future superclass invoke it.

Timer class>>new
^self basicNew initialize

Now we can initialize the values:

Timer>>initialize
count := 0.
period := 1000

Even better, we can explain that magic number 1000 with a
message:

Timer>>defaultMillisecondPeriod
^1000

Timer>>initialize
count := 0.
period := self defaultMillisecondPeriod

84 S M A L L T A L K B E S T P R A C T I C E P A T T E R N S

Put #initialize methods in a method protocol called “initialize-
release.”

Use Default Value Method (p. 86) to explain any value that isn’t obvious. Initialize
Methods in a hierarchy commonly need Extending Super (p. 60) to finish their job.

Lazy Initialization

You are initializing Common State (p. 80).

• How do you initialize an instance variable to its default value?

Here is the flip side of variable initialization. All the strengths of Explicit
Initialization become weaknesses and all the weaknesses strengths.

Lazy Initialization breaks initialization into two methods per variable.
The first is a Getting Method that hides the fact that the variable is lazily ini-
tialized from anyone wanting to use its value. This implies that there can be
no Direct Variable Access. The second method, the Default Value Method, pro-
vides the default value of the variable.

This is where the flexibility comes in. If you make a subclass, you can
change the default value by overriding the Default Value Method.

Readability suffers because there isn’t any one place you can look to see
all the variables and their initial values. Instead, you have to look at several
methods to see all the values.

Performance is another reason to use a Lazy Initialization. Expensive
initialization that may not be needed for a while (or at all) can be deferred by
using Lazy Initialization.

• Write a Getting Method for the variable. Initialize it if necessary
with a Default Value Method.

The Timer example from above needs no explicit initialization.
Instead, count is initialized in its Getting Method:

Timer>>count
count isNil ifTrue: [count := self defaultCount].
^count

S T A T E 85

The default value comes from its own method:

Timer>>defaultCount
^0

Similarly for period:

Timer>>period
period isNil ifTrue: [period := self defaultPeriod].
^period

Timer>>defaultPeriod
^1000

Some people swear by Lazy Initialization. They go so far as to say
that all initialization should be done this way. I actually lean towards
Explicit Initialization. Too many times, I’ve bent over backwards to
supply lots of flexibility that is never used. I’d rather do it the simple
way first, then fix it if it’s a problem. However, if I know I am writing
code that is likely to be subclassed by others, I’ll go ahead and use
Lazy Initialization from the first.

A Default Value Method (p. 86) supplies a default value. A Compute Method sup-
plies the value of a Caching Instance Variable.

Default Value Method

You have a complicated default value in Explicit Initialization (p. 83). You need a
default value for Lazy Initialization (p. 85).

• How do you represent the default value of a variable?

The simplest way to provide default values is right in line with the code.
It’s generally easy to read and quick and simple to write.

86 S M A L L T A L K B E S T P R A C T I C E P A T T E R N S

Patterns whose purpose is creating flexibility (Lazy Initialization) or
who may need additional communication (Explicit Initialization), need an
Intention Revealing Message. It gives you an opportunity to communicate
through the selector. It gives future subclasses the option of simply overriding
a single value.

• Create a method that returns the value. Prepend “default” to the
name of the variable as the name of the method.

A Book might offer up an empty String as its synopsis if no synopsis
has been entered:

Book>>defaultSynopsis
^’’

If you are computing the value of a Caching Instance Variable, call
the method “computeArea” rather than “defaultArea.” This will
provide a clue to readers that the variable is intended as a cache.

Put Default Value Methods in a method protocol called “private.”

Use a Constant Method (p. 87) for constant default values.

Constant Method

You are writing a Composed Method (p. 21). You may need a Default Value
Method (p. 86).

• How do you code a constant?

Smalltalk provides several options for representing shared constants or
variables. Pools provide a set of variables that can be used in any number of
different classes. Class variables are variables that are shared throughout a
hierarchy.

I know that some folks use lots of pools in their applications. I never use
them. Here’s what I don’t like about pools—they make it too easy to stop mak-
ing useful responsibilities and instead just spread data around.

S T A T E 87

The IBM Smalltalk window system is a good example. There is a pool
called CwConstants that contains hundreds of constants. Rather than being
able to send a list pane a message like #singleSelect to make it select one item
at a time, you send it “selectionPolicy: XmSINGLESELECT.”

Of course, you could say that this is just one little thing you have to
remember, and besides, C programmers have to deal with stuff like this all the
time. However, multiply “one little thing to remember” by several hundred and
you don’t have a system that feels much like Smalltalk any more, at least not
when you’re working with the window system.

I would rather limit the visibility of constants to a single class. Then, that
class can provide meaningful behavior to other objects. If you can refactor your
code so that only a single class cares about a constant, you can then represent
that constant as a method.

In the list pane example, this means leaving the original implementation
of #selectionPolicy: alone but not expecting outside objects to invoke it.
Instead, for each of the possible argument values we create a method:

ListPane>>singleSelect
self selectionPolicy: 15

If other methods also needed to know that 15 was the magic constant for
single selection, we create a method for it—a method that just returns 15.

ListPane>>singleSelectPolicy
^15

ListPane>>singleSelect
self selectionPolicy: self singleSelectPolicy

One of the downsides of representing constants as methods is it is easier
to automatically generate the initialization for a pool than it is to automati-
cally create a method. If you have to synchronize a set of constants with other
programs, you may find it easier to use pools. However, you should still strive
to provide rich protocol so that few classes need to know about the pool.

88 S M A L L T A L K B E S T P R A C T I C E P A T T E R N S

Another question about Constant Methods is what happens when you
have hundreds or thousands of constants? A pool can easily grow to contain as
many entries as necessary. A class with a thousand Constant Methods would
look cluttered.

• Create a method that returns the constant.

You can implement the colors of visual components as Constant
Methods:

SelectorFigure>>textColor
^Color darkGray

ExpressionFigure>>textColor
^Color chartreuse

A comment I’ve heard over and over about this pattern is, “What if
you have to deal with hundreds of constants in one class?” To me,
a class that has to deal with hundreds of constants is almost cer-
tainly doing too much work and needs to be broken up. However,
if you absolutely have to, you can use other facilities like Pools to
manage huge numbers of shared constants.

Put Constant Methods in a method protocol called “private.”

Direct Variable Access

You need to access Common State (p. 80) as readably as possible.

How do you get and set an instance variable’s value?

Accessing state is a topic much like initialization. There are two good
answers. One is more readable. One is more flexible. Also like initialization,
you will find dogmatic adherents of both approaches.

The simple, readable way to get and set the values of instance variables
is to use the variables directly in all the methods that need their values. The
alternative requires that you send a message every time you need to use or
change an instance variable’s value.

S T A T E 89

When I first started programming in Smalltalk, at Tektronix in the mid-
80s, the debate about accessing state was hot. There were factions on both
sides making self-important statements (don’t you just love research labs?)

The Indirect Variable Access crowd has won the hearts and mind of the
Smalltalking public, mostly, I think, because most of the high volume training
companies teach indirect access. The issue is nowhere near as simple as
“direct access bad, indirect access good.”

I tried to reopen the debate in my Smalltalk Report column a few years
back. A little brush fire started that eventually fizzled out. I was wondering if
I was making too big a deal of the merits of direct access. Maybe I should have
left well enough alone.

Then, I spent several months working for a client that insisted on indi-
rect access. A professional programmer can take on any of a number of styles
at will, so I was a good soldier and wrote my getters and setters.

After I was done with that client, I wrote some code for myself. I was
amazed at how much smoother it read than what I had been previously work-
ing on. The only difference in style was direct versus indirect access.

What I noticed was that every time I read:

…self x…

I paused for a moment to remind myself that the message “x” was just
fetching an instance variable. When I read:

…x…

I just kept reading.

I told Ward of my experience. He had another good explanation. When
you write classes that only have a handful of methods, adding a getting and a
setting method can easily double the number of methods in your class—twice
as many methods to buy you flexibility that you may never use.

90 S M A L L T A L K B E S T P R A C T I C E P A T T E R N S

On the other hand, it’s awful frustrating to get a class from someone and
see the opportunity to quickly subclass it, only to discover that they used
Direct Variable Access, so there is no way to make the changes you want with-
out changing most of the code in the superclass.

• Access and set the variable directly.

Most of the example code in this book uses Direct Variable Access
because I want to be as easy to read as possible. When you have
direct access, putting in Indirect Variable Access is no big deal.
Thus, you can read:

Point>>setX: xNumber y: yNumber
x := xNumber.
y := yNumber

quickly, and there is no danger that you won’t know what to do if
you choose indirect access later.

Indirect Variable Access

You need to access Common State (p. 80) as flexibly as possible.

How do you get and set an instance variable’s value?

Now I have to display my true schizophrenia. Having convinced you in
Direct Variable Access that just using variables is good enough, I’m going to
ask you to ignore that crazy bastard and listen to me talk some sense here.

When you use Direct Variable Access, many methods make the assump-
tion that a variable’s value is valid. For some code this is a reasonable assump-
tion. However, if you want to introduce Lazy Initialization, to stop storing and
start computing the value, or if you want to change assumptions in a new sub-
class, you will be disappointed that the assumption of validity is wide spread.

The solution is to always use Getting Methods and Setting Methods to
access variables. Thus, instead of:

S T A T E 91

Point>>+ aPoint
^x + aPoint x @ (y + aPoint y)

you would see:

Point>>+ aPoint
^self x + aPoint x @ (self y @ aPoint y)

If you browse the instance variable references of a class that uses
Indirect Variable Access, you will only see two references to each variable, the
Getting Method and the Setting Method.

What you give up with Indirect Variable Access is simplicity and read-
ability. You have to define all those Getting Methods and Setting Methods.
Even if you have your system do it for you, you have that many more methods
to manage and document. As explained above, code using Direct Variable
Access reads smoothly because you are not forever reminding yourself “Oh
yeah, that’s just a Getting Method.”

• Access and set its value only through a Getting Method and
Setting Method.

A Point written with Indirect Variable Access provides methods for
its instance variables:

Point>>x
^x

Point>>x: aNumber
x := aNumber

92 S M A L L T A L K B E S T P R A C T I C E P A T T E R N S

That way, you could define a PolarPoint subclass that merely imple-
mented these methods differently, and all the superclass code
would still work.

PolarPoint>>x
^self radius cos * self theta

If you need to code for inheritance, use Indirect Variable Access.
Future generations will thank you.

One warning—do not go half way. If you are going to use direct
access, use it for all access. If you decide later you need to move
a variable to indirect access, perhaps to take advantage of Lazy
Initialization, change the accessing of the variable throughout. On
the other hand, it doesn’t bother me much to see some variables in
an object accessed directly and others indirectly.

You will need to define a Getting Method (p. 93) and a Setting Method (p. 95) for
each variable. For variables holding collections, consider implementing
Collection Accessor Methods (p. 96) and an Enumeration Method (p. 144).

Getting Method

You are using Lazy Initialization or Indirect Variable Access (p. 91).

• How do you provide access to an instance variable?

Once you have decided to use Indirect Variable Access, you are commit-
ted to providing a message-based protocol for getting and setting variable val-
ues. The only real questions are how you use it and what you call it.

Here’s the real secret of writing good Getting Methods—make them pri-
vate at first. I cannot stress this enough. You will be fine if the same object
invokes and implements the Getting Method. Another way of saying this is you
always send messages invoking Getting Methods to “self.”

S T A T E 93

Some people try to ensure this by prefixing “my” to the name of the
method. Thus, instead of:

x
^x

you have:

myX
^x

This makes sure that code like:

self bounds origin myX

looks stupid. I don’t feel this is necessary. I’d rather give programmers (myself
included) the benefit of the doubt. If some other object absolutely has to send
my private Getting Method, it should be able to do so in as readable a manner
as possible.

• Provide a method that returns the value of the variable. Give it
the same name as the variable.

A Book that needed to display its author and title in a user interface
would publish Getting Methods:

94 S M A L L T A L K B E S T P R A C T I C E P A T T E R N S

Book>>author
^author

Book>>title
^title

There are cases where you will publish the existence of Getting
Methods for use in the outside world. You should make a conscious
decision to do this after considering all the alternatives. It is prefer-
able to give an object more responsibility, rather than have it act
like a data structure.

Put private Getting Methods in a method protocol called “private-
accessing.” Put public Getting Methods in a method protocol
called “accessing.”

Setting Method

You are using Indirect Variable Access (p. 91).

• How do you change the value of an instance variable?

Everything I said once about Getting Methods, I’d like to say twice about
Setting Methods. Setting Methods should be even more private. It is one thing
for another object to tear out your state, it is quite another for it to bash in a
new state. The possibilities for the code in the two objects to get out of sync
and break, in confusing ways, are legion.

Revisiting naming, I don’t feel it is necessary to prepend “my” to the
names of Setting Methods. It might provide a little more protection from unau-
thorized use, but I don’t think the extra difficulty reading is worth it.

• Provide a method with the same name as the variable. Have it
take a single parameter, the value to be set.

S T A T E 95

A Book editing interface would need Setting Methods for author
and title:

Book>>author: aString
author := aString

Book>>title: aString
title := aString

Even if I use Indirect Variable Access, if I have a variable that is only
set at instance creation time, I would not provide a Setting Method.
I’d use the Constructor Parameter Method to set the all the values
at once. Once you have a Setting Method, though, you should use
it for all changes to the variable.

Put private Setting Methods in a method protocol called “private-
accessing.” Put public Setting Methods in a method protocol
called “accessing.”

Set boolean properties with a Boolean Property Setting Method (p. 100).

Collection Accessor Method

You are using Indirect Variable Access (p. 91).

• How do you provide access to an instance variable that holds a
collection?

The simplest solution is just to publish a Getting Method for the variable.
That way, any client that wants can add to, delete from, iterate over, or other-
wise use the collection.

The problem with this approach is that it opens up too much of the imple-
mentation of an object to the outside world. If the object decides to change the
implementation, say by using a different kind of collection, the client code may
well break.

The other problem with just offering up your private collections for pub-
lic viewing is that it is hard to keep related state current when someone else

96 S M A L L T A L K B E S T P R A C T I C E P A T T E R N S

is changing the collection without notifying you. Here’s a department that uses
a Caching Instance Variable to speed access to its total salary:

Department
superclass: Object
instance variables: employees totalSalary

totalSalary
totalSalary isNil ifTrue: [totalSalary := self

computeTotalSalary].
^totalSalary

computeTotalSalary
^employees

inject: 0
into: [:sum :each | sum + each salary]

clearTotalSalary
totalSalary := nil

What happens if client code deletes an employee without notifying the
department?

…aDepartment employees remove: anEmployee…

The totalSalary cache never gets cleared. It now contains a number
inconsistent with the value returned by computeTotalSalary.

The solution to this is not to let other objects have your collections. If you
use Indirect Variable Access, make sure Getting Methods for collections are
private. Instead, give clients restricted access to operations on the collection
through messages that you implement. This gives you a chance to do whatev-
er other processing you need to.

The downside of this approach is that you have to actually implement all
of these methods. Giving access to a collection takes one method. You might
need four or five methods to provide all the necessary protected access to the

S T A T E 97

collection. In the long run, it’s worth it though, because your code will read bet-
ter and be easier to change.

• Provide methods that are implemented with Delegation to the
collection. To name the methods, add the name of the collection
to the collection messages.

If Department wanted to let others add and delete employees, it
would implement Collection Accessor Methods:

addEmployee: anEmployee
self clearTotalSalary.
employees add: anEmployee

removeEmployee: anEmployee
self clearTotalSalary.
employees remove: anEmployee

Don’t just blindly name a Collection Accessor Method after the col-
lection message it delegates. See if you can find a word from the
domain that makes more sense. For example, I prefer:

employs: anEmployee
^employees includes: anEmployee

to:

includesEmployee: anEmployee
^employees includes: anEmployee

98 S M A L L T A L K B E S T P R A C T I C E P A T T E R N S

Put Collection Accessor Methods in a method protocol called
“accessing.”

Implement an Enumeration Method (p. 99) for safe and efficient general collec-
tion access.

Enumeration Method

You are using Indirect Variable Access (p. 91). You may have implemented a
Collection Accessor Method (p. 96).

• How do you provide safe, general access to collection elements?

Sometimes, clients want lots of ways of accessing a private collection. You
could implement twenty or thirty Collection Accessor Methods but you haven’t
the time and you aren’t even sure even that would be enough. At the same
time, all the arguments for not just making a Getting Method for the collec-
tion public still hold.

• Implement a method that executes a Block for each element of
the collection. Name the method by concatenating the name of
the collection and “Do:.”

The Enumeration Method for a Department’s Employees looks like this:

Department>>employeesDo: aBlock
employees do: aBlock

Now client code that wants to get a collection of all of the Employees
in a bunch of departments can use a Concatenating Stream:

S T A T E 99

allEmployees
| writer |
writer := WriteStream on: Array new.
self departments do: [:eachDepartment |

eachDepartment employeesDo: [:eachEmployee | writer
nextPut: eachEmployee]]

^writer contents

What if you want Departments to be able to contain other
Departments, and not just Employees (this is an example of the
modeling pattern Composite)? You can implement employeesDo:
for both:

Department>>employeesDo: aBlock
employees do: [:each | each employeesDo: aBlock]

Employee>>employeesDo: aBlock
aBlock value: self

Put Enumeration Methods in a method protocol called “enumerat-
ing.”

Boolean Property Setting Method

You are using a Setting Method (p. 95).

• How do you set a boolean property?

The simplest solution is to use a Setting Method. Let’s say we have a
Switch that stores a Boolean in an instance variable “isOn.” The Setting
Method is:

100 S M A L L T A L K B E S T P R A C T I C E P A T T E R N S

Switch>>on: aBoolean
isOn := aBoolean

There are two problems with this approach. The first is that it exposes
the representation of the status of the switch to clients. This has led me to sit-
uations where I make a representation change in one object that has to be
reflected in many others. The second problem is that it is hard to answer sim-
ple questions like “who turns on the switch?”

Creating distinct methods for the two states causes you to create one
more method than you would have otherwise. However, the cost of these meth-
ods is money well spent because of the improvement in communication of the
resulting code.

Using the names of the two states as the names of the methods is tempt-
ing (Switch>>on and Switch>>off, in this example). As with Query Method,
though, there is a potential confusion about whether you’re interrogating the
object or telling it what to do. Thus, even though adding another word to the
selector results in a selector that is less natural to say, the added clarity is
worth it.

• Create two methods beginning with “be.” One has property
name, the other the negation. Add “toggle” if the client doesn’t
want to know about the current state.

Here are some examples:

beVisible/beInvisible/toggleVisible
beDirty/beClean

Put Boolean Property Setting Methods in a method protocol called
“accessing.”

S T A T E 101

Role Suggesting Instance Variable Name

You need to name Common State (p. 80).

• What do you name an instance variable?

The two important pieces of information to communicate about any vari-
able are:

• What is its purpose?

• How is it used?

The purpose or role of a variable is important to the reader because it
helps direct their attention appropriately. Typically, when you read code you
have a purpose in mind. If you understand the role of a variable and it is unre-
lated to your purpose, you can quickly skim over irrelevant code that uses that
variable. Likewise, if you see a variable that is related to your purpose, you
can quickly narrow your reading to relevant code by looking for that variable.

How a variable is used and the messages it is sent are its “type.”
Smalltalk doesn’t have declared types, but that doesn’t mean they aren’t
important. Understanding the messages sent to a variable tells you what
objects can be safely placed as values in that variable. Substitution of objects
is the heart of disciplined maintenance and reuse.

Different variables appear in different contexts, so what you need to com-
municate with their names is different. The context for instance variables is
most similar to the context for temporary variables. The only way you have for
communicating the role of an instance variable is through its name. If the
variables in Point were called “t1” and “t2” instead of “x” and “y,” you’d have a
lot of reading to do before you could tell which was the horizontal component
and which the vertical. Naming the variables by their roles gives you that
information directly.

On the other hand, the type of an instance variable is easily discovered
from the code in which it resides. It is easy to find where the variable is used
and from there discover what messages it is sent. You also get hints from
Creation Parameter Setting Methods or Setting Methods that set the value of
the variable. If I asked you what the type of “x” was in:

Point>>x: aNumber
x := aNumber

102 S M A L L T A L K B E S T P R A C T I C E P A T T E R N S

you’d be able to tell me instantly. In the interest of keeping names simple,
short, and readable, you can safely leave out any mention of the type of a vari-
able in its name.

• Name instance variables for the role they play in the computa-
tion. Make the name plural if the variable will hold a Collection.

The role of the instance variable “x” is to hold the horizontal offset
of the Point. The role of the “y” instance variable is to hold the
vertical offset.

Temporary Variables
Temporary variables let you store and reuse the value of expressions.

They can be used to improve the performance or readability of methods. The
following patterns motivate and guide the use of temporary variables. The
examples are taken from Smalltalk, but the discussion applies to any lan-
guage with procedure-scoped variables.

Temporary Variable

A Composed Method (p. 21) needs temporary storage.

• How do you save the value of an expression for later use within a
method?

A stateless language like FP contains no notion whatever of a variable. If
you need the value of an expression, you evaluate the expression. If you need
it in many places in a program, you evaluate it many places.

While the abstract properties of a stateless language might be attractive
to a language designer, practical programs use variables to simplify the
expression of computation. Each variable has several distinguishing features.
The scope of a variable is the textual area within which it can be used. The
extent of a variable defines how long its value lasts. The type of a variable is
the signature of messages sent to it.

Long extent, wide scope, and large type all make variables difficult to
manage. If all three factors are present in many variables, you have a program
that can only be understood in its entirety. Limiting the scope, extent, and type
of variables wherever possible produces programs that are easier to under-
stand, modify, and reuse.

S T A T E 103

Another language design decision is whether to require the explicit dec-
laration of variables. Early languages, like FORTRAN, detected the presence
of variables automatically. ALGOL and its descendants required explicit dec-
laration. Explicit declaration puts a burden on the programmer writing the
program but pays off when someone else needs to understand the program.
The presence and use of variables is often the first place a reader begins.

• Create a variable whose scope and extent is a single method.
Declare it just below the method selector. Assign it as soon as the
expression is valid.

Temporary variables are good at helping you understand a com-
putation that is halfway towards its goal. Thus, you can more easily
read:

Rectangle>>bottomRight
| right bottom |
right := self left + self width.
bottom := self top + self height.
^right @ bottom

than you can:

Rectangle>>bottomRight
^self left + self width @ (self top + self height)

Collecting Temporary Variable saves intermediate results for later use. Caching
Temporary Variable (p. 106))improves performance by saving values. Explaining
Temporary Variable (p. 108) improves readability by breaking up complex
expressions. Reusing Temporary Variable (p. 109) lets you use the value of a side-
effecting expression more than once in a method.

104 S M A L L T A L K B E S T P R A C T I C E P A T T E R N S

Collecting Temporary Variable

Sometimes a Temporary Variable (p. 103) is used to collect intermediate results.

• How do you gradually collect values to be used later in a
method?

The right set of enumeration protocol would make this question moot.
Inject:into:, in particular, often eliminates the need for a temporary variable.
Code like:

| sum |
sum := 0.
self children do: [:each | sum := sum + each size].
^sum

can be rewritten as:

^self children
inject: 0
into: [:sum :each | sum + each size]

The variety of enumeration strategies in complex programs makes it
impossible to generalize the inject:into: idiom. For example, what if you want
to merge two collections together so that you have an element from collection
a, an element from collection b, and so on. This would require a special enu-
meration method:

^self leftFingers
with: self rightFingers
inject: Array new
into: [:sum :eachLeft :eachRight |
…(sum copyWith: eachLeft) copyWith: eachRight]

S T A T E 105

It is much simpler to create a Stream for the duration of the method:

| results |
results := Array new writeStream.
self leftFingers with: self rightFingers do:

[:eachLeft :eachRight | results nextPut: eachLeft;
nextPut: eachRight].

^results contents

• When you need to collect or merge objects over a complex enu-
meration, use a temporary variable to hold the collection or
merged value.

The variable “answer” in Collection>>deepCopy is a simple exam-
ple of a Collecting Temporary Variable:

deepCopy
| answer |
answer := self species new.
self do: [:each | answer add: each copy].
^answer

Role Suggesting Temporary Variable Name (p. 102) explains how to name the
variable.

Caching Temporary Variable

A performance measurement has shown you that an expression in a method is a
bottleneck.

• How do you improve the performance of a method?

Many performance related decisions sacrifice programming style to the
needs of demanding users with limited machine resources. Successful perfor-
mance tuning hinges on being explicitly aware of this tradeoff and only intro-

106 S M A L L T A L K B E S T P R A C T I C E P A T T E R N S

ducing changes that pay back in increased performance more than they cost in
increased maintenance.

As with variables, the scope and extent of a performance tuning decision
dramatically affect its cost. Performance related changes that are confined to a
single object are good, changes that only affect a single method are even better.

All performance tuning boils down to two techniques—either you execute
code less often or you execute code that costs less. Of these, the first is often
the most valuable. It relies on the fact that for reasons of readability, expres-
sions are often executed several times even though they return the same
value. Caching saves the value of the expression so that the next time the
value is used instantly.

The biggest problem with caches is their assumption that the expression
returns the same value. What if this isn’t true? What if it is true for a while,
but then the value of the expression changes? You can limit the complexity
introduced by the need to keep a cache valid by limiting the scope and extent
of the variable used for the cache.

• Set a temporary variable to the value of the expression as soon as
it is valid. Use the variable instead of the expression in the remain-
der of the method.

For example, you might have some graphics code that uses the
bounds of the receiver. If calculating the bounds is expensive, you
can transform:

self children do: [:each | ...self bounds...]

into:

| bounds |
bounds := self bounds.
self children do: [:each | ...bounds...]

If the cost of calculating the bounds dominates the cost of the
method, this takes a method that is linear in cost in the number of
children and turns it into one that is constant.

S T A T E 107

Role Suggesting Temporary Variable Name (p. 102) explains how to name the
variable. Caching Instance Variable caches expression values if they are used
from many methods.

Explaining Temporary Variable

Temporary Variable (p. 103) can be used to improve the readability of complex
methods.

• How do you simplify a complex expression within a method?

In the passion of the moment, you can write expressions within methods
that are quite complex. Most expressions are simple at first. As soon as you are
looking at live data, though, you realize your naive assumptions will never
work. You add this complexity, then that one, then another, until you have
many layers of messages piled on each other. While you are debugging, it is all
understandable because you have so much context. Coming back to such a
method in six months is quite a different experience.

Fixing the method right might require changes to several objects. While
you are just exploring, such a commitment might be inappropriate.

• Take a subexpression out of the complex expression. Assign its
value to a temporary variable before the complex expression. Use
the variable instead in the complex expression.

An example is the use of the variable “lastIndex” in
LinearHashTable>>findKeyIndex:for: from Visual Smalltalk. The mes-
sage “size” is fast, so the performance of the method would prob-
ably not change much if the variable weren’t used. The size of the
receiver is being used to mean a final value for an index, so the
variable helps explain the method:

LinearHashTable>>findKeyIndex: element for: client
| index indexedObject lastIndex |
lastIndex := self size.
...

108 S M A L L T A L K B E S T P R A C T I C E P A T T E R N S

Role Suggesting Temporary Variable Name (p. 102) explains how to name the
variable. Composed Method (p. 21) puts the subexpression where it belongs and
gives it a name.

Reusing Temporary Variable

Temporary Variable (p. 103) can be used to reuse the value of expressions that
cannot be executed more than once.

• How do you use an expression several places in a method when
its value may change?

Methods without temporary variables are easier to understand than
methods with temporary variables. However, you sometimes encounter
expressions whose values change, either because of side-effects of evaluating
the expression or because of outside effects, but you need to use the value more
than once. Using a temporary variable is worth the cost in such a case, because
the code simply wouldn’t work otherwise.

For example, if you are reading from a stream, the evaluation of “stream
next” causes the stream to change. If you are matching the value read against
a list of keywords, you must save the value. Thus:

stream next = a ifTrue: […].
stream next = b ifTrue: […].
stream next = c ifTrue: […]

is not likely what you mean. Instead, you need to save the value in a tempo-
rary variable so you only execute “stream next” once.

| token |
token := stream next.
token = a ifTrue: [...]
…

S T A T E 109

Resources that are affected by the outside world also require this treat-
ment. For example, “Time millisecondClockValue” cannot be executed more
than once if you want to be guaranteed the same answer.

• Execute the expression once and set a temporary variable. Use
the variable instead of the expression in the remainder of the
method.

Role Suggesting Temporary Variable Name (p. 110) explains how to name the
variable.

Role Suggesting Temporary Variable Name

Collecting Temporary Variable (p. 105) stores the intermediate results of a compu-
tation. Caching Temporary Variable (p. 106) improves performance by eliminating
redundant computation. Explaining Temporary Variable (p. 108) makes methods
containing complex expressions easier to read. Reusing Temporary Variable (p.
109) correctly executes methods containing side-effecting expressions.

• What do you call a temporary variable?

There are two important dimensions to communicate about a variable.
The first is its type. Readers wishing to modify code need to know what
responsibilities are assumed for an object occupying a variable. The second
important dimension is role, that is, how the object is used in the computation.
Understanding the role is important to understanding the method in which
the variable is used. Different kinds of variables require different naming
treatments to communicate type and role.

Temporary variables communicate their role by context. If you are
staring at:

| sum |
sum := 0.
…sum…

110 S M A L L T A L K B E S T P R A C T I C E P A T T E R N S

you cannot possibly be confused about its type. Even if a temporary variable is
initialized by a expression, you will be able to understand its type as long as
the expression is well written:

| bounds |
bounds := self bounds.
... bounds ...

Role, on the other hand, requires explicit communication. You have prob-
ably had the experience of reading code whose temporary variables had names
like “a,” “b,” and the ever popular “temp.” As a reader, you have to go through
the code holding these useless names in your head until the light comes on. “A
ha! ‘b’ is really the left offset of the parent widget.”

• Name a temporary variable for the role it plays in the computation.

Use variable naming as an opportunity to communicate valuable
tactical information to future readers.

“results” is a good name for a Collecting Temporary Variable.
“right” and “bottom” are good names for Explaining Temporary
Variables.

S T A T E 111

This page intentionally left blank

The collection hierarchy is one of the great strengths of
Smalltalk. Code that has to be tediously written over and over in
other languages is a single word in Smalltalk. The result is more
flexible, because the collections respond to much of the same proto-
col, so a linear list can be converted to a hash table by substituting
“Set” for “OrderedCollection.”

The bad news is, the collection classes give you yet more stuff
to learn so you can master Smalltalk. The good news is, no single
piece of the protocol is complicated or hard to learn and the result
is code that is simpler, faster, easier to maintain, and more flexible.

The very richness of the collection classes is their biggest
drawback. Beginning programmers typically learn to use a small
fraction of the available classes and messages, relying on leftover
skills from procedural programming for the rest of the functionali-
ty they need. As a result, their code is much larger than it needs to
be, difficult to read for an experienced Smalltalker, and more prone
to error.

For example, it is common to find hand coded loops for itera-
tion in beginner Smalltalk code. Not only is:

113

Collections

5

| index |
index := 1.
[index <= aCollection size] whileTrue:

[…aCollection at: index…
index := index + 1]

more difficult to write and read than:

aCollection do: [:each | …each…]

it is also less flexible. The first code will only work with indexed collections.
The second will work with Sets and Dictionaries, too.

During code reviews, I commonly find opportunities to transform four,
five, or six line expressions into a single line using the full power of the collec-
tion protocol.

Our discussion of collections is divided into three sections:

• Classes —When you want to use a collection, the first thing you
have to decide is “which one.” This section describes what problem
or problems each of the major collection classes solve.

• Protocol—Programming habits carried over from other languages
can reduce the effectiveness of code when you use collections. This
section describes the major messages you can send to collections
and what problem each solves.

• Idioms—Because collections are so powerful, there are a small set of
standard tricks that experienced Smalltalkers know to play with
them. If you are reading code that uses one of these idioms, you may
be puzzled at first. This section introduces the problems you can
solve using collections in unusual ways.

Classes
This section presents the circumstances under which you would choose to

use each of the major collection classes.

114 S M A L L T A L K B E S T P R A C T I C E P A T T E R N S

Collection

• How do you represent a one-to-many relationship?

Every programming language provides facilities to represent one-to-
many relationships. The first data structure in FORTRAN was the array.

Computer science has made a franchise of representing one-to-many
relationships. How many thousands of varieties of trees, lists, and tables are
there hidden away in the Journals of the ACM?

Such an important topic has picked up a vast quantity of idiom in every
programming language. Even though I hardly use C any more, I can instantly
recognize:

for (i = 0; i < n; i++) …

as iterating over an array.

One of the most brilliant early developments in Smalltalk was present-
ing a unified protocol to all the varieties of ways of representing one-to-many
relationships. No longer does all client code directly encode how to iterate over
elements. Iteration is the responsibility of the object representing the rela-
tionship itself. This results in tremendous power throughout development. You
can change from a linear list to a hash table by changing “OrderedCollection”
to “Set,” with the confidence that no other code will be affected.

The down side of the Collection classes is their very power. Because you
can write code involving Collections in very few words, you have to be initiat-
ed in the special meaning of those words before you have a chance of under-
standing such code. Once you understand the vocabulary, though, you will
never be able to write code in a language that doesn’t support Collections with-
out a wistful sigh about “how easy this would be in Smalltalk.”

There is an alternative to using the Collection classes. Any class can be
made indexable, that is have both named variables and variables you access
through at: and at:put:. Using this feature, any class can be made to act like
both a regular object and a collection, at the same time. This would be useful
if you were extremely tight on space, but copying the Collection code just isn’t
worth it.

• Use a Collection.

C O L L E C T I O N S 115

A Library could keep a Collection of Books.

Use an OrderedCollection for Collections (p. 116) that change size dynamically.
Use an Array (p. 133) for fixed-sized Collections. Use a Set (p. 119) to ensure ele-
ment uniqueness. Use a Dictionary (p. 128) to map from one kind of object to
another. Use a Temporarily Sorted Collection (p. 155) for ordering elements. Use a
SortedCollection (p. 131) to keep elements in a computed order.

OrderedCollection

You need a dynamically sized Collection (p. 115).

• How do you code Collections whose size can’t be determined
when they are created?

Many of the hassles programs give users come from the need for flexibil-
ity. Primitive memory management has lead to a lack of flexibility in the sizes
of data. Every time I read, “You can have up to 99 files” or “Each function can
have no more than 256 lines,” I imagine a software engineer preallocating
memory to handle just that many items. While arbitrary limits like “99” or
“256” are typically chosen because the engineers can’t imagine the need for
any more, just as typically, they become a hindrance to a user somewhere down
the road (sometimes years down the road).

There is no excuse for arbitrary data size limitations in Smalltalk. Two
factors work in your favor as you try to eliminate such limits. First, the
Collection classes give you tremendous leverage to change your mind about rep-
resenting one-to-many relationships. Second, the garbage collector frees you
from the drudgery of maintaining references as data structures change size.

This flexibility comes at a cost. The implementation of OrderedCollection,
the most common dynamically sized Collection, allocates more memory than it
strictly needs at first, so that some growth can be accommodated at little cost.
The implementation also uses indirection to access elements. In some
Collection-intensive code, I have found this to be a bottleneck. While you’re
just trying to get the program working, though, you shouldn’t worry about
such issues. There is time enough to address them later.

• Use an OrderedCollection as your default dynamically sized
Collection.

Here is an example of using OrderedCollection:

116 S M A L L T A L K B E S T P R A C T I C E P A T T E R N S

Class: Document
superclass: Object
instance variables: paragraphs

A Document stores an OrderedCollection of Paragraphs, defined
here with Lazy Initialization:

Document>>paragraphs
paragraphs isNil ifTrue: [paragraphs :=

OrderedCollection new].
^paragraphs

We need to be able to add new Paragraphs dynamically, so we
need OrderedCollection’s ability to change its size dynamically:

Document>>addParagraph: aParagraph
self paragraphs add: aParagraph

Typesetting a Document is implemented by typesetting each
Paragraph in turn. The order of the Paragraphs is important, so stor-
ing them in an OrderedCollection is exactly right.

Document>>typesetOn: aPrinter
self paragraphs do: [:each | each typesetOn: aPrinter]

Change to a Set (p. 119) if you need to ensure that every element appears only
once. Change to a RunArray (p. 118) if you want to compactly represent a col-
lection with long runs of the same element. Change to an Array (p. 133) if you
don’t need dynamic sizing.

C O L L E C T I O N S 117

RunArray

You are using an OrderedCollection (p. 116).

• How do you compactly code an OrderedCollection or Array
where you have the same element many times in a row?

The simplest solution is just to use an OrderedCollection. During early
development, this is probably the right answer. When you begin working with
realistic sized data sets, you may discover that you are using more memory
than you can afford.

The classic example of this is text editing. Conceptually, each character
in an editor has its own font, size, and decoration. The obvious representation
of this is as an OrderedCollection of Style objects that parallels the characters.
This might even work for short text. When you are dealing with a whole book,
though, the extra four bytes for the slot in the OrderedCollection plus the 12
bytes for the Style header plus the 12 bytes for the variables in the Style plus
all the bytes for the Font, Size, and Decoration objects really add up.

If you look at typical text, you’ll see that most of the information is redun-
dant. There will be 50 characters with one style, 200 with another, 90 with
another, and so on. A RunArray stores this as “50 of style 1, 200 of style 2, 90
of style 3.” Each count-object pair is called a “run.”

If we stored this information in an OrderedCollection, we would need 340
elements. A RunArray needs only three runs (each with two references).

Storage efficiency comes at a cost. First, if you really have a different
object in each element, a RunArray will take twice as much storage as an
Array or OrderedCollection. Second, the time necessary to access an element
at the end of a RunArray is proportional to the number of runs. The
VisualWorks implementation avoids some of this cost by caching the position
of the last element fetched.

• Use a RunArray to compress long runs of the same element.

A common example of using a RunArray is storing the emphasis for
text. In a piece of text like this:

this is a test

the characters themselves can be stored in a 14 element String. The
emphasis can be stored in a parallel 14 element array:

118 S M A L L T A L K B E S T P R A C T I C E P A T T E R N S

#(plain plain plain plain plain bold bold bold bold plain plain
plain plain plain)

This takes an extra four bytes per character, or 56 bytes. However,
because there are so many adjacent elements that are the same,
a RunArray can save space. You can think of it as storing:

5—#plain, 4—#bold, 5—#plain

This takes only 6 × 4 bytes, equaling 24 bytes.

I know I need a RunArray when I click “self” in an inspector of an
Array or OrderedCollection and I see the same element printing
over and over.

The beauty of using a RunArray is that client code can’t know
whether they have an Array, an OrderedCollection, or a RunArray,
since they all support the same messages. You can code with
whichever one works best, then change your mind later without
any appreciable cost.

VisualWorks 2 implements RunArray. VisualAge and VisualSmalltalk
do not at this writing.

Set

You need a Collection (p. 115) with unique elements. You may need a Collecting
Parameter (p. 75) without duplicates. You may have been using an
OrderedCollection (p. 116).

• How do you code a Collection whose elements are unique?

Suppose you have a Collection of Accounts and you want to send state-
ments to all of the Owners. You don’t have an explicit Collection of the Owners

C O L L E C T I O N S 119

anywhere. You only want to send a single statement to each Owner. Each
Owner could have a number of different Accounts.

How can we get each Owner only once? The naive code doesn’t work right:

owners
| results |
results := OrderedCollection new.
self accounts do: [:each | results add: each owner].
^results

We may get multiple copies of an Owner. You could solve this problem
yourself by checking whether an owner was in the results before adding it:

owners
| results |
results := OrderedCollection new.
self accounts do:

[:each || owner |
owner := each owner.
(results includes: owner) ifFalse: [results add:

owner]].
^results

Sets solve this problem for you by ignoring “add: anObject” if anObject is
already part of the Set. Using a Set instead of an OrderedCollection fixes the
problem.

owners
| results |
results := Set new.
self accounts do: [:each | results add: each owner].
^results

120 S M A L L T A L K B E S T P R A C T I C E P A T T E R N S

Another way of looking at the difference is by trying both Collections out
in a workspace:

| o |
o := OrderedCollection new.

Put the String ‘abc’ in the Collection and it occurs once:

o add: ‘abc’.
o occurrencesOf: ‘abc’ => 1

Put it in again, and it occurs twice:

o add: ‘abc’.
o occurrencesOf: ‘abc’ => 2

Take it out once, and it only occurs once:

o remove: ‘abc’.
o occurrencesOf: ‘abc” => 1

Sets show different behavior.

| s |
s := Set new.

C O L L E C T I O N S 121

Like an OrderedCollection, put ‘abc’ in once and it occurs once:

s add: ‘abc’.
s occurrencesOf: ‘abc” => 1

But, put it in again, and it still only occurs once:

s add: ‘abc’.
s occurrencesOf: ‘abc” => 1

Take it out, and it’s gone:

s remove: ‘abc’.
s occurrencesOf: ‘abc” => 0

(By the way, any time I’m trying to understand some new code, I pull out
a workspace and start fiddling like this. There is no better way to understand
a new object than to grab an instance and start sending it messages. If you
think you know what’s going on, try to predict how it will react. If you haven’t
a clue, just start sending messages and see what comes back.)

The elimination of duplicates comes at a cost. The order of adding and
deleting that OrderedCollection preserves is not available for Sets. Also,
OrderedCollection responds to the indexed messages at: and at: put:. Sets do not.

• Use a Set.

Use Sets when you don’t want duplicates. If we want to get a
Collection of all the members of all the clubs, we could just write:

122 S M A L L T A L K B E S T P R A C T I C E P A T T E R N S

clubMembers
| results |
results := OrderedCollection new.
self clubs do: [:each | results addAll: each members].
^results

If one student could be in more than one club, that student would
show up more than once in the result. To avoid this, we write:

clubMembers
| results |
results := Set new.
self clubs do: [:each | results addAll: each members].
^results

Sets probably cause me the most incompatibility problems of any
of the Collection classes. I am forever passing a Set to a list pane
that expects an indexable Collection. It is easy enough to solve the
problem by creating an Array or SortedCollection.

memberList: aPane
aPane contents: self clubMembers

becomes:

C O L L E C T I O N S 123

memberList: aPane
aPane contents: self clubMembers

asSortedCollection

Sets perform an important communication function. They are your
way of telling your reader “I expect duplicates in this Collection, but
I don’t want them for further processing.” Be sure you only use them
when that is what you mean because that’s how others will read
your code.

The other reason to use a Set is because its implementation of
includes: is much faster than the implementation in
OrderedCollection (for large Collections). I have only done this a
couple of times in my career, but it is a great trick to pull out when
you’re tuning performance.

If you implement an Equality Method (p. 124) for Set elements, you must also imple-
ment a Hashing Method (p. 126). You may need to convert to an Array (p. 133) or
Temporarily Sorted Collection (p. 155) for clients who want an indexable Collection.

Equality Method

• How do you code equality for new objects?

The message “=”is sent 1363 times in the standard VisualWorks 2
image. It is implemented 57 times. Clearly, this is a message of considerable
importance.

The default implementation of equality is identity. Two objects are equal
if, and only if, they are the same object.

Object>>= anObject
^self == anObject

124 S M A L L T A L K B E S T P R A C T I C E P A T T E R N S

If equality is only redefined 57 times, this definition must be good enough
for the vast majority of classes.

The most important reason for implementing equality is because you are
going to put your objects in a Collection and you want to be able to test for
inclusion, remove elements, or eliminate duplicates in Sets without having to
have the same instance.

For example, let’s say I’m working on a library program. Two books are
equal if the author and title are equal:

Book>>= aBook
^self author = aBook author & (self title = aBook title)

A Library maintains an OrderedCollection of Books. Because I have
defined equality, I can write a method that takes the name of an author and a
title and searches for that Book:

Library>>hasAuthor: authorString title: titleString
| book |
book := Book

author: authorString
title: titleString.

^self books includes: book

The other major reason to implement equality is because your objects
have to interoperate with other objects that implement equality. For example,
if I was implementing a new kind of Number, I would define equality because
all Numbers define equality.

You see a fair number of class tests in equality methods. For example, you
might see:

C O L L E C T I O N S 125

Book>>= aBook
(aBook isMemberOf: self class) ifFalse: [^false].
^self author = aBook author & (self title = aBook title)

I read this as “If aBook isn’t a Book, I couldn’t possibly be equal to it.
Otherwise, I’m equal if my author and title are equal to aBook’s.” While class
tests are in general a bad thing (see Choosing Message), this is one place
where they can be useful. What if we want to add Videos to our Library? Videos
don’t have a message “author,” so comparing a Book and a Video without some
protection would result in an error.

• If you will be putting objects in a Set, using them as Dictionary keys,
or otherwise using them with other objects that define equality,
define a method called “=.” Protect the implementation of “=” so
only objects of compatible classes will be fully tested for equality.

Value-like objects, like Numbers and Points, are the most obvious
candidates for Equality Methods. Two Points are equal if their coor-
dinates are equal.

Point>>= aPoint
(aPoint isMemberOf: self class) ifFalse: [^false].
^x = aPoint x & (y = aPoint y)

You may need Double Dispatch (p. 55) for complex multiclass equality tests.
Testing is often done in terms of Simple Delegation (p. 65) with one or more com-
ponents of an object.

Hashing Method

You have written an Equality Method (p. 124). You may be putting new objects into
a Set (p. 119). You may be using a new object as a key in a Dictionary (p. 128).

126 S M A L L T A L K B E S T P R A C T I C E P A T T E R N S

• How do you ensure that new objects work correctly with hashed
Collections?

Once you understand the idea that you can override “=,” the world
becomes your oyster. New objects that have their own definition of equality
automatically begin to play nicely with the rest of Smalltalk—almost.

Collection>>includes: uses equality:

Collection>>includes: anObject
self do: [:each | each = anObject ifTrue: [^true]].
^false

So, you start out with an OrderedCollection and your newly equal objects
and everything works fine. Then, you decide you need a Set. All of a sudden,
you start getting bugs. You look at a Set and it has two objects in it that you
know are equal. Weren’t Sets supposed to avoid that problem?

The problem is that Set>>includes: doesn’t just send “=,” it also sends
“hash.” If two objects are equal but they don’t return the same hash value, the
Set is likely to miss the fact that they are equal.

• If you override “=” and use the object with a hashed Collection,
override “hash” so that two objects that are equal return the
same hash value.

This rule may seem kind of abstract. In practice, though, it is simple
to satisfy this constraint. The Equality Method typically relies on
some set of messages returning results that are equal:

Book>>= aBook
^self title = aBook title & (self author = aBook author)

My first cut implementation of “hash” is to get the hash values of all
the messages that the Equality Method relies on and put them
together with bit-wise exclusive-or.

C O L L E C T I O N S 127

Book>>hash
^self title hash bitXor: self author hash

This works whether the messages return Strings, Numbers, Arrays, or
whatnot, because all the sub-components obey the Hashing
Method pattern.

Hashing is often implemented in terms of Simple Delegation (p. 65).

Dictionary

You need a Collection (p. 115) that is indexed by something other than consec-
utive integers.

• How do you map one kind of object to another?

Arrays and OrderedCollections map integers into objects. The integers
must be between one and the size of the collection. Dictionaries are more flex-
ible maps. Their keys may be any objects, instead of having to be sequential
integers.

A typical use of a Dictionary is to map the names of things to the things:

colors
| result |
result := Dictionary new.
result

at: ‘red’
put: (Color red: 1).

result
at: ‘gray’
put: (Color brightness: 0.5).

^result

128 S M A L L T A L K B E S T P R A C T I C E P A T T E R N S

Another way to solve this problem is to add a “name” instance variable to
Color. In fact, this seems to me the more “object-oriented” solution. Why does-
n’t this work?

Different parts of the system will want different names for the same
color. A color called “red” in one place will be called “warning” in another. I sup-
pose you could add a “colorName” and a “purposeName” instance variable to
Color. Where would this end? Every new application of color would have to add
a new instance variable. It is much easier to use a Dictionary in each object
that needs a unique name.

Another way to solve this problem is to create an object that wraps a
Color and gives it a name.

NamedColor
superclass: Object
instance variables: name color

Whenever I have implemented an object like this, it never gains any more
responsibility than Getting Methods for the name and the wrapped object. It
isn’t worth it to create a new object just to do that. Associating a name with a
color using a Dictionary only takes a few lines and is easily understood.

• Use a Dictionary.

A common use for Dictionaries is giving names to things. For exam-
ple, if I have a widget and different colors have different meanings,
I might store them in a Dictionary:

Widget>>defaultColors
| results |
results := Dictionary new.
results

at: ‘foreground’
put: Color black.

results
at: ‘background’
put: Color mauve.

^results

C O L L E C T I O N S 129

Sometimes, programmers in a hurry use Dictionaries as cheap data
structures. You can always spot code like this because two or more
methods will use exactly the same fixed set of keys.

vitalInformation
| result |
result := Dictionary new.
result

at: ‘weight’
put: 190.

result
at: ‘hair’
put: ‘blond’.

^result
checkOut: aPerson

| info |
info := aPerson vitalInformation.
(info at: ‘weight’) < 280 & ((info at: ‘hair’) = ‘black’)

ifTrue: …

I’ve also done the same thing with Arrays of fixed size where differ-
ent indexes mean different things:

vitalInformation
^Array

with: 190
with: ‘blond’

checkOut: aPerson
| info |
info := aPerson vitalInformation.
(info at: 1) < 280 & ((info at: 2) = ‘black’) ifTrue: …

130 S M A L L T A L K B E S T P R A C T I C E P A T T E R N S

This is your program’s way of telling you “There’s a new object
here.” The new object will have one instance variable for each ele-
ment in the collection.

If you implement an Equality Method (p. 124) for Dictionary keys, you must also
implement a Hashing Method (p. 126).

SortedCollection

You have a Collection (p. 115) that needs to be ordered according to some
attributes of the elements.

• How do you sort a collection?

When I was in college, sorting was a big deal. I studied Knuth. I learned
a dozen clever ways to sort. I listened to all the stories about how much com-
puting time went into sorting algorithms and what an amazing impact even
small improvements could have.

Imagine my distress when, after eleven years of Smalltalk programming,
I have yet to write a sorting algorithm. All those brain cells wasted!

Not wasted, of course. To be an accomplished programmer you have to
know what’s going on under the hood. It’s just that Smalltalk’s collection class-
es turn awareness of how sorting is implemented into a rare and spectacular
event.

Just as you have collections whose order is determined by when elements
were added (OrderedCollection) and unordered but efficient (Set), sorting is
just another attribute of a special kind of collection, SortedCollection.

• Use a SortedCollection. Set its sort block if you want to sort by
some criteria other than “<=.”

Any collection can be sorted by sending it “asSortedCollection.”

By default, SortedCollections use “<” to compare elements.
Numbers, Strings, Date and Time, and a few other objects already
define “<.” You will have to define “<” for your objects if you intend
to put them in the result of “SortedCollection new.”

C O L L E C T I O N S 131

SortedCollections internally use a two argument block to compare
elements. You can set this sort block to anything you want. I could
sort my children by age:

childrenByAge
^self children asSortedCollection: [:a :b | a age < b age]

because ages are Numbers and numbers define “<.” I could just as
easily sort them alphabetically by name:

children byName
^self children asSortedCollection: [:a :b | a name < b

name]

If you already have a SortedCollection and you want to change its
order, you can send it “sortBlock: aBlock” to change the order.

self childrenByAge sortBlock: [:a :b | a income > b income]

One performance nasty to look out for is if you build a
SortedCollection one element at a time. SortedCollections re-sort
every time an element is added or deleted. If you need to build a
SortedCollection an element at a time, consider using an
OrderedCollection temporarily, then turning it into a
SortedCollection when it is complete.

132 S M A L L T A L K B E S T P R A C T I C E P A T T E R N S

Array

You need a Collection (p. 115) with a fixed number of elements. You may have
been using an OrderedCollection (p. 116).

• How do you code a collection with a fixed number of elements?

OrderedCollection extols the virtues of flexibility. How many elements do
you need? Why decide now? Just use an OrderedCollection and avoid any arbi-
trary limits.

What if you know when you create it exactly how big a collection will be?
You could use an OrderedCollection and add elements, but the code would
have lost the information that the size of the collection is fixed. Your code will
communicate better if you say, “Here’s a collection. Here’s how big it is. That
won’t ever change.”

The second reason to use a fixed size collection is efficiency. The flexibil-
ity of an OrderedCollection comes at the cost of an extra message to access ele-
ments. Most implementations also split OrderedCollections into two objects, so
there is extra space overhead as well.

Usually, you don’t care about the efficiency, but I did one performance
tuning gig where I got a 40 percent speed-up by replacing the
OrderedCollections with Arrays. Of course, the code looked like FORTRAN, not
Smalltalk, but when you’re tuning performance you’re not out to save the
world, just make it go a little faster.

• Use an Array. Create it with “new: anInteger” so that it has space
for the number of elements you know it needs.

Ward Cunningham taught me the trick of simulating variable sized
arrays. It is only valid if you are accessing the Array much more than
you are adding to it and removing from it. Code that reads:

children := OrderedCollection new

C O L L E C T I O N S 133

you change into:

children := Array new “or even #()”

When you need to add an element, instead of adding it to the col-
lection:

children add: anObject

you create a new Array with the element added and assign it to
the variable:

children := children copyWith: anObject

Similarly, for removing elements:

children remove: anObject

you create a new Array without the element:

children := children copyWithout: anObject

134 S M A L L T A L K B E S T P R A C T I C E P A T T E R N S

Use a ByteArray (p. 135) to store SmallIntegers in the range 0..255. Use an Interval
(p. 137) to represent an Array of sequential Numbers. Use a RunArray (p. 118) to
compactly store Arrays that have long runs of repeated elements.

ByteArray

You need to represent an Array (p. 133) of small numbers.

• How do you code an Array of numbers in the range 0..255 or -
128..127?

Software engineering was born in a resource starved environment. There
have never been enough cycles or enough memory to do what we want. While
this was more true in the past than it is today, the increasing demands of
application consumers will always push the available resources.

One of the most creative reactions to the lack of available memory has
been the ways software engineering has found to use eight bit bytes. The
EBCDIC and ASCII codes encode printable characters as bytes. The P-Code
and Smalltalk byte code instruction sets encode virtual machine instructions
as bytes. The concatenation of four or eight bytes can form a memory address.

On the one hand, you would like your Smalltalk program to be as insu-
lated as possible from representation decisions, in order to be as flexible as
possible. On the other hand, some consideration of space efficiency must be
possible so you can code in a still finite environment.

There are times when you really mean to communicate that information
is stored as eight bit bytes. Then, using a more general representation would
actually be misleading. You want to use the representation that most directly
communicates your intent.

The collection classes provide an excellent means for achieving the flexi-
bility of a hidden representation and the space efficiency of encoding informa-
tion as bytes. Choosing a representation that stores only bytes effectively com-
municates that the objects contained in that collection can only be
SmallIntegers in the range 0..255.

• Use a ByteArray.

ByteArrays are used to store homogenous information, like the pix-
els in an image or the floating point numbers in a vector.

C O L L E C T I O N S 135

Class: Vector
superclass: Object
instance variables: numbers

When you create a Vector of a certain size, it allocates enough
bytes to store that many Floats:

Vector class>>new: anInteger
^self new setNumbers: (ByteArray new: anInteger * 4)

Vector>>setNumbers: aByteArray
numbers := aByteArray

Setting an element in a Vector takes the bytes out of the Float and
puts them into the ByteArray:

Vector>>at: anInteger put: aFloat
1 to: 4 do:

[:each |
numbers

at: anInteger * 4 + each + 1
put: (aFloat basicAt: each)]

When SmallIntegers are in a ByteArray, they are represented much
as you would represent them in C or assembly language—simple
eight bit patterns. The code for at:put: converts from Smalltalk’s for-
mat for SmallIntegers into eight bit patterns. The code for at: does
the reverse conversion.

If you are storing lots of information as bytes, you may find dramat-
ic increases in speed or decreases in memory footprint after chang-
ing a few references to “Array” into references to “ByteArray.” For

136 S M A L L T A L K B E S T P R A C T I C E P A T T E R N S

current Smalltalk systems with 32-bit object references, the savings
is a factor of four. If you have lots of small ByteArrays, don’t expect
the same savings because the space overhead of each ByteArray
(typically 8 or 12 bytes) will be large compared to the information
stored in it.

Interval

• How do you code a collection of numbers in sequence?

Every once in a while, you will find yourself writing code to create an
Array and initialize its elements to sequential numbers:

| indexes |
indexes := Array new: 100.
1 to: indexes size do:

[:each |
indexes

at: each
put: each]

This is not a very direct way to communicate “an Array of sequential num-
bers.” Also, it takes space and time to represent an Array of numbers like this.

There is a special collection class called Interval that is built expressly
for this purpose. There is really no down side to using Interval. Your code will
read better and be faster.

• Use an Interval with start, stop, and an optional step value. The
Shortcut Constructor Methods Number>>to: and to:by: build
Intervals for you.

Some of the code you write using Intervals can be confusing at first.

1 to: 20 do: [:each | …]

C O L L E C T I O N S 137

is equivalent to:

(1 to: 20) do: [:each | …]

Even though the two phrases look similar, very different code is
being invoked. In the first case, the message to:do: is being sent to
the SmallInteger 1. In the second, the message to: is being sent to
the SmallInteger 1. This returns an Interval that is then sent the mes-
sage do:.

You can translate prose descriptions of number sequences into
Intervals:

Description Interval

One to ten 1 to: 10

Even numbers from zero to fifty 0 to: 50 by: 2

Count down from 99 ?by threes 99 to: 0 by: -3

There are some enumerations you’d like to do that aren’t support-
ed by the enumeration protocol. For example, although there is a
Number>>to:do:, there isn’t a Number>>to:collect:. However, you
can use an Interval because it is a full fledged collection.

For example, if I have an Array and I want an Array of Associations,
the keys of which are the indexes of the original Array and the val-
ues of which are the elements, I can write:

(1 to: anArray size) collect:
[:each |
Association

key: each
value: (anArray at: each)]

138 S M A L L T A L K B E S T P R A C T I C E P A T T E R N S

Collection Protocol
The uniform protocol of the collection classes are one of their greatest

strengths. Client code is effectively decoupled from decisions about how to
store a collection by using a common set of messages.

Many Smalltalk programmers take a long time to learn all the collection
protocol. They begin with a couple of messages, like do:, add:, and size, and
then stick with them for a long time.

When I started programming in Smalltalk, I can remember being over-
whelmed by it. There is a lot to learn just to achieve basic competence.
However, the collection protocol is one of the highest leverage pieces of the sys-
tem. The better you can use it, the faster you can code and the faster you can
read other folks’ code.

This section highlights the most important messages in the collection
repertoire. It is by no means exhaustive. I selected these messages to pattern
because they are the ones I see most often missed or misused.

After you master these messages, take a day or so to make a thorough
study of which messages are available in which collection classes. In no time,
you’ll be coding collections like a pro.

IsEmpty

• How do you test if a collection is empty?

I wouldn’t have thought I’d have to point this one out, but over and over
I see code that says:

…aCollection size = 0 ifTrue: …

or

C O L L E C T I O N S 139

…aCollection size > 0 ifTrue: …

Checking whether size is equal to zero or greater than zero is really an
implementation of a higher level concept, namely “Is the collection empty?”

The collection protocol provides simple messages that test collections for
emptiness. Using them results in more readable code.

• Send isEmpty to test whether a collection is empty (has no ele-
ments). Use notEmpty to test whether a collection has elements.

All the Smalltalks have a simple facility for popping up a dialog that
asks the user to type in an answer. A blank answer indicates that the
operation shouldn’t proceed. The following code (VisualWorks
style) is common:

| answer |
answer := Dialog request: ‘Number, please?’.
answer isEmpty ifTrue: [^self].
…

Note that while VisualSmalltalk and VisualAge also define
notEmpty, VisualWorks 2 does not, so you’ll have to add it yourself.

The value of isEmpty is not that there is such a huge difference
between:

aCollection size = 0

and:

140 S M A L L T A L K B E S T P R A C T I C E P A T T E R N S

aCollection isEmpty

although there is some difference. The important point is that I can
read the idiomatic version instantly. If I see some code explicitly
checking the size, I have to stop and figure out if there is something
special going on that isn’t obvious.

All cultures develop their own vocabulary. If you were in a repair
shop and you heard someone say, “hand me that wrench with the
knurled wheel that changes the width,” you wouldn’t want them
working on your car. You want a mechanic who knows it’s a mon-
key wrench.

Includes:

• How do you search for a particular element in a collection?

Many people’s first instinct is to use the enumeration protocol to imple-
ment searching. They will write code like this:

| found |
found := false.
aCollection do: [:each | each = anObject ifTrue: [found :=
true]].
…

With more experience, you might see a more sophisticated enumeration
message:

C O L L E C T I O N S 141

| found |
found := (aCollection

detect: [:each | each = anObject]
ifNone: [nil]) notNil.

…

The collection protocol provides you with a message to do exactly this,
includes:.

The above code would look like this using includes:

| found |
found := aCollection includes: anObject
…

You could probably even eliminate the temporary variable and just use
the expression in line.

Importantly, includes: is available to be optimized. Some kinds of collec-
tions, like Set, execute it in constant time, independent of the size of the col-
lection. The alternatives to includes:, above, will always take time proportion-
al to the size of the collection.

• Send includes: and pass the object to be searched for.

An example from Collection Accessor Method returns true if the
receiver employs a person:

employs: aPerson
^employees includes aPerson

142 S M A L L T A L K B E S T P R A C T I C E P A T T E R N S

A common use of includes is to compute the intersection of two
collections:

collection1 select: [:each | collection2 includes: each]

You will have to implement an Equality Method (p. 124) and a Hashing Method (p.
126) for your own objects, if you want to search based on contents instead of identity.

Concatentation

• How do you put two collections together?

Concatentation is one of those intermediate idioms in most languages.
You can get along without it but pretty soon you have to learn how. The typi-
cal concatenation idiom goes something like this:

1. Create a collection big enough for the result.

2. Copy the first collection into the first part of the result.

3. Copy the second collection into the second part of the result.

Sometimes, there is a library function to do both copies for you.

Smalltalk simplifies this to a single message you send to the first collec-
tion, “,” (comma), with the second collection as an argument.

Many programming languages treat strings specially. Often, the “+”
(plus) operator is used for string concatenation. In Smalltalk, Strings are just
collections of characters. All the usual collection protocol works. In particular,
to concatenate strings, you use “,” just as you would if you were dealing with
Arrays or OrderedCollections.

Concatenate two collections by sending “,” to the first with the second
as an argument.

Concatentation is often used when constructing messages from a
String and some arguments:

C O L L E C T I O N S 143

self error: anInteger printString , ‘ is too many objects for ‘ ,
aString

You may need a Concatenating Stream (p. 165) if you are putting together lots of
collections.

Enumeration

• How do you execute code across a collection?

Once you have a collection, you have to do something with it. Examples
of computations across collections are:

• An Account computes its balance by totaling up the values of all of
its Transactions.

• A composite Visual displays by displaying all of its components.

• Deleting a Directory deletes all of its Files.

Procedural programmers develop a toolbox of idioms for writing code like
this. Ask a C programmer to iterate over an array, and chances are they will
be able to program as fast as they can type. Visual recognition of such code
becomes automatic, also.

Smalltalk hides the details of iteration behind a set of uniform messages
that all collections understand. Rather than have one, two, or three line
idioms, Smalltalk uses single word messages. Code written using these mes-
sages is easy to write correctly and easy to read correctly.

Because there are several variations on the enumeration messages, some
Smalltalk programmers learn one or two and code the rest by hand. In the end,
it takes longer to write code that is bigger, more error prone, and harder to
read than if they just used the messages that are there.

• Use the enumeration messages to spread a computation across a
collection.

Enumeration messages work fine for empty collections. You can use
this to avoid special case code for the case that a collection is
empty.

144 S M A L L T A L K B E S T P R A C T I C E P A T T E R N S

printChildren
children isEmpty ifTrue: [^self].
self children do: [:each | each print]

is exactly the same as:

printChildren
self children do: [:each | each print]

You will have problems if you are iterating over a Collection at the
same time you are adding or removing elements:

aSet do: [:each | aSet remove: each]

There isn’t often a call to write this kind of code. If you must, make
a copy of the collection to enumerate:

aSet copy do: [:each | aSet remove each]

Use Do (p. 146) for simple enumeration. Use Collect (p. 147) to transform the ele-
ments of a collection. Use Select/Reject (p. 149) to select only certain portions of
a collection. Use Detect (p. 151) to search for an element. Use Inject:Into: (p. 152)
to keep a running total across a collection.

C O L L E C T I O N S 145

Do

• How do you execute code for each element in a collection?

This is the fundamental message out of which the rest of the enumera-
tion messages are built. If this were a procedural language, you would have a
small set of idioms for iterating through a collection, one for a linked list, one
for an array, one for a hash table.

For purposes of enumeration, there is no difference between the collection
classes in Smalltalk. As a programmer, you never explicitly deal with walking
pointers along a list or iterating a loop counter. You just send the message “do:”
and magic happens.

In spite of the simplicity of do:, I still occasionally see code where some-
one slips into previous habits and writes:

index := 1.
[index <= aCollection size] whileTrue:

[…aCollection at: index…
index := index + 1]

There is really no excuse for this. The code using do: is much shorter and
easier to read:

aCollection do: [:each | …each…]

There is a small performance difference between the two. I measured
open coded iteration on VisualSmalltalk for Windows 3.0.1 at 1 millisecond for
a thousand element Array, while sending do: took 1.7 milliseconds. If you are
doing any processing at all on the elements, the loop overhead will immedi-
ately disappear, and if you have to go in later and open code a few iterations,
it is no big deal.

146 S M A L L T A L K B E S T P R A C T I C E P A T T E R N S

• Send do: to a collection to iterate over its elements. Send a one
argument block as the argument to do:. It will be evaluated once
for each element.

Operations like Collection>>add: that are also defined for a
Collection of parameters (Collection>>addAll:) are often imple-
mented with do: and the simpler operation:

Collection>>addAll: aCollection
aCollection do: [:each | self add: each]

I was raised on Pascal and C. I got good at writing loops, putting
the index increments in just the right place. After about six months
of Smalltalk, though, I just couldn’t seem to remember to manually
update loop indexes when I had to write out an enumeration by
hand. I would always forget to put the increment in, or I’d decre-
ment instead of increment. It was embarrassing at times. I’m happy
to say, I’ve mostly recovered since then, but it’s kind of a nice skill
to be able to lose.

Use a Simple Enumeration Parameter (p. 182) in the block.

Collect

• How do you operate on the result of a message sent to each
object in the collection?

If this was good old procedural programming, we’d probably write code
where the enumeration block sent a message to the element, then used the
result of the message in further computation.

self children do: [:each | self passJudgement: each
hairStyle]

C O L L E C T I O N S 147

Other code, that also wanted to deal with hair styles, would have sim-
ilar code:

self children do: [:each | self trim: each hairStyle]

This violates the once and only once rule. The two code fragments look
very similar except for the operation to be performed on the hair style.

We can capture the commonality of the code by creating an intermediate
collection that contains the results of the messages sent to each element of the
original collection. We can then enumerate over the new collection.

The new clarity of the code comes at the cost of creating a new collection
to hold the transformed elements and iterating over the collection twice: once
to transform it and once to compute with it. If you measure a performance
problem coming from intermediate collections, it is easily fixed later. Better
communication is definitely worth the cost, and chances are you’ll never have
a performance problem because of it.

• Use collect: to create a new collection whose elements are the
results of evaluating the block passed to collect: with each ele-
ment of the original collection. Use the new collection.

We can use Composed Method with collect: to capture the com-
mon part of the above code:

childrenHairStyles
^self children collect: [:each | each hairStyle]

Then we can simplify the code fragments:

self childrenHairStyles do: [:each | self passJudgement: each]
self childrenHairStyles do: [:each | self trim: each]

148 S M A L L T A L K B E S T P R A C T I C E P A T T E R N S

If you must, improve performance of code using collect: with a special Enumeration
Method (p. 144). Use a Simple Enumeration Parameter (p. 182) in the block argument.

Select/Reject

• How do you filter out part of a collection?

The procedural solution is to have an enumeration block that does two
things—test the element for “interesting-ness” and conditionally perform some
action on the interesting ones. Code written in this style looks like this:

self children do: [:each | each isResponsible ifTrue: [self
buyCar: each]]

Code like this is fine the first time you write it, but chances are more
than likely that you’ll want the same filter somewhere else:

self children do: [:each | each isResponsible ifTrue: [self
addToWill: each]]

Remember the rule about saying things once and only once? These two
pieces of code violate that rule. Everything up to that second square bracket is
exactly the same. We’d like to capture that commonality, somehow.

The solution is to create a collection containing only interesting elements,
then operating on that. The new collection comes at a cost—it has to be creat-
ed separately from the original collection. What is an efficient garbage collec-
tor for, if not to let you make your code more expressive. If creating the inter-
mediate collections is too expensive, you can easily fix them later.

• Use select: and reject: to return new collections containing only
elements of interest. Enumerate the new collection. Both take a
one argument Block that returns a Boolean. Select: gives you ele-

C O L L E C T I O N S 149

ments for which the Block returns true, reject: gives you elements
for which the Block returns false.

To capture the commonality of the above two pieces of code, we
use Composed Method with select: to create a method that
returns responsible children:

responsibleChildren
^self children select: [:each | each isResponsible]

Then we can simplify the two code fragments:

self responsibleChildren do: [:each | self buyCar: each]

self responsibleChildren do: [:each | self addToWill: each]

You can use a special purpose Enumeration Method to avoid the cost of creation.
Use a Simple Enumeration Parameter in the block argument. Use a Lookup Cache
to optimize performance.

Detect

• How do you search a collection?

Another common collection idiom is searching for an element that meets
certain criteria. Of course, you can implement this using do: , testing the cri-
teria inside the enumeration block, and executing some code conditionally.
This code gives the car keys to the first responsible child:

150 S M A L L T A L K B E S T P R A C T I C E P A T T E R N S

self children do: [:each | each isResponsible ifTrue: [each
giveKeys: self carKeys. ^self]]

Notice that you have to be sure to only execute the conditional code once.
Managing this in a complex loop can result in code that is very hard to follow.

• Search a collection by sending it detect:. The first element for
which the block argument evaluates to true will be returned.

Detect takes a one argument block as an argument, which should
evaluate to true or false. It returns the first element for which the
block evaluates to true. The code above turns into:

(self children detect: [:each | each isResponsible])
giveKeys: self carKeys

There is a variation of detect:, detect:ifNone:, that takes an addi-
tional zero parameter Block as an argument. Use this if you’re not
sure any element will be found.

Detect:ifNone: gives rise to a clever (“hard to read, at least at first”)
idiom. What if you want to return true from a method if any element
meets a criterion and false otherwise?

hasResponsibleChild
self children

detect: [:each | each isResponsible]
ifNone: [^false].

^true

I use this occasionally but I can’t say I’m particularly proud of it.

C O L L E C T I O N S 151

Use a Simple Enumeration Parameter (p. 182) in the first block argument. Use a
Lookup Cache (p. 161) to optimize performance.

Inject:into:

You need an Enumeration (p. 144) that keeps a running value.

• How do you keep a running value as you iterate over a
Collection?

One of the first procedural programming patterns everyone learns is
keeping a running total.

1. Initialize the total.

2. For each element of a collection, modify the total (sum, min, max,
whatever).

3. Use the result.

Thus, you see a lot of Smalltalk code that looks like this:

| max |
max := 0.
self children do: [:each | max := max max: each value].
^max

This is so common, in fact, that there is a message that does it for you.

Why doesn’t everybody use this mysterious and powerful message?
Because it has a funky name. People see the name and they think, “No way can
I figure out what that does. Better leave it alone.” This is no excuse for not
using it, though. When what you mean is “Keep a running value over this col-
lection,” you should use the message, strange name and all.

• Use inject:into: to keep a running value. Make the first argument
the initial value. Make the second argument a two element block.
Call the block arguments “sum” and “each.” Have the block
evaluate to the next value of the running value.

152 S M A L L T A L K B E S T P R A C T I C E P A T T E R N S

C O L L E C T I O N S 153

The code above becomes:

^self children
inject: 0
into: [:sum :each | sum max: each]

There is a clever use of inject:into: that I just learned. Usually, I use
“clever” as an insult but I just can’t help but show this one. The
problem is iterating over adjacent pairs in a collection. That is, I
want to evaluate some code for elements one and two, then ele-
ments two and three, and so on. Here’s how you use inject:into:
for this:

self children
inject: nil
into:

[:eachPrevious :eachNext |
eachPrevious notNil ifTrue: […].
eachNext]

The first time through the loop, eachPrevious is nil and eachNext is
the first element of the collection. The conditional code isn’t evalu-
ated. The whole block evaluates to the first element of the collec-
tion. The second time through, eachPrevious is the first element of
the collection and eachNext is the second element. The condition-
al code gets executed. This keeps going until eachPrevious is the
second to last element and eachNext is the last element.

Collection Idioms
Once you are comfortable using the collection protocol, you can begin

using collections to solve higher level tasks. Here are a few of the common
ways collections are used.

Duplicate Removing Set

You have a Collection (p. 115).

• How do you remove the duplicates from a Collection?

I remember answering this question on a test in school. I know I’ve seen
the C-ish code for it while reviewing code. It always looks ugly:

unique := OrderedCollection new.
self owners do: [:each | (unique includes: each) ifFalse:
[unique add: each]]

No need for that in Smalltalk. Once you get over the idea that allocating
memory is expensive in programming or execution time, and once you get used
to the power of the Collection classes, problems like this become trivial.

• Send “asSet” to the Collection. The result will have all duplicates
removed.

If I want a Collection containing all my children with blue eyes or
blond hair, where some children may have both, I can use this
pattern.

| nordic |
nordic := (self blueEyedChildren , self
blondHairedChildren) asSet.
…

I sure wish I’d been using Smalltalk when I was in college!

When you tune performance, you may find that you are creating
Collections for the same elements over and over and over.
Composing all those intermediate Collections together is no big
deal. Remember, you’re going for clarity of expression.

154 S M A L L T A L K B E S T P R A C T I C E P A T T E R N S

Use a Temporarily Sorted Collection (p. 155) if you need the unique elements sorted.

Temporarily Sorted Collection

You have a Collection (p. 115). You may have implemented a Comparing Method
(p. 32) but want to sort the objects differently.

• How do you present a Collection with one of many sort orders?

The obvious solution is to store the Collection as a SortedCollection in the
first place. Every time you change the sort order, you can change the sort block
of the SortedCollection.

If you wouldn’t otherwise have to have the Collection sorted, this solution
causes more problems than it solves. You may not want to pay the price of a
SortedCollection most of the time. You may want several sort orders at the
same time.

You can solve the problem by handing out copies of the Collection. Then
you have the problem of coordinating additions and removals from the
Collection. This problem is usually much less severe than trying to manage
several sort orders with the same Collection.

• Return a sorted copy of the Collection by sending
“asSortedCollection” to the Collection. Send “asSortedCollection:
aBlock” for custom sort orders.

A common use for this pattern is presenting information in a list,
especially if you have just used Duplicate Removing Set:

candidateList
^self candidates asSet asSortedCollection: [:a :b | a

name < b name]

C O L L E C T I O N S 155

Stack

• How do you implement a stack?

One of the first objects many people write when they come to Smalltalk
is Stack. Stack is the basic data structure, fabled in song, story, and hundreds
of papers about theoretical programming languages.

Algorithms that use stacks can be simply expressed in Smalltalk. The
syntax lends itself to readable code written in terms of pushes and pops.
However, there is no Stack class in any of the basic images. I’ve seen one writ-
ten any number of times, but they never seem to last long. Smalltalk pro-
grammers need stacks, too. What do they do?

It’s easy to simulate a stack using OrderedCollection:

Stack Operation OrderedCollection message
push addLast:

pop removeLast:

top last

depth size

empty isEmpty

The result doesn’t read exactly like a stack would read, but the idiom is
so recognizable that the cost of using the idiom is far less than the cost of
adding a new class to the image.

Why doesn’t this result in confusing code? Why don’t you write part of the
algorithm using an OrderedCollection as a stack, then forget and start using
it as a queue?

If there is a part of the algorithm that is complicated, you make a method
or an object that gives it a simple public face. When you ask of the result “How
many methods know this OrderedCollection is really a stack?,” the answer is
typically one. You use a Role Suggesting Temporary Variable name to commu-
nicate that the OrderedCollection is being used as a stack. End of story.

Why is there no Stack in Smalltalk? Well, “just because.” It is part of the
culture to simulate stacks using OrderedCollection. If that’s how everybody
does it, and it doesn’t cost you anything, that’s how you do it, too.

• Implement a Stack using an OrderedCollection.

If your stack only needs to be used within a single method, you can
store it in a temporary variable:

156 S M A L L T A L K B E S T P R A C T I C E P A T T E R N S

| tasks newTask nextTask |
…
…tasks addLast: newTask…
…
…nextTask := tasks removeLast…
…

If the whole object needs to share the stack, communicate the
presence of the stack with Intention Revealing Messages:

pushTask: aTask
tasks addLast: aTask

popTask
^tasks removeLast

You may need Composed Method (p. 21) to simplify code using OrderedCollections
(p. 116) as Stacks, so the idiom is not confusing.

Queue

• How do you implement a queue?

The story for queues is much like the story for stacks. Everyone simulates
them using OrderedCollections:

Queue Operation OrderedCollection message
add addFirst:

remove removeLast:

empty isEmpty

length size

C O L L E C T I O N S 157

As with stacks, you lose a little by translating the queue operations into
messages to OrderedCollection protocol, but not nearly enough to make up for
the cost of adding a new class.

• Implement queues using an OrderedCollection.

I have used OrderedCollections as queues a couple of ways. The
most common is in implementing level-order traversal, where you
need to visit all the depth 1 nodes of a tree before you visit the
depth 2 nodes and so on.

The code looks like this:

Node>>levelOrderDo: aBlock
| queue |
queue := OrderedCollection with: self.
[queue isEmpty] whileFalse:

[| current |
current := queue removeLast.
aBlock value: current.
queue addAllFirst: current children]

158 S M A L L T A L K B E S T P R A C T I C E P A T T E R N S

You can implement a priority queue with a SortedCollection using
add: and removeFirst:, instead of addFirst: and removeLast:.

Searching Literal

• How do you search for one of a few literal objects known when
you write the code?

If Smalltalk had a case statement, you would be tempted to write

C O L L E C T I O N S 159

I can vividly remember the moment I became a computer
scientist. I was in a first data structure class taught by Andrzej
Proskurowski at the University of Oregon. Gray light through the
windows washed most of the color out of the room (we are talking
about Eugene, Oregon, here). I was just getting comfortable with
data structures as a concept separate from programming but I was
still squirming a bit sitting there, since Andrzej was a pretty aggres-
sive professor.

Andrzej had the size and energy of a hummingbird but was
muscled like a gymnast. He had a thick black goatee and an even
thicker Polish accent. He kept us all on our toes with the simple
trick of calling everyone by name after hearing the names exactly
once. He had just presented a linked list implementation of queues
in Pascal using a header record. I followed pretty well, a first for me,
when I got a conviction that there was a shorter implementation.

I could see nothing but my notebook as I scrambled to code
in my head, and then on paper, a version that used a footer record
instead. Sure enough, I could slice one line out of one of the routines.
After class, I hustled over to the computer center to try it out. Bingo!
It ran. I rushed over to Andrzej’s office to show him my gem. He was
skeptical at first, but we went over it and he congratulated me on
my success. It was the first time I’d spoken to a professor one on one.
I was overwhelmed.

I have since given up computer science for software engi-
neering, but writing this has given me a renewed sense of how
important that little bit of transformation was for me.

Character>>isVowel
case self asLowercase of

$a:
$e:
$i:
$o:
$u: ^true

otherwise: ^false

(I’m suggesting case statement syntax. A Choosing Message is almost
always better than hard coded cases, anyway.)

Since Smalltalk doesn’t have a case statement, you generally have to
resort to Boolean or conditional logic:

Character>>isVowel
| lower |
lower := self asLowercase.
^lower = $a | (lower = $e) | (lower = $i) | (lower = $o)

| (lower = $u)

Pretty ugly, eh? Not as bad as:

Character>>isVowel
self = $a | (self = $A) ifTrue: [^true].
self = $e | (self = $E) ifTrue: [^true].
self = $i | (self = $I) ifTrue: [^true].
self = $o | (self = $O) ifTrue: [^true].
self = $u | (self = $U) ifTrue: [^true].
^false

160 S M A L L T A L K B E S T P R A C T I C E P A T T E R N S

Because Strings are literals, you can use the collection protocol to imple-
ment the same thing much more compactly:

Character>>isVowel
^’aeiou’ includes: self asLowercase

• Ask a literal Collection if it includes the element you are seeking.

You can do the same thing with Symbols:

Style>>isFancy: aSymbol
^#(bold italic) includes: aSymbol

This is not a trick that comes up every day, but used occasionally it can
save you a few lines of code.

Lookup Cache

• How do you optimize complex Detect or Select/Reject loops?

The simplest solution is just to keep your code in its original form.
Sometimes, what you are doing is looking up an element by a simple attribute:

childNamed: aString
^self children detect: [:each | each name = aString]

C O L L E C T I O N S 161

Sometimes, you are computing subsets of the elements in a collection:

childrenWithHairColor: aString
^self children select: [:each | each hairColor = aString]

These are simple to write and simple to read. This first time you need
code like this, you should definitely write it in terms of Enumeration.

For large collections or frequently computed expressions, this kind of
computation can be a performance bottleneck. If you measure a problem with
one of these expressions, you may be able to cache the result of computation
and reuse it rather than recomputing it.

As with all caches, you will only be able to do this if you can keep the
contents of the cache synchronized with changes to the collection and its
elements.

• Prepend “lookup” to the name of the expensive search or filter
method. Add an instance variable holding a Dictionary to cache
results. Name the variable by appending “Cache” to the name of
the search. Make the parameters of the search the keys of the
Dictionary and the results of the search the values.

The first example above turns into a variable called “nameCache.”
First, we change the original method to:

lookupChildNamed: aString
^self children detect: [:each | each name = aString]

Assuming the variable holding the lookup cache is initialized (see
Explicit Initialization and Lazy Initialization), we rewrite
“childNamed:” as:

162 S M A L L T A L K B E S T P R A C T I C E P A T T E R N S

childNamed: aString
^nameCache

at: aString
ifAbsentPut: [self lookupChildNamed: aString]

VisualWorks doesn’t implement at:ifAbsentPut: and VisualAge takes
an object as the second parameter, not a Block, so you have to
write:

childNamed: aString
^nameCache

at: aString
ifAbsent:

[nameCache
at: aString
put: (self lookupChildNamed: aString)]

The second example above has collections as the values in the
Dictionary instead of single objects, but other than that, the pattern
plays out similarly:

lookupChildrenWithHairColor: aString
^self children select: [:each | each hairColor = aString]

childrenWithHairColor: aString
^hairColorCache

at: aString
ifAbsentPut: [self lookupChildrenWithHairColor:

aString]

C O L L E C T I O N S 163

Parsing Stream

• How do you write a simple parser?

You will probably have to write simple parsers in Smalltalk. I don’t mean
the kind that computer scientists love, with lots of Ls and Rs and numbers in
their name. I mean the simple kind, where each line has a keyword and then
a bunch of information, different depending on the keyword.

One simple way to structure code like this is by grabbing a line at a time
and parsing it.

parse: aStream
[aStream atEnd] whileFalse: [self parseLine: aStream

nextLine]

parseLine: aString
| reader |
reader := ReadStream on: aString.
keyword := reader nextWord.
keyword = ‘one’ ifTrue: [self parseOne: reader].
keyword = ‘two’ ifTrue: [self parseTwo: reader].
…

This leads to code that creates Strings and Streams all over the place.
Something (a String or Stream) has to be passed to each method. If the meth-
ods are deeply nested, that extra parameter becomes tedious. It is error-prone,
too, since it is easy to forget whether you are dealing with a String or a Stream.

In many cases, having many methods share the same instance variable
is dangerous, especially if it is an object that will be side effected by many
methods. A change in one method is likely to affect others inadvertently. In the
case of parsing, though, the danger is minimized because of the simple nature
of the control flow.

• Put the Stream in an instance variable. Have all parsing methods
work from the same Stream.

Using this pattern, the code above looks like:

164 S M A L L T A L K B E S T P R A C T I C E P A T T E R N S

parse: aStream
reader := aStream. “Reader is now an instance

variable.”
[reader atEnd] whileFalse: [self parseLine]

parseLine
keyword := reader nextWord.
keyword = ‘one’ ifTrue: [^self parseOne].
keyword = ‘two’ ifTrue: [^self parseTwo].
…

The lack of parameters cleans up the code considerably. Each
parsing method has to be careful to leave the Parsing Stream in a
known state so the other methods can simply assume where they
are in the String.

The “case statement,” formed by the conditionals in parseLine
above, leads some folks to want a “real” case statement in
Smalltalk. For me, having to write the code above once a year just
isn’t sufficient justification for adding a new language feature.

Concatenating Stream

You may be collecting results in a Collecting Temporary Variable (p. 105). You
may be collecting results over several methods in a Collecting Parameter (p. 75).

• How do you concatenate several Collections?

Concatenation is a simple way to join several Collections. When you have
lots of Collections, though, it can be slow because the objects in the first
Collection are copied once for each Collection that is concatenated.

Streams provide a way out of this dilemma. Streams are careful not to
copy their contents many times, even as the Collection they are streaming over
gets larger.

• Use a Stream to concatenate many Collections.

C O L L E C T I O N S 165

I ran a quick benchmark to see how significant the difference was
between Collection concatenation and Streams. I ran the following
code, which concatenates one thousand Strings:

100 timesRepeat:
[result := String new.
1000 timesRepeat: [result := result , ‘abcdefg’]]

It took 53 seconds to run. Then I ran the Stream version:

100 timesRepeat:
[writer := WriteStream on: String new.
1000 timesRepeat: [writer nextPutAll: ‘abcdefg’].
writer contents]]

It took 0.9 seconds to run. The difference is a factor of almost 60.

Sometimes, you will use Concatenating Stream not because it is
your choice, but because you have to fit into other code that
already uses it. The most common example is specializing object
printing by overriding printOn:.

166 S M A L L T A L K B E S T P R A C T I C E P A T T E R N S

There is probably no coding decision with more effect on the
quality of your code than names you give your classes. If computers
were the only audience for code, we could just call them C1, C2, C3,
and have done. The expensive reader is not the computer, it is other
people.

Naming classes is your biggest billboard for communicating
about your system. The first thing readers will look at when they
look at your code is the names of the classes. Those names will go
beyond your code. Insidiously, they leak into everyday conversa-
tion—and not just for developers. Ten years down the road, you will
hear users who know nothing about programming using the class
names you chose.

Good class names provide insight into the purpose and design
of a system. They reveal underlying metaphors. They communicate
themes and variations. They break the system into parts and show
how the parts get put back together.

Great naming is an art and will always remain so (just ask
Madison Avenue). Good naming is in the reach of everyone. Avoiding
obvious mistakes and producing names that work together will
boost your class names above average.

167

Classes

6

Simple Superclass Name

• What do you call a class that is expected to be the root of an
inheritance hierarchy?

All naming decisions have several constraints in common. You want
names that are as short as possible, so they are easy to type, format, and say.
At the same time, you want to convey as much information as possible in each
name, so readers will not have to carry as much knowledge in their heads. You
want names that are familiar, to take advantage of knowledge readers already
have via metaphor or analogy. However, you want names that are unique, so
that others who are also choosing names will not accidentally choose names
that interfere with yours.

The first rule I follow is no abbreviations. Abbreviations optimize typing
(a 10–100 times in 20 years task) over reading (a 1000–10000 times in 20
years task). Abbreviations make the interpretation of a name a two step
process—what do the letters stand for and then what do those words mean.
The class and method naming patterns here will produce names that you
should never have to abbreviate.

Naming the root class of a large hierarchy is a momentous occasion.
People will be using the words you choose in their conversation for the next 20
years. You want to be sure you do it right.

Unfortunately, many people get all formal when they go to name a super-
class. Just calling it what it is isn’t enough. They have to tack on a flowery,
computer science-y, impressive sounding, but ultimately meaningless word,
like Object, Thing, Component, Part, Manager, Entity, or Item.

You’re creating a vocabulary, not writing a program. Be a poet for a
moment. The simple, the punchy, the easily remembered will be far more effec-
tive in the long run than some long name that says it all, but in such a way
that no one wants to say it at all.

• Name a superclass with a single word that conveys its purpose in
the design.

Here are some good examples in the image:

168 S M A L L T A L K B E S T P R A C T I C E P A T T E R N S

Number
Collection
Magnitude
Model

You may create variations on this class, each with a Qualified Subclass Name (p. 169).

Qualified Subclass Name

You have created a Simple Superclass Name (p. 168).

• What do you name a new subclass?

One way to name classes is to give each a unique name, indicative of its
purpose. Unique names give you the opportunity to convey a lot of information
without creating names that are long and unwieldy.

This is exactly the right thing to do if the names are in common use.
Array is a subclass of Collection because lots of software engineers guess cor-
rectly about the nature of the class by reading “Array.” Number is a subclass
of Magnitude because Number-ness is far more important to communicate
than Magnitude-ness. String is a subclass of Collection because everyone
knows what a String is.

In general, if I am using inheritance strictly for code sharing, but the role
of the subclass is different than the role of the superclass, I go back to Simple
Superclass Name.

More often, the inheritance structure of your code is important for a read-
er to understand, particularly where a subclass is both conceptually a varia-
tion on the superclass and they share implementation. The two pieces of infor-
mation you need to communicate are:

• how the new class is the same; and

• how the new class is different.

You can communicate how the new class is the same by naming some
superclass. It need not be the immediate superclass, if some distant ancestor
communicates more clearly.

C L A S S E S 169

You can communicate how the new class is different by finding a word
that accurately highlights the reason the new class isn’t just the superclass.

• Name subclasses in your hierarchies by prepending an adjective
to the superclass name.

For example:

• OrderedCollection is a Collection in which elements are
Ordered.

• SortedCollection is a Collection in which elements are Sorted.
Even though SortedCollection subclasses OrderedCollection,
you wouldn’t call it SortedOrderedCollection. The choice to
subclass OrderedCollection is strictly for implementation rea-
sons, not because the two collections play similar roles.

• LargeInteger is an Integer that takes many bits to represent.

170 S M A L L T A L K B E S T P R A C T I C E P A T T E R N S

No other topic generates more heat and less light than code
formatting. Everybody has their own style and attempts to impose
another style are met with ferocious resistance. So, why am I will-
ingly sticking my head into this buzz saw?

The first reason is “because it is there.” I want to push pat-
terns to their limit, to see how well they apply to a detail-oriented,
exception-ridden, and emotion-filled topic. I wrote these patterns
over the course of a couple of months. As new special cases came up,
I either had to modify the patterns, add a new pattern, or format my
code according to the existing patterns. Before long, I no longer was
finding cases where I had to change the patterns. I am quite pleased
that all of formatting in Smalltalk fits into ten patterns.

The second reason is “because it is important.” Not necessari-
ly formatting code according to these patterns but formatting them
according to some set of consistent rules gives a team a smoothness
to their interaction. If everybody formats the same way, then
reviews and code transfer are never delayed while someone “cleans
up” the code. Done right, formatting can convey a lot of information
about the structure of code at a glance.

171

Formatting

7

The third reason is to advance the discussion of formatting. Stating the
rules as patterns makes my goals and tradeoffs explicit. If you have a differ-
ent style, you can use these patterns as an example to cast your own rules as
patterns. Then you can compare, explicitly, what problems each set of patterns
solves and what problems each ignores.

The priorities of these patterns are:

1. To make the gross structure of the method apparent at a glance.
Complex messages and blocks, in particular, should jump out at the
reader.

2. To preserve vertical space. There is a huge difference between read-
ing a method that fits into the text pane of a browser and reading
one that forces you to scroll. Keeping methods compact vertically
lets you have smaller browsers and still be able to read methods
without scrolling. This reduces window management overhead and
leaves more screen space for other programming tools.

3. To be easy to remember. I have seen style guides that have 50–100
rules for formatting. Formatting is important but it shouldn’t take
that much brain power.

There are many styles of Smalltalk coding for which these formatting
patterns would be a disaster. Long methods and methods that use complex
expressions look terrible formatted this way. However, thorough use of
Composed Method and Explaining Temporary Variable, along with the atti-
tude that you are writing for a reader and not the computer, will go a long way
towards helping you produce code that is simple to format and simple to read.

Inline Message Pattern

You are about to write a method for an Intention Revealing Selector (p. 49).

• How do you format the message pattern?

One alternative is to write the keyword/argument pairs one per line. This
makes it easy to see what the selector of the method is by reading straight down
from the top left corner. However, this style of formatting will often take up
three or four lines of vertical space. Composed Methods are generally only a few
lines long. It seems a waste of space to have more introduction than content.

Another reason for lining up the keywords vertically is that early text
editors did not have line wrapping, so if you wanted to see all the parameters,
you had to scroll horizontally. All current Smalltalks have line wrapping avail-

172 S M A L L T A L K B E S T P R A C T I C E P A T T E R N S

able in the source code editor, so all arguments are available regardless of win-
dow size or message pattern width.

The problem of reading the selector as a whole is solved by the browser.
You never look at a method as a raw piece of text. Methods always appear in
the context of a browser. The selector is always presented near the method. If
you forget what method you are working on, a quick glance above the method
will answer your question.

By saving the vertical space otherwise taken up by the message pattern,
you can quickly scan many methods in a smaller browser than is otherwise
possible. This allows you to have more information on the screen at the same
time, if it is useful. There is a big difference between browsing a program with-
out every having to scroll the text of a method and browsing where you are
constantly scrolling.

• Write the message pattern without explicit line breaks.

Here is a message pattern formatted with this pattern:

from: fromInteger to: toInteger with: aCollection startingAt:
startInteger

I’ve seen this formatted like this:

from: fromInteger
to: toInteger
with: aCollection
startingAt: startInteger

or worse:

F O R M A T T I N G 173

from: fromInteger
to: toInteger
with: aCollection
startingAt: startInteger

Both of these spend vertical space, increasing the chance that you
won’t be able to see the body of the method (the part that mat-
ters and the part that is likely to be surprising) without scrolling.

Use Type Suggesting Parameter Names (p. 174) for parameters.

Type Suggesting Parameter Name

You are writing an Inline Message Pattern (p. 172). You might be completing a
Double Dispatch (p. 55).

• What do you call a method parameter?

There are two important pieces of information associated with every vari-
able—what messages it receives (its type) and what role it plays in the com-
putation. Understanding the type and role of variables is important for under-
standing a piece of code.

Keywords communicate their associated parameter’s role. Since the key-
words and parameters are together at the head of every method, the reader
can easily understand a parameter’s role without any help from the name.

Smalltalk doesn’t have a strong notion of types. The set of messages sent
to a variable appears nowhere in the language or programming environment.
Because of this lack, there is no direct way to communicate types.

Classes sometimes play the role of types. You would expect a Number to
be able to respond to messages like +, -, *, and /; or a Collection to do: and
includes:.

• Name parameters according to their most general expected
class, preceded by “a” or “an.” If there is more than one parame-
ter with the same expected class, precede the class with a
descriptive word.

174 S M A L L T A L K B E S T P R A C T I C E P A T T E R N S

An Array that requires Integer keys names the parameters to
at:put: as

at: anInteger put: anObject

A Dictionary, where the key can be any object, names the para-
meters:

at: keyObject put: valueObject

After you have named the parameters, you are ready to write the method. You
may have to declare Role Suggesting Temporary Variable Names (p. 110). You
may need to format an Indented Control Flow (p. 175). You may have to use a
Guard Clause (p. 178) to protect the execution of the body of the method.

Indented Control Flow

• How do you indent messages?

The conflicting needs of formatting to produce both few lines and short
lines is thrown in high relief with this pattern. The only saving grace is that
Composed Method creates methods with little enough functionality that you
never need to deal with hundreds or thousands of words in a method.

One extreme would be to place all the keywords and arguments on the
same line, no matter how long the method. This minimizes the length of the
method but makes it difficult to read.

If there are multiple keywords to a message, the fact that they all appear
is important to communicate quickly to a scanning reader. By placing each
keyword/argument pair on its own line, you can make it easy for the reader to
recognize the presence of complex messages.

F O R M A T T I N G 175

Arguments do not need to be aligned, unlike keywords, because readers
seldom scan all the arguments. Arguments are only interesting in the context
of their keyword.

• Put zero or one argument messages on the same lines as their
receiver. For messages with two or more keywords put each key-
word/argument pair on its own line, indented one tab.

Here are some zero and one argument messages formatted with
Indented Control Flow:

foo isNil
2 + 3
a < b ifTrue: […]

Here are some two argument messages formatted with Indented
Control Flow:

a < b
ifTrue: […]
ifFalse: […]

array
at: 5
put: #abc

Many people have complex exceptions for formatting control
statements, like ifTrue: and whileTrue:. One of the things I really like
about this pattern is that it gives reasonable results while treating
conditional statements as just another message send (which they
are, after all).

Formatting code like this makes reading the whole selector easy.
You can easily read that the message in this example is
#copyFrom:to:with:startingAt:

176 S M A L L T A L K B E S T P R A C T I C E P A T T E R N S

aCollection
copyFrom: 1
to: aString size
with: aString
startingAt: 1

Rectangular Block (p. 177) formats blocks. Guard Clause (p. 178) prevents indent-
ing from marching across the page.

Rectangular Block

You are writing an expression with Indented Control Flow (p. 175).

• How do you format blocks?

Smalltalk distinguishes between code that is executed immediately upon
the activation of a method and code whose execution is deferred. To read code
accurately, you must be able to quickly distinguish which code in a method
falls into which category.

Code should occupy as few lines as possible, consistent with readability.
Short methods are easier to assimilate quickly and they fit more easily into a
browser. On the other hand, making it easy for the eye to pick out blocks is a
reasonable use of extra lines.

One more resource we can bring to bear on this problem is the tendency
of the eye to distinguish and interpolate vertical and horizontal lines. The
square brackets used to signify blocks lead the eye to create the illusion of a
whole rectangle even though one isn’t there. Therefore:

• Make blocks rectangular. Use the square brackets as the upper
left and bottom right corners of the rectangle. If the statement in
the block is simple, the block can fit on one line. If the statement is
compound, bring the block onto its own line and indent.

Here are a couple of one line blocks:

F O R M A T T I N G 177

ifTrue: [self recomputeAngle]
ifTrue: [^angle * 90 + 270 degreesToRadians]

Here is a block that takes two lines because it contains two state-
ments:

ifTrue:
[self clearCaches.
self recomputeAngle]

Here is a block that takes two lines because it contains a two para-
meter message:

ifTrue:
[self

at: each
put: 0]

Guard Clause

You are writing an expression with an Indented Control Flow (p. 175).

How do you format code that shouldn’t execute if a condition holds?

In the bad old days of Fortran programming, when it was possible to have
multiple entries and exits to a single routine, tracing the flow of control was a
nightmare. Which statements in a routine got executed, and when, was impos-
sible to determine statically. This lead to the commandment “Every routine
shall have one entry and one exit.”

178 S M A L L T A L K B E S T P R A C T I C E P A T T E R N S

Smalltalk labors under few of the same constraints of long ago Fortran,
but the prohibition against multiple exits persists. When routines are only a
few lines long, understanding flow of control within a routine is simple. It is
the flow between routines that becomes the legitimate focus of attention.

Multiple returns can simplify the formatting of code, particularly condi-
tionals. What’s more, the multiple return version of a method is often a more
direct expression of the programmer’s intent. Therefore:

• Format the one-branch conditional with an explicit return.

Let’s say you have a method that connects a communication
device only if the device isn’t already connected. The single exit
version of the method might be:

connect
self isConnected

ifFalse: [self connectConnection]

You can read this as “If I am not already connected, connect my
connection.” The guard clause version of the same method is:

connect
self isConnected ifTrue: [^self].
self connectConnection

You can read this as “Don’t do anything if I am connected.
Connect my connection.” The guard clause is more a statement of
fact, or an invariant, than a path of control to be followed.

F O R M A T T I N G 179

Conditional Expression

• How do you format conditional expressions where both branches
assign or return a value?

Most programming languages make a distinction between statements
that work solely by side effect and expressions that return values. For exam-
ple, control structures in C and Pascal work only by controlling how other
statements execute.

In Smalltalk, there are no pure statements. All control structures are
implemented in terms of messages, and all messages return values. This leads
to the possibility of using the value of control structures.

Programmers new to Smalltalk are likely to be surprised the first time
they encounter loops or conditionals used as an expression. New Smalltalkers
are likely to write:

self isInitialized
ifTrue: [cost := self calculateCost]
ifFalse: [cost := 0]

These expressions can be translated into the following without changing
the meaning:

cost := self isInitialized
ifTrue: [self calculateCost]
ifFalse: [0]

Is the simpler form worth the possibility of confusion for beginners? It
more directly communicates the intent of the expression. You don’t mean
“There are two paths of expression, one of which sets the value of cost to the
result of sending myself calculateCost and the other of which sets the value of
cost to 0.” You mean, “Set cost to one of two values, either the result of send-
ing myself calculateCost or 0.”

180 S M A L L T A L K B E S T P R A C T I C E P A T T E R N S

• Format conditionals so their value is used where it clearly express-
es the intent of the method.

Assignment and return are often found in both branches of a con-
ditional. Look for opportunities to factor both to the outside of the
conditional.

Here is an example of a return on both branches of a conditional:

cost
self isInitialized

ifTrue: [^self calculateCost]
ifFalse: [^0]

If I write code like this, I don’t mean, “Here are two alternative paths
of execution.” I mean, “Here are two alternative values to be
returned.” Thus, a Conditional Expression expresses my intent more
clearly:

cost
^self isInitialized

ifTrue: [self calculateCost]
ifFalse: [0]

I commonly see code in which both sides of a conditional expres-
sion evaluate to a Boolean. Start with this:

aCollection isEmpty
ifTrue: [empty := true]
ifFalse: [empty := false]

F O R M A T T I N G 181

Using Conditional Expression we first factor out the assignment:

empty := aCollection isEmpty
ifTrue: [true]
ifFalse: [false]

We can go a step further and eliminate the conditional entirely. The
following code is equivalent to the preceding:

empty := aCollection isEmpty

You may be able to express one or both branches of the conditional more explic-
itly by using a Composed Method (p. 21).

Simple Enumeration Parameter

• What do you call the parameter to an enumeration block?

It is tempting to try to pack as much meaning as possible into every
name. Certainly, classes, instance variables, and messages deserve careful
attention. Each of these elements can communicate volumes about your intent
as you program.

Some variables just don’t deserve such attention. Variables that are
always used the same way, where their meaning can be easily understood from
context, call for consistency over creativity. The effort to carefully name such
variables is wasted because no non-obvious information is communicated to
the program. They may even be counter productive, if the reader tries to
impute meaning to the variable that isn’t there.

• Call the parameter “each.” If you have nested enumeration
blocks, append a descriptive word to all parameter names.

182 S M A L L T A L K B E S T P R A C T I C E P A T T E R N S

For example, the meaning of “each” in

self children do: [:each | self processChild: each]

is clear. If the block is more complicated, each may not be descrip-
tive enough. In that case, you should invoke Composed Method to
turn the block into a single message. The Type Suggesting
Parameter in the new method will clarify the meaning of the object.

The typical example of nested blocks is iterating over the two
dimensions of a bitmap:

1 to: self width do:
[:eachX |
1 to: self height do:

[:eachY | …]]

Nested blocks that iterate over unlike collections should probably
be factored with Composed Method.

You may need Composed Method to simplify the enumeration block.

Cascade

• How do you format multiple messages to the same receiver?

The simplest solution is to just repeat the expression that created the
receiver. Such code looks like this:

self listPane parent color: Color black.
self listPane parent height: 17.
self listPane parent width: 11.

F O R M A T T I N G 183

For complex expressions, the first simplification is to use an Explaining
Temporary Variable to hold the value of the expression:

| parent |
parent := self listPane parent.
parent color: Color black.
parent height: 17.
parent width: 11.

One of Smalltalk’s few syntactic quirks is a solution to this problem.
Rather than having to repeat an expression or create a temporary variable to
hold the expression, Smalltalk lets you say at the end of one message “Here’s
another message to the same receiver.”

• Use a Cascade to send several messages to the same receiver.
Separate the messages with a semicolon. Put each message on
its own line and indent one tab. Only use Cascades for messages
with zero or one argument.

The code above becomes:

self listPane parent
color: Color black;
height: 17;
width: 11

Whether or not you use a Cascade is really a matter of intent. If you
want to communicate “Here are a bunch of messages all going to
the same object,” that’s a good time to use a Cascade. If you just
happen to be sending messages to the same object, but it’s not
really part of the essence of the code that the two messages are
going to the same object, don’t use a Cascade.

One confusion that sometimes arises about Cascade is if the initial
expression is complex, where do the cascaded messages get sent?

184 S M A L L T A L K B E S T P R A C T I C E P A T T E R N S

For example, in:

OrderedCollection new
add: 5;
add: 10

the indentation cues you that both adds get sent to the new
OrderedCollection, not the class itself. Here’s the rule: All subse-
quent messages in a Cascade go to the same receiver as the first
message in the cascade (in this case, #add:). Any preceding parts
of the expression that got you the receiver are irrelevant.

The restriction that Cascades only be used with zero or one argu-
ment messages comes from the difficulty in visually parsing
Cascades with varying numbers of arguments. In the example
above, what if you could send height:width: as a single message?
Using Cascade, the code would look like:

self listPane parent
color: Color black;
height: 17
width: 11

At a glance, you can’t tell whether height and width are set sepa-
rately or together. The readability gains of a Cascade are quickly
lost if you have to spend any time figuring out the messages that
are sent. Fortunately, most times messages go to the same receiv-
er (especially more than two), the messages are simple.

You may have to use Yourself (p. 186) if you are using the value of a Cascade.

F O R M A T T I N G 185

Yourself

You need to use the value of a Cascade (p. 183).

• How can you use the value of a Cascade if the last message
doesn’t return the receiver of the message?

This has got to be the number one confusing method in all of Smalltalk.
There it is in Object, where every new Smalltalker stumbles across it:

Object>>yourself
^self

Or, if the programmer was really clever (and didn’t know about
Interesting Return Value):

Object>>yourself

What’s going on?

Let’s say you want to add a bunch of elements to an OrderedCollection.
Collection>>add: anObject is defined to return anObject, not the receiver of
the message. If you want to assign the Collection to a variable:

all := OrderedCollection new
add: 5;
add: 7

186 S M A L L T A L K B E S T P R A C T I C E P A T T E R N S

will result in the value of all being 7. There are two solutions to this problem.
The first is to put the variable assignment in parentheses:

(all := OrderedCollection new)
add: 5;
add: 7

• When you need the value of a Cascade and the last message
does not return the receiver, append the message “yourself” to
the Cascade.

Our example becomes:

all := OrderedCollection new
add: 5;
add: 7;
yourself

Sending “yourself” returns the receiver, the new instance of
OrderedCollection. That’s the object that gets assigned to the vari-
able.

I’ve seen folks become defensive about “yourself,” tacking it onto
every Cascade they write. You shouldn’t do this. “yourself” is there
to communicate to your reader that you really want the value of
the receiver used, not the result of sending a message. If you aren’t
using the value of a Cascade, don’t use “yourself.” For example, I
wouldn’t use it in Point>>printOn:, because I don’t assign the value
of the Cascade to a variable or return it as the value of the
method.

F O R M A T T I N G 187

Point>>printOn: aStream
aStream

print: self x;
nextPut: $@;
print: self y

Having written this, I’m not sure why I prefer Cascades to the
parenthesized format. Perhaps it’s because there is a big psycho-
logical difference in parsing a method with parentheses and one
without. If I can avoid parentheses and still have a method that
reads clearly, I will.

Another use of “yourself” is with #inject:into:. Suppose you want to
put all the children of a collection of parents together in a Set. You
might be tempted to write:

parents
inject: Set new
into: [:sum :each | sum addAll: each children]

But this wouldn’t work because the result of sending #addAll: is the
argument (in this case the children), not the receiver. To get this to
work as expected, you have to write:

parents
inject: Set new
into: [:sum :each | sum addAll: each children; yourself]

Interesting Return Value

• When do you explicitly return a value at the end of a method?

188 S M A L L T A L K B E S T P R A C T I C E P A T T E R N S

All messages return a value. If a method does not explicitly return a
value, the receiver of the message is returned by default. This causes some
confusion for new programmers, who may be used to Pascal’s distinction
between procedures and functions, or C’s lack of a definition of the return
value of a procedure with no explicit return. To compensate, some program-
mers always explicitly return a value from every method.

The distinction between methods that do their work by side effect and
those that are valuable for the result they return is important. An unfamiliar
reader wanting to quickly understand the expected use of a method should be
able to glance at the last line and instantly understand whether a useful
return value is generated or not. Therefore:

• Return a value only when you intend for the sender to use the value.

For example, consider the implementation of topComponent in
VisualWorks. Visual components form a tree, with a
ScheduledWindow at the root. Any component in the tree can
fetch the root by sending itself the message “topComponent.”
VisualPart (the superclass of interior nodes and leaves) implements
this message by asking the container for its topComponent:

VisualPart>>topComponent
^container topComponent

ScheduledWindow implements the base case of the recursion by
returning itself. The simplest implementation would be to have a
method with no statements. It would return the receiver. However,
using Interesting Return Value, because the result is intended to be
used by the sender, it explicitly returns “self.”

ScheduledWindow>>topComponent
^self

F O R M A T T I N G 189

This page intentionally left blank

In this chapter, I will pretend to develop a piece of
software guided by the Best Practice Patterns. It will
likely seem incredibly slow to you, since I won’t write
more than a couple of words of code without pointing out
another pattern. Not to worry, once you get used to the
patterns you don’t really think of them individually. You
build higher levels of structure in your mind that let you
just write clean code quickly and without thinking con-
sciously of the smaller steps, much as you can speak
without consulting a grammar book.

Problem
The problem we will solve is representing multi-cur-

rency monetary values. It’s not as simple as it might
seem. There are lots of unit-value computations in the
world. Any time you use a number, you generally have at
least an implied set of units behind it, whether inches,
pixels, or kilograms. Some units can be freely converted
into others, like pounds to kilograms. Others just don’t
make any sense. If you add four meters to two grams you

191

Development
Example

8

should get an error. One simplifying assumption that makes unit-values easy
to program is that for conversions that make sense, there is a single,
immutable conversion ratio. You don’t have to go look up the New York spot
quote on pound to kilograms every morning.

Money is different. There is no single conversion rate. There isn’t really
a single sequence of conversion rates. Sometimes, you want to answer ques-
tions like, “How does the value of my portfolio differ if I liquidate it in Hong
Kong or Zurich?” This need for flexibility is the primary driving force in
designing objects to represent currency.

Start
The first object we’ll give the Simple Superclass Name of Money. It rep-

resents a value in a single currency.

Class: Money
superclass: Object
instance variables: amount currency

The variable with the Role Suggesting Instance Variable Name “amount”
will hold any old Number. This lets us defers issues of numerical accuracy and
stability to the Number classes. If you want a super accurate but slow Money,
you can make the Amount a FixedPoint. If you want less accuracy but more
speed, you can use a Double. As long as the amount responds to number-like
messages, Money won’t care.

The variable “currency” will hold Symbol for now, the name of a curren-
cy. Currency traders use standard three letter abbreviations for the currencies
of the world—USD for United States Dollars, for example. A complete curren-
cy system needs a real Currency object, because different currencies act dif-
ferent computationally, but for now all we care about is whether two curren-
cies are equal or not.

How do we create a Money? We need a Constructor Method.

192 S M A L L T A L K B E S T P R A C T I C E P A T T E R N S

Money class>>amount: aNumber currency: aSymbol
^self new

setAmount: aNumber
currency: aSymbol

The method communicates the types of its parameters with Type
Suggesting Parameter Names. The body of the method uses Indented Control
Flow to make it clear to the reader that the Constructor Parameter Method
takes two arguments. Constructor Methods also always have an Interesting
Return Value.

Now we need to set the instance variables to the objects provided to the
Constructor Method. We write a Constructor Parameter Method:

Money>>setAmount: aNumber currency: aSymbol
amount := aNumber.
currency := aSymbol

If we want to check that our code works, we will need a Debug Print
Method.

Money>>printOn: aStream
aStream

print: amount;
space;
nextPutAll: currency

D E V E L O P M E N T E X A M P L E 193

Note that this method uses a Cascade to show that three message are
being sent to the same Stream.

Now we can try out the code in a workspace (the stuff in italics is what
prints as a result):

Money
amount: 5
currency: #USD 5 USD

Arithmetic
How do we add two Moneys together? Let’s get the simple case right first,

where we have the same currency in both Moneys. When you add two Moneys
with the same currency together, the resulting Money should have as its
amount the sum of the amounts of the first two.

Money>>+ aMoney
^self species

amount: amount + aMoney amount
currency: currency

We need a Getting Method for the variable “amount” for this to work:

Money>>amount
^amount

We get the right answer if we’re adding dollars to dollars:

194 S M A L L T A L K B E S T P R A C T I C E P A T T E R N S

| m1 m2 |
m1 := Money

amount: 5
currency: #USD.

m2 := Money
amount: 7
currency: #USD.

m1 + m2 12 USD

Change one of the Moneys to a different currency, though, and we get the
wrong answer:

| m1 m2 |
m1 := Money

amount: 5
currency: #USD.

m2 := Money
amount: 7
currency: #GBP.

m1 + m2 12 USD

Five dollars and seven pounds is not twelve dollars. How are we going to
keep the simple “+” protocol for arithmetic and still handle the case where we
have multiple currencies? The answer is to introduce an Impostor (a modeling
pattern) for a Money that defers exchange rate conversions. We’ll give it the
Simple Superclass Name of MoneySum.

Class: MoneySum
superclass: Object
instance variables: monies

D E V E L O P M E N T E X A M P L E 195

The variable with the Role Suggesting Instance Variable Name “monies”
will hold a Collection of Moneys.

We create a MoneySum with a Constructor Method:

MoneySum class>>monies: aCollection
^self new setMonies: aCollection

The collection is passed on to the Constructor Parameter Method:

MoneySum>>setMonies: aCollection
monies := aCollection

We’ll add a Debug Print Method to MoneySum so we can check our
results:

MoneySum>>printOn: aStream
monies do:

[:each |
aStream

print: each;
nextPutAll: ‘ + ‘].

aStream skip: -3

We used a basketful of patterns in this method: Direct Variable Access,
Role Suggesting Parameter Name, Simple Enumeration Parameter,
Rectangular Block, Indented Control Flow, and Do.

With MoneySum in hand, we can modify Money>>+ to return a
MoneySum if the two currencies don’t match:

196 S M A L L T A L K B E S T P R A C T I C E P A T T E R N S

Money>>+ aMoney
^currency = aMoney currency

ifTrue:
[self species

amount: amount + aMoney amount
currency: currency]

ifFalse:
[MoneySum monies: (Array

with: self
with: aMoney)]

We need a Getting Method for Money’s currency:

Money>>currency
^currency

Now our multi-currency example works:

| m1 m2 |
m1 := Money

amount: 5
currency: #USD.

m2 := Money
amount: 7
currency: #GBP.

m1 + m2 5 USD + 7 GBP

Just to check, the single currency example works, still:

D E V E L O P M E N T E X A M P L E 197

| m1 m2 |
m1 := Money

amount: 5
currency: #USD.

m2 := Money
amount: 7
currency: #USD.

m1 + m2 12 USD

Integration
For a MoneySum to truly be an Impostor for a Money, it has to support

all the same messages. All the combinations of Moneys and MoneySums have
to work together. We will use Double Dispatch to implement this. Double
Dispatch states: “Send a message to the argument. Append the class name of
the receiver to the selector. Pass the receiver as an argument.” Money addition
becomes:

Money>> + aMoney
^aMoney addMoney: self

The old Money>>+ becomes Money>>addMoney:

Money>>addMoney: aMoney
^currency = aMoney currency

ifTrue:
[self species

amount: amount + aMoney amount
currency: currency]

ifFalse:
[MoneySum monies: (Array

with: self
with: aMoney)]

198 S M A L L T A L K B E S T P R A C T I C E P A T T E R N S

MoneySum arithmetic follows the Double Dispatch pattern, too:

MoneySum>> + aMoney
^aMoney addMoneySum: self

If a MoneySum is adding a Money, it should produce a new MoneySum
with the Money added to the list of Monies:

MoneySum>>addMoney: aMoney
^self species monies: (monies copyWith: aMoney)

Now we can send “+” to a Money with a MoneySum as argument:

| m1 m2 |
m1 := Money

amount: 5
currency: #USD.

m2 := Money
amount: 7
currency: #GBP.

m1 + (m2 + m1) 5 USD + 7 GBP + 5 USD

To complete the Double Dispatch, we have to implement addMoneySum:
in Money and MoneySum. The implementation in Money is simple, we just
turn around and send addMoney: to the MoneySum, trusting the existing
implementation to work:

Money>> addMoneySum: aMoneySum
^aMoneySum addMoney: self

D E V E L O P M E N T E X A M P L E 199

We can test this:

| m1 m2 |
m1 := Money

amount: 5
currency: #USD.

m2 := Money
amount: 7
currency: #GBP.

m1 + m2 + m1 7 GBP + 5 USD + 5 USD

The final combination is adding a MoneySum to a MoneySum. We do this
by concatenating the monies of both of them:

MoneySum>>addMoneySum: aMoneySum
^MoneySum monies: monies , aMoneySum monies

We can test this:

| m1 m2 |
m1 := Money

amount: 5
currency: #USD.

m2 := Money
amount: 7
currency: #GBP.

(m1 + m2) + (m1 + m2) 7 GBP + 5 USD + 7 GBP + 5 USD

200 S M A L L T A L K B E S T P R A C T I C E P A T T E R N S

Summary
We used these patterns in the code above:

Pattern Example

Simple Superclass Name Money, MoneySum

Constructor Method MoneySum class>>monies:

Constructor Parameter Method MoneySum>>setMonies:

Common State, Role Money “currency”
Suggesting Instance
Variable Name

Intention Revealing Selector Money>>+

Getting Method Money>>currency

Composed Method Money class>>amount:currency:

Decomposing Message Money class>>amount:currency:
sending #setAmount:currency:

Choosing Message addMoney:, addMoneySum:

Dispatched Interpretation, Money>>addMoney:
Double Dispatch

Debug Print Method Money>>printOn:

Array MoneySum

Inline Message Pattern Money>>setAmount:currency:

Indented Control Flow Money>>addMoney:

Conditional Expression Money>>addMoney:

Rectangular Block Money>>addMoney:

Direct Variable Access Money>>addMoney:

Type Suggesting Parameter Name Money class>>amount: aNumber
currency: aSymbol

Simple Enumeration Parameter MoneySum>>printOn:

Interesting Return Value Money>>addMoney:

As you can see from this list, even simple code uses many different tech-
niques to communicate to readers.

D E V E L O P M E N T E X A M P L E 201

This page intentionally left blank

Composed How do you divide a Divide your program into
Method program into methods? methods that perform

one identifiable task.
Keep all of the opera-
tions in a method at the
same level of abstraction.
This will naturally result
in programs with many
small methods, each a
few lines long.

Constructor How do you represent Provide methods that
Method instance creation? create well-formed

instances. Pass all
required parameters to
them.

Constructor How do you set instance Code a single method
Parameter variables from the that sets all the variables.
Method parameters to a Preface its name with

Constructor Method? “set”, then the names of
the variables.

Appendix

203

Quick
Reference

A

Shortcut Constructor What is the external interface Represent object creation as
Method for creating a new object a message to one of the

when a Constructor Method arguments to the
is too wordy? Constructor Method. Add

no more than three of these
Shortcut Constructor
Methods per system you
develop.

Conversion How do you convert Convert from one object to
information from one another rather than over-
object’s format to another’s? whelm any one object’s

protocol.

Converter Method How do you represent simple Provide a method in the
conversion of an object to object to be converted that
another object with the same converts to the new object.
protocol but different format? Name the method by

prepending “as” to the class
of the object returned.

Converter Constructor How do you represent the Make a Constructor Method
Method conversion of an object to that takes the object to be

another with a different converted as an argument.
protocol?

Query Method How do you represent testing Provide a method that
a property of an object? returns a Boolean. Name it

by prefacing the property
name with a form of “be”—is,
was, will, etc.

Comparing Method How do you order objects with Implement “<=” to return
respect to each other? true if the receiver should

be ordered before the
argument.

Reversing Method How do you code a smooth Code a method on the para-
flow of messages? meter. Derive its name from

the original message. Take
the original receiver as a
parameter to the new
method. Implement the
method by sending the orig-
inal message to the original
receiver.

204 S M A L L T A L K B E S T P R A C T I C E P A T T E R N S

Method Object How do you code a method Create an class named after
where many lines of code the method. Give it an
share many arguments and instance variable for the
temporary variables? receiver of the original

method, each argument,
and each temporary vari-
able. Give it a Constructor
Method that takes the origi-
nal receiver and the method
arguments. Give it one
instance method, #compute,
implemented by copying the
body of the original method.
Replace the method with
one which creates an
instance of the new class
and sends it #compute.

Execute Around Method How do you represent pairs of Code a method that takes a
actions that have to be taken Block as an argument.
together? Name the method by

appending “During: aBlock”
to the name of the first
method that needs to be
invoked. In the body of the
Execute Around Method,
invoke the first method,
evaluate the block, then
invoke the second method.

Debug Printing Method How do you code the default Override printOn: to pro-
printing method? vide information about an

object’s structure to the
programmer.

Method Comment How do you comment Communicate important
methods? information that is not

obvious from the code in a
comment at the beginning
of the method.

Message How do you invoke Send a named message and
computation? let the receiving object

decide what to do with it.

Q U I C K R E F E R E N C E 205

Choosing Message How do you execute one of Send a message to one of
several alternatives? several different kinds of

objects, each of which
executes one alternative.

Decomposing Message How do you invoke parts of a Send several messages
computation? to “self.”

Intention Revealing How do you communicate your Send a message to “self.”
Message intent when the implemen- Name the message so it

tation is simple? communicates what is to be
done rather than how it is
to be done. Code a simple
method for the message.

Intention Revealing What do you name a method? Name methods after what
Selector they accomplish.

Dispatched How can two objects cooperate Have the client send a
Interpretation when one wishes to conceal its message to the encoded

representation? object. Pass a parameter to
which the encoded object
will send decoded messages.

Double Dispatch How can you code a Send a message to the
computation that has many argument. Append the class
cases, the cross product of two name of the receiver to the
families of classes? selector. Pass the receiver

as an argument.

Mediating Protocol How do you code the interaction Refine the protocol between
between two objects that need the objects so the words
to remain independent? used are consistent.

Super How can you invoke super Invoke code in a super class
class behavior? explicitly by sending a

message to “super” instead
of “self.” The method
corresponding to the
message will be found in
the super class of the class
implementing the sending
method.

Extending Super How do you add to a super Override the method and
class’ implementation of a send a message to “super”
method? in the overriding method.

206 S M A L L T A L K B E S T P R A C T I C E P A T T E R N S

Modifying Super How do you change part of the Override the method and
behavior of a super class’ invoke “super”, then execute
method without modifying it? the code to modify the

results.

Delegation How does an object share Pass part of its work on to
implementation without another object.
inheritance?

Simple Delegation How do you invoke a Delegate messages
disinterested delegate? unchanged.

Self Delegation How do you implement Pass along the delegating
delegation to an object that object (i.e. “self”) in an
needs reference to the additional parameter called
delegating object? “for:.”

Pluggable Behavior How do you parameterize the Add a variable that will be
behavior of an object? used to trigger different

behavior.

Pluggable Selector How do you code simple Add a variable that contains
instance specific behavior? a selector to be performed.

Append “Message” to the
Role Suggesting Instance
Variable Name. Create a
Composed Method that
simply performs the
selector.

Pluggable Block How do you code complex Add an instance variable to
Pluggable Behavior that is not store a Block. Append
quite worth its own class? “Block” to the Role

Suggesting Instance
Variable Name. Create a
Composed Method to
evaluate the Block to invoke
the Pluggable Behavior.

Collecting Parameter How do you return a collection Add a parameter that
that is the collaborative result collects their results to all
of several methods? of the submethods.

Common State How do you represent state, Declare an instance
different values for which will variable in the class.
exist in all instances of a class?

Q U I C K R E F E R E N C E 207

Variable State How do you represent state Put variables that only
whose presence varies from some instances will have in
instance to instance? a Dictionary stored in an

instance variable called
“properties.” Implement
“propertyAt: aSymbol” and
“propertyAt:aSymbol put:
anObject” to access
properties.

Explicit Initialization How do you initialize instance Implement a method
variables to their default value? “initialize” that sets all the

values explicitly. Override
the class message new to
invoke it on new instances.

Lazy Initialization How do you initialize an Write a Getting Method for
instance variable to its default the variable. Initialize it if
value? necessary with a Default

Value Method.

Default Value Method How do you represent the Create a method that
default value of a variable? returns the value. Prepend

“default” to the name of the
variable as the name of the
method.

Constant Method How do you code a constant? Create a method that
returns the constant.

Direct Variable Access How do you get and set an Access and set the variable
instance variable’s value? directly.

Indirect Variable Access How do you get and set an Access and set its value
instance variable’s value? only through a Getting

Method and Setting
Method.

Getting Method How do you provide access to Provide a method that
an instance variable? returns the value of the

variable. Give it the same
name as the variable.

Setting Method How you change the value of Provide a method with the
an instance variable? same name as the variable.

Have it take a single para-
meter, the value to be set.

208 S M A L L T A L K B E S T P R A C T I C E P A T T E R N S

Collection Accessor How do you provide access to Provide methods that are
Method an instance variable that holds implemented with

a collection? Delegation to the collection.
To name the methods, add
the name of the collection to
the collection messages.

Enumeration Method How do you provide safe, Implement a method that
general access to collection executes a Block for each
elements? element of the collection.

Name the method by con-
catenating the name of the
collection and “Do:.”

Boolean Property How do you set a boolean Create two methods begin-
Setting Method property? ning with “be.” One has

property name, the other the
negation. Add “toggle” if the
client doesn’t want to know
about the current state.

Role Suggesting What do you name an instance Name instance variables for
Instance Variable Name variable? the role they play in the

computation. Make the
name plural if the variable
will hold a Collection.

Temporary Variable How do you save the value of Create a variable whose
an expression for later use scope and extent is a single
within a method? method. Declare it just

below the method selector.
Assign it as soon as the
expression is valid.

Collecting Temporary How do you gradually collect When you need to collect or
Variable values to be used later in a merge objects over a com-

method? plex enumeration, use a
temporary variable to hold
the collection or merged
value.

Caching Temporary How do you improve the Set a temporary variable to
Variable performance of a method? the value of the expression

as soon as it is valid. Use
the variable instead of the
expression in the remainder
of the method.

Q U I C K R E F E R E N C E 209

Explaining Temporary How do you simplify a complex Take a subexpression out of
Variable expression within a method? the complex expression.

Assign its value to a tem-
porary variable before the
complex expression. Use
the variable instead in the
complex expression.

Reusing Temporary How do you use an expression Execute the expression once
Variable several places in a method and set a temporary vari-

when its value may change? able. Use the variable
instead of the expression in
the remainder of the
method.

Role Suggesting What do you call a temporary Name a temporary variable
Temporary Variable variable? for the role it plays in the
Name computation.

Collection How do you represent a one-to- Use a Collection.
many relationship?

Ordered Collection How do you code Collections Use an Ordered Collection
whose size can’t be determined as your default dynamically
when they are created? sized Collection.

Run Array How do you compactly code an Use a Run Array to com-
Ordered Collection or Array press long runs of the same
where you have the same element.
element many times in a row?

Set How do you code a Collection Use a Set.
whose elements are unique?

Equality Method How do you code equality for If you will be putting
new objects? objects in a Set, using them

as Dictionary keys, or other-
wise using them with other
objects that define equality,
define a method called “=.”
Protect the implementation
of “=” so only objects of com-
patible classes will be fully
tested for equality.

Hashing Method How do you ensure that new If you override “=” and use
objects work correctly with the object with a hashed
hashed Collections? Collection, override “hash”

210 S M A L L T A L K B E S T P R A C T I C E P A T T E R N S

so that two objects that are
equal return the same hash
value.

Dictionary How do you map one kind of Use a Dictionary.
object to another?

Sorted Collection How do you sort a collection? Use a Sorted Collection. Set
its sort block if you want to
sort by some criteria other
than“<=.”

Array How do you code a collection Use an Array. Create it with
with a fixed number of elements?
“new:anInteger” so that it

has space for the number of
elements you know it needs.

Byte Array How do you code an Array of Use a Byte Array.
numbers in the range
0..255 or -128..127?

Interval How do you code a collection of Use an Interval with start,
numbers in sequence? stop, and an optional step

value. The Shortcut
Constructor Methods
Number>>to: and to:by:
build Intervals for you.

Is Empty How do you test if a collection Send is Empty to test
is empty? whether a collection is

empty (has no elements).
Use not Empty to test
whether a collection has
elements.

Includes: How do you search for a Send includes: and pass the
particular element in a object to be searched for.
collection?

Concatentation How do you put two collections Concatenate two collections
together? by sending “,” to the first

with the second as an
argument.

Enumeration How do you execute code Use the enumeration
across a collection? messages to spread a com-

Q U I C K R E F E R E N C E 211

putation across a collection.

Do How do you execute code for Send do: to a collection to
each element in a collection? iterate over its elements.

Send a one argument
block as the argument to
do:. It will be evaluated
once for each element.

Collect How do you operate on the Use collect: to create a new
result of a message sent to collection whose elements
each object in the collection? are the results of evaluating

the block passed to collect:
with each element of the
original collection. Use the
new collection.

Select/Reject How do you filter out part of Use select: and reject: to
a collection? return new collections con-

taining only elements of
interest. Enumerate the
new collection. Both take a
one argument Block that
returns a Boolean. Select:
gives you elements for which
the Block returns true,
reject: gives you elements
for which the Block returns
false.

Detect How do you search a collection? Search a collection by send-
ing it detect:. The first
element for which the block
argument evaluates to true
will be returned.

Inject:into: How do you keep a running Use inject:into: to keep a
value as you iterate over a running value. Make the
Collection? first argument the initial

value. Make the second
argument a two-element
block. Call the block argu-
ments“sum” and “each.”
Have the block evaluate to
the next value of the

212 S M A L L T A L K B E S T P R A C T I C E P A T T E R N S

running value.

Duplicate Removing Set How do you remove the Send “asSet” to the
duplicates from a Collection? Collection. The result will

have all duplicates removed.

Temporarily Sorted How do you present a Collection Return a sorted copy of the
Collection with one of many sort orders? Collection by sending

“asSortedCollection” to the
Collection. Send
“asSortedCollection: aBlock”
for custom sort orders.

Stack How do you implement a stack? Implement a Stack using an
Ordered Collection.

Queue How do you implement a queue? Implement queues using an
Ordered Collection.

Searching Literal How do you search for one of a Ask a literal Collection if
few literal objects known when it includes the element you
you write the code? are seeking.

Lookup Cache How do you optimize complex Prepend “lookup” to the
Detect or Select/Reject loops? name of the expensive

search or filter method. Add
an instance variable holding
a Dictionary to cache
results. Name the variable
by appending “Cache” to the
name of the search. Make
the parameters of the
search the keys of the
Dictionary and the results
of the search the values.

Parsing Stream How do you write a simple Put the Stream in an
parser? instance variable. Have all

parsing methods work from
the same Stream.

Concatenating Stream How do you concatenate Use a Stream to concatenate
several Collections? many Collections.

Simple Superclass What do you call a class that is Name a superclass with a
Name expected to be the root of an single word that conveys its

Q U I C K R E F E R E N C E 213

inheritance hierarchy? purpose in the design.

Qualified Subclass What do you name a new Name subclasses in your
Name subclass? hierarchies by prepending

an adjective to the super-
class name.

Inline Message Pattern How do you format the Write the message pattern
message pattern? without explicit line breaks.

Type Suggesting What do you call a method Name parameters according
Parameter Name parameter? to their most general

expected class, preceded by
“a”or “an.” If there is more
than one parameter with
the same expected class,pre-
cede the class with a
descriptive word.

Indented Control Flow How do you indent messages? Put zero or one argument
messages on the same lines
as their receiver. For
messages with two or more
keywords put each key
word/argument pair on its
own line, indented one tab.

Rectangular Block How do you format blocks? Make blocks rectangular.
Use the square brackets as
the upper left and bottom
right corners of the rectangle.
If the statement in the
block is simple, the block can
fit on one line. If the state-
ment is compound, bring
the block onto its own line
and indent.

Guard Clause How do you format code that Format the one-branch
shouldn’t execute if a condition conditional with an explicit
holds? return.

Conditional Expression How do you format conditional Format conditionals so their
expressions where both value is used where it clearly
branches assign or return a expresses the intent of the
value? method.

214 S M A L L T A L K B E S T P R A C T I C E P A T T E R N S

Simple Enumeration What do you call the parameter Call the parameter “each.”
Parameter to an enumeration block? If you have nested enumer-

ation blocks, append a
descriptive word to all para-
meter names.

Cascade How do you format multiple Use a Cascade to send
messages to the same receiver? several messages to the

same receiver. Separate
the messages with a semi-
colon. Put each message on
its own line and indent one
tab.Only use Cascades for
messages with zero or one
argument.

Yourself How can you use the value of a When you need the value
Cascade if the last message of a Cascade and the last
doesn’t return the receiver of message does not return the
the message? receiver, append the message

“yourself” to the Cascade.

Interesting Return When do you explicitly return Return a value only when
Value a value at the end of a method? you intend for the sender to

use the value.

Q U I C K R E F E R E N C E 215

This page intentionally left blank

#addFloat: Mediating Protocol 58

#addInteger Mediating Protocol 58

Array pattern 133–135
example 191–201

arrays
duplicate elements 118–119
numbers in a range 135–137
numbers in sequence 137–138

become method 8

behavior, definition 19

best practice, defined 1

blocks, formatting 177–178

Boolean Property Setting Method pattern 100–101

ByteArray pattern 135–137

Caching Temporary Variable pattern 106–108

Cascade pattern 183–185
last message doesn’t return receiver 186–188

217

Index

Choosing Message pattern 45–47

Choosing Method pattern, example
191–201

classes
Array pattern 133–135
arrays

duplicate elements 118–119
numbers in a range 135–137
numbers in sequence 137–138

ByteArray pattern 135–137
Collection pattern 115–116
collections

duplicate elements 118–119
fixed number of elements 133–135
sorting 131–132
undetermined size, coding 116–117
unique elements 119–124

Dictionary pattern 128–131
Equality Method pattern 124–126
Hashing Method pattern 126–128
Interval pattern 137–138
objects

coding equality 124–126
mapping one to another 128–131
working with hashed collections

126–128
one-to-many relationships 115–116
OrderedCollection pattern 116–117
Qualified Subclass Name pattern
169–170
RunArray pattern 118–119
Set pattern 119–124
Simple Superclass Name pattern
168–169
SortedCollection pattern 131–132
subclasses, naming 169–170
superclasses, naming 168–169

Collect pattern 147–149

Collecting Parameter pattern 75–77

Collecting Temporary Variable pattern
105–106

Collection Accessor Method pattern
96–99

collection idioms
collections

concatenating 165–166
removing duplicates 154–155
sorting temporarily 155–156

Concatenating Stream pattern
165–166
Detect loops, optimizing 161–163
Duplicate Removing Set pattern
154–155
literals, searching for 159–161
Lookup Cache pattern 161–163
parser, writing 164–165
Parsing Stream pattern 164–165
Queue pattern 158–159
queues 158–159
Searching Literal pattern 159–161
Select/Reject loops, optimizing
161–163
Stack pattern 156–158
stacks 156–158
Temporarily Sorted Collection pattern
155–156

Collection pattern 115–116

collection protocols
Collect pattern 147–149
collections

concatenating 143–144
executing code across 144–145
executing code for each element

146–147
filtering 149–150
keeping running values 152–154
results of a message sent to each

object 147–149
searching 151–152
searching for elements 141–143
testing for empty 139–141

Concatenation pattern 143–144

218 S M A L L T A L K B E S T P R A C T I C E P A T T E R N S

Detect pattern 151–152
Do pattern 146–147
Enumeration pattern 144–145
Includes pattern 141–143
Inject:into: pattern 152–154
IsEmpty pattern 139–141
Select/Reject pattern 149–150

collections
concatenating 143–144, 165–166
duplicate elements 118–119
executing code across 144–145
executing code for each element
146–147
filtering 149–150
fixed number of elements 133–135
general access to 99–100
keeping running values 152–154
removing duplicates 154–155
results of a message sent to each
object 147–149
searching 141–143, 151–152
sorting 131–132

temporarily 155–156
testing for empty 139–141
undetermined size, coding 116–117
unique elements 119–124
See also classes
See also collection idioms
See also collection protocol

Common State pattern 80–81
example 191–201

Comparing Method pattern 32–33

Composed Method pattern 21–22
example 191–201

Concatenating Stream pattern 165–166

Concatenation pattern 143–144

conditional code, formatting 178–179

Conditional Expression pattern 180–182
example 191–201

conditional logic 45–47

Constant Method pattern 87–89

constants, coding 87–89

Constructor Method pattern 23–24
example 191–201

Constructor Parameter Method pattern
25–26
example 191–201

Conversion pattern 28

Converter Constructor Method pattern
29–30

Converter Method pattern 28–29

Debug Print Method pattern 39–40
example 191–201

Decomposing Message pattern 47–48

Decomposing Method pattern
example 191–201

Default Value Method pattern 86–87

Delegation pattern 64–65

Detect loops, optimizing pattern
161–163

Detect pattern 151–152

Dictionary pattern 128–131

Direct Variable Access pattern 89–91
example 191–201

Dispatched Interpretation pattern
51–55
example 191–201

Do pattern 146–147

Double Dispatch pattern 55–57
example 191–201

Duplicate Removing Set pattern
154–155

enumeration blocks, naming parameters
182–183

B E H A V I O R 219

Enumeration Method pattern 99–100

Enumeration pattern 144–145

Equality Method pattern 124–126

Execute Around Method pattern 37–39

Explaining Temporary Variable pattern
108–109

Explicit Initialization pattern 83–85

expressions
formatting conditional 180–182
reusing 109–110
saving results of 103–106
simplifying 108–109

Extending Super pattern 60–62

formatting 171–172
blocks 177–178
Cascade pattern 183–188
conditional code 178–179
Conditional Expression pattern
180–182
conditional expressions 180–182
enumeration blocks, naming parame-
ters 182–183
Guard Clause pattern 178–179
Indented Flow Control pattern
175–177
Inline Message Pattern pattern
172–174
Interesting Return Value pattern
188–189
message patterns 172–174
messages

indenting 175–177
multiple to same receiver 183–185

methods
parameters, naming 174–175
returning values from 188–189

Rectangular Block pattern 177–178
Simple Enumeration Parameter pat-
tern 182–183
Type Suggesting Parameter Name

pattern 174–175
Yourself pattern 186–188

Getting Method pattern 93–95
example 191–201

Guard Clause pattern 178–179

Hashing Method pattern 126–128

Includes pattern 141–143

Indented Control Flow pattern 175–177
example 191–201

Indirect Variable Access pattern 91–93

Inject:into: pattern 152–154

Inline Message Pattern pattern 172–174
example 191–201

instance variables
accessing 93–99
Boolean Property Setting Method pat-
tern 100–101
changing values 95–96
Collection Accessor Method pattern
96–99
collections, general access to 99–100
Common State pattern 80–81
Constant Method pattern 87–89
constants, coding 87–89
Default Value Method pattern 86–87
Direct Variable Access pattern 89–91
Enumeration Method pattern 99–100
Explicit Initialization pattern 83–85
Getting Method pattern 93–95
getting/setting 89–93
Indirect Variable Access pattern
91–93
initializing defaults 83–86
initializing values 86–87
naming 102–103

instances
common states 80–81
creating 23–24
passing parameters to 25–26

220 S M A L L T A L K B E S T P R A C T I C E P A T T E R N S

variable states 82–83

Intention Revealing Messages pattern
48–49

Intention Revealing Selector pattern
49–51
example 191–201

Interesting Return Value pattern
188–189
example 191–201

Interval pattern 137–138

IsEmpty pattern 139–141

Lazy Initialization pattern 85–86

literals, searching for 159–161

Lookup Cache pattern 161–163

Mediating Protocol pattern 57–59

Message pattern 43–44

message patterns, formatting 172–174

messages
Choosing Message pattern 45–47
Collecting Parameter pattern 75–77
conditional logic 45–47
Decomposing Message pattern 47–48
Delegation pattern 64–65
Dispatched Interpretation pattern
51–55
Double Dispatch pattern 55–57
Extending Super pattern 60–62
flow control 33–34
formatting multiple to same receiver
183–185
indenting 175–177
Intention Revealing Messages pattern
48–49
Intention Revealing Selector pattern
49–51
invoking in tandem 37–39
Mediating Protocol pattern 57–59
Message pattern 43–44

method dispatch 55–57
methods

breaking into parts 47–48
collections resulting form multiple

75–77
communicating intent 48–49
complex Pluggable Behavior 73–75
instance-specific behavior 70–73
invoking 43–44
naming 49–51

Modifying Super pattern 52–64
objects

cooperating 51–55
delegate access 67–68
interaction 57–59
invoking disinterested delegates

65–66
parameterizing behavior 69–70
sharing implementation without

inheritance 64–65
Pluggable Behavior pattern 69–70
Pluggable Block pattern 73–75
Pluggable Selector pattern 70–73
Self Delegation pattern 67–68
Simple Delegation pattern 65–66
Super pattern 59–60
superclass behavior

adding to 60–62
invoking 59–60
modifying 52–64

Method Comment pattern 40–43

method dispatch 55–57

Method Object pattern 34–37

methods
become 8
breaking into parts 47–48
collections resulting form multiple
75–77
commenting 40–43
communicating intent 48–49
Comparing Method pattern 32–33

B E H A V I O R 221

complex Pluggable Behavior 73–75
Composed Method pattern 21–22
Constructor Method pattern 23–24
Constructor Parameter Method pat-
tern 25–26
Conversion pattern 28
Converter Constructor Method pat-
tern 29–30
Converter Method pattern 28–29
Debug Printing Method pattern
39–40
definition 20
Execute Around Method pattern
37–39
instances

creating 23–24
passing parameters to 25–26

instance-specific behavior 70–73
invoking 43–44
messages

flow control 33–34
invoking in tandem 37–39

Method Comment pattern 40–43
Method Object pattern 34–37
naming 49–51, 95
objects

converting 28–30
creating, shortcut 26–27
sorting 32–33
testing properties of 30–32

parameters, naming 174–175
performance tuning 106–108
printing, default method 39–40
programs, dividing into methods
21–22
Query Method pattern 30–32
returning values from 188–189
Reversing Method pattern 33–34
setting boolean properties 100–101
Shortcut Constructor Method pattern
26–27
simplifying complexity 34–37

Modifying Super pattern 52–64

naming
enumeration block parameters
182–183
instance variables 102–103
method parameters 174–175
methods 49–51, 95
subclasses 169–170
superclasses 168–169
temporary variables 110–111

objects
coding equality 124–126
converting 28–30
cooperating 51–55
copying 8
creating, shortcut 26–27
delegate access 67–68
interaction 57–59
invoking disinterested delegates
65–66
mapping one to another 128–131
parameterizing behavior 69–70
sharing implementation without
inheritance 64–65
sorting 32–33
testing properties of 30–32
working with hashed collections
126–128

one-to-many relationships 115–116

OrderedCollection pattern 116–117

parser, writing 164–165

Parsing Stream pattern 164–165

patterns
adopting 9–10
definition 1
examples 191–202
learning 10–11
reasons for 14–15
roles of 15–16
See also classes

222 S M A L L T A L K B E S T P R A C T I C E P A T T E R N S

See also collection idioms
See also collection protocols
See also formatting
See also instance variables
See also messages
See also methods
See also specific pattern names
See also temporary variables

performance tuning 8, 21

Pluggable Behavior pattern 69–70

Pluggable Block pattern 73–75

Pluggable Selector pattern 70–73

printing, default method 39–40

procedure calls {\i vs.} messages and
methods 19–20

programming style 6–7

programs
become method 8
coding activities 1–3
copying objects 8
dividing into methods 21–22
exception handling 7–8
flow of control 21
lifecycle cost 5–6
performance tuning 8, 21
productivity 5
quality criteria 4–6
readability 21–22
risk 6
system structure 3–4
time to market 6

Qualified Subclass Name pattern
169–170

Query Method pattern 30–32

Queue pattern 158–159

queues 158–159

Rectangular Block pattern 177–178
example 191–201

Reusing Temporary Variable pattern
109–110

Reversing Method pattern 33–34

Role pattern, example 191–201

Role Suggesting Instance Variable Name
pattern 102–103

Role Suggesting Temporary Variable
Name pattern 110–111

RunArray pattern 118–119

Searching Literal pattern 159–161

Select/Reject loops, optimizing 161–163

Select/Reject pattern 149–150

Self Delegation pattern 67–68

Set pattern 119–124

Setting Method pattern 95–96

Shortcut Constructor Method pattern
26–27

Simple Delegation pattern 65–66

Simple Enumeration Parameter pattern
182–183
example 191–201

Simple Superclass Name pattern
168–169
example 191–201

SortedCollection pattern 131–132

Stack pattern 156–158

stacks 156–158

state
definition 19
See also instance variables
See also temporary variables

subclasses, naming 169–170

Suggesting Instance Variable Name pat-
tern, example 191–201

Super pattern 59–60

B E H A V I O R 223

superclass behavior
adding to 60–62
invoking 59–60
modifying 52–64

superclasses, naming 168–169

Temporarily Sorted Collection pattern
155–156

Temporary Variable pattern 103–104

temporary variables
Caching Temporary Variable pattern
106–108
Collecting Temporary Variable pattern
105–106
Explaining Temporary Variable pat-
tern 108–109
expressions

reusing 109–110
saving results of 103–106
simplifying 108–109

methods, performance tuning
106–108
naming 110–111
Reusing Temporary Variable pattern
109–110
Role Suggesting Temporary Variable
Name pattern 110–111
Temporary Variable pattern 103–104

temporary variables, naming 110–111

Type Suggesting Parameter Name pat-
tern 174–175
example 191–201

#value: Mediating Protocol 58

#value Mediating Protocol 58

Variable State 82–83

Variable State pattern 82–83

variables, coding 87–89

Yourself pattern 186–188

224 S M A L L T A L K B E S T P R A C T I C E P A T T E R N S

	CONTENTS
	PREFACE
	1. INTRODUCTION
	CODING
	Talking Programs

	GOOD SOFTWARE
	STYLE
	WHAT’S MISSING?
	BOOK ORGANIZATION
	ADOPTION
	LEARNING A PATTERN

	2. PATTERNS
	WHY PATTERNS WORK
	ROLE OF PATTERNS
	Reading
	Development
	Review
	Documentation
	Clean Up

	FORMAT

	3. BEHAVIOR
	METHODS
	Composed Method
	Constructor Method
	Constructor Parameter Method
	Shortcut Constructor Method
	Conversion
	Converter Method
	Converter Constructor Method
	Query Method
	Comparing Method
	Reversing Method
	Method Object
	Execute Around Method
	Debug Printing Method
	Method Comment

	MESSAGES
	Message
	Choosing Message
	Decomposing Message
	Intention Revealing Message
	Intention Revealing Selector
	Dispatched Interpretation
	Double Dispatch
	Mediating Protocol
	Super
	Extending Super
	Modifying Super
	Delegation
	Simple Delegation
	Self Delegation
	Pluggable Behavior
	Pluggable Selector
	Pluggable Block
	Collecting Parameter

	4. STATE
	INSTANCE VARIABLES
	Common State
	Variable State
	Explicit Initialization
	Lazy Initialization
	Default Value Method
	Constant Method
	Direct Variable Access
	Indirect Variable Access
	Getting Method
	Setting Method
	Collection Accessor Method
	Enumeration Method
	Boolean Property Setting Method
	Role Suggesting Instance Variable Name

	TEMPORARY VARIABLES
	Temporary Variable
	Collecting Temporary Variable
	Caching Temporary Variable
	Explaining Temporary Variable
	Reusing Temporary Variable
	Role Suggesting Temporary Variable Name

	5. COLLECTIONS
	CLASSES
	Collection
	OrderedCollection
	RunArray
	Set
	Equality Method
	Hashing Method
	Dictionary
	SortedCollection
	Array
	ByteArray
	Interval

	COLLECTION PROTOCOL
	IsEmpty
	Includes
	Concatentation
	Enumeration
	Do
	Collect
	Select/Reject
	Detect
	Inject:into:

	COLLECTION IDIOMS
	Duplicate Removing Set
	Temporarily Sorted Collection
	Stack
	Queue
	Searching Literal
	Lookup Cache
	Parsing Stream
	Concatenating Stream

	6. CLASSES
	Simple Superclass Name
	Qualified Subclass Name

	7. FORMATTING
	Inline Message Pattern
	Type Suggesting Parameter Name
	Indented Control Flow
	Rectangular Block
	Guard Clause
	Conditional Expression
	Simple Enumeration Parameter
	Cascade
	Yourself
	Interesting Return Value

	8. DEVELOPMENT EXAMPLE
	PROBLEM
	START
	ARITHMETIC
	INTEGRATION
	SUMMARY

	APPENDIX A: QUICK REFERENCE
	INDEX
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	V
	Y

