
The Art and Science
of Smalltalk

Simon Lewis
Hewlett-Packard

Prentice Hall
London New York Toronto Sydney Tokyo Singapore Madrid Mexico City Munich

This nice book has been scanned, OCRed, and assembled for you
by Adrian Lienhard and Stéphane Ducasse from the Software
Composition Group.

We thank Simon Lewis, HP and Prentice Hall for giving the rights to put
this excellent book on the web.

Other free books are available at:
http://www.iam.unibe.ch/~ducasse/WebPages/FreeBooks.html

www.esug.org supports the free book initiative

Hewlett-Packard Professional Books

Costa

Fristrup

Grady

Grosvenor, Ichiro, O'Brien

Gunn

Helsel

Madell, Parsons, Abegg

McMinds/Whitty

Phaal

Poniatowski

Witte

Witte

Planning and Designing High Speed Networks Using

lOOVG-AnyLAN

USENET: Nemews for Everyone

Practical Software Metrics for Project Management and Process

Improvement

Mainframe Downsizing to Upsize Your Business: IT-Preneuring

A Guide to NetWare for UNIX

Cutting Your Test Development Time with HP VEE: An Iconic

Programming Language

Developing and Localizing International Software

Writing Your Own OSF/Motif Widgets

LAN Traffic Management

The HP-UX System Administrator's "How To" Book

Electronic Test Instruments

Spectrum & Network Measurements

The Art and Science
of Smalltalk

Simon Lewis
Hewlett-Packard

Prentice Hall
London New York Toronto Sydney Tokyo Singapore Madrid Mexico City Munich

First published 1995 by
Prentice Hall International (UK) Limited
Campus 400, Maylands Avenue
Hemel Hempstead
Hertfordshire, HP2 7EZ
A division of
Simon & Schuster International Group

©Hewlett-Packard 1995

All rights reserved. No part of this publication may be
reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical,
photocopying, recording or otherwise, without prior
permission, in writing, from the publisher.

Printed and bound in Great Britain by
Redwood Books Limited, Trowbridge, Wiltshire

Library of Congress Cataloging-in-Publication Data

Available from publisher

British Library Cataloguing in Publication Data

A catalogue record for this book is available
from the British Library

ISBN 0-13-371345-8

1 2 3 4 5 99 98 97 96 95

Contents

Preface xi

Part I The Science of Smalltalk

Chapter 1 Some Advice on Getting Started 3
The Smalltalk Learning Curve 3
Be Prepared for a Culture Schock 4
Start Off Small 5
Explore and Work Interactively 6
Be Prepared to Throw Code Away 6
Get Some Help 7
Where to From Here? 7

Chapter 2 An Introduction to Objects 9
What is an Object? 10
Defining and Creating Objects 11
Inheritance 13
Over-riding and Polymorphism 15

Summary 16

The Art and Science of Smalltalk

Chapter 3 An Introduction to Smalltalk 17
History of the Smalltalk System 17
Structure of the Smalltalk System 18
Implementation of the Smalltalk System 20
Files the System Lives In 21
Summary 24

Chapter 4 The Smalltalk Language 25
Naming Conventions 25
Literals and Constants 26
Variables 27
Special or Psuedo-Variables 30
Sending Messages 31
Assignment 32
Combining Messages 33
Primitive Operations 35
Blocks of Code 36
Summary 37

Chapter 5 The Smalltalk Development Environment 39
The Different Kinds of Tool 40
Using the Mouse 40
The Launcher and Transcript 42
Workspaces 43
Browsers 44
Inspectors 47
Notifiers and Debuggers 48
Trying Things Out 50
Summary 51

Chapter 6 The Smalltalk Class Library 53
The Standard Protocols 54
A Tour of the Class Library 57
Object—The Root of the Hierarchy 59
A Tour of the Class Library (continued) 61
Summary 66

vi

Contents

Chapter 7 The Collection Classes 67
What is a Collection? 67
Creating Collection Instances 69
Choosing Which Collection to Use 70
The Different Kinds of Collection 70
Testing Collections 75
Converting Collections 76
Enumerating Collections 77
Summary 80

Chapter 8 The Dependency Mechanism 81
The Concept of Dependency 81
How Dependency Works 83
How Dependency is Used 88
Summary—Why Have Dependency? 89

Chapter 9 The MVC Architecture 91
Basic Concepts 92
The MVC Architecture 93
MVC Details 95
MVC in Action 98
An Extension to MVC 100
Summary 101

Chapter 10 Pluggability and Adaptors 103
The perform: Mechanism 104
Pluggability 105
The ValueHolder Class 107

The AspectAdaptor Class 109

The PluggableAdaptor Class 110

Summary 112

VI!

The Art and Science of Smalltalk

Part n The Art of Smalltalk

Chapter 11 Introduction To The Art of Smalltalk 115
Aims of The Art of Smalltalk 115
Structure of The Art of Smalltalk 116

Chapter 12 Designing for Smalltalk 119
How Designing for Smalltalk is Different 120
Design Considerations 121
Design Tasks 124
Identifying the Objects 127
Relationships between Objects 129
Designing for Reuse 131
Using Inheritance 133
Summary 139
Appendix: Design Methodologies 140

Chapter 13 Coding in Smalltalk 141
Smalltalk with Style 141
Naming Conventions 142
Accessing Instance Variables 145
Accessing Constants 148
Structuring Methods 148
Other Coding Guidelines 150
Using Comments 153
Writing Efficient Code 154
Summary 155

VtH

Contents

Chapter 14 Using the Development Tools 157
Using Browsers 157
Finding Your Way Around 159
Using Inspectors 163
Using Workspaces 165
Tuning the Performance of Your Code 166
Managing Your Image

(or how not to lose your work!) 168
Summary 170
Appendix: Modifying the Window Menu 171

Chapter 15 Debugging Smalltalk Code 173
Different Kinds of Bug 173
General Debugging Principles 174
Using Notifiers and Debuggers 175
Interrupting Your Code 178
Inserting Breakpoints 179
Tracing Execution 180
Finding Your Objects 181
Debugging Dependencies 182
Common Bugs in Smalltalk Progams 182
Summary 187

Chapter 16 Managing Smalltalk Projects 189
The Software Lifecycle 189
Training 190
Organising the Team 191
Configuration Management 192
Metrics and Measurement 194
Summary and Final Conclusions 195

Glossary 197

Index 205

IX

Preface

.This book has been written to help you to help yourself. You may be
considering adopting Smalltalk for your next project. You may have
just started to program in Smalltalk. You may have been doing it for a
while. Whatever your level of experience you'll know that Smalltalk is
different. It's different from C, different even from C++, different to
almost anything you'll have used before. These differences help give
Smalltalk the power and productivity for which it is famous, but it's
only by knowing how to exploit the differences that you can harness
this power for yourself.

Smalltalk is different from other languages not only in its syntax
(the parts of the language and how they go together), but in its whole
philosophy of programming. Few programming languages are as
interactive as Smalltalk. Fewer still make nearly all their source-code
visible to the programmer on-line. This combination of features makes
Smalltalk very powerful, but it can also make it intimidating to learn.
This book aims to de-mystify that process by providing a practical
rather than an academic introduction.

The huge code library that comes with Smalltalk is also a key part
of its power. But which classes do what, which should you reuse, and
which should you subclass? The aim of this book is to teach you the
things you need to know to be able to program effectively in Smalltalk.
You'll also learn which parts of the system you can safely ignore.
You'll learn how to design your own classes, and how to use the
existing ones. You'll learn how and when to use inheritance. You'll
learn how to make the best use of the development tools, and how to
split the work among the members of a team. Most of all, you'll learn
how to adopt the Smalltalk style—how to find out what you need to
know, without going to the manual. The Art and Science of Smalltalk is

Xi

The Art and Science of Smalltalk

not just for programmers though. Managers or leaders of teams using
Smalltalk should find a lot to interest them, especially in Part II.

This book is not an introduction to programming. It is assumed
that you have at least some experience of another language. Experience
in C, BASIC, Pascal, COBOL, or any similar language is fine.
Familiarity with using (though not necessarily programming with), a
graphical user-interface is also essential. Microsoft Windows, the
Macintosh UI, or the X window system are good examples.

The Art and Science of Smalltalk is not a methodology. It's not
intended to give you a defined process that you can feed your problem
into at one end, and have Smalltalk code come out of at the other.
Sometimes, competing views of how things should be done will be
presented. You'll have to decide which philosophy to adopt in your
particular circumstances, but you will be making an informed decision.
In this way, the book is not prescriptive, but instead it's 'assistive'. It's
also not a tutorial. You are however invited—in fact you're
encouraged—to try things out using the system. Smalltalk style
supports this, and you should experiment whenever something is not
clear, or you want to confirm or enhance your understanding.

You should treat this book as complementary to the documentation
that comes with Smalltalk. The manual tells you how to install and fire-
up Smalltalk, and gives detailed and up-to-date descriptions of all the
tools and many of the key system classes. Although this book includes
an introduction to object-oriented programming (OOP), Smalltalk, and
the development environment, its main purpose is to tell you how to
make use of the tools, and how to use and reuse the system classes to
maximum effect. It tells you the things you would otherwise only learn
through experience.

The knowledge contained in the book has been gained from the
practical experiences of the author and several of his colleagues over
many years of Smalltalk programming. It applies specifically to the
version of Smalltalk marketed by ParcPlace Systems as VisualWorks
(and its predecessor—ObjectWorks\Smalltalk'). However, because
much of the discussion concerns the most basic principles and classes,
it should be broadly applicable to other Smalltalks.

Knowledge about Smalltalk can be divided into three kinds. First,
there is basic knowledge about the language, its fundamental concepts,
and core classes. Second, there is knowledge about the Smalltalk
'style', or philosophy of programming. Third, there is detailed
knowledge about the specifics of the rest of the class hierarchy. This
book is divided into two parts. The first part, The Science of Smalltalk,
provides an introduction to OOP, and an introduction to the most

XII

Preface

important tools and classes in the Smalltalk system. It'll help you with
the first kind of knowledge. The second part of the book, The Art of
Smalltalk, concentrates on how to use those classes and tools in the
very best way. It'll help you with the second kind of knowledge.
Together, these two kinds of knowledge will help you gain for yourself
the third kind of knowledge—an understanding of the detailed (and
frequently changeable) facilities of the complete code library.

The Smalltalk system is large and complex and it does take time to
learn and be comfortable with. However, if you follow the simple
advice given in this book you'll soon be enjoying the benefits of
Smalltalk. You'll be getting better code reuse by properly
understanding the system classes. You'll be writing programs which are
easier to understand and easier to maintain because they go with the
flow of the system, not against it. You'll know how best to organise
small teams of people working together in Smalltalk. Most of all, you'll
know what to do when you don't understand something. You'll be able
to help yourself.

Typographic Conventions

Like most computer books, this book uses a couple of typeface
conventions to distinguish literal computer expressions from the main
text. Wherever Smalltalk classes, methods or expressions are written
they are shown like this: MyObject display. In contrast, whenever a
command from a pop-up menu or button is being referred to, it is
shown like this: implementors.

Acknowledgements

Lots of the basic ideas in this book came from discussions with friends
and colleagues at HP Labs in Bristol. Many other people carefully read
and commented on various parts of the manuscript whilst it was in
preparation, and others simply provided much needed help and
encouragement along the way. The folks involved included Richard
Brown, Janet Bruten, Dave Clarke, Enrico Coiera, Richard Dykema,
Leo Grondin, Caroline Knight, Wendy Odium, Siani Pearson, Jo Reid,
Brenda Romans, Steven Scott, David Stephenson, Kristen Stevenson,
Viki Williams and others who I'm sure I've forgotten to mention. To
all these people I would like to offer my sincere thanks.

Xlll

The Science of Smalltalk

Some Advice on Getting Started

If you're absolutely new to Smalltalk this chapter is for you. You're
about to undertake a task (learning Smalltalk) which can be both very
rewarding and yet at the same time very uncomfortable. One of the
aims of this book is to make that task more rewarding and less
uncomfortable. The aim of this first chapter is to help you start off in
the right way. We'll be looking briefly at how to manage the transition
to object-oriented programming (OOP) and Smalltalk, mention a few
things to look out for, and set the scene for the rest of the book. The
actual management of Smalltalk projects is something we'll return to in
some more detail in the-very last chapter.

The things you might consider doing to smooth your path towards
Smalltalk proficiency will differ depending on your circumstances,
background, experience, goals, resources and so on. Consequently this
chapter presents a range of different suggestions and ideas which are
known to have worked for other people in a similar position to your
own in the past.

If you're already using Smalltalk, you should still find some things
of interest here. In fact if you're currently having any particular
difficulty, you may even discover where you are going wrong.
However, if you think that this chapter might not be for you, then feel
free to skip to the later chapters.

The Smalltalk Learning Curve

Learning a new language is never completely painless. Sadly, with
Smalltalk you have to learn a little bit more than just a new language.
You may have to learn about object-oriented programming, learn the

Chapter 1

Smalltalk language itself, learn how to use the VisualWorks
development environment, learn how to write your own Smalltalk code
and learn how to reuse the code in the system's code-library. Most
significantly, you'll probably have to learn a whole new way of going
about solving your programming problems.

Many newcomers to Smalltalk find that although they start off
very enthusiastically, their enthusiasm falls off rapidly as their level of
discomfort with all the changes they must absorb rises. This is entirely
natural because programming in Smalltalk is so different from
programming in many other languages. The extent of these differences
gives rise to a characteristic Smalltalk 'learning curve' shown
qualitatively in the diagram below. The steepness and length of this
curve will of course depend on your previous experience, and to a large
extent on your expectations. Broadly speaking though, you should
expect it to take anything from two weeks to six months before you
stop feeling less comfortable every day and start feeling more
comfortable all the time with programming in Smalltalk.

Luckily there are some positive steps that you can take to both
reduce the peak level of discomfort and shorten the amount of time it
takes to get over the peak of the learning curve.

Be Prepared for a Culture Shock

It can't be stressed enough that Smalltalk is different from other
programming languages. It's not just that you might be doing OOP for

Discomfort

The Smalltalk learning
curve, which can be
flattened and shortened by
starting in the right way.

Time

Some Advice on Getting Started

the very first time (as if that wasn't enough!). There are real
management and technical differences between Smalltalk and other
languages. For example, Smalltalk promotes and safely supports a
much more interactive and exploratory programming style than other
languages. That's where it gets its legendary productivity. Now this
does not mean that Smalltalk programs don't have to be designed. What
it does mean is that if you want to get the most out of Smalltalk, you
have to adopt a more iterative design and programming style than you
may be used to. This can be very uncomfortable, especially if you are
used to developing systems using a traditional 'single-pass' or
'waterfall' methodology.

On the technical side, being a complete programming language,
Smalltalk can do all the things other languages can do. Very often
though you will find that it does them in completely different ways. For
example, if you are used to writing applications with graphical user-
interfaces (GUIs) on PCs, Macintoshes or Unix workstations, you will
find that Smalltalk GUIs can do all the same things. However, they are
built in a completely different way (mainly because for historical
reasons the Smalltalk user-interface works by 'polling', rather than by
being event-driven).

These kinds of differences can make you feel like giving up
because much of your hard-won knowledge and experience seems to be
of less use in a Smalltalk environment. It's another aim of this book to
show you that that isn't necessarily the case.

Start Off Small

It may seem obvious but it's still worth saying—choose something
small for your first Smalltalk exercise. Trying to build something even
a fraction of the size of the systems you're used to building first time
around is asking for trouble. Starting small will greatly help to reduce
the culture shock we talked about above. It also goes without saying
that you should probably try Smalltalk out on an experimental project
first, rather than launching straight into a 'mission critical' application.
What all this means depends on your situation of course.

If you're a manager planning to migrate a large team of
programmers over to Smalltalk, then it is significantly better to start off
with just two or three people. Try to give them complete freedom to
explore the new technology and get themselves over the peak of the
learning curve. They will then become the local experts who'll be able
to help the rest of the team climb the curve.

Chapter 1

If you're a member of such a team, or you're learning Smalltalk as an
individual, there are a number of things you can do yourself. If you're
lucky enough to have access to someone else's Smalltalk programs try
modifying them in simple ways. If not, try working on a subset of your
programming problem. For example, try representing some of the key
data structures as Smalltalk objects, or try building a key window
dialogue using the VisualWorks GUI development tools.

Explore and Work Interactively

One of the things that makes Smalltalk so powerful is its interactive
programming environment. The more use you can make of this
environment, the quicker you will get up the learning curve and the
smaller the culture shock will be. Remember that you can create and
execute snippets of code in seconds. This is ideal when you don't quite
understand how a particular feature works. Don't spend ages looking
through the manual trying to understand it. Sadly, you can't learn
Smalltalk from a book. Experiment! Experienced Smalltalk
programmers use the manual less than beginners, not because they
know more about the system, but because they've learned how to use
the system to find out what they need to know. This is a skill we'll be
talking about a lot in Part n — The Art of Smalltalk.

Even if it takes half an hour or more to set up an experiment to test
how something works, it is frequently well worth doing it because you
will get a definitive answer. It really is worth experimenting. All this
experimentation brings its own caveat though:

Be Prepared to Throw Code Away

It is very easy to build up a lot of code in Smalltalk—it's a very
productive environment after all. However, when you've finished
experimenting you've got to be prepared to throw your code away. This
doesn't mean you should go through a strict experimental phase and
then rewrite everything from scratch though. What it means is that you
should take advantage of the fact that your second attempt at
programming something will be immeasurably better than the first.
This may well be true in many languages, but in most you couldn't
afford to take advantage of it. In Smalltalk not only will your second
attempt be better, it'll take you a fraction of the time to produce. It's
well worth doing it.

Some Advice on Getting Started

Get Some Help

This may seem obvious, but if you can enlist the help of someone who
has a reasonable amount of Smalltalk experience, the whole process of
climbing the learning curve and becoming self sufficient will be made
very much easier. Not only will you avoid spending hours trying to find
the answer to a simple question, you will also find it much easier to
start programming in a good Smalltalk 'style' straight away. Again,
another of the aims of this book is to help you adopt a good Smalltalk
style from the start.

You might be able to find someone to help you from within your
organisation, or you may have to look outside. Remember though that
Smalltalk is different even from other interactive object-oriented
languages. Make sure you work with someone with specific Smalltalk
experience.

Of course if you can't get help, or even if you can, reading this
book is also a very good way to help yourself up the learning curve.
However, if you're going to help yourself, the very best way is to make
sure you've got the Smalltalk system up and running. Exploring and
trying things out is really the only way to test your understanding of the
concepts of object-oriented programming and Smalltalk that we'll be
discussing from now on.

Where To From Here?

The Art and Science of Smalltalk is intended to help you to learn about
and understand the Smalltalk language, code-library and development
system which underlies the VisualWorks programming environment
(and some others). The book itself is divided into two parts.

Part I — The Science of Smalltalk, provides an introduction to
Smalltalk itself. We'll look at the basic concepts of OOP, talk about the
Smalltalk language, and cover some of the most important classes in
the system library. We'll also look briefly at the development
environment, but you should be prepared to take some responsibility
for getting yourself up and running in this area. The idea is to provide
you with the basic knowledge you'll need to find out for yourself about
those parts of the system you really need to understand. That's why we
don't cover the whole system in exhaustive depth.

The second part of the book, The Art of Smalltalk, covers some of
the more difficult, non-specific issues involved in working with
Smalltalk. We'll look at how to design Smalltalk programs (how, if you

like, to do object-oriented programming). We'll also consider how to
code in Smalltalk, and how to make full use of the facilities of the
development environment (including a whole chapter on debugging).
Finally, we'll look in some more detail at how to manage Smalltalk
projects.

All that's to come. The very next chapter, An Introduction to
Objects, starts right at the beginning. If you've never done any OOP
before, this is the place to start. If however, you're confident you know
what OOP is all about (and don't feel in need of a refresher course) but
have never done any Smalltalk, start with Chapter 3—An Introduction
to Smalltalk. Good luck and remember, Smalltalk is supposed to be fun.

8

An Introduction to Objects

Smalltalk is an object-oriented programming language. Object-oriented
programming consists of designing and implementing objects, and
specifying their interactions. Whether you do this directly or through a
development environment like VisualWorks does not matter. What you
are doing is creating objects. But what is an object? That is the question
this chapter sets out to answer. Later on we'll look at how to use
objects to write programs, but for now we'll just consider what we
might call 'object anatomy'.

The description object-oriented applies to lots of different
languages. It encompasses a set of concepts which are broadly similar
in all those languages. These concepts include the notions of class and
instance, and concepts such as messaging, encapsulation, instantiation,
inheritance, and polymorphism. Although these are general concepts,
we will discuss them here in the specific form in which they apply to
Smalltalk. Remember that some other object-oriented languages may
not have all these concepts, and others may introduce additional ones.
Even languages which share the same concepts may implement them in
different ways. Be wary of this if you have had exposure to OOP
through other languages.

In spite of any differences, if you have previously programmed in
another object-oriented language you should find the contents of this
chapter very familiar. On the other hand, if you haven't done any OOP
before you may find some of the concepts presented here a little
strange. Don't despair—it'll start to make sense as you go through the
rest of book, and as you start to program in Smalltalk and really
understand how objects behave.

Chapter 2

What is an Object?

Objects are discrete, self-contained, combinations of code and data. The
diagram below shows one way to imagine what an object is like. In
Smalltalk, the code in an object is split into pieces called methods, and
the data is held in variables of various types. A program might contain
thousands of these objects, which can vary in size from only a few
bytes to many kilobytes. Objects can represent things in the real world
(like cheques, people or the week's shopping), or things in the
computer world (like arrays, windows or event queues).

The diagram below deliberately shows the code as if it is
surrounding the data. This is because the variables in each object can be
accessed only by the methods in that particular object, and not by any
other code. This is an example of the concept known in OOP as
encapsulation.

Methods are somewhat similar to subroutines, functions, or
procedures in other languages. They are self-contained snippets of code
which have a name, can be individually called or invoked, and return a
value when they have finished running. Smalltalk methods are invoked
by sending a message to the relevant object. The message will contain
the name of the method, as well as any necessary parameters. If the
object being sent the message contains the method named in the
message it is said to understand the message, and will execute the
method, returning the result. As the diagram on the next page shows,
the object which sends the message is called the sender, and the object
which executes the message is called the receiver.

It might seem as if this sort of interaction between objects implies
a sort of parallel processing, with objects sending messages to each
other in parallel. In fact, the sender of a message is blocked until the

An object consists of some
program code and some data,
tightly bound together.

10

Methods

Variables

An Introduction to Objects

An object's methods are
invoked by other objects
sending messages to it,

Return Value

message returns. In order to run the method, the receiver may send
further messages, and is itself then blocked until those messages return.
In this respect, sending a message is just like calling a function in a
non-object-oriented language—there is no implication of parallel
processing (although separately, Smalltalk does support its own light-
weight 'threads' or processes).

The variables inside an object are similar to variables in non-00
languages. They each have a name and contain a value. However, as
we shall discuss later, and unlike many other languages, Smalltalk
variables do not have a type (such as integer or string). All variables are
capable of holding any type of object.

Defining and Creating Objects

As we have observed, programming in an object-oriented language like
Smalltalk consists of designing objects and specifying their
interactions. This means deciding what data each object will hold in its
variables, and writing the methods that will act upon that data. But
objects are not designed individually. The programmer does not have to
specify every object in the program personally. This would be very
wasteful, because so many objects in a program are actually alike.
Instead, the programmer specifies special objects, known in Smalltalk
as classes. These classes act like templates or blueprints. Their task is
to represent the functionality (the methods and the variables) that the
programmer wants to put in the other objects in the program. These
other objects are known in Smalltalk as instances. You can think of
every object in Smalltalk as being either a class, or an instance.

As well as acting as templates, Smalltalk classes have another
purpose. They are actually responsible for making the instance objects

11

Chapter 2

Instances

Class objects act as
templates for instance
objects, and are also
responsible for
manufacturing or
instantiating them.

they represent. This process is called instantiation, as is shown in the
diagram above. So, Smalltalk classes act both as templates for
instances, and as factories which manufacture the instances they
represent. Every instance is said to be an instance of the particular class
which both manufactured it and represents it in template form.

This relationship between classes and instances means that class
objects combine two types of code and data. There is the code and data
which the class object itself contains (known as class methods and class
variables), and there is the template for the code and data which
instances of the class will contain (known as instance methods and
instance variables). The class methods and variables implement the
functionality which is associated with the actual manufacture of
instances. The instance methods and variables do whatever the
programmer has designed instances of this class to do.

Class objects only understand class methods, and instance objects
only understand instance methods. This is a very important distinction,
which frequently causes confusion. It is as well to try to get it clear in
your mind before starting to program. If you expect your objects
(classes and instances) to understand the messages you send them, you
must send classes class messages and instances instance messages!

Every instance of a particular class has its own set of the instance
variables defined in that class. They are not shared amongst instances.
So, if a class defines an instance variable called 'size', every instance of
that class will have a separate variable called 'size'. The values of all

12

\ • - . 1 ' - . ^
•r' • • ' ;••- -' • - . '• ^.

An Introduction to Objects

these 'size' variables can, and probably will, be different. The situation
is different for class variables. These are defined in the class, but are
visible to and shared between all instances of that class.

Although conceptually we might think that every instance of a
class has its own identical copy of the instance methods defined in that
class, in practice this would be very inefficient. So in Smalltalk,
instances share the methods defined in their class. This means that if
you alter the definition of an instance method in a class, all existing and
future instances of that class will see and use the new definition.

All this class and instance stuff is rather complicated, so here is a
summary:

Instance Variables
A separate set in every instance (not shared).

Class Variables
One set shared between the class and all its instances.

Instance Methods
Defined in the class, but only understood by instances.

Class Methods
Defined in the class, and only understood by the class.

Inheritance

We now know that because lots of Smalltalk objects are similar to each
other, programmers don't design each and every one individually.
Instead, they create objects called classes, which are templates for
objects called instances. You might think that a programmer could now
go off and start writing classes, ask those classes to make instances of
themselves, and thereby create a Smalltalk program. In theory this is
true, but in practice not only are lots of instances similar to each other,
but lots of classes are too. Smalltalk programmers take advantage of
this similarity between classes using a concept called inheritance.

Inheritance allows the programmer to say in effect 'This new class
is just like that existing one, except in the following ways.' The new
class is called a subclass, and the existing class is called a superclass.
When two classes are related in this way the subclass is said to inherit
from the superclass. In Smalltalk, classes can have many subclasses
which inherit from them. However, each subclass can only inherit
directly from one superclass. Every class can be both a subclass and a

13

Chapter 2

superclass. This gives rise to a sort of family tree of classes, called the
inheritance hierarchy. In the diagram below, class C inherits from (is a
subclass of) class A, and is inherited by (is the superclass of) classes D,
E, and F.

Instances of any particular class understand all the methods
defined in their class, and all the methods defined, in their class's
superclasses. So an instance of class D would understand all the
methods defined in D, C, A and so on up to the top of the tree. Just to
confuse things further, if a method that an instance understands is
actually defined in the instance's class (rather than in a superclass), the
class is said to implement the method.

According to inheritance, instances of a class will contain all the
instance variables defined in their class, and all the instance variables
defined in their class's superclasses. So an instance of class G would
have the instance variables defined in G, B, A and so on up to the top of
the tree.

Note that normally you can make an instance of any class. In
other words, it is not only those classes at the bottom of the hierarchy
(the leaves of the tree) which can have instances. However, sometimes
a programmer will design a class which is intended never to have
instances. This doesn't mean it is useless though. It is there to collect
together functionality which will be inherited by other classes which
will have instances. Those classes which don't have instances are
sometimes called abstract classes. In contrast, classes which are
designed to have instances are called concrete classes.

A fragment of the class
inheritance hierarchy showing
how every class inherits from
exactly one other class.

Is inherited by

14

An Introduction to Objects

Over-riding and Polymorphism

Inheritance in Smalltalk can be thought of as additive. Each class
inherits all the functionality of its superclass (and its superclass's
superclass, and so on), and adds in some extra functionality (methods
and variables) of its own. But what happens if a class attempts to add in
some functionality which it is already inheriting? The answer depends
on whether the class attempts to add methods or variables.

If a class attempts to define a new variable with the same name as
a variable it inherits, the result is simply an error. In Smalltalk at least,
there is no reason to want to redefine a variable lower down in an
inheritance hierarchy.

However, if a class defines a new method with the same name as
one it inherits, the new method replaces the inherited one in instances
of that class, and its subclasses. The inherited method is said to be over-
ridden by the definition lower down in the hierarchy. The original
method doesn't go away. It still applies to instances of the class where
it is defined, and instances of subclasses where it hasn't been over-
ridden.

More generally, two different classes can define two different
methods with the same name. This ability, together with the idea of
being able to over-ride inherited method definitions, is a very powerful
feature of object-oriented programming. It means that there can be all
sorts of different method definitions with the same name. When a
message is sent to an object naming a particular method, the actual
method which is executed depends on the class of the object. This
facility is called polymorphism. The reason this is such a powerful
facility is that it allows different classes to define their own different
ways of doing the same thing.

But how does the system find the right method to execute when a
message is sent to an object? The answer is that it first looks in the
class of which the object receiving the message is an instance. If there
is a method with the right name there, that method is executed. If not,
the system looks in the superclass. If it doesn't find the right method
there, it looks in the superclass's superclass, and so on up to the top of
the hierarchy. If the system reaches the top of the tree and still has not
found a method with the right name, an error is generated.

This bottom-up searching process means that the method which is
executed is always the one defined closest to the class of the object
receiving the message. If you think about it, you'll see that this is how
subclasses are able to over-ride the methods of their superclass.

15

This chapter has introduced all of the important concepts in object-
oriented programming. We've seen that in OOP, objects = code + data.
The data in an object is private to that object — a concept called
encapsulation. Code is split into methods, which are invoked by
sending messages. Objects are not defined individually, but by writing
classes. Classes act as templates, and can also be thought of as factories
for making instances. This process is called instantiation. Classes also
share functionality with other classes using inheritance. Some classes
are abstract (never having instances) and some are concrete. Finally,
over-riding and polymorphism allow there to be more than one
definition of a method.

It is useful to try to compare and contrast some of these concepts.
In particular, it's important to remember the difference between a class
and an instance. It's also useful to know the difference between
inheritance and instantiation. (Inheritance is a relationship between
classes, whereas instantiation is a relationship between an instance and
its class.) Although it is tempting, it isn't quite correct to say that an
instance inherits its functionality from its class. An instance gets its
functionality from its class simply because it is an instance of that class.

As was suggested at the beginning of the chapter, all these
concepts can seem a little strange at first. Don't worry if you haven't
understood them perfectly. They will become clearer as you get more
practical experience. Even if you have understood everything here, you
are probably still left with the question 'How do I design my own
objects, and how do I implement them in Smalltalk'? That is the
question the rest of this book addresses.

16

An Introduction to Smalltalk

Now that we've looked at the general features of object-oriented
programming, and explained some of the concepts and terminology
involved, we can begin to look at the particular object-oriented
language we're interested in—Smalltalk.

If you have previously programmed in a conventional language
like C, Pascal, or COBOL, you'll be familiar with the process of
creating a program. You'll be used to using a text editor to write your
program, a compiler to compile it, a linker to link in any library
routines you may have called and finally you'll be used to running it
directly on your computer. You may also have used a debugger to
debug your program. However, as you might have guessed by now,
things are different in Smalltalk.

Smalltalk is a single, integrated system. It includes everything you
need to develop, debug and run programs, all in one package. The
purpose of this chapter is to explain what this means, and introduce the
major parts of the system. The rest of Part I of the book is then
structured according the notions introduced here.

The History of the Smalltalk System

Smalltalk was invented in the early 1970s at the Xerox Palo Alto
Research Center (Xerox PARC) in California, USA. Originally a
research system, it incorporated many new features, including the use
of a window-based user-interface. Since there were none available at
the time, Smalltalk implemented its own window system, the remnants
of which are still visible today! It ran only on a Xerox computer.

17

Chapter 3

Today, Smalltalk is an industry-standard, commercial and scientific
language. There are a number of competing implementations available,
running on a variety of platforms. Many of these systems are based on
the Smalltalk-80 system from Xerox PARC. This book concentrates on
one particular implementation of Smalltalk—VisualWorks, from
ParcPlace Systems.

Structure of the Smalltalk System

The term Smalltalk is often used to refer to three distinct things: a
programming language; a library of classes; and a development
environment. Although conceptually separate, we shall see that these
three things are actually highly interdependent. Every Smalltalk on the
market, including VisualWorks, contains these three parts. There are
differences between Smalltalks of course, but in general you will find
that the actual languages are almost identical, the class libraries are
somewhat similar, whilst the development environments are the most
diverse. So, as the diagram over the page shows,

'Smalltalk' = a Language + a Class Library + a Development Environment

The Smalltalk language itself is very small. Compared to other
languages like C, or even BASIC, there is almost nothing to it.
Fundamentally, it allows you to define variables, assign objects to
those variables and send messages to objects. Chapter 4 is devoted to a
complete description of the Smalltalk language. You will see that
unlike most other languages, it is relatively easy to know the entire
Smalltalk language.

Almost everything in Smalltalk is an object (including numbers,
strings, processes, everything), and almost everything (including
arithmetic, tests, looping, input and output) is done by sending
messages to objects. But the language itself does not define any of
these objects or messages. Instead, all these things and many, many
others are defined in the standard class library which accompanies the
language.

The class library is the core of the Smalltalk system. It provides
hundreds of reusable classes that you will use in each and every
Smalltalk program you write. It also provides all the basic functionality
you would normally think of as being part of a computer language.
Because numbers are objects defined in the class library, arithmetic
operations are done by sending messages to numbers. Because boolean

18

An Introduction to Smalltalk

The three components of the
Smalltalk system,

Development Env Class Library

00 Language

values are also defined in the class library, conditional branches are
done by sending messages to booleans. The class library contains
objects which implement data structures that support looping
(collections), and objects which provide input and output operations.

The Smalltalk class library is implemented using the Smalltalk
language. It is built in the same way as you will build your own classes.
Unlike the language itself though, the class library is very extensive.
You could program in Smalltalk for years and never get to know the
whole thing. This is not a problem though, because Smalltalk systems
include all the source-code for the class library. This may seem like a
dubious benefit. After all, the last thing most C programmers need or
want is the source-code for the compiler (and, as we shall see, the
editor, the debugger, the window system,...)! The presence of all this
source-code makes large amounts of technicality frighteningly visible,
but it also allows you to see precisely how the system works. If you
can't remember what types of conditional branch are supported, you
can look them up. If you need to understand some particular nuance of
an operation in the class library, you can see exactly how it is
implemented. Sounds frightening? Not so...

The source-code of the class library is made visible through the
Smalltalk development environment. This consists of browsers,
inspectors, debuggers, user-interface generators and a host of other
tools. These tools can give a very clear view of how the system
works—if you know how to use them. Much of this book is devoted to
helping you in that respect. You use the development environment not
only to look at the class library, but also to create, run and debug your
own code. It is very rare in Smalltalk that you need to use a tool which

19

Chapter 3

is not provided as part of the development environment. The
development environment is implemented using the classes in the class
library. In fact, the code for the development environment is itself a
part of the library. Because the source-code of the library is available to
the programmer, the source-code of the development environment is
also available. This has two consequences. First, it provides a perfect
example of how to build an application in Smalltalk. Second, if you
don't like the way something in the development environment works,
you can in principle change it.

So what have we got? There is a language called Smalltalk. It's
very small, and in fact does hardly anything. Written in Smalltalk is a
set of classes which provide a standard library of functionality. Built
using those classes is a set of tools which provide a powerful
development environment for Smalltalk programmers. In a very real
way, your task when programming in Smalltalk is to take that system,
and extend it to turn it into what you want it to be. Unlike in other
languages, there is no 'wall' between you and the system. You have all
the same power and flexibility that the developers of the system itself
enjoy.

Implementation of the Smalltalk System

When you program in C, Pascal, or many other languages, you usually
think of your finished program as running straight on the hardware of
your computer (albeit with the help of the operating system). Smalltalk
however, introduces the concept of a Virtual Machine (VM) which sits
between Smalltalk programs and the actual computer. You can think of
this virtual machine as a sort of idealised Smalltalk computer, on which
both the Smalltalk development tools, and your Smalltalk programs
run. The VM works in association with a Virtual Image (VI, or just the
image). You can think of the image as being equivalent to the memory
of the virtual machine. The image is where the development tools, the
Smalltalk code-library and your programs actually reside. The diagram
on the next page shows this structure.

Isolating Smalltalk programs from the hardware of the computer is
what enables Smalltalk to be so incredibly portable across different
platforms. Each different platform (workstation, PC, Macintosh, etc.)
has its own version of the VM in the form of an executable file.
However, because it's the same virtual computer that's being
implemented by the VM, the identical image file will run on any
implementation of the VM. To port your program between platforms

20

An Introduction to Smalltalk

Smalltalk Virtual Image

The Smalltalk system
consists of a virtual image
and a virtual machine
running on your computer.

you simply the copy the image! To achieve this consistency, the VM
implements its own set of basic operations, including arithmetic, logical
and I/O operations. These operations are translated into the operations
your computer is actually capable of at run-time. Originally this was
accomplished by an interpreter, but in VisualWorks at least, this is now
done by an incremental compiler to give faster code.

Files the System Lives In

The Smalltalk system as described above lives in a number of different
files. These are shown in the diagram over the page. It is very helpful to
have a clear understanding of wliat these different files are, as not only
do they hold the system, they hold your programs too.

The virtual machine is an executable program in whatever format
your computer supports. As such it lives in its own file, usually called

21

Chapter 3

The Smalltalk
VM, VI, source-
code and your
code is held in
number of files.

oe20 (or st80 if you have an older version of VisualWorks). The
virtual image however, is split between several files of different types.

The most important type of file is the image file. This is a snapshot
in binary form of all the code and data in the virtual image at a
particular time. Because they contain the entire image, image files are
typically several megabytes in size. VisualWorks comes with a standard
'base' image file containing the entire class library and the
development environment. This is typically called something like
visual. im. When you start VisualWorks, the VM loads the image file
into the memory of your computer where it can be worked on. As you
program, the image in memory is changing all the time. You can save it
back to a file (using a name to which the system will add . im)
whenever you wish, thus creating your own image file. Because the
image file contains everything in the image, i f you restart VisualWorks
using one of your image files you will recreate the entire state of the
environment at the time you saved it, including windows open,
programs running, etc. This is a very useful feature. Provided you have
enough disk-space, you should save your image frequently (at least

22

An Introduction to Smalltalk

every 30 minutes or whenever you make a serious change), as it is a
very convenient way of storing your work.

One thing that is not stored in image files though, is source-code.
This applies both to the source of the class library, and the source of
your programs. The source-code of the standard class library (in other
words, the source-code for the base image file) is held in the sources
file. This is a text file (although you wouldn't normally read it
yourself), which may be called visual, sources. The system does
not load up the entire sources file when it starts. Instead, it goes to it
each time it needs to get the source of a particular method for you to
look at. The source-code is not needed for the method to run. In fact,
the system will run quite happily without the sources file—you just
won't be able to browse the code very well.

The source-code for the classes and methods you write is not held
in the sources file. Instead, it is held in the changes file. This is a text
file which holds all the source-code for all the changes and additions
you have made to the image. There is typically one changes file for
each image file, usually called <name>.changes (.cha on the PC)
where < name > is whatever name you gave to your image file.
Together, the sources file and the changes file hold all the source-code
for the image.

Just like the sources files, the changes file is not loaded up in its
entirety when VisualWorks is started. Instead the system goes to it each
time it needs the source-code for one of your methods. Unlike the
sources file though, which is never written to, the changes file is written
to every time you modify anything in the system. This happens all the
time, not just when you save your image. Also, a new version of a
method does not overwrite the old version in the changes file. It is
simply added onto the end. This means that the changes file is building
up a complete history of the changes and additions you've made to the
system. VisualWorks provides some tools that allow you to use this to
recover from crashes or revert to previous versions of your code.

The final kind of file that is of interest to us here is the file-in file.
We've mentioned that it's possible to save your work by saving the
entire image in an image file. This is a very convenient way of creating
a snapshot of the entire state of the system, but not a very convenient
way of saving smaller pieces of code, perhaps to give to someone else.
To cater for this, VisualWorks provides a file-out mechanism which
will write out just the code you ask for to a separate file. The resulting
file can be filed-in to another image. File-ins are text-files holding
Smalltalk source-code, although you would not normally edit them
outside the VisualWorks system. You can use file-ins to share code

23

amongst several developers. They are also very important if you need
to rebuild your image from the base image—something which can
happen if your image becomes corrupted. It is a very good idea to file-
out your code regularly (whenever it is in a stable state), as well as
saving your image.

Smalltalk is a self-contained system consisting of a language, a class
library and a development environment. These three things are all
contained in something called a virtual image, which runs on top of the
Smalltalk virtual machine, which in turn is an executable program
running on your computer. The whole virtual image can be saved in a
file and restored later. Your code lives inside the image, or in file-in
files you create.

Programming in Smalltalk consists of using the Smalltalk
language and development environment to extend the class library to
make it do the things you want it to do. We'll come to that very soon.
The next step is to look at the specifics of the Smalltalk language.

24

The Smalltalk Language

Smalltalk, true to its name, is a very small language. There really is
very little to it. All the power (and complexity) of Smalltalk comes
from the large class library, and the extensive development
environment. We'll be looking at the class library and the development
environment in later chapters. This chapter is about Smalltalk—the
language. Here we'll explain the basic constructions which are used to
declare variables, assign values, send messages, and so on. These are
the nuts and bolts of Smalltalk programming, and the building blocks of
methods and classes. Later on we'll look at how to use these building
blocks to understand the system code, and define your own methods
and classes.

Naming Conventions

Before looking at the actual Smalltalk language it's useful to mention a
piece of style advice. Smalltalk programmers usually follow a strict
convention when naming classes, variables, and methods. All these
things can have names which consist of multiple English words. The
words are simply joined together, with a capital letter at the start of
each new word. Smalltalkers don't tend to use underscores (_) to
separate words. Whether a name starts with an upper- or lower-case
letter depends on the kind of thing it is naming—we'll mention each
special case as we go along. Here are some example Smalltalk names:

height schoolHistory ControllerWibhMenu anOrderedCollection

Look at the last one—anOrderedCollecfcion. It is an example of a
very common naming convention in Smalltalk. If there is no better

25

Chapter 4

name for a variable, it is usually named after its class, with a prefix of
'a' or 'an'. Long names are perfectly acceptable. In fact, they're
encouraged because they make your code easier to read, and hence
easier to reuse. Just as in all languages, the more descriptive you can
make your names, the better.

Literals and Constants

Smalltalk provides a number of different sorts of literal. These are
things like numbers and strings which you can include freely in
programs just by typing them. Here are some Smalltalk numbers:

123 3.14 2.789e31 22/7 -0.07

Notice that Smalltalk can handle integers, floating point numbers, and
slightly unusually, fractions. You need to be aware of this because if a '
fraction is the most accurate way of representing a number, that is what
Smalltalk will do unless you ask otherwise. This can sometimes be a
little confusing if you need to look at the numbers your program is
using, especially during debugging.

Smalltalk strings are enclosed in single quotes ('). Any character
at all is permitted inside a string, but if you need to include a single
quote you'll need to use two of them. Don't make the mistake of trying
to put strings inside double quotes ("). Smalltalk uses those to delimit
comments! Here are some example strings, and an example comment:

'Apple'
'Peter's Pepper'
'This is a Smalltalk string.'
'And this is a Smalltalk comment!"

As in other languages, strings are used frequently in Smalltalk. Less
frequently, you'll need to deal with individual character objects as
literals. These are specified by prefixing the character with a $ symbol.
For example: $a, $z, $< . Remember that a string with one character
in it is a different object to the character itself. That is, ' f is not the
same as $f.

Smalltalk also provides objects called symbols. These are similar
to strings except that they are unique. This means that whilst you could
create several string objects containing the same sequence of
characters, there will only be exactly one instance of a symbol with a
given sequence of characters. This makes them more efficient for their
intended use—naming objects and states. Their use is very much a

26

The Smalltalk Language

matter of style and will become clear as we go on. If you are used to
enumerated types or #defmes in C, you will find the way symbols are
usually used in Smalltalk very familiar. Here are some example
symbols:

#red #syndicateLisfc ttwaiting

As we shall discuss in detail later, the Smalltalk class library contains
many different sorts of collection object. However one of them, the
array of literals, can itself be created literally. Here is an example:

#(2 7.59 'Hello' #resetPending)

This example creates an array of four other objects—two numbers, a
string, and a symbol. Notice how all these objects are literals. Don't try
to put anything more complex in one of these arrays—it won't work.
We'll learn how to make more general collections of any object in the
chapter on collections.

Finally, there are three special constants in Smalltalk: true,
false, and nil. Whenever you refer to one of these, you are actually
referring to objects which are the sole instances of the classes True,
False, and UndefinedObject respectively. Obviously true and
false are used to represent boolean states, whilst nil is used to
represent the notion of 'nothing' or 'undefined'. As with many things in
this chapter, this will become clear as you get more experience!

Smalltalk is often described as being 'typeless'. Confusingly, this
doesn't mean there aren't any types. Every object in the system has a
type, or in Smalltalk terminology, a class. For example, there are
objects which are integers, strings, arrays, files, windows, and so on.
What is meant is that Smalltalk variables are typeless.

Just as in other languages, Smalltalk variables have a name and a
value. The name can be almost anything, subject to a few conventions.
The value can be any object. So, if you have a variable called origin
for example, it can hold a floating point number, or a date, or a menu,
or any other kind of Smalltalk object. As in other languages you still
have to declare the variable, but all you have to do is give it a name,
not a type. You don't need to say 'Give me a variable called age of
type integer.' You just say 'Give me a variable called age.'

This typelessness can seem very distressing at first, and even
unsafe. In fact, it is a key contributor to the flexibility and power of

27

Smalltalk code. It facilitates the use of the polymorphism we looked at
in Chapter 2, and really doesn't cause the kind of bugs you might
imagine. Stick with it—you'll come to love the power it gives!

We usually talk about an object being 'in' a variable if the
variable's value is that object. Sometimes though it's more convenient
to talk about a variable being 'a pointer to* an object. These two
concepts are the same thing. Unlike C, Smalltalk does not have (or
need) the notion of pointers. If it helps to think of it this way, remember
that everything in Smalltalk is passed by reference.

There are six kinds of variable in Smalltalk: temporary; instance;
class; class-instance; global; and pool. Each kind of variable has a
different scope and lifetime, and is declared in a different way. When
declared they are initialised to a special value called nil. Whether you
choose to use this fact, or start your code by setting new variables to
another value is a matter of programming style and is up to you. Now
let's look at the different variables one by one:

Temporary Variables

These have the smallest scope and the shortest lifetime. They are
declared within a single method and are only visible within that
method. They last only as long as the method execution—their value is
not preserved across multiple executions. You can think of them as
being like the 'local' variables in other languages. By convention, their
names start with a lower-case letter. Temporaries are declared all
together at the beginning of each method in which they are going to be
used. This is done by just naming them between a pair of vertical bars
(| |). For example:

| size qualityOfLife ambition |

would declare three variables called size, qualityOfLife, and .
ambition. Notice how the variables are not given a 'type'. They can
all hold objects of any class. These variables are now declared for the
duration of the method, and will be initialised to nil.

Instance Variables

These are the kind of variables we thought of as being encapsulated in
every object in Chapter 2. They are private to the object, but visible to
all the methods of that object. Instance variables exist and keep their
values for as long as their containing object exists. This might be a very
short time, or very long time, depending entirely on the object in

28

The Smalltalk Language

question. They are declared in the class of the object using one of the
browsers which are part of the development environment. We'll look at
browsers later. Remember that every instance of a class has its own
copy of the instance variables defined in the class. They have the same
names, but different values. Instance variable names always start with a
lower-case letter.

Class Variables

Class variables are similar to instance variables except that they exist
only in classes. They are visible to the class itself, and to every instance
of the class. Unlike instance variables though, every instance sees the
same variable. This allows data to be shared amongst all instances of a
class and its subclasses. Class variable names start with an upper-case
letter.

Class-Instance Variables

Variables of this kind are only directly accessible by a class (and not by
its instances). Their value is not shared down the inheritance hierarchy.
Like class variables, they start with an upper-case letter. They are
confusingly named and very rarely used, so if the following example
doesn't make sense, come back to it if you ever think you need to use a
class-instance variable.

Imagine there is a class called A with two subclasses called B and
c. Class A defines one class variable, one instance variable, and one
class-instance variable. Given this definition, the following will apply:

Classes A, B, and C, and every instance of A, B, and C will share
the same class variable. Every instance of A, B and c will have its own
private copy of the instance variable. Classes A, B and c will each have
its own private class-instance variable. In other words, there will be
exactly one copy of the class variable, as many copies of the instance
variable as there are instances, and as many copies of the class-instance
variable as there are classes (three in this case). Remember, instance
variables are visible only to instances, class variables to classes and
instances, and class-instance variables only to classes. Yes, it is
confusing!

Global Variables

Smalltalk global variables are just like globals in other languages. They
are declared once (either interactively when first referenced, or by

29

Chapter 4

sending a message to an object called Smalltalk), persist 'for ever'
and are visible everywhere. By convention their names always start
with an upper-case letter. Provided you are careful, you should feel free
to use global variables. All class names in the system are actually
global variables, and there are several other important system globals
around. You should be careful not to assign anything to these as the
results will be unpredictable at minimum!

Pool variables

These are similar to global variables except that their scope is restricted
to the particular set of classes which the programmer has permitted to
access them. This makes them more flexible than class variables, but
less dangerous than globals. They are grouped together into
'dictionaries' which define sets of pool variables.

Here is an example class definition (for a class called Square)
which defines two instance variables (size and colour), one class
variable (Material), and one pool dictionary (Shapes). Don't worry
about the syntax of the definition for now—we'll cover that in the next
chapter.

Obj eot subclass: ^Square
instanceVariableNames: 'size colour'
classVariableNames: 'Material'
poolDictionaries: 'Shapes'

Special or Psuedo-Variables

There are two so-called psuedo-variables in Smalltalk: self and
super. These are not true variables because you cannot directly assign
anything to them. However, they are not constants because their values
vary depending on the context in which they are used.

When the psuedo-variable self appears in a method, it means
'me'. The only way a method can be invoked is by sending a message.
So, if a method in an object wants to invoke another of the object's own
methods (a very common occurrence actually), it has to send a message
to itself. To enable it to do that, it can refer to itself as self.

Similar to self is super. When an object sends a message to
super, it is saying in effect 'I don't want to invoke my own definition
of this method, I want to invoke my superclass's definition.' This is
useful so that inheritance and over-riding can be used to extend a

30

The Smalltalk Language

superclass's method in a subclass, instead of just to replace it. In other
words, a subclass would define a method with the same name as a
method in its superclass. This method might call the superclass's
method (using super) and then do some extra processing itself.

Sending Messages

Almost everything in Smalltalk is done by sending a message to an
object. This is done by first naming the object, and then the message. If
the method being invoked needs some parameters, they can be sent too.
Smalltalk has a special way of sending parameters by embedding them
inside method names. Here are some example (fictional) message
sends:

MyStorageSystem initialize.
aSquare increaseSizeBy: 34.
manager employ: 'Aristotle' as: 'philosopher'.
Database open: 'people.dat' using: key rwMode: 7.

We're not interested in what these messages actually accomplish (don't
try them, because unless you've created them they won't be in your
system!). We're interested in the structure of the message expressions.
To help you understand them, we'll compare them to the same sort of
expressions in a procedural language such as C, BASIC, Pascal or
COBOL. Smalltalk does not support this procedural syntax, so feel free
to ignore it if it does not help.

The first example is simple. It sends the message initialize to
the object called MyStorageSystem. You can't tell from this code
fragment but MySfcorageSystem is probably a global variable.
Provided the object in this variable has a method called initialize,
it will run it. If you're used to procedural programming, you can think
of this as being somewhat like calling the procedure initialize,
which takes no parameters—initialize () . The only difference is
that in object-oriented programming, there could be lots of different
implementations of initialize. The one which is actually run
depends on the the class of MySfcorageSysfcero.

In the second example an object called aSquare (probably an
instance variable or temporary variable) is being sent the message
increaseSizeBy : with a parameter, 34. Note the colon (:) at the end
of the message name. This is a part of the message name, and specifies
that a parameter is coming. It's important to remember that the colon is
a part of the message name, and not just an extra bit of syntax like the

31

parentheses in a procedure call. To emphasise this, Smalltalkers
pronounce the colon when talking about a method—'increase-size-by-
colon'. Two methods with identical names except for a colon (like
colour and colour:) are two different methods. One takes a
parameter and one does not. They could be defined to do two
completely different things. The procedural equivalent of this message
expression would be increaseSizeBy (34) , although again
remember that in OOP there could be lots of different versions of
increaseSizeBy :.

The third example is where things get interesting. Here an object
called manager is being sent a message with two parameters:
'Aristotle' and ' philosopher'. The method name is
employ:as: (pronounced 'employ-colon-as-colon'). Notice how the
parameters are embedded into the method name to make up the
message. This is an unusual feature of Smalltalk, but can make
expressions read very clearly (although you may not agree at first!).
The procedural equivalent of this would be employs ('Aristotle',
'philosopher').

The last example just shows how this embedding of parameters
can be extended to as many parameters as the method requires. In this
case the method open:using:rwMode: takes three parameters: the
string 'people, dat'; key (which is a variable); and 7 . The
equivalent expression in a procedural language would be something
like openUsingrwMode ('people, dat *, key, 7) .

Notice that each of the example message sends above ended with a
full-stop (.) or period character. This is always necessary in Smalltalk
if there are further message expressions to be evaluated, in order to
separate one expression from the next. It is optional if there are no
further message expressions being evaluated (for example, at the end of
a method, or at the end of a single line of code being executed
interactively).

In Smalltalk, every message expression has a value. Executing a
message expression (or evaluating it, in Smalltalk-speak) causes a
method to be run. Every method returns an object when it finishes. This
returned object is then referred to as the value of the expression.
Sometimes the writer of the method will have specified explicitly what
to return. This is done using an up-arrow or caret (A) character. For
example, the expression ^rue in a method would cause the method to

32

The Smalltalk Language

terminate, returning the value true. Other methods might not include
a *. In these cases the system just runs them to completion, and then
returns self —the receiver or object which was sent the message.

The return value of a message may be assigned to a variable using
the operator :=. Some programmers call this operator 'becomes',
others just 'colon-equals'. Here are some (fictional) examples:

Total := net + tax.
aFonn := Form with: people size: 15.
MyObject := YourObject.

In the first example, the values of net and tax are added together, and
the result is assigned to Total. In the second example, the result of
sending the message with:size: to Form is assigned to aForm. We
shall see later that this is actually the sort of expression used to make
new instances.

The third example is there to remind us of something very
important. The := operator does not make a copy of the object being
assigned. If YourObject contains a particular object, then after the
third example is evaluated MyObject will contain the same object. In
other words, there will be one object 'pointed to' by two variables:
KEyObject and YourObject. Usually this is exactly the intended
effect. However, it can give rise to some very nasty bugs if you forget
that both variables contain the same object! If you try to treat them as
separate objects, and change one of them (for example MyObject),
you'll be very surprised when the other object (YourObjecfc) changes
too! Bugs like this can take a long time to track down, so take care.
Note that assigning a new object to one of the variables (doing
something like MyObjecfc := 'Hello') does not change the other
variable, which remains 'pointing to' the previous object.

Combining Messages

The fact that every message expression has a value means that
messages can be combined in several useful ways. For example, one
message can follow on after another. In this case the second message is
sent to the object which is the result of the first message. Here is an
example:

aTriangle height aslnteger.

In this case the message height is sent to aTriangle, and then the
message aslnteger is sent to whatever object is returned by the

33

message height. This sort of construction is called chaining. If you
like to think in procedural terms you can imagine this as being similar
to aslnfceger(height(alriangle)).

Notice how the example expression is executed from left to right.
This is not always the case. Smalltalk has some slightly unusual
precedence rules which govern the order in which expressions are
evaluated. These seem peculiar at first but rapidly become second
nature:

Message expressions are divided into three types: unary—those
which take no parameters; binary—for example +, *, >=; and
keyword—those which take one or more parameters after colons in the
method name. In a complex expression, unary messages are evaluated
first. If there is more than one, they are executed from left to right.
Binary messages are evaluated next, again from left to right. Finally,
keyword messages are evaluated, also from left to right. Just as in other
languages, parentheses can be used to change the order of evaluation.
In this case the expression in the inner-most parentheses is evaluated
first (according to normal Smalltalk rules). Here are some examples:

MyCollection add: Pyramid new initialize.
(book openAtPage: 1+2*3) print.
(agenda item:?) title: "Plans'.

In the first case the message new is sent to Pyramid. The resulting
object is sent the message initialize. The object which is returned
by initialize is then used as a parameter in the message add: sent
to MyCollection. Notice how the unary messages (new and
initialize) were evaluated first (from left to right), and then the
keyword message (add:).

In the second example the contents of the parentheses are
evaluated first. There are two binary messages (+ and *) and one
keyword message (openAtPage:) in the parentheses. The binary
messages are evaluated first, which working from left to right gives a
value of 9 (not 7 as in normal arithmetical precedence!). Then the
message openAtPage: 9 is sent to book, and finally whatever object
that message returns is sent the message print. Note that without the
parantheses the order would have been different. The system would
have started by sending the message print to 3. It would then have
added 1 and 2 and tried to multiply the result by whatever was returned
from sending print to 3. This would probably result in an error!

The third example illustrates that parentheses are frequently
needed even if we want the expression to be evaluated straight from left
to right. In this case we want the message item:? to be sent to

34

The Smalltalk Language

agenda, and then have the resulting object sent the message
title: ' Plans' . Without the parentheses, the system would send the
message item:? title: 'Plans' to agenda, which is not the same
thing at all (because it is trying to invoke the single method
ifcem:title! and not the separate methods item: and title:). This
confusion arises because of the way Smalltalk embeds parameters
within method names.

The second way of combining messages in Smalltalk is called
cascading. When messages are cascaded, each one is followed by a
semicolon (;) and another message. In this case, subsequent messages
are sent to the f i r s t receiver, and not as in chaining, to the object
returned from the first message. Consider the difference between these
two message expressions:

diskController reset initialize startRunning.
diskController reset; initialize; startRunning.

In the first case (chaining), the diskController is sent the message
reset. Then the object which was returned from that message is sent
the message initialize. Then the object which was returned by
initialize is sent the message startRunning. In the second case
(cascading) the diskConfcroller is sent the message reset. Then
diskConfcroller is sent initialize, followed by sfcartRunning.
If reset and initialize return s e l f (in this case
diskController) then these two expressions are identical. If reset
and initialize return anything other than self then these two
expressions are definitely not identical. Think about it...

Of the two message combining techniques (chaining and
cascading), chaining—the one without the semicolons—is by far the
more common, being used almost everywhere. Cascading is much
rarer, partly because in many places where you might use it, the
methods return self anyway (by default if nothing else) and so
chaining can be used instead. It's as well to remember about cascading
though, as you will see it in the system code, and may sometimes find it
useful in your own code.

Primitive Operations

As you are browsing around the methods in the Smalltalk class library
you will occasionally come across expressions which look like this:

<primitive; 63>

35

Chapter 4

These are calls to the primitive operations (or just primitives) which the
virtual machine itself supports. Typically they are used to do very low-
level operations, and you can usually guess what from the name of the
method involved. The code which follows these expressions in a
method is only executed if the primitive fails. Only if you are adding
user-defined primitives in order to call out to other languages will you
need to actually write these expressions. Otherwise, there is little you
can do but ignore them when you come across them.

Blocks of Code

The last piece of the Smalltalk language we need to look at here is the
notion of blocks. We have already looked at how Smalltalk code is
written in chunks called methods. These methods are defined in classes
and executed by send messages to instances of those classes. They are,
in a sense, bound to the objects which define them. It is also possible
however, to define chunks of Smalltalk code called blocks. These
pieces of code are not associated with a particular class, but are objects
in their own right. They can be created at run-time, passed around,
executed one or more times and thrown away.

Blocks (implemented by the class BlockClosure) are a very
powerful feature of Smalltalk, but one which has no direct analogy in
many other languages. If you are used to programming in C though,
you can think of blocks as being used somewhat like pointers to
functions. However, we won't look at how they are used here—that's
covered later. We'll just look at how they are created and executed.
Notice that the creation of a block object is a separate thing from its
execution. In a sense, blocks represent a form of deferred execution.
Here are three example blocks:

aBlock := [Recycler initialize].

HyBlock := EsanObject | anObject print].

anotherBlock := [:parml :parm2 | | temp |
temp := pannl incorporate: parm2.
temp rehash.

].

The first example creates a simple block which when executed will
send the message initialize to Recycler. The block (not the value
it returns, but the block of code itself) is put in a variable called

36

The Smalltalk Language

aBlock. The second example creates a block and puts it in a variable
called MyBlock. The block itself takes one parameter (anObject,
preceded by a colon and followed by a |). The block has not been
executed yet, but when it is it will send the message print to whatever
parameter it is passed. The third example creates a block which takes
two parameters and also defines a temporary variable called temp
(between the pair of j 's). Like all these examples, don't worry about
what this block might do, just look at how it's constructed.

That's how blocks are created. Now let's take a look at how
they're actually executed. There are in fact a number of different ways
of executing blocks—the simplest being to send them a variant of the
message value. For example:

HyBlock value:
'This string will be sent the message print'.

Blocks can actually take anything from zero to 255 arguments.
Different versions of the 'value' message must be used depending on
the number of arguments. Here are the variants:

value for no arguments,

value: anObj ec t for one argument,

value: objecfcl value: object2 for two arguments,

value: objl value: obj2 value: obj3 ...three arguments,

valueWifchArgumenfcs: argArray ...more than three arguments.

Very often though, you won't actually send value (or value :, etc.) to
the blocks you create—it'll be done by the object you pass the block on
to. We'll see plenty of examples of this later in the book. The other
ways of executing blocks include some which have the effect of
implementing control structures, and others which allow you to 'spawn
off separate processes inside Smalltalk.

We've now covered the entire Smalltalk language by looking at the
naming conventions and describing literals, constants, variables,
pseudo-variables, assignment, message expressions and blocks. That
really is all there is to it.

At this point you may be puzzled as to why we haven't looked at
class definitions, arithmetic, input/output, control structures and so on.

37

Y . • .- . \ . ' .: . \

In fact, these things are not a part of the language, but are implemented
(along with thousands of other operations) in the Smalltalk class
library. This means that unlike in most other languages, their
definitions are available for you to see and understand on-line. This is a
very useful feature, which saves you from having to consult the manual
too frequently when you want to know exactly what a basic operation
will do.

Of course, you do need to have some idea of what kinds of
operation exist, and so we'll summarize them in Chapter 6—The
Smalltalk Class Library and then look in more detail at these types of
operation as we come across them all in later chapters. Before that, the
next chapter introduces the way in which you can look at source-code
in the system, and develop your own programs by using the Smalltalk
development environment.

38

The Smalltalk Development Environment

In chapter 3 we discussed how the term Smalltalk applies to three
different things: an object-oriented language; an application
development environment; and a standard class library. Having
introduced the Smalltalk language we are now ready to look at the
second part of this trilogy—the development environment.

The Smalltalk development environment is your window on the
Smalltalk virtual image introduced in chapter 3. Remember that the
virtual image includes all the classes, instances, windows and
everything else in the Smalltalk system. The development environment
provides many different kinds of tool which enable you to see and
modify these things. Exactly which tools you have available depends
on the version of Smalltalk you have, and whether you have any
optional, add-on tools. This chapter will focus on the core tools used to
develop Smalltalk programs—tools which should be available in all
Smalltalk environments. We won't be looking specifically at the
VisualWorks user-interface development tools.

Because Smalltalk is an integrated system, you should never find it
necessary to use tools outside the development environment, for
example to edit code or debug your application. Unlike other
languages, you don't type Smalltalk code into a file using a text-editor,
and then 'compile' it. The only exception to this rule is if you are
particularly concerned with connecting Smalltalk to code written in
another language. Otherwise, you should find that all your code
development, testing and debugging can be done interactively inside
the development environment. This even applies to printing things out,
which is far less useful in Smalltalk than it is in other languages. Too
much of the meaning of Smalltalk code is embodied in its structure,
which is lost when you print it out.

39

Chapter 5

The Different Kinds of Tool

At the highest level, the tools in the development environment can be
divided into a number of different types. There are tools which allow
you to see and write Smalltalk classes (browsers). There are tools
which allow you to see and modify Smalltalk instances (inspectors).
There are tools which help you to test and debug Smalltalk code
(workspaces, notifiers, debuggers). You can look at files (file list and
file editor tools), and manage changes to your image (change list).
Finally, the VisualWorks environment also provides many tools for
developing graphical user-interfaces (GUIs), and connecting to
relational databases.

You will find yourself using some of these tools more than others,
but it's important to remember that the others are there when you need
them. Also, remember that you can usually open as many of each tool
as you need (screen space permitting of course). Don't struggle along
with just a single browser for example, if you really need three or four
(or ten!) open.

Because this is a book on Smalltalk, we'll concentrate here mainly
on the tools used to create, edit and debug Smalltalk code, rather than
on the GUI or database connectivity tools. Once you have an
understanding of these basic tools, you should find it easy to work out
how to use the others, either by reading the manual, or simply by
exploring the system. The aim of this chapter is to make sure you have
at least a basic understanding of the tools. A subsequent chapter in
Part II—The Art of Smalltalk describes in detail how to make really
effective use of them.

Using the Mouse

Traditionally, Smalltalk uses a three-button mouse. Your physical
mouse may have only one or two buttons, but logically Smalltalk binds
three different functions to the mouse. Your system documentation will
tell you how to simulate three buttons by using various combinations of
shift key. In the very beginning these buttons were named after colours,
and you may in fact still see them referred to in that way in the depths
of the system code or comments. These days the Smalltalk manuals
refer to the buttons as the select, operate and window buttons.

The select button (left button on workstations and PCs; the one and
only mouse button on a Macintosh; 'red' button in the old days) is used
as its name suggests, to select things in the Smalltalk environment. You

40

The Smalltalk Development Environment

Typical operate (on left) and
window (on right) menus.

can click on things like radio buttons, check boxes or items in lists, or
you can press and drag in the usual way to select pieces of text.
Double-clicking the button will select a single word in a text window,
or the whole of the text if you're at the very top left of the window

The operate button (middle button on workstations; right button on
PCs; option-mouse button on a Macintosh; 'yellow' button in the old
days) is used to pop up a menu (see diagram above). The menu you get
will depend on where the mouse pointer is. This can be very
specific—different parts of a single window will give you different
menus when you use the operate button in them. These menus contain
commands which are relevant in the context of the particular window
(and part of the window) the pointer is in. These commands are in fact
one of the main ways of interacting with the Smalltalk system.

The window button (right button on workstations; control-right
button on a PC; command-mouse button on a Macintosh; 'blue' button
in the old days) is left over from from the days when Smalltalk was
itself a window system running straight on the operating system of the
computer. Pressing it will pop up a menu (see diagram above)
containing all the familiar window management functions of move,
resize, close and so on. If you wish, you can ignore this button and use
the window management facilities provided by your window system
(MS Windows, X, Macintosh or whatever). Sometimes though, you
may find that it's rather more convenient to be able to access the
window menu from Smalltalk—it's your choice. The only important
thing to remember is that if you find yourself looking at a menu full of
window management functions when you wanted a menu of more
useful things, you're probably pressing the wrong mouse button!

41

Chapter 5

The combined launcher and
transcript window of VisualWorks 2.0
(front) and separate Launcher and
Transcript windows from an earlier
version (behind).

The Launcher and Transcript

The Launcher is really the root of the development environment. All of
the major tools can be opened (or launched) from the menu it provides
(although some of the other tools can only be started in the context in
which they are used—it should usually be obvious where). The
launcher's menu also allows you to save your work by saving the
virtual image into a file on disk. This is certainly something you should
do very frequently!

The Transcript is a text window in which the system reports
important events. You can also print things in the transcript window
(perhaps for debugging purposes) using an expression such as:

Transcript show: 'A message to the transcript'.

The global variable Transcript actually contains an instance of the
class TextCol lector, so browsing that class (we'll see exactly how
later of you're unsure) will tell you about all the other things you can
do with the transcript.

Depending on the version of VisualWorks you are using, the
launcher and the transcript window(s) may look different. They may in
fact be in two different windows, or they may be combined into a single
window. The diagram above shows both kinds. Either way, the basic
functionality and purpose of each tool is the same.

42

The Smalltalk Development Environment

A typical workspace window about to
evaluate a Smalltalk expression.

Workspaces

Workspaces, like the one shown above, are your scratchpad. You can
type pieces of Smalltalk code into a workspace and execute them
immediately. Note that you can't define Smalltalk classes in a
workspace (that happens in a browser), but you can define global and
temporary variables, send messages to objects and look at the results.
This is a very useful facility which you should find invaluable for
experimenting with the system code, and for testing your own code.

If you type a Smalltalk expression into a workspace (anything will
do, even something as simple as 1+1), select it using the select mouse
button so that it is highlighted, and then press the operate mouse
button, you will see a menu which is very common throughout the
development environment. There are three important commands in the
middle of this menu—do it; print it; and inspect (it). All these three
commands allow you to execute (or evaluate in Smalltalk-speak) the
Smalltalk expression you have got selected. The first command, do it,
simply evaluates the expression and throws the result away. This is
useful if you want the side-effect of the expression but are not
interested in the return value. The second command, print it, does
exactly what do it does, but it also prints the result in the workspace
window. This is useful if you wish to see the result, but it does corrupt
the workspace with extra text (although note that this is conveniently
highlighted for you to delete it with the backspace key). The third
command, inspect (for some reason the 'it' is missing), also does
exactly what do it does, but it opens an inspector window on the object
returned by the expression. We'll be looking at inspectors shortly.

You may find it useful to keep several workspaces open containing
bits of code on which you are working. Also, note that the kind of

43

Chapter 5

things you can do in a workspace (do it; print it; inspect) you can also
do in almost every Smalltalk window. This is an extremely useful
facility as it allows you to execute little snippets of code wherever you
might happen to be. This applies in the transcript, browsers, inspectors,
debuggers, even in windows which you yourself create. Of course,
things can get very untidy if you go typing random bits of Smalltalk in
every window, but it can be useful not to have to find or open a
workspace just to execute a single line. Just type it in any window,
select it, and do it.

Earlier versions of VisualWorks also provided something called a
system -workspace. This is just like an ordinary workspace, except that
it is pre-filled with all sorts of useful code fragments for you to use.
There is also the installation workspace which again is just a
workspace that happens to be filled with code to do with 'installing'
VisualWorks on your system. If you happen to be using one of these
earlier versions, and if all you want is a plain workspace, be careful that
that is what you ask for from the launcher.

Browsers

If you're familiar with conventional programming in which you use a
text-editor to write your code and save it in files, you have probably
been wondering where exactly you write Smalltalk classes. Here is the
answer. The tools used for this purpose are called browsers. A browser

A system browser
browsing the category
Kernel-Objects,
class object,
protocol printing
and method
print String.

44

The Smalltalk Development Environment

allows you to look at the source-code of a class, examine its methods
and create, modify or delete both classes and methods. The
development environment provides many different kinds of browser but
they all have a lot of features in common. We'll look mainly at just one
kind of browser—the system browser.

The diagram on page 44 shows a system browser being used to
examine the source-code of a class (the class Object in this case). To
understand how it works it is necessary to understand a few things
about how the Smalltalk development environment organises classes
and methods for browsing purposes.

To make it easier to manage the hundreds of classes in the class
hierarchy, they are grouped together into groups called categories.
Each category contains classes which are related in terms of their
purpose. It's important to realise that categories have nothing to do with
inheritance. Categories are just arbitrary groups of classes intended to
help human beings find their way around the class library. Which
category a class is in does not affect how it functions in any way. It
only affects where it appears in the system browser.

In a similar way, the methods inside a class are organised into
logical groups called protocols. Again, which protocol a method is in
does not affect how it functions in any way. Protocols exist solely to
partition the methods a class implements in ways which programmers
find useful when thinking about the tasks the methods perform.

With this knowledge in mind we can now look at the way the
system browser works. The top left pane of the window contains a list
of all the categories in the image. When a category has been selected by
clicking on it with the mouse, the next pane across will contain a list of
all the classes in that particular category. When a class has been
selected the next pane will contain a list of all the protocols in that
class. When a protocol has been selected the right-most pane will
contain a list of all the methods in that protocol. Finally, selecting a
method displays its source-code in the large lower pane of the system
browser window.

You will have noticed that below the list of classes is a pair of
radio buttons which are rather confusingly labelled instance and class.
These buttons control whether the browser is looking at instance
methods or class methods. This distinction is sometimes referred to as
the 'instance-side' versus the 'class-side*. If you are confused by this
distinction try rereading chapter 2, or try thinking of class methods as
the instructions which factory objects (classes) understand, and instance
methods as the instructions which the objects the factories make
(instances) will understand. Remember that even when instance is

45

selected, you're not looking at actual instances of the class. You're
looking at the methods the instances of the class will understand when
they are instantiated (created).

Browser Commands

Each of the four top panes of the system browser window pops up a
different menu when the operate mouse button is used on them. The
menus contain commands used to manipulate categories, classes,
protocols and methods respectively. We'll look at many of these
commands in more detail in Part EL

Each of the menus also allows you to spawn (open) another
browser which looks at just the code in that particular category, class,
protocol, or method. This is a useful facility which you should use
when you're particularly interested in a part of the system and don't
need a full system browser. In addition, the menu you get in the class
pane allows you to spawn hierarchy. This opens a browser which does
organise classes according to their position in the inheritance hierarchy,
instead of according to which category they're in. The hierarchy
browser will show just that part of the tree relevant to the class selected
at the time it is opened (that is, all the class's superclasses and
subclasses). If you want to see the whole tree, just open a hierarchy
browser on the class Object.

Creating New Code with a Browser

The various browsers are the fundamental way in which you write and
add new code to the Smalltalk system. At the end of this chapter is a
worked example of how to do this which you may find useful if you
haven't yet written any of your own code.

There is one slight irregularity. If you want to create a new
category in the system or a new protocol in a class, you do so by using
the add... command from the category or protocol menus. However, if
you want to create a new class in a category or a new method in a
protocol, you do so by filling in the template provided in the bottom
pane when the category or protocol is selected (and no class or method
is selected respectively). The important menu command here is accept
which puts what you have typed through the compiler and adds it to the
system code (provided there are no errors).

There are lots of other commands in the operate menus of the
various browsers (including the file put as... command used to save
your code to individual files instead of the whole image if you desire).

46

The Smalltalk Development Environment

You should try to explore them as they have all been put in the system
by experienced Smalltalk programmers and are all very useful in the
right circumstances. Once again, Part II of this book will help you make
the best use of these commands.

Inspectors

The various browsers we have just looked at provide a way of
examining the Smalltalk classes in your image. Inspectors on the other
hand, provide a way of looking at Smalltalk instances. Although there
are actually several kinds of inspector, the system selects whichever is
needed to look at the kind of object you're attempting to inspect.
Because of this, and the fact that the different inspectors behave almost
identically, you can think of them as being the same.

Inspectors are opened by using the inspect command available on
many operate menus to inspect the result of evaluating the selected
expression, or by sending the message inapect to any object. Every
time you open an inspector, you are opening a window on a single
object. Once open, you can't change which object the inspector is
looking at. If you want to look at another object, open another
inspector. Smalltalk programmers will frequently have many inspectors
open on the their screens at the same time, especially during
debugging!

The inspector window below is divided into two panes. On the left
is a list of the instance variables in the object. Selecting one of these
will display the current value of the variable in the right-hand part of
the window. Each pane of the window has its own operate menu. On
the left the menu usually just allows you to open another inspector
(inspect) on the object contained in the selected instance variable. In

A typical inspector, in this case inspecting
an instance of class popUpMenu.

47

Chapter 5

the case of collection objects (see chapter 7) you will also be able to
add and remove objects from the collection. The operate menu for the
right-hand pane of the window allows you to do many more things,
including execute code (do it, print it, inspect) in the context of the
object being inspected. This means you can send messages to the object
by typing an expression involving self into the right-hand pane (for
example, self initialize) selecting it, and then evaluating it. You
can also use accept to put new values into the instance variables.

One thing to note very carefully is that inspectors do not
automatically update themselves when an object changes. If you're
using an inspector to look at the value of an instance variable in an
object, and the value changes (perhaps because a message has been sent
to the object from elsewhere), the inspector will continue to display the
old value. To see the new value, you should deselect the instance
variable, then reselect it. You don't need to open a new inspector to do
this, you just need to click twice on the instance variable.

Notifiers and Debuggers

We will be covering debugging in much more detail in Part II—The Art
of Smalltalk, but since you are unlikely to get as far as that without
encountering at least one error, it's worth briefly talking about
Smalltalk's notifiers and debuggers (shown below) here.

Notifiers from VisualWorks 2.0 (front) and
an earlier version of Smalltalk (behind).
Both were generated when the system
realised that nil doesn't understand
the message wibbie.

48

The Smalltalk Development Environment

Whenever the Smalltalk system encounters an error (very often a
message it does not understand, but also an overflow, a halt message or
any other exceptional situation in which it cannot proceed), it will pop
up a small window called a Notifier. The notifier contains a stack back-
trace which, if you know how to interpret it, will tell you exactly the
situation which led up to the error. The notifier also offers you the
opportunity to do various things including attempt to proceed, open a
debugger window (see below) or simply terminate the execution of
your code, returning to the development environement. In earlier
versions of Smalltalk, these options were on a pop-up menu, whilst the
latest version of VisualWorks puts them on push buttons. If when you
get a notifier you select Debug, you will get a debugger window which
is a very powerful tool that's actually a cross between a notifier, a
browser and two inspectors.

The next diagram shows a typical debugger window. At the top is
a repeat of the stack back-trace leading up to the error. Each line shows
a particular message being sent to a particular object. If you select a
line you can browse the code involved in the middle pane. Here you
can single-step the code (using the step button) or 'drill-down' into the
messages being sent (using the send button). You can also modify the
code (by editing it and using accept from the pop-up menu), and
continue execution.

At the bottom of the debugger are what are in effect two inspectors
embedded into the window. The left-hand inspector allows you to see
and modify the instance variables of the object selected in the stack
back-trace at the top. The right-hand inspector allows you to see and
modify the values of the temporary variables defined in, and parameters
being sent to, the method being displayed.

A debugger opened
after the system has
failed to understand the
message start.

49

Chapter 5

Trying Things Out

If you haven't already done so, now is probably a good time to actually
sit in front of your Smalltalk system and explore a few of the things
we've been talking about so far. It's really up to you to test and
enhance your understanding by trying out whatever you like. Here are
some simple ideas if you're stuck for somewhere to start though.

First of all, try evaluating some simple message expressions in a
workspace window (you can open a workspace from the launcher). For
example, you might like to try:

1 + 1. (select this one with the mouse and use print it)
Transcript show: 'Hello! '. (use do it with this one)

You may also like to try defining a simple class with one instance
variable and a couple of methods as follows:

1. Open a system browser (again, from the launcher) and use the add
command from the operate menu in the category pane (upper-left) to
create a new category called for example, Test Classes.

2. The browser will now be displaying a class definition template in the
code pane (lower half of the window). To define a new class you
need to edit this template so that it looks like this:

Object subclass: #TesfcClass
instanceVariableHames: 'testVar'
classVariableNames: ' '

poolDictionaries: ' '
category: 'Test Classes'

3. Use the accept command from the operate menu of the code pane to
compile this definition and create the new class TestClass with a
single instance variable called testVar.

4. Now use the add command from the operate menu of the protocol
pane (third from left) to add a new protocol called accessing to
your class. This will contain methods to allow other objects to get
and set the value of the testVar instance variable.

5. Edit the method template now being displayed in the code view to
define an accessing (get) method for the variable testVar as
follows:

50

The Smalltalk Development Environment

testVar
TestVar.

6. Use the accept command from the operate menu of the code pane to
compile this method definition and so create a new method called
testVar.

7. Delete the previous code from the code pane and replace it with the
code for an accessing (set) method for the variable testVar as
follows:

testVar: anObj ect
fcestVar := anObject.

8. Add this method to the class using the accept command as before.

Having defined a new class with a couple of methods in a browser, you
can now explore making instances of this class from a workspace,
inspecting them, and sending them messages to get and set the value of
the instance variable. For example, back in a workspace try:

Hylnstance := TestClass new. (Select and inspect)
Mylnstance testVar: ' A string'. (Select and do it)

The first time you do this you'll be asked what kind of variable
Hylnstance is to be defined as. Make it a global variable. If you've
got an inspector open on an instance of your class and you change the
value of its instance variable using the fcestVar: message, remember
that you'll need to deselect and reselect the instance variable in the
inspector in order to see the change.

This chapter has introduced the second of the three parts of the
Smalltalk world—the Smalltalk development environment. You should
now have a basic understanding of the various different programming
tools in the VisualWorks system. These include the launcher from
which everything is controlled, and the transcript window where
important messages are printed. There are also workspaces for typing
message expressions that you want to execute immediately, and
browsers for exploring and writing code that you want to add to the
system. Classes, their variables and methods are defined using the

51

browser tools. There are inspectors for looking at object instances, and
finally there are the notifiers which pop up when errors occur, and the
debuggers used to find and fix problems.

With luck you will now feel confident enough about using these
tools to enter and evaluate simple Smalltalk expressions. You may also
have been able to define your own classes and tried making a few
instances of them. Most importantly, you should know how to use the
system browser to view the system class hierarchy, because that is the
subject of the next chapter. :

52

The Smalltalk Class Library

Having described the Smalltalk language, and briefly introduced the
Smalltalk development environment, we can now complete the picture
by looking at the Smalltalk class library. There are over 1300 classes in
the standard VisualWorks image—many more than this if you have
filed in any optional extras, or are trying to use someone else's classes.
When writing Smalltalk programs you cannot avoid reusing these
classes, and in many ways the more you can reuse, the better. However,
to document all of the classes in detail would require thousands of
pages. Fortunately this is not necessary.

A good proportion of the classes in the class library are there to
make the system work (because 'Smalltalk is written in Smalltalk'),
and are not intended to be reused directly by you. Despite this, it can
still be interesting to have a passing knowledge of these classes, as long
as you remember that you don't have to understand all the complexity
you are exposed to!

Out of the remainder of the classes there are a few you will use all
the time and will come to have a good knowledge of simply because
you use them almost without thinking (objects like strings, booleans,
collections and other common objects fall into this category).

In general though you will find that you know very little about
most of the classes in the system until you actually need to use them. At
that time being able to make good use of the browser tools and having a
good idea of the general features you are looking for will mean that you
are able to find the kind of functionality you are looking for without
having to go to the manual.

The purpose of this chapter then is to give you a road-map for the
Smalltalk class library, and to teach you a little about map reading.
We're going to take a tour of the class library, stopping every so often

53

Chapter 6

to look at important classes which you might like to come back to later.
You'll also find that the class library contains many examples of good
Smalltalk 'style'. Later chapters describe some of these classes in more
detail. First though, we need to take a look at the common things we'll
see on the way.

The Standard Protocols

In the previous chapter we mentioned that the Smalltalk development
environment separates the methods in each class into groups called
protocols. These are not random partitions, but are intended to reflect
the purpose which the methods serve. Remember that this grouping is
intended to help programmers, and does not affect the functioning of
the system in any way.

The programmers who are helped by the existence of protocols fall
into two camps. There are the original writers of the classes—and of
course for your classes you'll be in this camp. However, there are also
the reusers of the classes. For the classes in the standard Smalltalk
library you'll fall into this second camp. This means that the names of
the protocols form a vital clue to the purpose and functionality of the
methods inside.

Although they perform different functions, many Smalltalk classes
have methods which are conceptually similar. Over the years, Smalltalk
programmers have evolved a set of names for the protocols which
contain these methods. By understanding these protocols (and adhering
to the conventions when you write your own classes), you will be able
to understand the functioning of a particular class much more easily.

Before we tour around the class library, we're going to take a look
at just some of the standard protocols. These are the most common
ones, and they illustrate how the name of the protocol relates to the
types of method inside.

initialize-release
This protocol contains methods to do with initialising new instances of
the class, and (less frequently) releasing them (tidying up at the end of
their lifetimes). The usual name for a method which initialises an object
is initialize, and the usual name for a method which tidies up
afterwards is release.

54

The Smalltalk Class Library

accessing
This important protocol contains methods which provide access to the
normally private instance variables of an object. If you followed the
example class definition at the end of the last chapter you will have
already created methods of this kind.

There are two types of accessing method. There are the 'get'
methods, which return the value of an instance variable, and the 'set'
methods ,which allow you to set the value of an instance variable to a
particular object. By convention, 'get' methods are simply named
exactly the same as the instance variable they return, whilst 'set'
methods have the same name with a trailing colon (:) and of course take
a single parameter. You can infer from the existence (or otherwise) of
'get' and 'set' methods in a class whether the writer of the classes
intended you to have access to the instance variables of instances of
that class.

testing

The testing protocol contains methods which will typically return
either true or false when asked about some characteristic of the
object (for example, isEven asked of an integer, or isHil asked of
any object).

comparing

The comparing protocol contains similar methods to testing, except
that they take a parameter against which to compare the object before
returning true or f a l s e . For example, you could imagine an
expression like colourl isMoreBlueThan: colour2 which might
return true or f a l s e . The method isMoreBlueThan: would
rightfully belong in a protocol called comparing.

displaying
This protocol applies in particular to the classes which implement the
Smalltalk graphical user interface. It contains the methods which
actually draw objects on the screen, especially the important method,
displayOn: . Most classes which have anything do with displaying
things on the screen will have this protocol. This is the place to go first
if you want to alter or just understand the way things look. ;

55

printing
Many of the fundamental classes have a printing protocol. It
contains methods which can produce a representation of the object in
printed form. We'll see very shortly how every object in the system has
this capability.

updating
This protocol always contains a special set of methods to do with
receiving notifications about changes in other objects. These methods
are described in Chapter 8—The Dependency Mechanism.

private
The private protocol contains methods whose usage the writer of the
class wishes to restrict. This is not enforced by the system, but is a
matter of convention. Often, private methods are not intended to be
used outside the class in which they are defined. That is, they're only
intended to be called by other methods in the same class. Sometimes
subclasses will also use them, and occasionally they will be used
amongst groups of tightly coupled classes. Whatever the intention,
although you can use private methods, be very aware that you're
being warned that they are considered private and are especially likely
to change between releases of the system. You have been warned!

instance-creation
This is a protocol you will find in some classes on the 'class-side' (by
pressing the class button in the browser). This protocol contains
methods which the class understands, and which make and return new
instances of the class. Usually these methods will be specialised in
some way appropriate to the particular class. So, if you find a class you
want to use, this is the place to go to find out how to make an instance
of it. However, if the class doesn't have an instance-creation
protocol, that doesn't necessarily mean you can't make instances. It's
probable that the class just uses the methods it inherits from its
superclass. By opening a class hierarchy browser you'll be able to look
up the tree to find a class which has an instance-creation
protocol.

56

The Smalltalk Class Library

A Tour of The Class Library

We're now ready to start our tour of the Smalltalk class hierarchy. The
class hierarchy is in effect a tree of classes branching out from
underneath the ultimate superclass, Object. However, rather than look
at the class library by following the hierarchy tree, we'll take advantage
of the way the development environment groups the classes into
categories, and tour them in the order they're displayed in the system
browser.

If you want to, you can follow along during or after the tour by
using a system browser to look at the classes whilst we're discussing
them. Make liberal use of the hierarchy, definition and comment
commands in the pop-up menu under the class pane (second from left)
of the system browser to help your understanding of the purpose of the
classes and how they relate to each other. If you find something else
that interests you, just follow your nose.

Where the classes we come across are important or frequently
used, we'll describe them in detail. Where they're not so frequently
used we'll just mention that they're there. You can browse them for
yourself later or read the manual if you especially need to use these
classes at some stage. Let's go...

Magnitude-General
This first category contains classes to do with representing things which
have 'magnitude'. The root class for this piece of the hierarchy is
Magnitude which simply defines ways of comparing things (<, >=,
etc.). Magnitude in turn inherits from Object. Notice how some of
the comparisons are defined in terms of the others. Also, look at how
this class defines some of the methods but leaves them to be
implemented lower down in the class hierarchy when the actual way
they must work is known. This deferring of the actual implementation
of a method is typically declared using the message expression self
subclassResponsibility. Note that the classes to do with
representing the notions of date and time are also defined in this
category.

Magnitude-Numbers

Here things start to get a little more specific. Magnitude -Numbers
contains all the classes the system uses to represent numbers. By
looking here you can discover the different forms in which Smalltalk

57

can deal with numbers, and look at all the many operations you can
perform on number objects.

ArithmeticValue is the abstract (no instances) superclass of
this bit of the hierarchy. It contains all the basic operations which all
numbers can perform. Subclasses of this class (especially Number) add
in operations which are appropriate for their particular kind of number.
Notice how arithmetic (+, -,*,/,.. .) which you might have thought of
as part of the Smalltalk language, is actually defined here as part of the
class hierarchy. There are also mathematical functions, and rounding
operations. Finally, there is a method in Integer called
timesRepeat: which when sent to an integer will repeat the block
sent as a parameter the appropriate number of times. For example:

3 fcimesRepeat: [Transcript show: 'Hello!'; space].

Although this may seem like an important feature of Smalltalk, the
power of the other control structures (especially something we'll look
at in the next chapter—collection enumeration) means that it is rarely
used in practice.

Collections-Abstract
This category and all the subsequent Collections- categories
contain the collection classes. Instances of these classes hold
collections of other objects. These are such important and highly reused
classes that an entire chapter of this book (Chapter 7—The Collection
Classes') is devoted to describing them. We'll defer a discussion of
them until then.

Graphics-Geometry
Graphics-Geometry contains all the classes whose job it is to
represent geometric entities. Especially important are Point and
Rectangle. Instances of Point (which is actually a subclass of
ArithmefcicValue, proving how categories are used to describe
function not inheritance), represent the notion of a point in a two-
dimensional co-ordinate space. As such, they are of vital importance to
all the classes which implement the user-interface. Instances of
Rectangle represent rectangular regions (actually by holding two
points), and are equally vital to the user-interface classes.

The rest of the Graphics- categories contain classes which ^
represent all the graphical notions the system has to deal with. These i
include fonts, colours, palettes, images, text and so on. Notice that most |

58

The Smalltalk Class Library

of the actual GUI classes (windows, widgets, etc.) are not in these
categories, but come later.

Kernel-Objects
We're now reaching the real heart of the class library. Kernel-
Objects contains probably the most important class in the entire
system—object. This class is the root of the Smalltalk class
hierarchy, and provides such a wealth of facilities that we will briefly
stop our tour here and look at it in more detail.

Object—The Root of the Hierarchy

As we've already observed, every single class in the system ultimately
inherits from object. This means that every single object in the
system (instances and classes) will understand and respond to the
messages (or protocol) defined in Obj ect. Here are some of the things
it can do, discussed in the order in which you'll find them in the various
protocols of Object:

In the initial ize-release protocol, the release method
releases all the dependents (see Chapter 8—The Dependency
Mechanism) that an object might have before it is destroyed. Notice
that there is no initialize method defined in Object. This means
that if you send initialize to an object which does not define this
method somewhere else in its class hierarchy, you will get an error.

In accessing there are many methods which provide the
foundations for subclasses which store data as collections. The only
method in this protocol that you might want to use directly is
yourself. This method, which just returns self, might at first seem
rather pointless. However, there are certain rare circumstances in which
it is useful. Browse the senders of yourself (using the senders
command in a browser) to see some examples.

In testing, the class Object defines a whole load of things
which its instances are not (nil, integer, string and so on). This is
so that these messages can be over-ridden in the appropriate subclasses
to return true instead of false.

In comparing we can see the definitions of two very important
comparisons in Smalltalk: = and ==. It is crucial to understand the
difference between these two comparisons. The operator = tests
whether two objects are 'equal'. This depends on the class of the object,
and if you browse the implementors of = you will find that lots of

59

Chapter 6

classes redefine it in appropriate ways (for example, two Rectangle
instances might be = if their coordinates are the same).

The operator == on the other hand, tests whether the receiver of
the message and the parameter are 'equivalent'. This means whether
they are two references to the same object. For example, the
expression rect 1 == rect2 would only return true if recti and
rect2 were two variables containing the same Rectangle instance,
and not just if they contained two rectangles with the same coordinates.
This is a much stronger test than =.

The comparing protocol also contains methods for hash-coding
the object. These are used to provide efficient look up of objects when
they are stored in certain kinds of collection.

The copying protocol contains methods for producing copies of
objects. Smalltalk used to distinguish between a deepCopy (the object
and all its instance variables were copied recursively), and a
shallowCopy (the object was copied, but all the copy's instance
variables pointed to the same objects as the original). However,
deepCopy was found to be a fundamentally flawed concept, so now
only shallowCopy is supported.

The converting protocol includes two methods (- > and
asValue) for making other objects which contain the receiver as one
of their instance variables. These just happen to be so frequently needed
that they are included here for convenience.

The protocols dependents access , updating, changing and
dependents collection are the protocols which contain the
methods used to implement the dependency mechanism we'll look at in
chapter 8. These methods are described in detail there.

The protocol printing contains methods which enable every
object in the system to have the printed representation we mentioned
earlier. You may have noticed that when you print an object using the
development environment, it always describes itself in some useful way
(for example aPopUpMenu) instead of giving you a useless internal
pointer (like 7af41d25). The method responsible for this is called
printOn: and it is called whenever the system needs the printed
representation of an object. The default definition in Object simply
uses the name of the object's class, prefixed with 'a' or 'an'. Many
subclasses of Object redefine printOn: to generate much more
useful strings which actually describe the individual object (for
example a Point with x-coordinate 3 and y-coordinate 4 would print
as 3@4, instead of just aPoint). If you want your objects to print more
descriptively, you can also redefine printOn: in your class. Look at
any of the other implementors of it to see examples.

60

The Smalltalk Class Library

The printing protocol also contains the method storeString. This
method generates a sequence of characters which form a piece of
Smalltalk code. When executed this code will create an object exactly
like the object to which the storeString message was sent. This
remarkable facility is the basis of representing objects in serial form.

The next protocol, class membership, provides a set of
facilities for testing which class an object is an instance of. Notice
especially the difference between isMemberOf : (is an instance of a
particular class) and isKindOf : (is an instance of a particular class or
one of its subclasses).

The message handling protocol contains some important
methods of which perform: is the simplest. We'll be looking at these
methods in chapter 10—Pluggability and Adaptors.

The protocol error handling includes some useful methods
like halt. When evaluated this stops execution of the current method
and opens a notifier window. This means you can insert breakpoints in
your code for debugging reasons simply by putting in the expression
self halt. The protocol also includes doesMofcunderstand: . This
message is sent to an object which does not understand a message it is
supposed to be executing. Normally, it opens a notifier window, but
you can over-ride it to do clever things if you wish.

Finally in this protocol, shouldKEotZmplement and
subclassResponsibility are messages you can use to indicate that
a subclass wants to 'undefine' a method defined in a superclass
(preventing it being sent by raising an error if it is), or indicate that a
subclass must implement a method which is defined in a superclass.

The user interface protocol provides methods that allow you
to inspect any object, or browse its class. Just sending inspect or
browse to any object will open the appropriate tool.

The remaining protocols in Object contain methods which are
used internally and are unlikely to be of direct use to programmers.
However, feel free to browse them if you want to understand more
about how the system works.

A Tour of the Class Library (continued)

Having stopped off to consider the most important class of
all—Object—in more detail, we can now continue our tour of the
Smalltalk class library where we left off.

61

Kernel-Objects

Besides object, this category also contains some other very
commonly used classes which are essential to the functioning of the
system. In particular, the classes Boolean, True and False
implement all of the functionality to do with logical operations in
Smalltalk. The class Boolean defines all the operations, but they are
actually implemented in its subclasses—True and False. Each of
these subclasses has a single instance called true and f a l s e
respectively. Browsing Boolean will show you all the kinds of logical
operations (&, |, not, etc.) which Smalltalk supports, and the kinds of
control structure (ifFalse: , ifTrue;, etc.) you can use.

Notice how once again, things you might have thought would be
part of the language (like arithmetic) are actually a part of the class
library. For example, a conditional statement is implemented by
sending the message if True: to an object with a block as the
parameter. The block is executed only if the object was an instance of
class True, and not if it was an instance of class False. For example:

27 > (3+4) ifTrue: [Transcript show: 'Bigger!'].

Browse the implementation of ifTrue: in the classes True and
False to see how this works. Do note though, that although this
particular functionality is expressed as a set of methods, the compiler
can actually spot these messages being sent and compile them 'in-line',
optimising their execution. This means that changing the definitions of
ifTrue: or ifFalse: (dangerous as that might otherwise be) won't
actually have the effect you might intend. It also means that the
debugger will sometimes get confused about where exactly any errors
in the use of these messages are located in your source-code.

Look carefully at the difference between & and and: (also | and
or:) in the boolean classes. The first pair of methods (& and |) take an
expression as their argument, and are guaranteed to execute that
expression. The second pair of methods (and ; and or:) take a block as
their argument, and will only execute that block if its value is needed to
resolve the logical value of the whole expression. This means that if the
expression or block used as an argument has a side-effect as well as
returning a value, the choice of & or and: (| or or:) is critical. For
example, in the first of the following two expressions fred will be set
to true. In the second it won't because there's no need to evaluate the
block to know that the whole expression is true.

(1=1) | (fred := true).
(1=1) or: [fred := true].

62

The Smalltalk Class Library

Another important class in this category is UndefinedObject. The
system contains only a single instance of this class, called nil. Many
of the methods UndefinedObj eot implements are to do with undoing
the functionality inherited from Object! The value nil is used to
represent the notion of 'nothing' or 'undefined'. It is also the value to
which all newly declared variables are initialised.

Finally in the Kernel-Objects category, the class Model is
simply a subclass of object which implements dependency (see
chapter 8 again) differently for efficiency reasons.

Kernel-Classes
This category contains all the classes which implement the very notion
of a 'class' in Smalltalk. This really is the internals of the system, and
can be very confusing. However it is useful to know that just as all
objects can understand the messages defined in the class Object, all
classes can understand the messages defined in the classes Behavior,
ClassDescripfcion and Class (which inherit from each other in
that order). This is because class objects are instances of the class
Class (think about it, but don't worry if you find it confusing).

There is some very useful functionality in Behavior, especially
for accessing the subclasses and superclasses of a class, and finding all
its instances (alllnstances). The latter message can be very useful
during debugging, but remember you can only send it to a class.

Perhaps the most important single message defined in the
Kernel-Classes category is new. This is the message you can send

1 to any class to ask it to make and return a new instance of itself. You
i might think that this should be defined on the class side of Object, but
) in fact because of the complexities of the Smalltalk class system (which

we shall not be going into here), it is defined on the instance side of
Behavior. This still means that any and every class understands the
message new, although many provide more appropriate instance
creation methods too. Note though that some classes which are
intended never to have instances (abstract superclasses) explicitly 'un-
implement' the new method. They do this by over-riding it with the
expression self shouldNot Implement.

The rest of the Kernel categories deal with internal things which
again are probably not of much immediate interest. The only exceptions
are the class Process, which implements and provides access to
Smalltalk's own lightweight process mechanism (look in the manual
for more details), and the class BlockClosure, which implements the
block notion we looked at in the previous chapter.

63

BlockClosure also provides some more of the Smalltalk control
structures which are sprinkled around the class hierarchy. In particular
there are the methods repeat, whileFalse, whileTrue, and their
variants. You can browse their implementations to see how they work
but here is an example:

EMyWindow isTooBig] whileFalse: EMyWindow grow],

Interface-Framework

This and the remainder of the Interface- categories contain all the
classes which implement the Smalltalk user-interface. These categories,
together with all the uiBasics and UlLooks categories, contain
hundreds of different classes for implementing widgets, windows and
everything in between. Thankfully, because of the existence of the
VisualWorks GUI building tools (implemented by classes in the
UZPainter and ulBuilder categories) you will rarely need to access
all these classes explicitly. Remember though that if you need to do so,
(and if you want to build user-interfaces which VisualWorks doesn't
support, you will) the source-code is here for you to browse, understand
and use. A few of these classes are important enough, and illustrate
such useful general principles, that we will be describing them in more
detail in Chapter 10—Pluggability andAdaptors.

Tools- Programming
This and the rest of the Tools- categories contain the classes which
implement the browsers, inspectors, debuggers and so on that we
looked at in chapter 5. If you don't like the way any of these tools
behave, this is the place to go to find out how they work, and modify
them.

Sys t em-Change s
This and the other System - categories contain the classes used by the
Smalltalk compiler. Unless you really want to modify the internals of
the system, you should never have any need to go near these classes.

OS-Window System

This category contains classes used to interface Smalltalk to the
underlying window system. This is the place to go if you are interested

64

The Smalltalk Class Library

in gaining access to that mechanism for any reason. However, for
normal GUI programming you should have no need to deal with any of
these classes. The only exception is perhaps the class Cursor. This
class provides methods you can use if you want to change the shape of
the mouse cursor.

OS-Streaming

The classes in here provide support for accessing files in the underlying
operating system. Sometimes you may want to create instances of these
classes directly, but more usually you would use an instance of the
class Filename to create one for you.

OS-Support

This category contains the class Filename, which is your easiest and
most portable route to opening a file in the underlying filesystem.

OS-Unix, OS-Dos, OS-Mac

These categories contain classes whichspecialise the abstract notions
of filename and other things which Smalltalk deals with, to the
particular platform which the virtual machine is actually running on.
They enable some of the cross-platform portability which VisualWorks
provides.

External-Collections

This and the other External- categories contain classes which
represent entities to do with connecting Smalltalk up to other languages
such as C or C++. How you do this depends to a large extent on exactly
what sort of machine you have, so you'll need to look in the manual for
details.

UIExamples

Finally in this tour of the class library, the various ulExamples
categories contain the many classes used to implement the example
applications provided as part of the VisualWorks system. This is a good
place to start if you want to try modifying some of these examples
applications, or need to find out how they implement a particular piece
of behaviour.

65

We've now completed our introduction to the Smalltalk class library. If
you've followed the tour, you should find that you're familiar (both
from the descriptions given here, and from just browsing around) with
some of the standard protocols which exist in many of the system
classes. You should also have an idea how to predict from the name of
a protocol the kinds of method it will contain.

You should now know something about the messages all objects
understand (defined in class Object), and the messages all classes
understand (defined in Behavior, ClassDescription and Class).

You should know where to find arithmetic operations defined
(ArithmeticValue and its subclasses) and where to find logical
operations and control structures (Boolean and its subclasses). Finally,
you should have a good idea of what kinds of functionality the rest of
the class library contains.

The remainder of this part of the book is concerned with more
detailed descriptions of some of the features and classes we've
mentioned here. The classes have been chosen not only because they
are useful to know about, but also because they illustrate some of the
style of good Smalltalk programming. Part 11 of the book then goes on
to explain how you can learn even more about the Smalltalk system for
yourself, and more importantly how you can design your own classes to
fit in with it.

66

The Collection Classes

Now that we have a general road-map of the Smalltalk class library, we
can start to look at some of the classes in more detail. The first set of
classes we will consider are the collection classes. The various types of
collection are some of the most highly reused and reusable classes in
the system. In fact, every Smalltalk programmer uses them in almost
every program. The classes themselves are highly developed (although
they are not necessarily the most efficient implementation), and provide
a good example of Smalltalk programming style.

They're also an example of something else we'll be returning to
again and again. A book of this size can't hope to present a complete
description of every feature and facility in every type of object. Even
the Smalltalk manual doesn't do that, and even if it could it wouldn't
necessarily be up to date. No, the only place to go if you want to know
for sure if a particular feature exists, how it works or how it's
implemented, is the system itself. For now, you should concentrate on
understanding the basic concepts of the collection classes. Later, you'll
be able to use the class hierarchy browser (or any other browser) to
explore the different collection classes, consider the alternatives and
find out what you really need to know for your specific problem.

What is a Collection?

A collection is an object which contains a group of other objects. The
contained objects are known as the elements of the collection. The
diagram over the page shows the idea. No matter what programming
language you've used before, you're probably familiar with at least one
type of collection—the array. Arrays are available in Smalltalk but

67

Chapter 7

aCollection

A collection containing
objects of various kinds,
including another
collection object.

there are also various other collection classes provided in the class
library. Each one is specialised in various ways, but they all have
certain features in common. For example, they all allow you to add and
remove objects from the collection. They also all allow you to test^asi.
collection and its contents in various ways. Most importantly though,
they all allow you to enumerate the collection—performing the same
operation on each and every element.

Almost all collections in Smalltalk are heterogeneous. That is, they
can contain a mixture of any kinds of object. Remember that Smalltalk
is typeless. This means that unlike other languages you don't have to
ask the system for 'an array of type integer' for example. You just ask
for an array. Importantly, this means that collections can, and
frequently do, contain other collections as well.

The exceptions to this heterogeneity rule are classes like String
and Symbol (yes, they're implemented as collections) which can only
contain characters, and ByteArray which as its name suggests,
contains only bytes.

The various collection classes form quite a complex inheritance
hierarchy under the root class, Collection. All the basic functionality
of every collection is defined in the Collection class, and it's
probably a good idea to browse through it using one of the system's
code browsers, just to become familiar with the kinds of things all types
of collection can do.

Below Collection, there are a number of abstract superclasses
in the hierarchy. Like Collection itself, no instances of these classes
ever exist. They serve just to group together functionality. Don't try
making instances of these classes—they won't work properly. You can
tell if a class is abstract or concrete by looking at its class comment
using a browser.

68

The Collection Classes

Remember that sometimes, when you're looking for a particular feature
in a particular kind of collection, it won't be in the particular collection
subclass, and it won't be in Collection. It'll be hiding in the middle,
in one of these abstract superclasses.

Towards the bottom of the hierarchy are the concrete classes.
Depending on the version of Smalltalk you're using, there may be over
fifty concrete subclasses of Collection in as many as eight different
system categories. Many of these have very specialised uses in the
system. However, when you need a collection in your program, you
should normally be able to choose from one of these concrete classes:
Array; Bag; Dictionary; OrderedCollecfcion; Set;
SortedCol lection; and Interval. In the rest of this chapter we'll
concern ourselves with just these classes.

Creating Collection Instances

Here are four ways of making new collection instances. You can try
them out individually using a workspace and inspect:

HyColl := OrderedCollection new.
MyColl := Array new: 27.
HyColl :ss set with: #red with: ttgreen with: #blue.
MyColl := #('Goodbye' 4 #now).

The first way of making a collection is the most basic, and simply
makes an empty ordered collection. All collection classes, like all other
classes, know how to do this. The second way makes a new array, with
twenty-seven elements. The third way will make a set containing the
three symbols #red, #green and ftblue. Note that
wifch:with:wifch: is a single method with three parameters. Also
provided are the methods with: , w i f c h : w i t h : and
wifch:with:with:with:. After four elements you're expected to
make the collection and then add the elements in one by one using
add:. Finally, the fourth way is a useful shorthand used to create
arrays. This example makes an array with three elements ('Goodbye' ,
4 and #now). This only works if the elements are literals. In other
words, you cannot put pieces of Smalltalk code inside the parentheses.
This is a common mistake and can lead to some bizarre results. This is
because the expression is put through the compiler, creating the array at
compile-time. It is not actually evaluated (executed) at run-time.

69

Chapter?

Choosing Which Collection to Use

When you want to use a collection in a Smalltalk program, it can help
to ask these questions:

1. Do the elements of the collection need to be ordered."1

1. If yes, how will the ordering be determined"]
3. Will the elements be accessed via a key ?
4. Will duplicate elements be allowed in the collection?

Your answers to these questions will help determine what type of
collection you need. There are a couple of important things to keep in
mind though. First, as often happens in programming, especially in
Smalltalk, there is no one right answer. If a particular collection class
seems to do the job, use it, at least until you have a reason not to.
Choosing a collection class depends on style as much as need. Second,
you very rarely need to create new subclasses of Collection. The
various subclasses provided in the class hierarchy should almost always
include what you need. Usually when you want to add functionality to a
collection you should encapsulate a collection in an instance of one of
your own classes, and add the functionality there. This business of
encapsulation as an alternative to inheritance is important enough that
we'll be returning to it in Part II.

The Different Kinds of Collection

Having discussed the basic characteristics of the collection classes, let's
take a look in a little more detail at the specific classes you might
consider usi]

Array

These are very like the arrays provided in other languages. Elements
are inserted and retrieved using an integer index (or in the terms used
above, an integer key). To retrieve an element use the at: method. To
add an element use the at: put: method. For example the code:

MyArray := Array new: 20.
MyArray at: 12 put: #yellow.
MyArray at: 17.

creates an empty twenty element array, assigning it to the variable
MyArray. It then puts the symbol #yellow in position 12 of

70

The Collection Classes

MyArray, and finally returns the 17 th element of MyArray (which in
this case would be nil). Note that in Smalltalk, unlike some other
languages, arrays start at 1 not at 0!

Bag
A Bag is simply an unordered, unkeyed, collection of objects. You put
objects in using add: , and remove them using remove:. For example:

MyBag add: #MyNewColour.
MyBag remove: #MyOldColour.

Like other kinds of collection Bag also understands addAll: and
removeAll: which, when used with a collection as the argument will
add or remove all the elements in that collection from the bag.

It might seem peculiar to have a kind of collection in which you
cannot retrieve an object unless you've already got it. However, bags
are useful when you want to test whether a collection contains an
object, or iterate over a collection of objects. We'll look at both of these
features of collections shortly.

Note that the same object can be in a bag more than once. In this
case Bag keeps a tally of how many times an object is in it. Note also
that Bag uses = to test whether an object is in itself before incrementing
its tally. This means that if you try to add in an object which is equal to
one already in the Bag, but not equivalent to it (that is, not the same
object), it won't get added—the tally for the equal object will be
incremented instead. Again, if this doesn't make sense don't worry.
Just remember to think about it if you start getting unexpected
behaviour when using a Bag !

Dictionary

Dictionary is one of the most useful collection classes—when you
know how to use it. You can think of dictionaries as being like arrays,
except that instead of using integers for the indexes or keys of the
collection, you can use any object at all. For example:

MyDictionary at: #name put: 'Simon'.
MyDictionary at: #tage.

puts the string 'Simon' into MyDictionary, giving it the key #name,
and then retrieves the object previously put into the dictionary with the
key #age. The string 'Simon' and whatever object had the key #age,
are called values. In this way, a dictionary keeps a mapping between

71

Chapter 7

A Dictionary holding a
mapping between objects called
keys and other objects called
values.

one set of objects (the keys) and another set of objects (the values). It is
quite common to use symbols as keys in a dictionary. However, the
keys and values in the dictionary really can be any kind of object. This
is a powerful facility which you'll probably find increasingly useful.

The diagram above shows an example of a simple dictionary
which maps the names of countries to the names of their currencies (all
held as strings). The following code would create a dictionary like the
one in the diagram:

MyDictionary := Dictionary new
at: 'Britain' put: 'Pounds';
at: 'France' put: ' F r a n c s ' ;
at: 'USA' put: 'Dollars'.

OrderedCollection

This is the class most frequently used instead of Array when a
collection of objects must be kept and accessed in a particular order.
Unlike arrays though, that order is determined by each element's
position relative to another, rather than by an integer index.

Instances of OrderedCol lect ion grow and shrink as elements
are added and removed. Methods like add: , addFirst:, addLast:,
add: before: , add: after: and others provide a lot of flexibility for
inserting new elements into the collection. Elements may be retrieved
with first and last, and removed with the methods removeFirst,
removeLast:, and remove:. These methods allow an instance of
OrderedCollection to be used as if it were a queue or a stack. Note
that if you use remove: to try to remove an element from a collection
it isn't actually in, you will get an error. Another method,
remove :ifAbsent: allows you to specify what should happen if the
element wasn't in the collection:

MyCollection remove: MyHame ifAbsent: [].

72

The Collection Classes

This is a useful construction which quietly does nothing if MyMame
wasn't in MyCollection. The [] is an empty block which simply
returns when it is mn.

Whenever in another language you would think 'I need an array',
you should in Smalltalk be thinking 'Would an OrderedCol lection
be better' ? Unless you explicitly know the size of the collection, and
it's fixed in size, or you need the efficiency which arrays provide (very
roughly twice as fast as OrderedCollecrion), you should choose
OrderedCollection. Don't be trapped into choosing Array just
because it's more efficient or more familiar. Very often using
OrderedCollection will give much more elegant and flexible code,
which may be just as fast in your application. Give it a try.

Note that although you can access the elements of an
OrderedCollection using at: and a at:put: —that is, by using
integer indexes—you should probably avoid doing so unless you're
very sure you know the indexes and you've remembered that they'll all
change if you send an addFirst: message or anything similar to your
collection.

Set

This class represents the mathematical notion of a set of objects. Sets
are collections in which there are no duplicates. Unlike a Bag, or an
OrderedCollecfcion, it does not matter how many times you try to
add an element into a set (using add:)—the set will still only contain
the element once. This automatic throwing away of duplicates is
sometimes useful.

Note that Set uses = to decide whether a new element is already in
itself and so shouldn't be added. This means that two different objects
can't be in the same Set if they happen to be equal. If you want a set
which rejects new members only when they're equivalent (==) to
existing elements rather than just because they're equal (=), use
identitySet. As a side-effect, because == is a faster test than =
(which can involve arbitrary amounts of testing of instance variables),
identitySet is usually faster than Set.

Elements in a set are not held in any particular order. When you
print out a set, or iterate over its elements (see Below), you can't control
what order the elements are accessed in and you shouldn't rely on it
being the same every time.

When you use an inspector to look at a set, be aware that although
the set displays itself correctly when you select self, it may look as
though it contains extra nil elements in its instance variables. These

73

are internal to the way Set works and can be safely ignored. They
won't affect your code because the iteration methods (do: , collect:
and so on) in Set know to ignore those elements.

SortedCollection
Instances of this class provide a way in which elements can be collected
together in an order determined by some feature of the elements. For
example, strings can be sorted alphabetically, or numbers numerically.
You don't even have to tell a SortedCollection to sort itself. As
you add elements in (using add:) they are automatically inserted in the
right place. Sort edCol lection is not limited to just these types of
element or sorting order though. It can sort any objects into an order
based on any characteristic, provided you give it the necessary hooks.
Giving it these hooks does require an understanding of some features of
Smalltalk which you may not yet feel comfortable with. Don't worry if
you don't understand the following description. SortedCollections
are not too common—come back to it when you feel comfortable with
using blocks of Smalltalk code.

SortedCollection uses a replaceable piece of Smalltalk code,
held in a block, to capture the comparison that's used to decide whether
one object should be before or after another in the collection. Note that
we're not talking about the sorting algorithm here—that's fixed, and
embodied in SortedCollection. We're talking about the test which
determines whether one object is 'less than' another, or whether it's
'earlier in the alphabet', 'bigger', or 'more green'. The piece of code
compares two objects and answers true if the objects should be in the
order presented, or false if they need to be reversed.

You give an instance of SortedCollection one of these pieces
of comparison code by sending it with the message sortBlock: .
Luckily SortedCollection provides a default sort block, so in most
cases you don't need to worry about it. The default sort block tests
whether each element is 'less than' the other elements. This means that
any kind of object which understands the <= message can be sorted by
a default SortedCollection. If your objects don't understand the <=
message you have a choice of writing this method in your class, or
providing a sort block which uses a different method. For example, the
following block would tell a sorted collection to sort its elements
according to the length of their names by doing the appropriate
comparison and answering true or false:

[:x :y | x name size < y name size].

74

The Collection Classes

Interval

This class is slightly different from the other subclasses of
Collection we've looked at in that it can't hold a collection of
arbitrary objects. Instead it actually represents the idea of a 'finite
arithmetic progression'. In other words, it behaves as if it were a
collection of numbers. Instances of class Interval are created in a
different way from other collections as well. For example, the
following two expressions:

Mylnterval := Interval from: 50 to: 100 by: 2.
Mylnterval := 50 to: 100 by: 2.

would create an instance of Interval which would behave as if it
contained the numbers 50, 52, 54.,..., 100. Notice how in the second
case the object 50 provides a 'convenience' method (to:by:) which
knows how to create an instance of Interval. You can find this
method and others like it by browsing the class Number.

You cannot add new elements to instances of Interval. In fact if
you look at the definitions of add: , at: put: and others, you will see
that they are explicitly 'un-inherited' from Collection. This is an
important feature of inheritance in Smalltalk and we'll be returning to it
later. The point of this class is that like all collections, it provides a way
of iterating over its contents (we'll see how very shortly). In other
words, it provides a control structure similar to a do-loop. However, as
we've observed before, it's rare that you actually need to construct a
loop like this in good Smalltalk code.

Testing Collections

As well as being able to insert, retrieve and remove elements from
collections, you can also probe them in various ways to test different
characteristics. Each different collection subclass has particular tests,
but they all understand the following messages :

size — how many elements the collection contains.
isEmpty — true if the collection is empty.
includes: anObj ect — true if the collection contains anObj ect.

When you send the message size to a collection, it tells you how many
elements are directly contained by the collection, not how many might
be contained in other collections contained in the first collection (in
other words, it's not recursive). You have to work that out for yourself.

75

Chapter 7

Converting Collections

A collection of one type can be converted into a collection of another
type by sending it one of the messages a B A r r a y , asBag,
asOrderedCollecfcion, asSet, or asSortedCollection. For
example if MyCollection is an Array, the following code fragment
will convert it to a Set:

MySet := MyCollection asSet.

Although we talk about converting collections, the original collection
object is actually not altered, nor is it destroyed. Instead, sending one of
the conversion messages to a collection makes a new collection of the
new type, and puts the old collection's elements into the new collection
as well. The elements themselves are not copied. Each individual
element is contained in both the old and new collections. Watch out for
this if you alter an element—it is a common source of bugs. For
example in the diagram below, altering the object A in aSet will alter
the object A in anArray because it is the same object,

There are a couple of other caveats associated with converting
collections. First, when you convert an unordered collection to a
collection which has an order, the order will be unpredictable and not
necessarily repeatable. Second, the situation with dictionaries is more
complicated because they contain both keys and values. By default, the
new collection will contain just the values. Send the message keys to a
dictionary first to get a new collection with just the keys instead. For
example:

MyValues := MyDictionary asSet.
MyKeys := MyDictionary keys asSortedCollection.

Sending aset the message
asArray creates a new
collection containing the same
elements : A, B, C and D.

76

The Collection Classes

Enumerating Collections

All subclasses of Collection understand a set of messages called
enumerators. These are all to do with performing the same operation on
every element of the collection. However, different enumerators have
different specific effects.

The enumerators are one of the most powerful and convenient
facilities of collections. Knowing how to use them will make writing
some pieces of code simpler than you ever imagined possible. In fact, it
is these methods which mean that constructions such as 'do-loops' are
so rare in Smalltalk code.

We'll summarise the six different types of enumerator here and
then explain them in more detail below:

do: — does the same operation on every element of the collection.
collect: —like do: but returns a collection of the results.
select: — tests every element and returns those which pass.
reject: — tests every element and returns those which fail.
detect: — returns the first element which passes the test.
i n j e c t : into: — feeds the result of one operation into the next.

do:
The most basic of all the enumerators is do:. It simply repeats the same
operation for every element in a collection. For example, the
expression:

MyCollection do: [:piece | piece reset].

sends the message reset to every element in MyCollection . For the
purpose of this example we neither know nor care what reset does.
The code inside the square brackets is a block of Smalltalk which gets
executed once for each element in MyCollection. The word :piece
before the vertical bar |, simply says that we'll be using the name
piece to refer to each element in turn in the code after the | . Every
time the block is executed the next element of the collection is
substituted for piece in the expression piece reset.

You can see that the do: message allows us to iterate through
MyCollecfcion very simply, without knowing how big it is, without
having to set up our own loop, and without having to increment and test
a counter as we might in other languages. However, if you really want
to set up a control structure similar to a do-loop in other languages, you

77

could send the same do: message to an instance of the class
Interval. Try this:

(10 to: 35 by: 5) do:
[:i | Transcript show: i printString; cr].

You can use do: with any kind of collection, but bear in mind that with
collections which don't have any defined order (Bag, Set,
Dictionary), the elements will be processed in an unpredictable
order. Usually this doesn't matter, but be careful you don't do
something which relies on processing the elements in a particular order,
or in an order which is repeatable.

It is very important not to modify the collection you are
enumerating whilst you are iterating over it. This means you must not
add, or remove elements from the collection (it is fine to modify the
elements themselves). It is all too easy to write code like:

Fruits do: [:fruit | fruit isOrange ifTrue:

[Fruits remove: fruit 3].

which attempts, quite reasonably, to remove all fruits which are oranges
from Fruits. This will not work as expected, since it is changing the
size of the collection Fruits as it goes along, giving unpredictable
results. If you want to perform this kind of operation, you should iterate
over Fruits building up a new collection containing all the fruits
which are not oranges and then replace the old collection with the new
one.

collect:

Another enumerator is collect: which is like do: except that it
builds up a new collection which contains all the results of performing
the same operation on each element in the collection. For example the
expression:

Names := People collect: [:person | person name].

would create a new collection (Names) containing the results of
sending the message name to each element in the collection People.
The new collection which is created will usually have the same class as
the collection which was enumerated. So if People was an
OrderedCollection, Names would be an OrderedCollection as
well.

78

The Collection Classes

select:

Next, we have select: which creates a new collection of just those
elements of the enumerated collection which made the block true. This
actually does what we wanted above. The expression:

Oranges := Fruits select: [:fruit | fruit isOrange].

would collect into Oranges all the fruits which answered true to the
message isOrange. The opposite is reject: which collects all the
elements which make the block false.

detect:

Easily confused with the other iterators is detect:, which stops the
enumeration as soon as the first element which makes the block return
true has been found, and returns that element. If detect: doesn't
find such an element it generates an error. Use detect:ifNone: to
avoid this. For example the code:

Winner := Employees
detect: [:worker | worker age > 60]
i f N o n e : [Employees last].

would pick out the first employee whose age was greater than sixty. If
nobody was older than sixty, the last employee in the collection would
be returned.

inject:into:

The last enumerator, inject:into: is rather more complicated than
the others. It allows the result of executing the block using the previous
element to be 'injected' into the block for the next element. The classic
example sums all the values in a collection of numbers:

Total := Numbers inject: 0 into:
[:subTotal :number| subTotal + number].

It is not trivial to understand how this works, and in practice
inject: into: is not nearly so frequently used as the other
enumerators so don't worry if it doesn't make much sense. Don't worry
either if you can never remember the name of the enumerator you want,
or you pick the wrong one the first time. Even experienced Smalltalk
programmers have to browse the Collection class (enumerating
protocol) to remind themselves which one they need!

79

The collection classes form a large and complex hierarchy under the
class Collection. However, out of all the collection classes in the
system you will probably find yourself using only about five or six on a
regular basis. You can use collections to group together diverse sets of
objects, and to implement some basic control structures (enumerating
and looping).

Some of what we've discussed will become very familiar to you,
and whilst you may forget the details of the rest, as long as you
remember the types of feature that exist you'll be able to use the
facilities of the various code browsers to track down the details when
you need them.

The collection classes are some of the most useful in the system,
and we have laboured some of the details for that reason. However, the
basic features of inserting, retrieving, removing, testing for and
enumerating elements are common to all collections and are well worth
exploring and remembering.

Finally, the whole collection hierarchy forms a good example of
how to abstract behaviour into superclasses, and share code among
classes using inheritance. We'll be discussing how to use inheritance in
Part II, and coming back to look at the collection classes and how
they're implemented would be a good idea then. In the meantime, we'll
continue our more detailed look into the class library by considering the
dependency mechanism.

80

The Dependency Mechanism

The Smalltalk system is essentially an application framework upon
which you as a programmer build your own application. As such it
provides a number of classes which are highly reusable (both by
instantiating them and by inheriting from them), and we've looked at
some of those classes in the preceding chapters.

In this chapter, we are going to look not at a single class, or even a
set of classes, but at a part of the framework which runs throughout the
system. It is not confined to just some classes, but is available for use in
all classes. It's available for use in your code, but is also heavily used
in the system code. Most importantly, it's the basis for Smalltalk's
'Model-View-Controller' (MVC) architecture which we'll look at in
the next chapter.

The subject of this chapter is the dependency mechanism. This
mechanism may at first seem to be a rather bizarre and covert way for
objects to communicate with each other. However, after reading this
chapter and the next, you should have a good idea of why Smalltalk
introduces such a mechanism, and understand how you can make good
use of it in your own code.

The Concept of Dependency

In previous chapters we have discussed a number of the different kinds
of relationship which can exist between objects. We've looked at
inheritance, which is a relationship between a class and its subclasses.
We have looked at instantiation, which is a relationship between an
instance and its class. We've also looked at how the instance variables
of one object can 'point to' or 'contain' other objects. The fourth

81

Chapter 8

Although dependency is a one-way
relationship, objects can both be
dependent and have dependents.
Each object can take part in as
many dependency relationships as
necessary.

important kind of relationship between Smalltalk objects, and the
relationship which we're going to concentrate on here, is called
dependency.

Dependency is a relationship which can be used by a programmer
to connect any two objects together. We'll see exactly why shortly. As
the diagram above illustrates, each individual object can take part in as
many dependency relationships as the programmer wants. When two
objects are related by dependency, we say that one object is dependent
on or is a dependent of the other.

In the diagram below, object B is dependent on (or is a dependent
of) object A. Looking at it the other way around, object A has object B
as one of its dependents. The relationship is asymmetric. That is, just
because B is dependent on A doesn't mean A is a dependent of B. It
might be a dependent—it's just that that would be a separate
relationship.

All this terminology can sound very confusing. Thankfully, the
words are used in ways which are entirely consistent with normal
English. If you're ever confused, a few moments careful thought should
help you work out which way around a particular relationship is.

Dependency is a relationship
between any kinds of object.

82

The Dependency Mechanism

So why do we want objects to be dependent on each other? The reason
has to do with change. Very often, a change in the value of an instance
variable in one object will be of great interest to another object. The
dependency mechanism gives objects a way of communicating changes
in the values of their instance variables to their dependents. You can
think of the dependents as being interested parties, who want to know
whenever the objects on which they are dependent change the values of
their instance variables.

A word of warning before we go on to look at how the dependency
mechanism actually works, and show you how to. use it. The
dependency mechanism can be very mystifying at times—even to
experienced Smalltalkers. Sometimes it can look as if objects are
getting to know about changes in other objects by magic. This is never
the case. Like other forms of magic, it only appears that way if you
don't understand clearly what's going on.

Dependency is used by some of the classes in the class library,
especially the MVC classes as we shall see. If you reuse these classes,
you will be implicitly using dependency, and it should all work
correctly without you having to get involved. It'll be like magic. The
same applies if you use VisualWorks to construct your user-interface.

However, if you extend or subclass the MVC classes (perhaps to
create new kinds of user-interface widget), or you want to use
dependency for other reasons in your own classes (and you should feel
free to do both), you will need to set up dependency relationships and
call the right methods for the mechanism to work correctly. In effect
you will need to be the magician. The next section tells you how to go
about doing this.

How Dependency Works

The dependency mechanism is implemented by a set of methods
defined in the class Object. This means that every object in the system
can take part in dependency relationships. Some methods are re-
implemented to do the same thing in different ways lower down in the
hierarchy for efficiency or other reasons. Don't let this confuse you if
you browse theclasses to see how dependency works (as you should).
The mechanism might work differently internally, but you use it in
exactly the same way.

Every object has a collection of other objects which are its
dependents. To get hold of this collection just send the message
dependents to the object. Sometimes, the dependents are held in an

83

instance variable inherited from above. In this case you'll be able to see
it via an inspector. Other times (actually, whenever the default
mechanism inherited from Object is being used), the dependents are
held elsewhere (in a class variable in fact), and you won't be able to see
them directly in an inspector. However, the message dependents will
always give you the dependents, or nil if there are none. You can
evaluate self dependents in an inspector to see the object's
dependents.

To make an object become dependent on another object use
addDependent: . The following expression will make nyObject a
dependent ofyourObject:

yourObject addDependent: myObject.

Look very carefully at which way around this expression is. An object
holds a collection of dependents. That is, an object holds a list of
objects which are dependent upon it. It does not hold a list of objects on
which it depends. An object does not know on which other objects it
depends. It only knows which objects depend on it. This seems more
confusing than it is, but you will find that it's important to remember
which way around a dependency relationship is working.

To make an object no longer be a dependent of another object use
removeDependenfc :. The following expression will make myObjecfc
no longer a dependent ofyourObject:

yourObj eot removeDependent: myObj eot.

You will find the three methods described above in the dependents
access protocol of Obj eot, along with some other more complex, but
less useful methods. Now that we know how to set up dependencies
let's look at how to make them work.

Remember that the whole point of dependency is to let one object
(the dependent) know when another object changes. There are two sets
of methods which accomplish this feat. There is a set we shall call
'changed' methods, and a set we shall call 'update' methods. The
diagram over the page shows the relationship between these methods.

Here is the crux of the dependency mechanism. Whenever an
object is sent a 'changed' message, it will automatically send all its
dependents an 'update' message. Of course like everything in Smalltalk
this automatic behaviour is not hidden. It's there for you to see in the
changing protocol of Object .For most practical purposes though,
you can consider it as magic.1 When an object receives a 'changed'
message all its dependents wilt magically receive an 'update' message.

What is not magic however is the sending of the 'changed*

84

The Dependency Mechanism

'Changed' messages to one
object cause 'update' messages
to be sent to its dependents.

message. If you change an object and you want its dependents to know,
a 'changed' message must be sent to the changed object. Sometimes
this happens in code you inherit, and sometimes you do it yourself.
Either way, if you want to communicate a change, you must make sure
a 'changed' message is sent. Likewise, if you want dependent objects to
do something when the object on which they are dependent changes,
you must implement an 'update' method.

There is a default implementation of the 'update' methods in
Object. These methods do essentially nothing and are there to make
sure you don't get an error if you send a 'changed' message to an object
which has a dependent which doesn't implement an 'update' method. It
just inherits the default definition and safely does nothing.

So, to make dependency work, you must send 'changed' messages,
and implement 'update' methods to catch the resulting 'update*
messages. Again rather confusing. You send a message of one type to
one object, and another object receives a different message. Let's look
in more detail at these two types of message.

'Changed' Messages

There are three different 'changed' messages, which take zero, one or
two parameters. Remember, these messages are not telling an object to
change, they are telling it that it has changed, and informing it that it
should tell its dependents. Which one of the three messages you choose
depends only on how much information you wish to communicate
about the change. For example:

anObj changed: an&Bpect with: aParm. (two parameters)
anObj changed: anAspect. (one parameter)
anObj changed. (no parameters)

85

These messages are implemented in the changing protocol of Object
(along with some more complicated ones which we won't consider but
which you are free to explore). You never have to reimplement or over-
ride them. You just send them and rely on the behaviour already
defined for you.

The most powerful of these methods is changed: with: which
takes two parameters. The first parameter is conventionally known as
the aspect. It allows you to specify which part or aspect ofanObject
has changed. Very often (but not always), this will be the name of the
instance variable which has changed. The second parameter allows you
to communicate how that aspect of the object aspect has changed. Very
often (but again, not always), this will be the new value of the instance
variable.

The other two methods (changed: and changed) are
convenience methods. They are exactly equivalent to sending
changed:wifch: using nil for either aParameter, or anAspect
and aParameter. If you look at their definitions in Object you will
see that this is the case. Using them can just make your code slightly
more readable.

'Update' Messages

Just like the 'changed' message, there are also three different 'update'
messages, which take one, two, or three parameters. Remember, you
will never directly send these messages. However, they will be received
by your objects if other objects on which they depend are sent
'changed' messages. Exactly which one is received depends in a sense
on which ones you've implemented. This may seem peculiar, but it
comes about because the inherited versions of these methods actually
subsume each other. This means that unless they're over-ridden, each
method will simply call the next simplest. Here are the three update
methods:

dependent update: anAspect with: aParm from: anObj.
dependent update: anAspect with: aParameter.
dependent update: anAspect.

The first message is the most powerful. If you've implemented it, it is
the message your object will receive whenever another object on which
it is dependent receives any of the 'changed' messages. The values of
anAspecfc and aParameter will be those used in the 'changed'
message, or nil if one of the simpler 'changed' messages was used.
The value ofanObject is the object which was sent the 'changed'

86

The Dependency Mechanism

message, which is included so that you'll know where the 'update'
message came from.

If you don't implement the update; with: from: method, your
class will inherit the default implementation from Object. This simply
calls update: with: in case you've implemented that in your class.
Here you get access to the same parameters, except that you don't see
where the update came from (anObject).

If you haven't implemented an update:with: method, the
default implementation (which is inherited from Object) will call
update:. Here you only get access to anAspect. If you don't
implement an update: method the default implementation simply
does nothing but return. Notice that there is no update method. Don't
try implementing one in the hope that it will get called with no
parameters. It won't!

You can see that update:wifch: and update: are convenience
versions of update :with: from:. They may seem rather pointless,
but the usual Smalltalk style is to use the version which takes only as
many parameters as you actually need. This makes your code slightly
more readable.

The diagram on the next page summarises what we have
discussed, and shows how simpler 'changed' methods call more
complex ones, while more complex 'update' methods call simpler ones.
Ultimately, unless an object understands at least one of these 'update'
messages, nothing will happen.

How Dependency is Used

The 'changed' and 'update' messages we have just looked at can be
used in all sorts of different ways. However, the most common use is
to let a dependent object know that the value of a single instance
variable in another object has been changed.

We have talked before about using a method to access an instance
variable in another object. Now, if inside the 'set' method (for example
size:), the object sends itself a 'changed' message after setting the
value of the instance variable, all the object's dependents will get to
know about the change. Here is a very common method definition
which does just that:

size: aHumber
size := aNumber.
self changed: #size.

87

Chapter 8

How the various
'changed'and
'update' messages
call each other.

Notice how, after setting the value of the size variable, the object
sends itself the message changed: with the symbol #size as a
parameter. This symbol is passed on to the dependents via the 'update'
messages and is used to indicate which variable changed. Note that this
use of the name of an instance variable as a symbol is pure convention.
The parameter passed could be any object (not just a symbol). This is a
very powerful feature which you will come to find very useful as you
program in Smalltalk more.

Here is an example method definition for an 'update' method in a
different class which might be invoked by the dependency mechanism
following the 'changed' method above:

update: anAspect
anAspect = #colour ifTrue: [self redraw].
anAspect = #size ifTrue: [self resize].

This 'update' method is designed to cope with two kinds of change to
objects on which it is dependent. If it's the colour that's changed it does
one thing, and if it's the size it does another. Any other kind of change
would be ignored.

88

The Dependency Mechanism

This simple example illustrates how dependency works. You will find
that by using the aspect and the. parameter creatively you'll be able to
come up with much more complex and powerful ways of using
dependency. It's a good idea to try building some small test classes to
check out your understanding of dependency. Use a workspace to make
instances of your classes, make them dependent on each other, send
them 'changed' messages and watch the results of your 'update'
methods being called.

The class library is a good place to look for examples of the way
dependency can be used. Try browsing the senders of the 'changed'
messages, and the implementors of the 'update' messages to get started.
If you do this, you will in fact come across many of the classes which
are the subject of the next chapter.

Summary—Why Have Dependency?

The dependency mechanism is a general-purpose, reusable way of
arranging for one object to know about changes to another object.
Objects which are interested in changes register their interest by
becoming dependent on the objects they're interested in changes to.
When those objects change, provided they are sent (or send to
themselves) a 'changed' message, then an 'update' message will be
sent to all interested objects (the dependents) allowing them to do
whatever they want to as a result.

You might ask the question 'Why not just arrange for an object
which changes to send a message directly to another object telling it
about the change?' The answer is that at the time you are writing a
particular class you may know that other objects will be interested in
changes in your objects, but you don't know which other objects or how
many of them there will be. This means you can't send explicit
messages to well-known objects saying 'I have changed'. What you do
instead is announce that you have changed (by sending yourself a
'changed' message), and let the dependency mechanism inform those
objects who have said at run-time that they're interested in knowing
about the change (your dependents) that the change has occurred (by
sending them an 'update' message).

In this way, the dependency mechanism can be more dynamic than
hard-coding messages between objects could ever be. It also permits a
sort of naivety among objects about who is interested in them.
Although this sounds bad, it actually helps the encapsulation, or
partitioning of functionality, which OOP encourages. This in turn

89

greatly enhances the reusability of classes which use dependency to
inform interested parties that something about themselves has changed.

This run-time registration of interest, and strong encapsulation, are
also two of the features of probably the largest user of the dependency
mechanism in the standard Smalltalk system. The Smalltalk graphical
user-interface is based around an architecture which makes explicit and
frequent use of 'change' and 'update' messages. This architecture is
called Model-View-Controller, or MVC, and it's the subject of the
next chapter.

90

The MVC Architecture

One of the most talked about, but least understood aspects of Smalltalk
is the so-called MVC architecture. MVC (which stands for
Model-View-Controller) has been confusing beginners since Smalltalk
first appeared. This is unfortunate because it is also one of the most
powerful and useful architectural features of the class library. It is in
fact the basis for the point-and-click user-interface which Smalltalk
uses.

If you use the VisualWorks GUI tools to build your user-interfaces,
you are to some extent insulated from the details of MVC. It is
however, still very useful to have at least an appreciation of the
structures which VisualWorks is constructing for you. Sooner or later
you will want to explore user-interfaces beyond those which
VisualWorks can easily generate. In these cases a good understanding
of the principles of MVC is essential.

The goal of this chapter is to explain clearly and concisely what
MVC is about, how it works and how to use it. Don't be put off by
what you may have read before, or by what you might have heard.
Although at first it sounds complicated, MVC soon becomes second
nature. However, before trying to understand MVC you must have a
reasonable understanding of the dependency mechanism on which it
relies. Provided you have read and understood the previous chapter
though, you should have no problems in this respect.

Like many parts of this book, this chapter will consider the
architecture of MVC, but won't go into great depth on how it is
implemented. If you need details about the various kinds of class which
are available (and which change fr®m version to version), go to the
manual, or better still browse the class hierarchy.

91

Chapter^

Basic Concepts

The description MVC describes a particular way of building
applications which incorporate graphical user-interfaces. These days we
are all familiar with windows, icons, push-buttons and so on—all
driven by a mouse or some other pointing device. However when
Smalltalk was created, such interfaces were only just being invented.
Smalltalk's designers had to come up with a way of implementing a
graphical user-interface in a way which would be extendable. MVC is
what they came up with.

The basic premise behind the MVC architecture is that the user-
interface of an application should be separated from the application
functionality itself. Sometimes this is done in conventional (non-object-
oriented) programs and sometimes it is not. Some object-oriented
programs don't do it either, but it's not difficult to see the justification
for advocating this separation.

Separating the application from its UI allows them to be developed
separately. More importantly, it allows a new and different UI to be
easily connected to an existing application. It also allows components
of an existing UI to be reused on a new application. Finally, it allows an
application to be used without its UI, perhaps by another application.
The diagram below shows these options. You can see that all these
justifications are related to the modularity, reusability and
encapsulation which object-orientation promotes.

By separating the application
logic from the Uf, an application
can have several user -
interfaces, or none.

92

The MVC Architecture

In Smalltalk, this separation of an application into its functionality and
its user-interface is accomplished by using separate objects to
implement the two parts. The most important objects on the application
functionality side are referred to as models. They are the M in MVC.
The most important objects on the user-interface side are referred to as
views and controllers. They are the V and the C in MVC.

The class library actually provides three classes called Model,
view and Controller . Most objects which are behaving as models,
views, or controllers (and we'll see what that means shortly), inherit
from one of these base classes. This isn't always the case though,
especially for models, so don't let that confuse you. What's important
in MVC is whether an object is behaving like a model or a view or a
controller, not whether it necessarily inherits from Model, view, or
Controller. Of course, every Smalltalk program also contains lots of
objects which aren't models, views, or controllers. Don't get the
impression these are not important—they are, it's just that they're not
the subject of this chapter!

The MVC Architecture

The MVC architecture divides an application up into objects we can
think about as being of three types: models, views and controllers. Let's
start by taking a look at what each of these kinds of object are for, and
how they interact with the other kinds.

Models

Models implement application functionality. They are responsible for
holding the data which is relevant to the application, and acting upon it
in the ways the application defines. They can be very simple (for
example, an instance of class String can be a model), or very
complex (perhaps an entire word processing application). Very often,
several model objects will work together to implement the application,
and we'll see a particular way of arranging this later.

What matters is that models hold the data, and act upon it in ways
which are independent of the user-interface. This allows different user-
interfaces, or other objects, to use the model functionality. You can
start to see a similarity to the naivety we talked about when discussing
the dependency mechanism.

93

Views

Views present information to the user. They are responsible for taking
the data held in model objects and displaying it on the screen in the
form of text, graphics, widgets and so on. However, views don't
'understand' the data. Neither do they act upon it, except in the ways
necessary to display it.

The class library provides all sorts of different views. These allow
you to display the data in your models in all sorts of different ways,
without having to change the models. You will find that there are views
for everything, from whole windows to scrollbar buttons. A single
window almost always contains many view objects cooperating
together to create the user-interface.

Controllers

Views are responsible for the output, or display side of the user-
interface. Controllers on the other hand, are responsible for handling
input. They 'listen' to the keyboard and mouse, and interpret input from
both in terms of how the model must be manipulated. Again, the system
class library contains many different controller classes. Each one of
these controllers is usually specialised to work with one or more types
of view. Controllers are always paired up with views, but they tend to
be the 'poor relation' of the two. Wherever there's a view though,
there's usually a controller lurking in the background.

Putting MVC Together

You should now have a basic idea of how the models, views and
controllers in an application work together to implement the
application's functionality, present it to the user and allow the user to
interact with the application. As the next diagram shows, models, views
and controllers tend to form little 'triads' of co-operating objects. Each
model object is interfaced to the screen, keyboard and mouse by a view
object and a controller object.

Sadly, the partitioning of functionality among models, views and
controllers, is not an exact science. Sometimes, 'view-like'
functionality leaks into models when they have to know something
about exactly how they're being presented on the screen. At other
times, 'model-like' functionality leaks into controllers, where it is more
convenient to deal with mouse-clicks and so on. Don't worry too much
about this. The important thing when designing a system, and deciding

94

The MVC Architecture

The views and controllers
work together to control
the user-interface to
the models.

what to put where, is to try to remember why functionality should be
split the way it is. Keeping in mind the normal OOP goals of
modularity, reusability and encapsulation should help you to make the
right decisions.

MVC Details

Now that we've looked at the principles behind MVC, and considered
its basic architecture, we will look at some of the details behind how it
is implemented in VisualWorks. If you're interested in understanding
all the details you should look in your manual, or browse the system
code. Be wary though if you are familiar with programming in another
window system, Smalltalk works quite differently from MS-Windows,
the X window system or the Macintosh. In particular, the window
system is polled, not event-driven. This may change in the future, but
for now you should be aware that it makes programming with the
Smalltalk UI different from most other window systems.

Look carefully at the next diagram. It shows the relationships
between the model, view and controller objects. The view has two very

95

Chapter 9

The relationships between model
view and controller objects.

important instance variables (as well as many others, of course). There
is a variable called model which contains the model the view is
displaying, and a variable called controller, which contains the
controller used to modify the model when the user uses the mouse or
keyboard to interact with the system. The view also has variables which
point to its 'container' in the window (the larger view it is probably a
part of), and to its 'components' (the things it in turn contains).

Similarly, the controller has two important instance variables
shown in the above diagram—model and view. These variables
contain (or 'point to' if you prefer to think of it in that way) the model
and the view objects respectively.

Notice how the view and the controller are fully aware of each
other's existence, and of the existence of the model. This means that the
view is able to ask the model (because it knows which object it is) for
the data it is supposed to be displaying on the screen. Likewise, the
controller is able to send the model messages telling it to perform
operations when commanded by the user through the mouse or
keyboard.

The model does not have instance variables containing the view or
the controller (it has plenty of others of course!). Instead, the view has
made itself a dependent of the model. This means that (provided the
model uses the 'changed' messages which are part of the dependency
mechanism) the view will get to know if the model changes in some

96

The MVC Architecture

way, and can reflect the result on the screen. The model meanwhile,
remains blissfully ignorant of which view or views are being used to
display it.

This arrangement has a number of effects. Firstly, views and
controllers are tightly linked together and can co-operate extensively.
For example, when a controller receives a mouse-click, it may know
the co-ordinates of the click, but will have to ask the view what object
is being displayed there, in order to decide what action to take. It also
means that views and controllers always come in pairs. In fact, when
you make an instance of one of the many views in the class library, you
will get an instance of the appropriate controller class automatically
attached to it, without really noticing it. Most views in the system know
what class of controller should go with them.

You might ask why the jobs of the view and the controller are not
combined into a single object. This is a good question, and there are at
least two answers. First, having them separate makes it possible to
combine them in different ways. You might use the same controller, but
change the view to display the model's data differently (to get a
different look). Alternatively, you might use the same kind of view, but
change its controller to work differently with the mouse (to get a
different feel).

The other answer to the question is that separating the view and
the controller allows them to inherit from different classes. This means
that the view functionality and the controller functionality can be
structured quite differently in the class hierarchy. This technique of
composing functionality from combinations of instances is actually one
way of overcoming Smalltalk's lack of 'multiple-inheritance' (where a
class can inherit not just from one direct superclass, but from several
superclasses at the same level).

The other result of the way the model, view and controller are
structured is that the model is not directly aware of the view (or of the
controller for that matter). This means that a different view/controller
combination could be plugged into the model to display and interact
with it differently, without the model having to be changed at all. Also,
because dependency is used to connect the view to the model, the
model can in fact have more than one view/controller at the same time.
As many views as want to, can become dependent on the model, and
display its data simultaneously. They will all receive 'update' messages
whenever the model changes (provided it sends itself the right
'changed' messages of course), and they will all know to redraw
themselves if necessary as a result of the change.

97

Chapter 9

The messages which pass between
model, view and controiler.

MVC in Action

The preceding sections have explained the concepts behind MVC and
described how models, views and controllers are connected together.
This section completes the picture by showing how MVC works at run-
time. We'll use a very simple example—a checkbox which can be
either 'on' or 'off. The classes and methods are fictional to make them
very simple, but this simple example illustrates the concepts which
more complex models, views and controllers build upon.

The diagram above shows the three MVC objects. There is a
model (ButtonModel) which has a single boolean variable—one that
can take one of only two values, true or false. This variable is called
value. There is a view (ButtonView) which is responsible for
producing a graphical representation of the state of the value variable
in ButtonModel, in the form of a three-dimensional widget on the
screen. Finally, there is a controller object (ButtonController)
which is responsible for changing the state of the value variable in
ButtonModel whenever the view's button widget is clicked on by the
user. The following might be a typical sequence of events in the life of
these objects:

1. The window in which Butfconview is sitting is opened and so
ButtonView has to draw the widget for the first time. To
determine the correct look (pressed in or popped out), the view
sends the model the message value. The return value from this
message will be either true or false, and the view uses this
information to decide how to draw the widget.

98

The MVC Architecture

2. The user comes along and clicks the mouse on the area of the
screen managed by ButtonView. The ButtonController sees
this, and enters into a dialogue with ButtonView to determine if
the click was actually within the checkbox widget. If it was, the
controller must send a message to the model to tell it to invert its
state (become true if it was false, and vice versa). Now, the
controller doesn't know the current state of the model so it
evaluates something like: model value : model value not. If
you think very carefully about this expression, and remember the
rules of precedence, you'll see that the controller is asking the
model for its value (using model value), inverting it (not), and
sending the result back to the model (value :).

3. The model has now been changed, and as part of its value:
method it sends itself the message changed: #value. This
causes an 'update' to go out to all the model's dependents
informing them that an object upon which they are dependent has
changed.

4. The BufctonView, being one of the model's dependents, receives
the update in the form of the update: ttvalue message. Its
implementation of update: simply re-executes the code that it
used to draw the widget in the first place. This sends the message
value to the model to find out the new value, and then draws the
widget appropriately.

You should try to remember a number of important points from this
example. First, neither the view nor the controller hold onto the
model's state (true or false). Every time they need it, they ask for it.
Second, the controller doesn't know anything about the visual layout of
the widget. When it needs that information, it asks the view. Third,
when the controller changes the state of the model, it doesn't directly
tell the view. Fourth, the model doesn't know about the view. When its
state is changed by the controller, it's only because of the dependency
mechanism that the view gets to know about the change. Finally, when
the model tells the view that it's changed (using dependency), it doesn't
tell the view the new state—it only tells it what aspect has changed
(ftvalue, meaning that the instance variable called value has
changed). The view has to ask the model for the new state of that
variable.

We can now imagine that this example could be extended in a
number of different ways. ButfconModel could start holding more
information than just a boolean variable. For example, it could hold the

99

Chapter 9

string which would be used by the view to label the checkbox.
Bufctonview would then have to send an additional message to
retrieve the label from the model before displaying it. Also, instead of
executing self changed: frvalue to let its dependents know it has
changed, ButtonModel could be more helpful by executing self
changed: ftvalue with: self value. This would pass the new
value of the value variable directly on to the dependents, thus
avoiding the need for them having to ask for it.

Finally, notice how the diagram shows that an unknown 'third
party' (not ButfconController) could also change the state of
BufctonModel by sending it a value: message. To the model, this is
indistinguishable from the controller doing it, and so the dependency
mechanism still kicks in, allowing the view to reflect the new state of
the model correctly.

An Extension to MVC

We have now completed our discussion of the 'classic' MVC
architecture of Smalltalk. If you have understood the principles, even
partly, you've understood what many people consider to be the most
difficult part of programming in Smalltalk. However, the VisualWorks
system extends the notion of MVC very slightly. It does this both to
reflect the best practices in using MVC established over the years, and
to make MVC more 'pluggable' (a topic we'll address in the next
chapter).

The basic modification is to split the model part of MVC into two
pieces. These are usually referred to as the data model, and the
application model. This split reflects the dual role which many model
objects have—they act as a store for the application's data, and they act
upon that data in application specific ways. The diagram on the next
page shows what the resulting architecture looks like. If you build your
application's user-interface using the VisualWorks tools, you will
construct an architecture that looks similar to this.

Splitting the model in this way removes application specific
processing from the data model, making it much more reusable. It also
provides something, of a justification for putting some user-interface
functionality in the application model. After all, in some cases an
application is nothing more than a particular set of operations with a
particular user-interface. Consequently, it does not matter too much if
the application model knows some things about the user-interface. In
this case the application is the interface. .

100

The MVC Architecture

The MVC's model objects can
be split into an application model
and several data models.

Making this split also allows the different types of model to inherit
from different places. Typically, data models are things like collection
objects, strings, numbers, booleans, files and so on. In other words,
they're instances of some of the basic 'data structure' classes in the
system being used to do what they do best—store and manipulate data
in general ways.

On the other hand, typical application models are objects
representing things like browsers, dialogs, editors and the like. When
you create classes like these in VisualWorks, they will usually inherit
fromApplicationModel. This is a class which provides the basic
hooks for creating such application models in the VisualWorks

environment.Summary

Although sometimes a source of much confusion, MVC is really not as
difficult to understand and use as Smalltalk mythology might have you
believe. One way of looking at the MVC architecture is as a. framework.
Rather than having to architect every Smalltalk program from scratch,
MVC gives you a ready-designed architecture exactly suited to building
applications with graphical user-interfaces. It then goes on to give you a
whole range of classes (models, views and controllers) which work
with this architecture, and which you can reuse in your own programs.

The architecture is based around a few simple principles, mainly
the notion of encapsulation—the separation of application and data
(model) functionality from presentation (view) and interaction

101

(controller) functionality. MVC also makes use of an important
mechanism in Smalltalk (dependency).

Provided that you understand this mechanism, and you try to work
within the encapsulation principles, you will find that the MVC
architecture works almost like magic to support your programming. If
you find yourself in difficulty, it is likely that you're trying go 'against
the grain' of MVC. That's a good time to look again at your design, and
think about whether it is obeying the principles we've discussed in this
chapter.

Many of the MVC classes in the class library are designed to be
reused by you without any further subclassing. In other words, you
reuse them not by inheriting from them, but by instantiating them. To
support this form of reuse, and yet retain maximum flexibility, these
classes make use of a concept called 'pluggability'. As we've just
observed, when you use VisualWorks to build an application, the
resulting code will have separate application and data models.
VisualWorks actually connects these models together using objects
called 'adaptors'. The two concepts of pluggability and adaptors are
therefore the subject of the next chapter.

102

Pluggability and Adaptors

One of the key benefits of object-oriented programming is reuse. The
ability to make use of someone else's code (especially that in the class
library) and to write your own reusable classes, is what makes OOP
more productive than conventional programming. This seems obvious,
but in fact there are several ways to reuse existing code.

The first form of reuse we tend to think of when doing OOP is
inheritance. This allows you to define new classes simply by specifying
how they differ from existing classes. Since the differences are
normally much smaller than the overall functionality, a great efficiency
gain is thereby made.

A somehow less obvious but in Smalltalk more frequent form of
reuse is to simply make instances of existing classes and use them
without inheritance. Whenever you use numbers, strings, collections,
widgets and all the rest of the classes in the library you are doing
precisely this.

A third form of reuse is to treat Smalltalk like a software
constructor kit, and 'plug' instances of existing classes into each other,
without actually writing any classes of your own. This is the technique
which the VisualWorks GUI tools rely on very effectively.

The last two forms of reuse can give rise to a problem. When you
make instances of collection classes for example, you (the programmer)
know the protocol (the set of messages) they support and can write your
code appropriately. However the writers of the UI widget classes had
no idea what protocol your classes would understand, and so couldn't
specialise the widgets to work with them. Similarly, treating Smalltalk
as a constructor kit means that all the components have to be able to
plug into each other, and so must be configurable in ways which could
not have been anticipated when the classes were written.

103

Chapter 10

Fortunately, there are a couple of mechanisms in Smalltalk (blocks and
performs methods) which allow programmers to build in the kind of
flexibility needed to overcome these problems. There are many classes
in the class library which take advantage of this, and it is just some of
these classes which are the subject of this chapter.

The notion of pluggability, and the classes which support it, are
worth studying for a couple of reasons. First, they form the basis of the
VisualWorks GUI tools. Although VisualWorks does its best to hide
you from the complexities involved, there are times when if your code
doesn't work the way you expected, you will have to lift the lid and
find out why! Second, the programming techniques involved illustrate
some of the most powerful features of Smalltalk—features which you
will find invaluable in trying to write your own reusable classes.

To understand the message of this chapter, you need to understand
the mechanisms on which pluggability is based: blocks and perform: .
We looked at blocks in Chapter 4—The Smalltalk Language, so we'll
start here with an introduction to perform: .

The perform: Mechanism

In chapter 4 we looked at the syntax for sending messages to objects.
To send a message to an object you just name the object and then type
the message you want to send to it. For example:

MyObject reset.

When this code is run the system looks up the class ofMyObjecfc and
calls the appropriate implementation of the method reset for that
class. You might remember that this run-time lookup of the method is
what gives rise to polymorphism—different objects responding
differently to the same message. This is a very powerful feature of
object-oriented programming, but in Smalltalk even this flexibility is
sometimes not enough.

In the example above, the implementation of reset to be used is
not known until run-time, but the name of the method is known at
compile-time (when the method is saved using accept in a browser).
However, sometimes even the name of the method can only be decided
at run-time. For cases like this Smalltalk provides a set of methods
called perform: and its derivatives. These methods allow you to tell
an object to execute a method whose name, rather than being hard-
coded as above, is sent as a parameter. This means that the name of the
method need not be known until run-time. For example:

104

Pluggability and Adaptors

MyObject perform: MyCommand.

When this expression is evaluated MyObject will be sent whatever
message is contained in the variable MyCommand. This is expected to be
a symbol naming a method understood by MyObject. So if
MyCommand had the value ftreset, the message reset would be sent
to MyObject. Note that the name of the method needs to be a symbol,
not a string.

If a message with parameters needs to be sent to an object, there
are variations of the perform: message which can send 1, 2, 3 or a
whole array of parameters. These variations are:

per form: with:

per form:with:with:

perform:with:with:with:

perform:withArguments:

This mechanism may seem rather peculiar, and indeed you should use it
with caution as it is rarely needed, is less efficient, and more confusing
than an ordinary message send. However, there are times when you're
trying to write reusable code, when perform: is a powerful facility.
Together with the notion of blocks, perform: is the basis for the
pluggability which is the subject of this chapter.

Pluggability

Hopefully you can now start to see how it is possible to write classes
which perform general functions, and which can be customised by
giving them either a block of code (which they run by sending it the
message value) or a symbol (which they send as a message to another
object using perform:). The block or symbol is held in an instance
variable of the class. Only the fixed messages value and perform:
need be hard-coded by the original programmer, with the symbol or
block being provided by the reuser at run-time. This effectively allows
the behaviour of a pre-defined class to be modified without subclassing,
and on an instance-by-instance (rather than a class) basis.

Several classes in the class library make use of the 'indirection'
which this pluggabilityallows. We're going to look at just three of
them—one which provides indirection without using either of the
above mechanisms (ValueHolder) , one which uses per form:
(AspecfcAdaptor) and one which uses blocks (PluggableAdaptor).
The diagram overleaf shows the fragment of the hierarchy into which

105

Chapter 10

A portion of the class hierarchy showing
subclasses of valueModei, including
ValueHolder,AspectAdaptor and

PluggableAdaptor.

these classes fit. You can see that there are many other similar classes
(some have been omitted from the diagram for clarity), and you should
feel free to browse and use these classes as necessary. All the classes
inherit from ValueModei. This fragment of the hierarchy is also a
good example of the kind of abstraction which inheritance
permits—generating highly reusable but sometimes a little opaque class
definitions.

The general purpose of instances of all these classes is to act as
connectors or adaptors between two other objects. The diagram below
shows this in action. Adaptors translate the protocol or messages sent
by each object into messages the other object understands. This is what

Adaptors allow you to
connect two objects
together by
converting the
protocols they speak.

106

Pluggability and Adaptors

Adaptors can connect
Ul objects (widgets)
which speak only
value /value: to
model objects with their
own protocol.

allows for example, Object A and Object B in the previous diagram to
work together without having been built to do so.

The most important use for this mechanism is in the user-
interfaces built by VisualWorks. All the widget classes (radio-buttons,
text-fields, etc.) speak a fixed protocol. They send the message value
to their model when they want to know what to display, and send the
message value: to the mode! when they want to change it.

Most model objects do not understand this value/value:
protocol, and so it must be converted to something they do understand.
Each of the three classes we will look at does this in a different way.
Each class understands the same value /value: protocol on one side,
but does a different thing on the other. The diagram above shows this.
Let's now look at these classes one by one.

The ValueHolder Class

Instances of class ValueHolder allow VisualWorks widgets to work
with the simplest of models. They are basically 'wrappers' which
enclose simple model objects like instances of String, Number or
Boolean, and make them respond to value and value: instead of the
more complex protocol they normally understand. Instances of
ValueHolder are created by sending the message asValue to any
object. Look at the implementation of aaValue in Object to see this.

When a ValueHolder is sent the message value, it simply
returns the object it is wrapping (its 'value'). When it is sent the
message value: with a parameter, the ValueHolder throws away its
original value and replaces it with the object sent as a parameter. Notice
what this means. When a widget wants to 'modify' the value of its
model (a String for example), the model isn't changed, it is replaced.
This has important implications for anyone else using that model, and is
the other reason for using a ValueHolder.

107

Chapter 10

A valueHoider converts a simple model
for use by a widget and allows the model to
be shared amongst several other objects.

If the actual string being displayed was referenced by all the other
objects interested in it, whenever it was thrown away and replaced, all
these objects would have to have their references changed. However,
by using a ValueHoider which is never replaced, all the objects using
a model can just keep hold of the same ValueHoider, even though its
value is changing. The diagram above shows how a ValueHoider
allows a string (' Zebra') to be interfaced to a TextEditorView and
be accessed from a domain model.

In this way, instances of ValueHoider act as containers which
stay around, even though their contents (their values) are coming and
going. If you're familiar with C programming, you can think of this as
being somewhat like a pointer to a pointer (don't worry if this doesn't
mean anything!).

As well as acting as containers for objects, instances of
ValueHoider can also let interested parties know when their values
change. This is possible thanks to the dependency mechanism discussed
in chapter 8. ValueHoider even provides a convenient way to connect
to this using the onChangeSend:to: method. This allows you to ask
the ValueHoider to send a particular message to a particular object
whenever its value is replaced (which is what a change means in a
ValueHoider). For example:

MyValHold onChangeSend: ttrefresh to: MyDoaiainModel.

This expression arranges for the message refresh to be sent to
MyDomainModel every time the value of MyValHold is changed by
being sent the message value:. You might like to try browsing the
code to see if you can see how ValueHoider uses another class,
DependencyAdaptor, to make this happen.

108

Pluggability and Adaptors

The AspectAdaptor Class

AspectAdaptor is similar to ValueHolder, but provides an interface
to more complex models. For example, you might have created a class
with several instance variables holding strings, numbers and so on. You
may also have created 'get' and 'set' methods for those instance
variables. The names of these methods should be the same as the
instance variable names, so you might have methods called
insideLeg and insideLeg: to get and set the value of the
insideLeg variable (as in the diagram below). Now you want to
display and edit the value of this variable in a TextEditorView.
However, the view sends the messages value and value: when it
wants to get and set the value of the object it is displaying. So, you
need a way of converting these messages into the ones your class
understands. This is what AspectAdaptor does.

In this context, the insideLeg variable is referred to as an
'aspect* of your model. The task of AspectAdaptor is to interface the
general-purpose view object to just one aspect of the model. To do this,
it needs to know which messages to send. The As pecfcAdaptor refers
to these messages as the getSelector and the putSelector
(selector is a term frequently used to refer to a message name). When
you make an AspectAdaptor you can either set these two messages
at the same time using the forAspect: message (in which case the
getSelector will be set to the symbol you give, and the
putSelector to the same symbol with a colon (:) appended), or
(more unusually) you can set them separately using

109

Chapter 10

accessWith:assignWith:. You must also tell theAspectAdapfcor
which object it is adapting using the subj ect: message.

The AspectAdaptor will also propagate 'update' messages. To
make this happen, make sure you have sent the message
subjectSendsUpdafces : true to the adaptor. Then, if the domain
model changes the value of insideLeg, and provided it sends itself a
changed: # insideLeg message, the AspectAdaptor will forward
the resulting update: message to the view.

The PluggableAdaptor Class

Instances of PluggableAdaptor take the whole concept of
pluggability a stage further than AspectAdaptor. Instead of merely
being able to provide selectors to be used to adapt a model to a view,
you get to provide entire blocks of Smalltalk code. The blocks are
called the getBlock, the putBlock and the updateBlock. They are
executed when the PluggableAdaptor receives the messages value,
value: andupdate:with:£rom: respectively. This gives a great
deal of flexibility in adapting a model to a view. Here is a simple
example in which we wish to adapt a view to a model which holds a
value in the variable insideLeg in inches, but we wish to display and
edit it in centimetres.

MyPA := PluggableAdaptor on: MyModel.
MyPA getBlock: [nn | m insideLeg * 2.5]

putBlock: [:m :v | m insideLeg: (value / 2.5)1
updateBlock: [:m :a :p | (a = ttinsideLeg) & (p > 34)].

First, we make an instance of PluggableAdaptor and connect it to
the model (MyModel). This tells the PluggableAdaptor what object
to send as the :m parameter in the above blocks, and instructs it to
become a dependent of that object. Then we set the values of the three
blocks.

The getBlock takes just a single parameter, :m — the model
(which will be MyModel). When executed it sends the message
insideLeg to the model, multiplies the result by 2.5 and returns it.
This has the effect of adapting the value message sent by the view to
the PluggableAdaptor to a more complex operation performed on
the model.

The putBlock takes two parameters, :ni and :v — the value (the
object sent as the parameter to the value: message). In this case, the
value is divided by 2.5 before being sent to the model using the

110

Pluggability and Adaptors

Several P luggableAdaptor

objects being used to adapt
different aspects of a single
model to individual views.

insideLeg: message. This has the effect of adapting the value:
message sent to the P luggableAdaptor to another complex operation
performed on the model.

Finally, the updateBlock is executed by the
PluggableAdapfcor whenever it receives an update message from the
model. This might happen if MyModel has changed the value of its
insideLeg variable and sent itself the message changed:
#insideLeg with: insideLeg. This informs all its dependents that
insideLeg has changed its value, and sends them the new value.

The P luggableAdaptor must decide whether to forward this
update on to its own dependents (typically a view). To make this
decision, it runs the updateBlock. If it evaluates to true it forwards
the update, if it evaluates to false it does not. If the updateBlock
evaluates to anything else an error is generated, so be careful!

This process allows PluggableAdaptors to filter the many
updates they might receive from their model, and forward only those
that the view is interested in. This is essential because, as the diagram
above shows, a given model may have many instances of
P luggableAdaptor connected it. The model may generate an update
whenever any of its variables changes, and all of the adaptors will
receive these messages. If the update messages weren't filtered, all the
views would refresh themselves when only one needed to. This can
cause unpleasant flickering on the screen.

Instances of P luggableAdaptor really do lead a double life.
They connect a model to a view, appearing to be like a model to the
view, and like a view to the model. The code that can be placed in their
blocks is essentially unlimited, and this can make them very powerful
indeed. Be careful though, because code placed in blocks, and hence

111

applying to only one instance, is invariably more difficult to debug than
code in the model object (see Chapter 15—Debugging Smalltalk Code).

Reuse is one of the key benefits of OOP, and in Smalltalk pluggability
is one of the ways in which reuse is achieved. This chapter has
concentrated on just three of the classes in the class library which are
pluggable. Each of these classes adapts the value, value: , and
'update' messages to something more appropriate. This means that
view-like objects (buttons, text-editors, etc.) which typically send
value and value: can be connected to model objects which don't
directly understand these messages.

Don't worry if you haven't understood the details of what these
adaptor classes do. In many cases their functionality is hidden and you
needn't worry about it. As long as you have understood the general
principles, you will be in a good position to work out exactly what is
happening as and when you need to do so.

Many other classes in the class library are also pluggable, and you
should feel free to browse them to discover how they work. Be aware
though, that pluggability is one of the features that has been around in
the class library for a little while, which is why there is some
inconsistency in the way it is implemented, and in the way the classes
are named.

Finally, if you have really understood the concepts presented in
this chapter, you should find that if you need to build classes which are
reused in general ways by other programmers, pluggability is one of the
ways you'll consider.

112

The Art of Smalltalk

Introduction to The Art of Smalltalk

In the first part of this book we looked at the 'science' of Smalltalk
programming. We discussed how one of the key features of Smalltalk is
that you do not have to know everything about it in order to be highly
productive. The emphasis in Part I was on what you really have to
know to get started.

If you've read and understood most of the chapters in Part I you
should now have a good understanding of what an object is. You
should also be familiar with the Smalltalk language, happy with the
basics of the Smalltalk development environment, and know something
about the most important classes and features of the Smalltalk class
library. Hopefully, you will also have experimented for yourself, at
least with the examples in the text, if not with more complex
constructions of your own.

In theory everything else is just more of the same. With enough
time and exposure you could become intimately familiar with the
development environment and build up an extensive knowledge of the
class library. More importantly, you would also build up the bank of
personal experience which proficient Smalltalk developers use all the
time to guide their design and programming activities. It is this second
kind of knowledge, combined with the basic flexibility and power of
Smalltalk, that makes Smalltalk programming so productive and
rewarding. This kind of knowledge is the 'art' of Smalltalk.

Aims of The Art of Smalltalk

Part n of this book introduces the 'art' of Smalltalk. It is essentially a
set of guidelines—giving advice which you may choose to follow as

115

Chapter 11

little or as much as you please. The emphasis here is on practical
experience, rather than theoretical methodology. That's not to say that
precise methodologies don't have a place—they do, especially in large
and complex projects. However, a methodology is not necessarily a
substitute for the 'common sense' and practical experience which forms
the basis of The Art of Smalltalk.

Some of the advice given here is probably generally applicable
across all object-oriented languages (if not all of programming). Since
this is a book on Smalltalk though, and since you are presumably
interested in how to be maximally effective in Smalltalk, most of the
advice is presented specifically in the context of that language. Because
of this, you're assumed to have at least a reading knowledge of
Smalltalk and OOP concepts, gained either from Part I or just as
valuably, from previous Smalltalk experience.

Structure of The Art of Smalltalk

We'll be splitting The Art of Smalltalk into several pieces. In fact, we'll
follow the development cycle presented roughly in the diagram below.
This is of course a classic development cycle, and it's as applicable in
Smalltalk as anywhere else. The only thing that's different is how
quickly you can get around the loop. In Smalltalk it's possible to
traverse it very quickly indeed. How quickly you actually iterate around
this cycle depends on you—it may be minutes, or it may be days,

116

A classic development cycle
—as applicable in Smalltalk as
any other language, although
perhaps traversed more rapidly.

Introduction to The Art of Smalltalk

weeks, months or even years. You will always find though that your
activities can be classified according to this cycle.

The first thing we're going to look at then is designing for
Smalltalk. Like many things there isn't necessarily a right or wrong
way to go about doing this. What we'll do therefore is to consider some
ideas and principles which might help you think about that most
difficult of 00 tasks—'finding the objects'. We'll also cover the
various ways in which you can help make your classes more reusable.

One of the more important aspects of design is the use of
inheritance, and so we'll consider that in some depth. It's easy to use
inheritance for the wrong things in Smalltalk, but hopefully once you're
aware of the various pitfalls you'll be able to avoid them.

Next we'll look at coding in Smalltalk, including using
conventions that will make your code easier to maintain, and more
reusable. Then we'll look at using the Smalltalk development
environment for maximum efficiency. It's very easy to get stuck using
just a minimal set of functionality, so this chapter tries to break that
habit!

Since it's unlikely that all your programs will work first time,
we'll then look at debugging in Smalltalk, which can be an art in itself.
We'll also talk about a whole range of common bugs which appear in
Smalltalk programs again and again, or which are particularly difficult
to find, and so are worth trying to avoid.

Finally, we'll cover some of the important issues which arise in
the management of a Smalltalk development project, look at how to
work in a team of Smalltalk developers, and summarise the message of
this book as a whole.

One of the areas we won't be covering here is requirements
analysis. Just as in conventional programming, you must have a good
understanding of the problem you are trying to solve before you try to
design a system to solve it. Smalltalk doesn't make that part of the job
go away. The only thing that is probably true is that the speed of system
development in Smalltalk may permit you to discover early that you are
solving the wrong problem. Likewise, the iterative nature of the
development process may allow you to change the problem you are
solving halfway through. However, just as in conventional
programming, neither of these things allows you to get away with not
knowing what you're trying to do at any particular time.

Sadly, the art of Smalltalk is probably more difficult than the
science. Only you know exactly what you're trying to do, and so only
you can decide whether the advice presented here is applicable to your
situation, and if so whether even to apply it. However, if you're an

117

experienced programmer, you can take some comfort here. You should
find that you can actually reuse many of your existing design and
programming skills once you realise how they relate to object-oriented
programming in general, and to Smalltalk programming in particular.

As we've said, there is no one 'right' way to go about designing
and programming in Smalltalk. If you have a way which works well, by
all means use it. What is presented here is just one developer's set of
practical experiences. If you read and understand them, they should
help you rapidly climb the learning curve, and help you develop your
own Smalltalk experience bank. Let's now start at the beginning by
considering the art of designing for Smalltalk.

118

Designing for Smalltalk

The subtitle of this chapter could easily be 'Finding the Objects'. It's
all very well understanding what an object actually is, but it's much
harder to decide what kinds of object you should design in order to
implement an application in Smalltalk. Indeed given a set of
requirements for an application and a development system like
Smalltalk, 'finding the objects' is easily the most difficult task an
inexperienced 00 developer has to face. But then learning about
concepts and techniques is always more difficult than learning about
programming languages or tools.

Take heart however. If you're an experienced procedural
programmer you probably find it very easy to decide what functionality
to put in which procedure in order to create elegant programs. But it
wasn't always that way. When you first started programming you may
have found this partitioning quite hard. One way or another though, it
became a natural skill. Just like splitting a program into procedures,
splitting a program into objects is something that can also become a
very natural skill. Sadly, it does take time and experience to acquire the
skills of object-oriented design (OOD). The aim of this chapter is to
help you acquire these skills more quickly.

We can't really hope to do justice to the full range and depth of
OOD in one chapter. That takes whole books or more. Instead, the
intention here is to give you a feel for what doing the design for
systems which will be realised in Smalltalk is like. We'll look at how it
is different from 'conventional' design, what the major considerations
are, and what tasks OOD involves. We'll consider some ways of trying
to 'find the objects' (although sadly, there will be no magic spells), and
finish by looking at how to make good use of inheritance. We'll
illustrate the theory with some examples, and although it's not always

119

Chapter 12

perfect, if you really want to see more examples of good Smalltalk
design, you could do much worse than look at the classes in the system
library.

How Designing for Smalltalk is Different

It's important to be aware of how the process of doing design for
Smalltalk systems is different from doing conventional design. Some
differences are obvious. In conventional programming, you can
consider the structure of the data separately from the structure of the
code which acts upon it. The very nature of OOP means that these two
concepts are bound together. In Smalltalk (but not for example, in
C++), every single bit of code has to be associated with a class. This in
itself can cause beginners trouble.

We have discussed several times how developing in Smalltalk is
alliterative process. This means that periods of analysis may be
followed by periods of design, which may in turn be followed by
prototype implementation, before further design or analysis work is
undertaken. Don't let the fact that we are considering design
separately—in its own chapter—convince you that iterative
development or rapid-prototyping is an optional feature of Smalltalk
programming. It isn't.

This iterative character means you must be very careful if you
want to employ a formal process of design or use an existing
architecture, especially if that process or structure has been created for
conventional programming languages. Some existing methodologies
emphasise a waterfall approach. The system is completely designed
from the top down, then implemented from the bottom up. There is a
good reason for this. It is very expensive to correct design mistakes
when using a conventional language. However, the techniques which
are useful for waterfall development tend to break down when you use
them for iterative development. This is because they rely on one phase
of the process being completed before the next can commence—no
good for the opportunistic approach possible with Smalltalk.

Some techniques also tend to emphasise language independence.
You create a design which you could then go on to implement in C,
C++, Pascal, or whatever. However, one of the key benefits of using
Smalltalk is being able to reuse the code in the class library. To do this
you must take into account during the design process the fact that you
will be implementing in Smalltalk. Do otherwise and you could end up
specifying classes which are orthogonal to the way the existing class

120

\ . ' .- . \ . ' .- . \

Designing for Smalltalk

library is structured. You would then be forced to implement much
more functionality than would otherwise have been needed. If design
dependence on the target language seems unpalatable, think of it as
being like knowing what material you plan to build a boat from at the
time you design it. Just like real wood the Smalltalk class library has a
'grain'. Life will be much easier during implementation if your design
goes with the grain instead of across it.

Of course there are a number of excellent, more formal,
methodologies for OOD and Smalltalk. These include Hewlett
Packard's Fusion which is a general object-oriented methodology
covering all parts of the life-cycle of an object-oriented system, and
ParcPlace's Object Behavior Analysis and Design which is specific to
Smalltalk. If you are doing something other than a small- or medium-
sized project, or have particular concerns about traceability or rigour in
your approach to design, you would be well advised to consider
adopting one of these techniques. Throughout the rest of this chapter
though, we'll be talking in general terms about the concepts which
many OOD approaches share, and considering how they apply to
Smalltalk. These are the things which most Smalltalk programmers do
or think about when engaging in the informal process of designing a
Smalltalk program.

Design Considerations

When you design for a procedural language you have to ask questions
like 'What procedures should I have?', 'What should they return?' and
'What should be passed as a parameter?'. When doing OOD you have
to add additional questions like 'Which class should this method be in?'
and 'Should I subclass or encapsulate that class?' OOP forces you to
think about these issues, and in fact by doing so encourages you to do a
better job of design.

OOP does not prevent bad design though. It's just as easy to create
poorly structured, un-maintainable, bug-ridden applications which
don't meet the requirements in an object-oriented language as it is in a
conventional one. However, by being aware of what constitutes good
and bad design in OOP, and having a set of skills for creating good
designs, you stand a better chance of avoiding the major pitfalls. Let's
take a look at some of the important things to keep in mind during the
design process. They may not make very much sense now, but it'll help
to be aware of them as you read the rest of this chapter and start doing
your own designs.

121

Be aware of the benefits of good design

Good design offers a number of benefits. Higher reliability, better
maintainability, good code reuse, faster implementation, higher
performance and lower resource requirements are all among the
benefits available. Sometimes though, these attributes might be
mutually exclusive (faster implementation may imply lower code reuse
for example), so it pays to know which benefits you value the most.

Consider the interface separately from the implementation

The interface to a class is the way in which the set of functionality it
offers to programmers is exposed and made available to them. In
Smalltalk this is the set of methods which can be invoked by a
programmer using the class, or inherited along with the instance
variables by a subclass of the class. In order to maximise encapsulation,
it is important that this interface (the 'protocol' the class understands in
Smalltalk terms) is considered to be distinct from the implementation of
the functionality. Implementation should be kept private to a class, in
order that it may be modified and improved as the class programmer
sees fit.

Try to hide complexity

This is another way of saying the same thing as above. If you can
present a nice, simple, general interface to a class, and hide the
complexity of how the class implements its functionality inside the
class, do so. That way your classes will be easier to use, and you'll be
at liberty to fiddle with implementation independently.

Minimise dependencies between classes

Modularity is greatly improved if classes are less knowledgeable about
each other. This allows one class to be changed without affecting
others. It is especially true that classes should not be knowledgeable of
each other's implementation. Of course, sometimes you'll want to have
communities of co-operating classes which are knowledgeable about
each other. In this case you should consider the group of classes as if
they were a 'module'. The classes in this module should then present a
public interface which is distinct from the private protocol used
between themselves.

122

Designing for Smalltalk

Keep the user-interface separate from the application logic

Don't confuse this with the earlier guideline to keep a class's interface
separate from its implementation. The separation of the user-interface
from the application logic is a fundamental Smalltalk principle, again
intended to optimise modularity. If you understand and adhere to the
principles behind the MVC architecture you will almost automatically
keep the user-interface separate from the application logic. It is all too
easy to get them mixed up if you're not careful though, so if MVC isn't
clear to you go back and have a look at chapters 8 and 9.

Factor-out complex algorithms

Just as in conventional programming, you should try to break complex
algorithms into logical pieces. Not only will this make them easier to
write, test and debug, but it may also provide pieces which can be
reused independently. However, in view of the previous considerations,
be careful about distributing an algorithm around different classes. This
could make those classes too dependent on a knowledge of each other's
implementation.

Factor-out complex variables

Don't try to 'encode' several aspects of an object's state in one
variable. Doing so prejudices future development and reuse. Use one
variable for each aspect of the state of an object.

Create as few special-purpose classes as possible

Remember that the fact that a single class can have many instances is a
key way in which reuse is achieved in Smalltalk. If you're finding that
you need to create a lot of special-purpose classes in your application,
you probably need to think again about whether you've understood the
general concepts you're trying to model.

Have a class road-map in mind

Remember that when you're designing for Smalltalk, you're not just
designing for the Smalltalk language, what you're really doing is
designing an extension to an existing (and very large) body of
code—the class library. Try to make as much use of that body of code
as you can. Even if you don't end up inheriting from anything other

123

than Object, you'll still be designing classes which will live in that
particular environment. Making your design compatible in form and
function with the existing code will make things much easier when it
comes to implementation. In other words, adopt the Smalltalk 'style'
we're going to talk about in more detail in the next chapter.

Keep things simple

Obvious, but worth remembering. You'll find that by continuing to
iterate over a design, it will get simpler and simpler, whilst the
functionality it provides gets more general and hence more powerful.

At the highest level, design is the process of going from an
understanding of the desired behaviour of a system to a specification of
the implementation of the system. If this were a purely mechanical
process we could write a computer program to do it. Unfortunately (or
fortunately for those whose job depends upon doing it), design requires
a great deal of skill and judgement on the part of the designer.

Object-oriented design involves carrying out a number of tasks.
Each task is highly dependent on decisions made during previous tasks.
Decisions made during any task may also affect or change decisions
made earlier. Thus, even design itself is an iterative process. However,
we can break OOD down into a number of tasks which we can consider
independently. Remember though that in reality these tasks may be
merged, omitted, reordered, repeated or changed to suit the
circumstances. Don't treat the following as a recipe to be followed
slavishly—treat it as a list of ingredients. We'll look at a few of these
tasks in more detail later on, and the list is summarised at the end of the
chapter.

Decide on the required functionality

This task is very little different from its equivalent in conventional
programming. The specification (which depending on circumstances,
may be anything from a formal document to some ideas in your own
head) will say what has to be achieved. This task is the first stage of
determining how it will be achieved. What sort of data will you have to
store? In what ways will you have to manipulate the data? What will
the user-interface look like? In other words, how do requirements in the

124

Designing for Smalltalk

application domain map onto requirements in the computing domain?
There are many ways of extracting this kind of understanding, but

one which works well is the use of 'scenarios'. Pick a particular aspect
of the requirements and work through exactly what functionality will
have to be provided to support that requirement. Do this for each
important aspect of the requirements.

Identify which objects will provide the functionality

Once you know what functionality you're trying to provide, you can
start to consider how it will be implemented. This task is the first of
several aimed at 'finding the objects'. Objects can come from two
places. They may be instances of existing classes, or they may be
instances of classes written specially for this application,

Most of the existing classes you will use will come from the
standard class library. Those that don't may have been written
previously by you, or obtained from other people. You'll have to make
sure these classes really will do the job you want them to, but if they do
you'll be able to avoid many of the following tasks where these objects
are concerned.

If you cannot find existing classes which implement the
functionality you require, you will have to identify, design and
implement them yourself. Identifying objects is the most tricky part of
this process, and we'll deal with it in detail shortly.

Group the objects into classes

Whilst working out what new kinds of object your application will
need, you'll almost inevitably be thinking in terms of classes. The only
reason for talking about this task separately is to encourage you to
iterate the process of looking for commonality amongst the different
objects in your system. You should be asking questions like 'Are those
two objects really instances of the same class?'

Decide how the objects will relate to each other

Objects relate to each other in several important ways. They hold
references to each other, they send messages to each other and they
inherit from each other. Leaving inheritance until later, what you need
to do here is work out which objects know about which others, and
what the message flows are between them.

In considering these relationships you will probably find it helpful

125

to use diagrams of some sort. Use whatever kinds of diagram you feel
comfortable with. You can use a standard notation if you like, or use
one of your own. 'Object-relationship' diagrams, 'message exchange'
diagrams, flowcharts and other types of diagram can all be used. Look
back to Part I if you want to remind yourself of how diagrams of
various types can be used to communicate information about structures
of objects. Just draw whatever makes sense to you. Don't be bound by
convention!

One thing to be very careful about when drawing
object-relationship or similar diagrams is to distinguish between
different kinds of relationship. This will especially apply later to
'contains' or 'has a reference to' as opposed to 'is an instance o/'and
'is a subclass o f . Watch out, because it's very easy to end up talking at
cross-purposes with someone you're discussing a design with.

Design the interfaces to the classes

Once you've decided what sorts of object you're going to implement,
and how those objects will relate to each other, it should be a simple
enough task to design the interfaces to the objects. This means deciding
on what methods you will implement in which classes, what parameters
they will take, what they will do (not how they're implemented) and
what their return values will be. Try to keep the interface as general as
possible.

Design the implementation of the classes

This means deciding on the required instance variables, and designing
the methods which will implement the interfaces to the classes. We are
deliberately considering this as a separate task from the design of the
interface, in order to emphasise one of the design considerations
introduced previously—keeping the interface separate from the
implementation. However, this is really where design merges into
coding in Smalltalk. If you have done a good job of specifying the
interface and factoring-out complex operations, turning the
functionality into working Smalltalk should be relatively easy.

Group the implementations using inheritance

Inheritance is the very last thing you should think about when
designing classes in Smalltalk. This is because although it is very
important and is a key factor in getting good reuse, you cannot really

126

Designing for Smalltalk

consider how your classes will inherit from each other until you know
what they are going to do and how they are going to be implemented.
Of course, as soon as you consider inheritance, you will want to go
back and change details of the interface and implementation of your
classes to make them more 'inheritable'. That's good, and is just a part
of the iterative process of design.

You must resist the temptation to get caught up in thinking about
inheritance too early in the design process. It's much better to leave it
until later, at least until you have a lot of experience and can 'look
ahead' easily. In keeping with this spirit, inheritance is the last thing we
shall consider in detail in this chapter.

Identifying the Objects

This is really the crux of OOD, and for most people it is by far the most
difficult part of working in Smalltalk. The good news is that it is
something that becomes natural after a while. In the meantime, let's
look at a few guidelines.

You know by now that everything in Smalltalk is an object. But
remember that lots of different things can be objects. If you want
examples of the kinds of things which it makes sense to model as
Smalltalk objects you've only got to spend some time browsing the
system class library. One rule-of-thumb is that if you can talk about it,
and it's important to your system, it should probably be an object.
However, try to stick to a one object = one idea rule. Don't overload a
single object with multiple meanings. If there's lots of behaviour in a
class which is isn't relevant to every user of that class, you should
probably consider moving it.

It's easy to conceive of objects which model 'real world' entities.
If you're dealing with people, places and things in your program you
will probably think of having objects which represent those people,
places and things. Objects can also model 'computer world' entities. If
your program needs to open files or windows then it's pretty obvious
you'll need objects which represent files and windows. What is not so
obvious is that objects can also be used to model processes.

Processes include tasks, activities, operations, commands and all
the other non-physical things your program has to deal with. For
example, you might model an electronic equipment test procedure in a
class. Doing so would allow you to create instances of the class
whenever equipment tests were initiated. These instances would not
only be knowledgeable about the sequencing of the test, but also about

127

the state of the individual test they represented. Similarly, you could
represent the process of opening a bank account using a class. Instances
of this class would be responsible for knowing which actions must be
completed to open the account, and would hold the results of
performing each of those actions.

Modelling processes as objects instead of just embedding process-
related code in 'physical' objects has a number of important
advantages. It means that you are able to use inheritance to specialise
and reuse code along process lines, as well as along physical-modelling
lines. It also means that you can have several processes (not actual
computer processes, but processes being modelled) in a state of partial
completion, with the state of each concurrently executing process being
explicitly held in an object instead of being implicitly represented in the
call-stack.

It helps to think about some of the characteristics of the objects
you might use in your program. Which 'layer' of your system (if your
architecture is structured that way) will they be in? Will they be long-
lived (such as a person's bank account) or temporary (such as a single
transaction)? Will they be active (such as test object driving a sequence
of actions) or passive (a test log responding only to requests to store or
retrieve information)? Will they be general-purpose (an interface to a
database), or special-purpose (a new kind of widget)? Will they
represent a physical entity (like a person) or a conceptual entity (like a
credit record)? Will they be private (doing a job just for you in a
particular part of the system) or public (used all over the system)?
Finally, will they represent the whole of something (such as a book) or
just a part of something (such as a page)?

This last point is an important one. It is a good idea to try to break
things down as much as possible and use separate objects to represent
the pieces. Then you can use other objects to aggregate these pieces
together into coherent collections. Designing things this way will give
smaller, simpler classes which are easier to reuse and easier to modify.
It'll also make it easier to deal with inheritance later. For example, if
you need to create an object which models a simple appointment list,
you might think of making it contain two collections—one containing
strings representing the appointment description and the other
containing integers representing the appointment time. A much better
thing to do would be to create a class which models the idea of a single
appointment. Instances of this class would hold a single string and a
single integer. Then the appointment list would just be a collection of
these appointment objects.

128

Designing for Smalltalk

Relationships Between Objects

As we've observed, relationships Jbetween objects can be of several
kinds. Some of these relationships are what you might call peer-to-peer,
and others are distinctly directional. Amongst the directional ones are
the relationship between an instance and its class (in Smalltalk this is
just as much a relationship between objects as any other), and the
inheritance relationship between classes (also definitely a relationship
between objects, since classes like everything else in Smalltalk are
objects).

Neglecting these special kinds of relationship, let's briefly
consider the other kinds of non-inheritance relationship you might
create in your design, and look at how they map into Smalltalk
implementations.

Associations

You may create situations in your design where objects have to know
about each other because they are associated in some way. Usually, but
not always, these will be one-to-one relationships. They are typically
implemented by creating an instance variable in one object which will
contain the other object. The diagram below illustrates the idea. Your
only real consideration is whether to make them two-way (both objects

Associations between objects
(implemented using instance
variables) can be two-way
(customer/creditRecord) or one-
way (customer/address).

129

know about each other) or one-way (only one object knows about the
other). This is a matter of style as well as necessity. If you don't need
the two-way association, its up to you whether you create it in case you
or a reuser of your code needs it in the future. If you make two-way
associations you may wish to specify convenience methods which use
the accessing methods to set the values of the instance variables in both
objects at the same time to ensure they remain consistent.

Aggregations

Aggregations occur when you have got an object which represents the
sum of its parts. This may be an object which simply has a number of
associations with other objects, each implemented by a single instance
variable. For example, a car has an engine, a transmission, a body and
so on. Again you'll have to decide whether to maintain one- or two-
way pointers, but otherwise this is straight forward.

The only thing to watch out for here is not to fall into the trap of
trying to use inheritance to represent this relationship. Just say to
yourself 'an engine is not a kind of car'. Part/whole relationships
actually bring about another sort of hierarchy within your program (in
addition to inheritance) which you yourself are responsible for
implementing. This hierarchy may be several levels deep, and in fact
there may be more than one such hierarchy.

An aggregation may also be an object which is holding a collection
of other objects. For example a book includes a collection of pages. It is
almost never correct to specify this kind of object as a subclass of an
existing collection class. This is because you are not creating a new
kind of collection. You are creating a new kind of object which
includes a collection of other objects. Encapsulating functionality by
designing an object which includes a collection, rather than inheriting
functionality by subclassing a collection, is the preferred form of reuse
in this case.

Of course, you will still have to decide whether the objects in the
collection (the 'parts') should maintain references to the object which
holds the collection (the 'aggregate'). In other words, do the pages
know which book they're in? You will also have to decide whether to
provide convenience methods in the aggregate for manipulating
(adding, removing and so on) the parts in the collection. The alternative
is simply to provide an accessing method in the aggregate which
returns the whole collection, allowing another object complete access to
it. You'll have to decide how private the fact that you're implementing
the aggregation as a collection really is.

130

Designing for Smalltalk

Dependency

This is really a special case of association. It occurs when one object is
interested in changes to another. Smalltalk provides a special
mechanism called 'the dependency mechanism' specifically for dealing
with this kind of relationship. It is the foundation of MVC and so if
your design incorporates user-interface elements you will need to
consider carefully where you are creating dependency relationships.
However, you can create dependencies between other (non-UI) objects
if you wish. This is a powerful facility, but be careful when specifying
it, because dependency relationships are more difficult to debug than
explicit associations. This is because it is simply less obvious if two
objects are communicating via dependency.

Designing for Reuse

One of the big promises of OOP is the possibility of being able to reuse
code from previous applications. Unfortunately, like so many other
things this reusability does not come for free and neither is it automatic.
It is a fact that classes must be designed to be reused if they are to be
reusable. Before looking at designing for reuse though, let's consider
what we mean by 'reusable'.

What is reusability?

Classes are only reusable if other programmers are more inclined to use
them than to write their own. This means that a supposedly reusable
class must not only meet the technical needs of the application but must
also be easy to use and understandable. Meeting the technical needs
means performing the task required reliably, efficiently and without
unnecessary side-effects. Making a class easy to use and
understandable means making sure that what it does is predictable,
which in turn generally means following the Smalltalk 'style' discussed
in the next chapter.

It's important to remember that not all classes have to be reusable.
Reusability costs time and effort, and those resources should be spent
on making the most appropriate classes reusable. Just as reusability is
not automatic with OOP, it is not a given that every class must be
written to be reusable. However, if you've decided that a class is to be
made reusable, you must decide in what way it is to be reused.

131

Kinds of reusability

There are two interfaces to a class as far as reuse is concerned. A re-
user may encapsulate the class (placing an instance of it inside an
instance of their own class), or they may inherit from it. These two
mechanisms reflect two models of reuse, both of which are available in
Smalltalk. You can think of a class library as a collection of parts which
can be plugged together, or you can think of a class library as a tree
which can be inherited from at various points. In Smalltalk it is usually
the case that parts are more reusable than subclasses.

If you've been doing any programming inSmalltalk you'll realise
how much more frequently you make instances of the existing classes
than you inherit from them. You make instances of numbers, strings,
collections, widgets and so on all the time. It is very rare that you
inherit from any of these classes, object is by far the most common
superclass. What this means is that when you create your reusable
classes you should think harder about how someone else will use
instances of them than about how they might inherit from them.
Designing for inheritance is hard enough when you're going to be the
inheritor. Trying to design for unknown inheritance in the future is too
hard to be of common use.

Building parts designed to be plugged together (the technical word
for this plugging is composition) also allows you to bypass the
limitations of the single-inheritance system Smalltalk uses (each class
has exactly one superclass, instead of being a combination of many
parent classes). Each part of a composite object can have its own place
in its own inheritance hierarchy. The location of a single monolithic
equivalent in the class hierarchy would always have to be a
compromise.

You must also decide to what extent you want a class to be
reusable. If you've created a class which you will use in more than one
place in an application, you have in effect written a reusable class.
However, you might want to go further and make the class reusable by
others in your team working on the same application. You might want
the class to be reusable by you or others in your team in future
applications (a very common form of reuse is using a class you wrote
for a previous project in your current project—you have no learning
curve for the class, you presumably trust it, and so are motivated to
reuse it). Finally, you might be trying to create a class which is reusable
by someone you've never met, who might even pay money for it. The
extent to which you want a class to be reusable will affect how much
effort you put into the following considerations for reuse.

132

Designing for Smalltalk

Writing reusable code

The most obvious thing is to try to make your code generic. A key
enabler for this in Smalltalk is its 'typelessness'. If you don't need to
restrict the type of an object in the interface to a class, don't. If you do,
only restrict it as far as necessary. For example, when a method accepts
a collection as a parameter, make your code work with as many
different kinds of collection as possible, rather than just say arrays.

One way to make a class more general is to avoid hard-coding
constants into methods. Bring them out into the interface as parameters
to methods, if that makes sense. Of course, doing this may complicate
the interface to the class, so a common ploy is to create simpler
versions of various methods (called convenience methods). These take
fewer parameters than the complex methods, but don't reimplement
them. They simply call the more complex methods with default values
for the parameters. You can see this happening frequently in the class
library, where it sometimes goes through many levels of increasing
generality (and increasing numbers of parameters) before the method
which actually does the work is called.

Possibly in conflict with the above (but then that's where your
judgement comes in), is the desire to encapsulate as much of the
implementation of the class as possible. In other words, don't expose
through the interface features which are internal to the way the class
works, and which don't need to be accessed to alter or configure the
service it provides.

Try to design your classes so that users only need to know about
features they actually use. Providing convenience methods is a good
way of doing this. Also, aim to make your classes 'combinable' and
pluggable, in the way that the adaptors we looked at in Part I are.

In general, just try to think about what future uses your class may
be put to. You will never be able to predict every possible future use,
and unless your class has the highest reusability requirements, you
shouldn't waste your time trying to do so. But, if you can find a way to
achieve the immediate purpose of the class, whilst also designing the
functionality in a general way, it's probably worth choosing that way.

Using Inheritance

After 'finding the objects', making use of inheritance is probably the
thing newcomers to object-oriented programming find they have most
difficulty with. In fact, even experienced programmers tie themselves

133

in knots with it occasionally, but thankfully it is also something which
gets easier to do as time goes by. The important thing to remember is
that inheritance is a facility intended to make things easier, not more
difficult. You don't have to struggle to create an incredibly deep and
efficient inheritance hierarchy if that simply isn't possible. However, if
you know a few simple things about how to use inheritance (and how
not to use it) you'll find it can make your code simpler and more
elegant.

We're going to assume here that you understand how inheritance
in Smalltalk works. That's not to say that you have to know how it is
implemented by the Smalltalk system, just that you need to understand
that methods and variables are inherited from a superclass by a
subclass, that you can over-ride inherited methods and so on. If you're
unsure what is meant by inheritance in Smalltalk, take another look at
Chapter 2—An Introduction to Objects.

Don't worry about it too early

The first rule of inheritance is to leave it until later. Don't try to think
about it too early. You should at least know what the various classes in
your design are going to do before you can even think about how they
are (or could be redesigned to be) similar in their implementations.
Sometimes you will even have coded a working system before you go
back and start making use of inheritance. Sometimes it can take
practical experience of using the classes you've built before you realise
the full generality of what they're actually doing are able to factor-out
some of that functionality into a superclass. In doing this be aware that
the process of creating an inheritance hierarchy can be a top-down,
bottom-up, or even middle-out activity.

Use inheritance to reuse code

The second rule is to use inheritance for code reuse and nothing else.
Remember that you can read the inheritance relationship between a
subclass and its superclass as 'is a kind o f . But 'is a kind of can be
interpreted in a number of ways. There's the human-speak 'is a kind
of, and there's the computer-speak 'is a kind of for example, You
must distinguish between the kind of thing something is in real life, and
the kind of thing the object used to model it in Smalltalk is. Thus, a
trout may be a kind of fish in human-speak, but a kind of
ApplicafcionModel in Smalltalk, if an ApplicationModel with a
few additions is good for modelling trout.

134

Designing for Smalltalk

It is very easy to fall into the trap of using the inheritance hierarchy as a
classification scheme for the real objects you're trying to model,
instead of using it for optimising code reuse in the Smalltalk objects
you're modelling them with. This is really the difference between sub-
typing and sub-classing. A good example of correct use of inheritance
in the system class library is the class process, which is actually a
subclass of the class Link. In real life, a process is a kind of course of
action, but in Smalltalk its important features share a lot in common
with Link and so it is modelled as a special kind of Link.

Another good example of the difference between a conceptual
hierarchy (in the real world) and an implementation hierarchy (in the
Smalltalk world) is the difference between a circle and an ellipse. In the
real world, a circle is a special kind of ellipse in which the major and
minor axes are of equal length. So circle is a subtype of ellipse.
However in the Smalltalk world we'd probably make circle the
superclass with a single diameter variable, and subclass it to get
Ellipse which would add an extra variable.

As a reminder, you should also avoid trying to use inheritance to
create a 'part-of hierarchy. It sounds stupid, but it's remarkably easy to
think that way, at least until you're very comfortable with using
inheritance. A door is not a kind of house, even though it is part of it.
Use another relationship, like an association (see earlier). Remember
that inheritance is only one of many types of relationships between
objects which you have at your disposal.

Use inheritance to specialise behaviour

If you think about it, you'll see that Smalltalk's inheritance mechanism
may be used to get a subclass to add, modify or delete behaviour from
the superclass (see diagram on the next page). Adding is achieved
simply by defining more methods, or by redefining (over-riding) a
particular method and putting in a call to super . Modifying behaviour
is achieved by over-riding a method to do something different, thus
replacing the inherited original functionality. Deleting behaviour can
be achieved in Smalltalk by over-riding a method with one which
contains simply the expression self shouldMotIntplement. This
will raise an exception if anyone tries to send that message to your
object.

Inheritance in Smalltalk is almost always additive. That is,
additional methods are put in a subclass to increase the functionality of
the subclass over that of the superclass, or methods are over-ridden to
enhance or modify their behaviour. Subtractive inheritance is rarely

135

Chapter 12

Inheritance can be used to leave
functionality alone (method A),
modify it (B) replace it (C),
remove it(D), or add it (E).

used. This means that subclasses tend to be more specific versions of
their superclasses. This is because it is awkward to take a class which
-models some concept and make it model a more general concept by
subclassing it. Look out for this when you design your inheritance
hierarchies. Start with the most general model at the top, and proceed to
the more specific lower down.

You can also think of this as meaning that subclassing restricts the
set of things which an instance of the class could represent. For
example, the Collection class in Smalltalk represents the concept of
any kind of collection of objects. However, one of it's subclasses,
SequenceableCollection, has already restricted the set of things
which it may be used to model to collections of objects which have a
well defined order. A subclass of that class (ArrayedCol lection)

136

Designing for Smalltalk

restricts that ordering to one which is defined by external integer keys,
and so it continues on down the class hierarchy.

The only time an exception to this rule should occur is when you
want to make a system class do more general things than it does. It is
much easier to subclass a system class than to 'superclass' it. You can
attempt to insert a class halfway down an existing hierarchy, but you
had better watch that you don't alter any of the behaviour of the lower
classes by doing so. So you're stuck with trying to take a specific
implementation and make it more general in a subclass.

Use inheritance to share behaviour

Earlier in this book we looked at abstract superclasses. These are
classes of which no instances are ever made. Abstract superclasses can
be used to collect together functionality which is shared amongst
several concrete subclasses, but which isn't complete in itself. This
solves a problem which sometimes occurs when you want to create two
classes which share functionality, but you find that neither is a natural
superclass of the other. Simply 'abstract' the shared functionality into a
third class, and make the two classes concrete subclasses of this third
class, as in the diagram below. This allows the two classes to be
siblings—sharing common functionality from the superclass. A design
which is structured in this way is much more elegant than it would be if
you forced a class to a be subclass of another class when that wasn't
really 'logical'.

Inheritance can be used to share
functionality by defining common
methods in an abstract superclass
and unique methods in concrete
subclasses.

137

Chapter 12

Watch out for inappropriate sharing of functionality through inheritance
though. If a class is inheriting a whole load of methods which simply
are not applicable to its purpose then they should probably be removed
from its superclass, and moved to a sibling class. Either that, or the
whole hierarchy needs restructuring. For some good examples of how
to structure an abstract superclass hierarchy, browse the Collection
class and some of its subclasses (the class comment will usually tell
you whether the class is intended to be abstract or concrete).

Use inheritance to realise behaviour

Another reason to create abstract superclasses is to provide a
specification of an interface which is then implemented in one or more
subclasses. Remember that this separation of interface from
implementation is one of the goals of good OOD.

In Smalltalk, a method can be specified but left unimplemented in
a superclass by writing a method with the correct name and parameters,
and then implementing it using just the expression self
subclassResponsibility. The method is then over-ridden in the
subclass with a proper implementation, as in the diagram below. This
kind of construction will cause an exception if a message invoking that
method is sent to an instance of the superclass or to an instance of a
subclass which has failed to over-ride the method. Both the method and
the exception are a signal to the subclasser that they need to
reimplement the method.

Inheritance can be used to
realise functionality by
declaring a method in an
abstract superclass and
defining it in a concrete
subclass.

138

Designing for Smalltalk

When defining an interface to a method in a superclass which is then
implemented in a subclass, you can still invoke the not-yet-
implemented method in other superclass code. For example, in the class
Magnitude the < method is defined but not implemented. However, it
is then used to implement the > method, also in Magnitude. This is
fine because a concrete subclass of Magnitude will implement its own
< which means that the inherited > will call that method and
consequently work properly. Take a look at the system class hierarchy
in this area if this isn't clear, and for other examples try using the
browse—>senders command from the launcher to see every class and
method which uses subclassResponsibility.

Throughout this chapter we have looked at a variety of the important
principles of object-oriented design as it applies to Smalltalk. We
started by looking at design considerations. The important design
considerations were:

• Consider the interface separately from the implementation.
• Try to hide complexity.
• Minimise dependencies between classes.
• Keep the user-interface separate from the application logic.
• Factor-out complex algorithms.
• Factor-out complex variables.
• Create as few special-purpose classes as possible.
• Have a class road-map in mind.
• Keep things simple.

We also looked at the tasks typically undertaken by developers when
designing Smalltalk programs. Design is an iterative and opportunistic
activity, so these tasks may be re-ordered, some of them may be
omitted, and some of them repeated as your understanding of whatever
you're designing improves. The tasks we looked at were:

• Deciding on the required functionality.
• Identifying which objects will provide the functionality.
• Grouping the objects into classes.
• Deciding how the objects will relate to each other.
• Designing the interfaces to the classes.
• Designing the implementation of the classes
• Grouping the implementations using inheritance.

139

Chapter 12

Finally, we looked in more detail at identifying the objects,
understanding the relationships between them (associations,
aggregations, dependency), designing for good reusability and lastly at
how to use inheritance effectively.

That's all there is to it. If you were looking to this chapter for a
magic spell to help you 'find the objects' for your application then you
will have been disappointed. However, if you manage to keep in mind
just some of the guidelines we've discussed, and you remember to refer
back to here when you come across the circumstances we've
considered, you'll find that designing Smalltalk systems soon ceases to
be a difficult task and becomes an easy and natural precursor to coding
in Smalltalk. The art of coding in Smalltalk is therefore the subject of
the next chapter.

Appendix: Design Methodologies

Hewlett Packard's Fusion methodology for object-oriented projects
was developed at HP Labs Bristol. It is fully described in:

Object Oriented Development: The Fusion Method
DerekColeman etal., Prentice-Hall 1994
ISBN 0-13-338823-9

ParcPlace's Object Behavior Analysis and Design (OBA/D) for
VisualWorks projects is described in:

Succeeding with Objects
Adele Goldberg and Kenneth Rubin, Addison-Wesley 1995

140

Coding in Smalltalk

In the preceding chapter we looked at a number of aspects of designing
for Smalltalk. The advice and techniques we discussed there were
optimised for, and presented in the context of Smalltalk. Even so, we
didn't get quite as far as discussing specific coding techniques. In this
chapter we'll attempt to redress the balance by talking about coding in
Smalltalk.

Throughout this chapter we'll consider a number of different
aspects of Smalltalk coding style. First we'll cover the common naming
conventions which help make Smalltalk source-code more readable.
We'll then look at ways of accessing instance variables and constants
which promote better reusability. Next we'll consider some general
coding advice, how to structure methods and so on. Then we'll cover
the best ways to use comments, and finish with a discussion about
writing efficient code.

Smalltalk with Style

As you should have realised by now, the act of programming in
Smalltalk is really the act of extending a body of code (the standard
class library) to make it do the things you, want it to do. The standard
class library has developed over many years (many more than you
might think in fact—Smalltalk has been around since 1972!). Over all
that time specific ways of using the Smalltalk language have evolved.
You might almost say that there is a common Smalltalk 'idiom*.

This Smalltalk idiom is a particular way of using the language to
express programming ideas. It is shared by most of the code in the class
library. Even though the class library has been developed by many

141

Chapter 13

people, the style is remarkably consistent throughout. This is extremely
useful since it helps you do that most important thing in
Smalltalk—work out what a class or method does just by reading the
source-code. It also provides you with ready-made ways of expressing
certain programming constructions—constructions which are robust,
easy to understand and easy to modify and maintain.

Occasionally though, you will come across examples of different
ways of expressing ideas. This is often confusing enough to illustrate
the value of consistency in the use of Smalltalk. If you adopt the
standard style of usage, your code will fit in better with the code in the
class library it is extending. It will also be more readable and more
easily understood by other Smalltalk programmers. It may even be
more reusable.

Naming Conventions

Smalltalk has very few rules about naming classes, variables, methods,
categories and protocols. The few that do exist were quickly covered in
Chapter 4—The Smalltalk Language. Our interest here is in the
conventions which govern the way Smalltalk programmers name their
classes, variables and other entities. These conventions have evolved
over time to make Smalltalk code read in a particular, almost English-
like way.

Variables

To begin with, you should always follow the rule (even though it's not
completely enforced by the system) that global variables, pool variables
and class variables all start with a capital letter, whilst instance and
temporary variables start with a lower-case letter. After that, try to
make your variable names as descriptive as possible.

Remember that variable names can be as long as you like. You
might want to try to include something about the function of the
variable, as well as the type of object it is expected to contain. For
example, oc cup iedRec tangle, labelText, examResults . The
last example uses a common convention to indicate a collection—it's a
plural—a collection of examResult objects.

If want to name a variable which holds a boolean state, use
something like IsBig.wasConverfced, hasBeenEdited. Using
these kinds of name allows you to write classic Smalltalk expressions
such as:

142

Coding in Smalltalk

occupiedfiectangle hasBeenEdibed ifTrue:
["Do Something"].

In this case, hasBeenEdited is the accessing method for the instance
variable called hasBeenEdited in some class of which the object
occupiedRec tangle is an instance.

Parameters

A common convention for naming parameters in method definitions is
to use the name of the class of the object you expect to be passed,
prefixed with 'a' or 'an' as is appropriate. For example,
anOrderedCol lection, aDictionary, aString. If a parameter in
your method could be an instance of several different classes, use the
lowest common superclass. For example, aCollection, or in the
extreme, anObject. The latter is not as meaningless as it may seem if
it is communicating the fact that an object of any class may be passed
as a parameter.

Method Names

Just like variable names, you should try to make method names (or
selectors as they are technically known) descriptive of their purpose.
There is no limit on length, so again you should use as long a name as
you need (within reason of course). Browsing the class hierarchy will
show you that there are some very long method names indeed out there!

Methods whose only purpose is to access variables should be
named after the variable they access. For example, if you have an
instance variable called size, the method which returns its value
should be called size , and not returnSize, getSize, giveSize or
anything else. Similarly, the method which sets its value should be
called size: , not setSize: or anything like that.

In a similar vein, try also to make method names declarative rather
than imperative. In other words, it is better to use totalArea than
compute TotalArea. This makes the method name communicate the
kind of value it returns. This is important when you want to cascade
messages. Compare the following two expressions:

CricketPitch area asSquareMetres.
CricketPitch giveArea convertToSguareMetres.

At the moment it may seem a subtle distinction, but the first expression
reads much more clearly to Smalltalk programmers than the second. If

143

you really want to use words like 'convert', use the past participle
instead—convertedToSquareHetres.

When naming a method which takes several parameters, try to
create a name which conveys the purpose and if possible the type of
each parameter. For example:

PaintBox drawLineFrom: x to: y
usingPen: aPen inColour: ftred.

Note that in this case, we broke the rule about making method
names declarative (drawLineFroxn... instead of lineFrom...). This is
because we are interested in the side-effect (the line getting drawn) and
not the return-value of the method.

Finally when naming a method, think of the service it provides, not
the way it provides it. In other words name the method after the
interface not after the implementation. Doing this will avoid revealing
things about the way your implementation works by the way you name
your methods.

Classes

Remember that class names are really global variables, and so you
should follow the same rule that they start with a capital letter. Just as
before, the real intent should be to communicate the purpose of the
class. However, you may also wish to communicate something about
the class hierarchy, if that is important. For example
OrderedCollection is a subclass of Collection. You might go on
to create a subclass called OptimizedOrderedCollection (just as
an example). This naming convention is not always necessary or
desirable though—it's a matter of judgement. For example. Set is also
a subclass of Collection, but in this case the word 'Set'
communicates more about the purpose of the class than any more
contrived name ever could.

Avoid the temptation to prefix class names with your initials, the
project name or your company name. Although it might seem that this
would make them easier to separate from the system classes, it actually
just makes them difficult to distinguish from each other. You should be
aiming to integrate your classes into the system anyway.

Categories and Protocols

Categories and protocols exist to help you organise your classes and
methods. Use names which facilitate this. Remember you can include

144

Coding in Smalltalk

space characters. Some people like to use prefixes which indicate who
the classes in a category were written by. This is acceptable in category
names, since they don't appear in.your code. Others like to indicate
which project the category was written for. The categories in the class
library generally use a two-level naming scheme, and it's worth
considering whether to adopt this for your project. For example,
Server-Views or Framework-Datastore.

We looked previously at the 'standard' protocol names which the
classes in the system library use. Names like accessing, updating,
displaying and private are absolutely fundamental to the
Smalltalk idiom. If you use any of the naming conventions discussed
here, use this one. It is possibly one of the biggest contributing factors
to making your code readable by others. However, not only should you
use the names, you should use them properly. Don't put anything other
than methods which provide access to instance variables in accessing
for example. If a method is private (to be used only by you) put it in the
private protocol. When you need to create new protocol names, try to
name them with the task of either you or someone else trying to
understand your code in mind. A good guideline to follow is to use
present participles as protocol names—words which end in '-ing'. For
example, calculating or printing.

Accessing Instance Variables

A matter of style which is sometimes hotly debated among Smalltalkers
concerns the accessing of instance variables. If a class defines or
inherits instance variables, those variables can be accessed in the
methods defined on the class simply by naming the variable. This
applies both for assigning values to the variable, and using the
variable's value in expressions. For example, the following expression
is legal within a method of a class which has instance variables called
area, width and height:

area := width * height.

Typically, a programmer will also define accessing methods, which
permit other objects to access the variables by sending a message. In
this case the instance variables above could be accessed from outside
their own object using expressions like:

MyObject area.
HyObject width: 25.

145

It is often suggested however, that an object should also access its own
instance variables by sending messages to itself, and not by directly
naming them. In this case, the earlier method fragment would perhaps
become something like this (with parentheses added for clarity):

self area: (self width) * (self height).

Provided the methods area: , width and height are defined correctly
(to do nothing more than access the variables), this expression has
exactly the same effect as the first one. So why would anyone want to
do this? The answer is that by avoiding direct access to instance
variables, you can potentially increase flexibility and as a result
enhance reusability. But how?

Instance variables really represent properties of an object.
Specifically, they are properties whose actual values are held (or
cached) in the object, rather than being computed as required.
However, what starts life as an instance variable, may later need to
become a computed value. Now if that instance variable is only
accessed via a method, this becomes a simple task of replacing the
accessing method with one of the same name which computes the value
in some arbitrarily complex way instead of simply returning it. If the
variable has been accessed by naming it directly, the situation is more
complicated. A new method must be created, and every single reference
to the variable throughout the class and all its subclasses must be
changed to messages invoking the new method.

This process gets especially complicated and messy if the variable
is defined in a superclass, and you want to make it a computed value in
a subclass. Unless you go and modify the superclass (which might not
be allowed), you have to over-ride in your subclass all the methods of
the superclass which access the variable, replacing all references to the
variable with a message expression. If the original writer of the
superclass had used accessing messages in the first place, you'd only
have to over-ride the accessing methods in your subclass.

Looking back at the above example, we can imagine that there is
an instance variable called area. We might define an accessing method
which simply returns the value of the area variable:

area
r̂ea.

Now, provided we use it consistently in all the rest of our code, then
when we later want (either in a subclass, or a later version of the same
class) to replace the notion of *area' with a computed value instead of a
cached one, we simply redefine the method area, perhaps as follows:

146

Coding in Smalltalk

area.

A
(width * height).

Now it doesn't matter how many references there are to area. Because
they are message expressions and not variable references they will
automatically access the new computed value. What's more, if the
change from a variable to a computed value did happen in a subclass,
then because of the way method lookup works, references to area in
instances of the superclass would continue to invoke the old method
(returning the value of the instance variable), whilst instances of the
subclass would invoke the new method (returning the computed value).

So much for the claimed benefits of accessing instance variables
only through messages. What are the disadvantages? The most obvious
disadvantage is performance. Accessing your own instance variables
via a message is necessarily slower than directly referencing them. The
accessing message does exactly the same variable reference as you
would have done, to which the time for a message pass must be added.

It is up to you to decide whether this has any impact at all on the
performance of your code, and if so whether that impact is a price
worth paying for the advantages we've just discussed. You could use
the profiler provided as part of the VisualWorks Advanced
Programming ObjectKit to decide which variables to refer to directly
and which to use accessing methods for. You might also be able to
improve your use of accessing messages (for example by caching a
value in a temporary variable inside a loop instead of accessing it
repeatedly).

Variable accesses via message expressions are also less readable
than direct references. But in a sense, that's part of the point. The idea
is to isolate the user of a value from the implementation of that value as
an instance variable or a computed value. Again, it's a matter of
judgement and personal opinion as to whether clarity of code, or
encapsulation is most important.

Finally, having to define accessing methods even for supposedly
'private' variables (variables which you don't intend to be accessed
from outside instances of the class they're defined or inherited in) may
make you uncomfortable. Remember though that nothing is really
private in Smalltalk. All you can do is flag your intentions by naming a
protocol correctly (for example private-accessing). Ultimately,
someone else could always define their own accessing method on your
class, or use the instVarAt; method defined on object. (Have a
browse to see what this method does, but never use it unless you want
to be branded as a 'hacker'!)

147

Chapter 13

Accessing Constants

Remember that all of the above applies equally to class variables,
global variables and constants. A very good example is the use of a
method to define and access a class which is somehow linked to
another class. This occurs in very many view subclasses, which
implement the method defaultCont roller-Class to return the class
of the controller which should normally be used with the view (which
incidentally, is why controllers appear to hide in the background of the
MVC triads). This gives a single place where the class may be changed,
rather than all sorts of direct references to the controller class hidden in
the view class. Browse the implementors of default* to see lots of
examples of this kind of usage.

Just as in conventional programming, if there is some other
fundamental constant which is important to a class you're writing, put it
in a method and access it that way, rather than hard-coding it into your
methods all over the place. You could for example, define a method
such as:

minimumSize
"259100.

and then access the mininnunSize constant when required by doing:

self minimumSize.

Structuring Methods

One of the main things you should do when writing methods in a class
is to try to keep them small. Anything much more than ten lines is
probably getting too big (the average in the standard class library is
around seven). Try to factor out the functionality of a long method into
two or more methods. Just like using temporary variables to hold
intermediate results, this will make your code easier to read, easier to
modify and not much more inefficient. Make these methods as general-
purpose as possible, and then 'compose up' the functionality you
actually require in the main methods. That way, you'll give yourself a
lot more flexibility when it comes to modifying your code.

Try also to format your code in a consistent way. Some people use
the built-in formatter (format on the operate menu in any code pane).
Others dislike the format it generates (although in theory you could
change it!). Either way, a consistent format will make your code easier

148

Coding in Smalltalk

to read, debug, modify and everything else. Feel free to put in extra
pairs of parentheses if you want to, assuming it makes your code more
readable, even just to you. Be aware though that the formatter (if you
use it) will take them out again!

Methods automatically return self if nothing else is explicitly
returned. However, if the fact that your method returns self is an
important feature of its design, you might want to consider making it
explicit using *self. This is also what you should return (rather than
say, nil) if you reach a point in a method where you want to return,
but you don't care about the return value. That allows you to cascade
messages to your objects, instead of getting the next message in a
cascade sent to nil (which is virtually guaranteed not to understand it).

When you want to use a conditional expression (if True:,
if False: , etc.), try to think about whether you could get the same
effect by structuring your methods to send a message to a different
object. In other words, let the method lookup mechanism and its
polymorphic effect give you the same result. This is especially true if
you find yourself testing the class of an object before deciding what to
do. This is the surest sign that your design is not structured quite right.

It is however acceptable to test an object's functionality, rather
than its class. For example, you might define a method called
implement sLookAhead in several classes. The method would return
true or false depending on whether that particular class implements
'look ahead' (whatever that might be). Then you could use an
expression like:

MyObject implementsLookAhead
ifTrue: ["do one thing"]
ifFalse: ["do another thing"].

The point here is that the choice of what to do is being made
independently of the class of the object. This gives you the freedom to
modify the way the choice works, without having to modify the class
structure. (If you get really desperate you can actually test whether a
particular object will understand a message by using the respondsTo:
method defined on class object. This is not to be recommended
though, except for the most ardent hacker).

Finally, just as in all programming languages, you should make
sure you initialise all variables before using them. Although they get
initialised to nil by the system, if you actually want them to have that
value, it's clearer to a reader to put in an assignment statement
explicitly making that happen.

149

Chapter 13

Other Coding Guidelines

Having looked at Smalltalk naming conventions, how to access
variables and constants and how to structure methods in Smalltalk,
we'll consider a collection of other coding guidelines. All of these come
under the category of common sense. This means that whilst they are
generally useful, there will always be specific circumstances in which
you'll want to do something different.

Variables with Discrete States

Always use false and true if you are dealing with a boolean state,
and not 0 and 1, or nil and some non-nil object. Tests for these
values are optimised by the compiler (which by the way means that
their definitions are one of the few pieces of code you can't alter). It
also makes your code say directly what you want, especially if you
name your variables appropriately (isCooked, wasRaw, etc.)

If you have a need for a variable which takes a fixed number of
values, try to use a symbol (not a string—symbols are more efficient
since they are unique and can be compared with ==) rather than say a
number to encode this value. For example use #large, ftmedium and
ttsmall, to describe something's size rather than 3 , 2 and 1 to encode
it. In the following three expressions, consider how much easier it is to

Understand what the second is doing than the first. The third expression
is easier still and becomes available if you write a method called
isLarge which encapsulates the size = # large test and returns
either true or false .

MyObject size = 3 ifTrue; ["do something"1.
MyObject size = ftlarge ifTrue: ["do something"].
MyObject isLarge ifTrue; ["do something"].

Using Dictionaries

Dictionaries are one of the most useful building blocks in the standard
class library. It's easy to conceive of using them as a simple data
structure to hold pairs of objects, organised as 'name', and 'object'. But
remember that dictionaries can hold any kind of object. This makes
much more complex and powerful uses possible. For example, a
dictionary may be used as a kind of control structure by putting blocks
in as the values, and some other objects as the keys. This allows a kind
of 'case' statement to be constructed if you wish. The first expression

150

Coding in Smalltalk

below shows a dictionary being initialised in this way (which need only
happen once), and the second expression shows the way in which it
might be used:

MyDict at: #Small put: ["do a small thing"];
ati ^Medium put: ["do a medium thing"];
at: #Large put: ["do a large thing"].

(MyDict at: case) value.

Managing Unique Objects

Sometimes you might think you'll only ever need one object of a
particular type in a program. For example, you might need an object
whose job it is to manage some kind of unique resource—the
filesystem, a central look-up table, or perhaps an external interface. In
these circumstances it is very tempting to make this object a class. In
other words, it seems logical to create a special class and write class
methods which do the work of this object, especially if the object really
needs a unique name which is well known throughout the system (just
like a classname).

This way of creating such an object is not the best however. A
much better approach is to create the class, and create a single instance
of it to do the work. The main reason for this is that you can never
really be sure that you (or someone else) won't one day want to make
more than one instance of this apparently unique object. It also means
that your unique object inherits only the functionality of instances, and
not the inappropriate functionality of classes. Remember that inheriting
only the appropriate functionality is one of the guidelines you should
use when designing classes.

In practice, the standard way to deal with this situation is to create
the class and give it a class variable called Default. Then create a
class method called initialize which initialises this variable to hold
the required single instance of the class. Finally, create a class method
called default, which returns the value of the class variable
Default. Then, when the rest of your code wants to use this object it
can refer to it using the expression MyClassHame default. Now if
you or anyone else wants to create more instances of the class you are
free to do so. You may or may not then want to create additional class
variables to hold these instances. To find examples of classes which use
this way of structuring code use the Browse—>implementors of...
command from the launcher to browse the implementors of default.

151

Unwinding Actions

Sometimes it is important to undo actions you have taken, especially if
an exception occurs. The classic example is closing a file which has
been opened, but in. Smalltalk, terminating processes which have been
started is equally as important. The class BlockClosure provides a
way of doing this in the form of a method called
valueMowOrOnUnwindDo: . If you send this message to a block with
another block as the parameter, the system will execute the first block,
and then the second, even if the first block results in an exception. This
is very useful for keeping things tidy during development—making
sure you don't end up with hundreds of open files, windows, or
processes running.

Another way to avoid these problems is to encapsulate the opening
of a file, or the spawning of a process, in your own method. Make sure
you keep a reference to the file or process (say in an instance variable),
and each time you invoke the method, check whether a file is open or a
process running, and close it or kill it before opening another.

Modifying System Classes

Smalltalk's provision of the entire set of source-code for its
implementation explicitly gives you permission to modify the system
classes. This is a very powerful facility, and like all such facilities it
should be treated with respect. It is absolutely not the case however that
you should never modify a system class.

If you want to add simple functionality, such as new features in the
development tools, you should go right ahead. This kind of
modification by programmers is what has made the development
environment as powerful as it is, so if you think you can improve it
further, don't hesitate. If you don't like something, change it.

If you're planning on making modifications to some of the more
fundamental classes such as Object or Behavior, you might want to
be more circumspect. There are two dangers—you might break the
system, and you might put in changes which are incompatible with
someone else's changes.

Look at whether you can achieve the effect you want without
modifying the system classes. Look also at how the change you want to
make might interact with other changes. Finally, consider how serious
you are about changing the way Smalltalk behaves in fundamental
ways. If after taking these considerations into account you still want to
modify the system classes, then go cautiously ahead.

152

Coding in Smalltalk

One of the most powerful features of Smalltalk is the ability to extend
the language if you wish. You can (and people do) add persistent
storage mechanisms, create distributed object systems, change the way
the UI works, even change the way inheritance works, all by modifying
the system classes. The designers of Smalltalk intended this to be
possible. Just remember the kind of responsibility you're exercising.

Other Things to be Careful With

If you browse the class hierarchy, especially in Object, Behavior
and Class, you will find all sorts of useful methods. There are one or
two of these that you should be careful about using though. Chief
amongst them are perform: and become:. Both of these are very
powerful methods—we've already looked at how perform: permits
and enables the writing of 'pluggable' classes. The become: method
swaps the state of the object receiving the message with the object sent
as a parameter. Both of these methods have their place, but if you find
yourself wanting to use them you should stop and ask 'Do I have a
good reason for doing this?* If the answer is 'Yes', then go ahead. If the
answer is 'No', you should think carefully before using them. The
perform: method can be slow and makes your code essentially
untraceable. The become: method never does quite what you expect,
and is also costly of resources.

Using Comments

Just like almost all other programming languages, Smalltalk provides a
way of putting comments into your code. Also as in other programming
languages, carefully chosen comments greatly enhance someone else's
ability to understand your code (and your own ability, a few weeks,
months, or years later!). However, the reverse is also true. Inappropriate
comments can be worse than useless. Smalltalk provides two places
you can put comments—inside methods, and attached to classes.

Comments can be embedded into the code of a method using pairs
of double-quotes (" "). It's generally a good idea to put a comment right
at the top of each method to describe what the method is for, perhaps
what parameters it takes (although that should be obvious if you've
named the method and its parameters carefully), what value it returns
and anything special about the way it is implemented. If you wanted to
be even more formal, you could include things like the creator and the
date.

153

Chapter 13

A common and very useful way of using comments at the top of
methods is to put in an example of the use of the method. This allows
anyone browsing your code to just select the example with the mouse
and do it to see your code work. You'll come across this frequently in
the class library, especially in class-methods in the instance-
creation and initialize protocols.

Comments inside a method should say why something is
happening, not how it is happening. 'Increment index' is not a very
useful way to comment index := index + inc . 'Move on to next
employee' is much more informative. With a little care Smalltalk code
can itself be made very readable. Too many trivial comments can
disrupt this readability.

Be aware that Smalltalk comments don't nest. This means you
can't comment-out whole chunks of code in a method just by wrapping
double-quotes around them. If there are embedding comments, they
then get treated as Smalltalk code by the compiler, with predictable
results!

The other Smalltalk comment mechanism allows you to put a
descriptive piece of text into each class. You do this by selecting
comment from the operate menu of the class pane (second from left) in
the system browser. You can browse the comment of an existing class,
or add one into your own class. Just type what you want and use
accept. Once you get used to looking at the class comments in the class
library to help you understand what the system classes do, you will
realise how other users of your classes will thank you for commenting
them in a similar way!

Writing Efficient Code

Just as in all programming languages, the efficiency of code written in
Smalltalk varies widely. However, it is frequently the case that for
historical reasons a great deal more concern is expressed about the
efficiency of Smalltalk systems than systems written in other
languages. Luckily, there are a few considerations which if taken into
account, allow the writing of code in Smalltalk which is every bit as
responsive as code in other languages. Not many of these are unique to
Smalltalk.

First, consider what you mean by 'efficient'. Do you want your
code to execute more quickly, or consume a smaller amount of
memory. Are you prepared to sacrifice readability (or reusability) for
efficiency? Second, remember that there is no substitute for using the

154

Coding in Smalltalk

right algorithm. Think carefully about whether you've actually
structured your functionality in an efficient way. Third, Smalltalk
provides some very useful tools for assessing the efficiency of your
code, and tracking down inefficient implementations. We'll look at
these techniques in the next chapter.

It is helpful to avoid certain operations which are always
inefficient no matter what language you use. For example, you should
avoid precomputing values which you may never need. Lazy evaluation
is the name given to the technique of leaving the computation of some
value until it is actually needed. Object-oriented programming allows
you to encapsulate this so that the consumer of the value is unaware
that it is happening. However, once you've calculated a value, don't
throw it away if it might be needed again. OOP also permits this
caching to be encapsulated. Similarly, avoid recomputing values many
times inside a loop. Move the computation outside the loop.

Finally, there are certain operations which are known to be
inefficient in Smalltalk. The class Dictionary is slower than the class
IdentityDictionary, because it uses a instead of the much faster
= =. Similarly for Set and identitySet. You can use either of these
faster classes in place of their slower relatives, provided you're happy
that the comparisons for key lookup and set membership will be done
using equivalence rather than equality. The dependency mechanism is a
slower way of having objects communicate than direct references. So,
if speed is important to you, you might be prepared to sacrifice the
advantages of dependency to get it. Allocating memory is slow, so
don't repeatedly create large objects and throw them away soon
afterwards.

All of these inefficiencies can be verified, and potential others
explored using the benchmarking, timing and profiling tools provided
in the development environment. If you're in doubt about the efficiency
of your code, make full use of these tools. They can help you bring
about dramatic improvements.

What we have looked at in this chapter is a set of guidelines for some
aspects of translating your object designs into working Smalltalk code.
Most of these reflect the coding style used by experienced Smalltalkers,
and hence the style you will see used throughout the standard class
library. In fact the system class library is one of the best places to look
for further examples of good Smalltalk style.

155

We've looked here at the naming conventions which make Smalltalk
code more readable, ways of isolating access to instance variables,
constants and classes to improve modularity, and ways of structuring
methods elegantly. We've also considered some standard ways of
coding elements which appear in many designs, looked at some
'gotchas', described how to write useful comments and talked about
writing efficient code.

If you adopt these guidelines, you should find that your code
integrates better into the class library, and is more usable by you and
others. Most Smalltalkers find the techniques we've talked about fit
most circumstances. However, if you have a good reason for doing
something different, that should be your guide.

In the next chapter we'll consider how you can actually work with
the system to find out more about what it's doing and integrate your
code into it.

156

Using the Development Tools

The Smalltalk development environment and the tools it provides are
one of the main contributors to the power of Smalltalk. However, once
you've learnt about the basic facilities, it's very easy to get stuck there.
You may have enough knowledge to keep you going and make you as
productive as you were in a conventional language, and yet you're only
using a fraction of the facilities which are available!

The purpose of this chapter is to remind you of the basics, but
more importantly to encourage you to explore some of the 'advanced'
features of the development tools. Because this is a book on Smalltalk,
we'll be concentrating on the programming tools in VisualWorks, rather
than the user-interface development tools, or the database tools
(although the same principle of trying to make use of more than just the
basics still applies). These tools are used not only for writing your own
code, but also for exploring the system code. They're also used for
debugging, but that's an important enough subject that we'll leave it to
the next chapter, which deals exclusively with debugging techniques.

Using Browsers

The browsers provided in the development environment are your
window on the class hierarchy. Remember that this includes both the
standard class library, and your extensions to it—your program. We
introduced the mechanics of using the various browsers in Part I—The
Science of Smalltalk. By exploring the system, or reading the manual,
you will have discovered lots more. We'll look here at how to make the
best use of these very flexible tools, and how to really open up your
view of the classes in the system.

157

The first and most obvious thing is to use plenty of browsers. It's
surprising how many people struggle on, flitting around the system
with just one system browser open. It depends on the size of your
screen of course (and you'll already have discovered that with
Smalltalk, the bigger the better), but if you're only using one browser at
a time, you're really not making the most of the environment.

If you're exploring the system, you might like to try having at least
two system browsers open, covering your screen. That way you can use
one to concentrate on whatever you're exploring, and the other to pop
out and explore the related things you always need to look at when you
want to track something down.

Remember too that there are several other kinds of browser. If you
find yourself using a system browser to look at the classes in only one
category, try using a category browser (use spawn from the operate
menu in the list of categories). This could save you valuable screen
space by not displaying the list of categories, although you have to get
used to the slightly different layout. Similarly there are class browsers,
protocol browsers and method browsers. Each of these jettisons one
level of the organisation of the class library, again saving screen space
and letting you focus on just what you need to work on. If you're
working particularly hard on a single method, and keep coming back to
it, why not keep a method browser open on it?

If you want to look at the class hierarchy, you can select hierarchy
from the operate menu of the class list. However, if you want to browse
the classes structured according to the inheritance hierarchy (instead of
according to the categories), you must select spawn hierarchy to open a
hierarchy browser. If you especially like looking at hierarchies, you
may like the full browser which comes as part of the Advanced
Programming ObjectKit. It cleverly combines a category-based view of
the class library, with the ability to see the inheritance hierarchy and
browse the methods which are inherited by, as well as implemented by
a particular class.

One small warning is important when you use more than one
browser. If you alter the code of a method in one browser, and you've
also got other browsers open on the same method, those other browsers
will not automatically update themselves to reflect the new method
definition. If you go to one of these browsers, alter the code again and
do an accept operation, you'll lose your earlier changes. It pays to be
careful about this, so as not to cause yourself undue frustration.

158

Using the Development Tools

Finding Your Way Around

One of the most important things you need to be able to do confidently
in Smalltalk is to navigate your way around the code in the system. The
development environment provides all sorts of ways of doing this. In
fact, just about every way of looking up something—that any developer
has ever found useful—has been included in the development
environment. The only apparently useful thing which you can't do is to
search your source-code for a particular string of characters, especially
as part of a comment. However, because Smalltalk knows a lot more
about the context of your source than would be the case in some other
languages (it knows whether something is a message, a reference to a
variable, a reference to a class and so on), the lack of this facility is not
really a problem.

Most of the navigation and search facilities we're going to look at
are accessed via the various browsers. All of these are available from
the system browser, and an appropriate subset is available from each of
the other types of browser. Some of these commands are also available
from the launcher, under the Browse menu.

The diagram below shows a stylised system browser, and indicates
the commands which we're interested in from each menu. There are
lots of other commands in each of these menus of course. Hopefully
you will have found out what most of these other commands do by now
(if not, why not?). The idea here is to encourage you to try some of the
navigation commands.

Starting on the left in the category pane, there is the find class...
command. You can use this to move the browser to look at any class
you know the name of. This sounds trivial, but remember that when

The navigation
and search
commands of
the system
browser.

159

you're prompted for the classname, you can use asterisks (*) as
wildcards. Not only does this save you some typing if you know the
name of a class (and lower the risk of making a crucial typo), it also
allows you to search for classes by guessing part of their names. Once
you get used to the naming conventions of Smalltalk (and especially if
you follow the advice in the previous chapter), you'll be able to use this
fact to discover classes which do the kinds of things you're looking for.

Next, once you've selected a class, the menu in the class list
allows you to search for references to its instance variables, references
to its class variables, or indeed references to the class itself. Select one
of the first two, and you'll be prompted for the name of the variable
you want to search for references to. All three commands then perform
a search, and open up a special kind of browser (like the one in the
diagram on the next page) showing you all the methods in which a
reference to the variable or class was found. This kind of browser is
called a method list browser and is used to display a set of methods
related by the fact that they were produced in response to some search
query. You'll see this kind of browser quite frequently. Remember that
it has all the same code development facilities in the code pane as every
other kind of browser.

You should be aware that there are circumstances in which these
'references to' commands will not catch all references. These
circumstances arise when a reference is only visible at run-time and not
in the static code. For example, if at run-time you put a class object into
another variable (in addition to the well-known global variable it
normally lives in), and then start referencing that, you cannot expect the
browser to find those references (it's not looking for that name). Of
course, you can always search for references to that variable instead.
Another case occurs where you follow the advice given in the previous
chapter, and only directly access a variable in one accessing method (or
two methods—one for get, and one for set). Then the only references to
that variable you can find will be in the accessing methods. We'll see
how to get around this shortly.

When you've selected a class, you can use the find method...
command in the protocol pane operate menu to produce a (sometimes
very large) alphabetical list of methods implemented by that class.
Selecting a method from that list will display it in the browser.
Remember that the list contains methods implemented}^ the class, not
those inherited by it. You must either work your way up the hierarchy
manually (perhaps in a hierarchy browser) or use the full browser
mentioned earlier to see the full set of methods a class understands.

The right-most menu contains possibly the most useful commands

160

Using the Development Tools

A method list browser,
produced by asking who
implements update:'

for tracking down how things work within the system. If you're looking
at a particular method, selecting senders will pop up a browser
showing you all the places that particular method name (selector)
appears in a message expression. This is the way to find references to a
variable via accessing methods. Warning: the system can't tell whether
the expressions it shows you will actually invoke the method you're
looking at. This is because that depends on the class of the object the
message is sent to—something that isn't known until run-time
(remember polymorphism? If not, look back at chapter 2). However,
you will get a good idea of which messages could invoke your method,
and you'll also be able to see if your method is never invoked.

By using the senders command repeatedly, you can work your
way 'backwards' through the code, seeing which methods send a
particular message, then seeing who invokes those methods and so on.
This is a very useful way of exploring the system code.

There is another 'gotcha' here though. If you've used perform: to
invoke a method, that reference to the method is essentially invisible to
the development environment. At best, the method's name just appears
as a literal symbol in the source-code (at worst, it gets created at run-
time). Because it is not syntactically a selector, it can't be seen by the
senders command.

You might like to consider going through your code occasionally,
using the inst var refs... and senders commands to find and then
remove 'dead' variables and methods (assuming you don't have
methods which are only invoked via perform:). This is another way in
which you can contribute to making your code more readable by others.

161

The implementors command will show you every class which
implements the method you're looking at. This can be useful if you're

i trying to find out who else, other than the class you're looking at, you
| could send a particular message to. Remember though, that you'll see
i the implementors, not the bigger list of 'understanders' (all the classes

which inherit the method).
Finally in this menu, the messages command is extremely

powerful for following a sequence of message passes. Suppose you're
browsing a particular method and you see that it invokes some other
methods (as almost all methods do!). Selecting messages will show
you a list of the selectors the method you're looking at uses. Choosing
one of these will then pop up a browser showing all the
implementations of that method. You can then pick the one you're
interested in, browse the code and use messages again to follow the
implementation to wherever what you're looking for actually happens.
Very often, methods in Smalltalk will simply call a more general
version of themselves. This can repeat several times before anything
really gets done. The messages command makes it very easy to follow
these chains of message sends. In effect, whilst senders allows you to
follow invocations backwards, messages allows you to follow them
forwards

The last browser menu command we'll cover is in the operate
menu of the code pane. If you select a piece of the code in a method
using the mouse, and then choose the explain command, the system will
think for a moment and then produce an 'explanation' of whatever
you've selected. You have to choose a reasonably logical piece of the
method (you can't pick a random sequence of characters), but if you're
lucky you'll get a piece of text telling you that what you selected is an
instance variable, or a class variable, or a method selector, or anything
else.

You should note a couple of things about the explanation. First, the
system rather rudely inserts it into the code you're browsing. However,
it does make sure that the text it inserts is selected, so you can just hit
the <delete> key to get rid of it. Second, the explanation will usually
include a snippet of Smalltalk code which, if you evaluate it, will
probably pop up another browser with more information about the thing
being explained. The explain function even makes sure that its
explanation is structured into comment and code so you don't have to
select a subpart of it. You just follow an explain command with a do it
if you want more information. Then you can still hit <delete> to get rid
of the explanation. This has to be one of the cleverest features of the
browsers and, like the messages command, you should use it regularly.

162

Using the Development Tools

One last tip to do with browsers (or in fact, any code view). There are a
few short cuts which the system helpfully provides. The manual
contains a full list, but here are the most useful two. If you want to put
parentheses around any expression, just select the expression with the
mouse, hit the <escape> key and then type the open parenthesis
character. The system automatically brackets the expression with
parentheses.

This technique works for other 'bracketing' characters as well
(", ', E,{,<). You can undo this by selecting a bracketed expression
(not including the bracketing characters), and typing <escape> followed
by the opening bracket character. The system will automatically
remove the brackets. The second short cut is that if you type
<control>-t or <control>-f in a code view, the system will
automatically insert ifTrue: or ifFalse: . Once you get used to
these short cuts, you'll wonder why your other editors don't have them!

Using Inspectors

What the browser tools are to classes, inspectors are to instances. By
making liberal use of inspectors (as in the diagram below) you can get a
very good idea of what the instances your code creates look like, and
what they are up to.

Using a 'chain' of
inspectors to find and
inspect a particular object.

163

Chapter 14

There are several ways of opening an inspector. Selecting an expression
with the mouse, and choosing inspect from the operate menu will
evaluate the expression and open an inspector on the result. Remember
that an expression can be a single object. For example, just selecting the
name of a global variable typed in a workspace and doing inspect from
the operate menu, will open an inspector on the object the variable
contains.

Once you've got an inspector open, selecting a variable in the
inspected object will allow you to pop up another menu and open a new
inspector on that object. This is the key to good usage of inspectors. By
repeatedly selecting a variable and opening a new inspector you can
follow 'chains' of objects to see how they relate, and find the object
you're looking for. Even if you have to open twenty inspectors or more,
that's OK. Just close the ones you don't need, carefully keeping the one
you wanted open.

You can almost always find the object you're looking for by
following chains of object references. The difficult part of this process
can be getting the first inspector open. One way around this is to
remember that you can get an inspector open by sending the message
inspect to any object. This is useful during debugging when you'd
like to take a look at an object that comes into being inside your code.
Just insert an expression like myObject inspect into the appropriate
method. Using inspectors during debugging is covered in more detail in
the next chapter.

Another way around the problem of getting the first inspector open
is to modify the window menu to allow you to inspect the model, view,

An inspector being used to execute
some code, in this case to pick out
all the objects in the Smalltalk
SysfcemDictionary which are

actually classes.

164

Using the Development Tools

or controller of any window you've got open. This is an interesting
exercise in itself. Once it's done, you will find it an amazingly useful
way of exploring the system, especially the construction of the system's
and your own user-interfaces. It's not a hard thing to do, but to help you
you'll find a 'model answer' at the end of this chapter .

Don't forget that you can also execute code in an inspector. The
code is executed in the context of the object being inspected. So, if you
want to send a message to the object, send it to self. Just type the
expression in the right-hand pane of the inspector and use do it, print it,
or inspect from the operate menu, as in the diagram on the previous
page.

Using Workspaces

Workspaces are very useful 'scratchpads'. You should use them to try
out little fragments of code, or to keep hold of the expressions you need
to fire up your applications. Just like all the other tools in the
development environment, you can have as many open as you need.
You can also change the title of a workspace window by using the
relabel as... command on the window menu.

Sadly, you cannot save the contents of a workspace window,
except as part of a saved image. This can be inconvenient, but a way
around this is to create one or more 'scratchpad' methods in a class, put
the code which was in the workspace into these methods, and then file-
out the class. This might be one of your existing classes if the code that
was in the workspace is particularly relevant to testing or exercising
that class. Alternatively, you could create a special class just to hold
this test code.

If you're writing self-contained fragments of code in a workspace,
you can define temporary variables in just the same way as you would
in a method—by using vertical bar (|) characters. These variables only
last for as long as a single do it, print it, or inspect though. If you need
to keep the objects you're playing with for a little longer, there's
nothing really wrong with using global variables. Just assign the result
of an expression to a variable beginning with an upper-case letter, and
the system will ask you if you want to define it as a global. Later, if you
want to get rid of your globals, inspect the global variable Smalltalk.
This contains an instance (in fact, the only instance) of a class called
SystemDictionary. You should be able to find your variables and
remove them using the operate menu in the left-hand pane. It's helpful
to prefix all your globals with the same thing (by calling them MyView,

165

Chapter 14

HyFile, MyWidgefc for example) so that they are easily found.
Remember that almost every text view in the system can be used

as a workspace. If you need to quickly type and evaluate an expression
(such as M(yClass initialize) just type it anywhere—in a
workspace, in a browser, in a debugger, in the transcript. After you've
evaluated it, you can just use cancel or the <delete> key to get rid of it
if necessary. This is much quicker than looking for an open workspace,
or opening a new one.

In older versions of VisualWorks (prior to 2.0) and in
ObjectWorks, there was something called the system workspace. This
contained all sorts of useful code snippets of code for doing the sorts of
functions VisualWorks 2.0 now provides from the menus in its
launcher. If you're using one of these older Smalltalks, it's worth
investigating the system workspace.

Tuning the Performance of Your Code

In the previous chapter we looked at some coding techniques which can
improve the efficiency of your code. We'll look here at the tools which
help you identify areas which need improvement, and allow you to
prove you were able to improve them.

The performance of your code depends on two factors—how
efficient your code is, and how fast the machine it's running on is. The
VisualWorks development environment provides three ways to measure
these things—timing, benchmarking and profiling. The last two are part
of the Advanced Programming ObjectKit, so if you don't have this
optional extra, you'll only be able to listen to the theory.

Timing code

You can time how long Smalltalk takes to execute any piece of code by
evaluating the following expression and printing or inspecting the
result. Simply substitute the code you want to time for the comment in
the block. Use the expression to compare different ways of doing
things.

Time millisecondsToRun; ["Your code goes here."3.

Remember that there are a number of factors which can drastically
impact the time it takes to run the code. These include whether the
methods you invoke are in the method cache, and whether part or all of
your image is swapped out (if you have virtual memory). So like all

166

Using the Development Tools

such scientific tests, it's a good idea to repeat it several times and take
the best, worst, or average value as appropriate. You could also write
the block to execute your code many times (say 1000) and divide the
resulting time appropriately.

Benchmarking

In order for you to be able to assess the underlying performance of the
computing platform on which your code is running, VisualWorks
provides a convenient set of benchmarks which you can run. These test
all kinds of features of your system, and then report the results. You
can control which benchmarks are run and how the results are reported.
You can use the benchmarks to compare how your system performs
differently when you alter the platform configuration (change memory
or processor speed). You might also want to compare the performance
of the platform on which you might be delivering your application
against the performance of the platform on which you're developing it.

Profiling

The third kind of performance assessment tool VisualWorks provides is
the profiler. There are actually two profilers—a time profiler for
exploring where time is being spent in your code, and an allocation
profiler for exploring where memory is being allocated in your code.
Both of these profilers act on a block of code which you provide to
them. They run the code many times, and use a statistical sampling
technique to monitor what is happening. Because of this, you should
make sure you read the accompanying documentation in order that you
get the number of repetitions and the sample size right to get valid
results.

A hierarchical time
profile produced by
the time profiler.

167

Chapter 14

The profilers produce results in the form of a hierarchical breakdown
similar to the one shown in the diagram on the previous page. You can
browse around this using the tool provided in order to understand
what's happening. The breakdown shows times or allocations as a
percentage of the total. You can open out (plain text) or collapse (bold
text) parts of the breakdown in order to help in your exploration.

The diagram shows the results of running the profiler on a piece of
system code, but if you use the profiler on your own code you could
well have some surprises as to where the system is spending its time.
By using the profiler, and acting on the results, great improvements are
possible. However, do make sure you profile your code both before and
after you change it. That way you'll know that you really are getting an
improvement, and you'll know exactly what the extent of that
improvement is.

Managing Your Image (or how not to lose your work!)

The Smalltalk development environment provides very powerful ways
to develop applications. By using it to the full, it's possible to be very
productive. It's also possible to lose all your work in a moment if you
don't take some simple precautions! The advice in this section is based
on bitter experience.

There are some very powerful code management tools available
for VisualWorks, but if these are too complex or expensive for your
immediate needs you can do a perfectly good job with the facilities
included in VisualWorks. So, Smalltalk provides two ways to save
work—the 'save-image' facility, and file-out files.

The first rule is to use the 'save-image' facility. Use it
often—especially just before you make a crucial change to the system.
Provided you have a reasonably fast computer and your image isn't too
big (so that it doesn't take too long to save), you should do a 'save-
image' at least every half hour. Also, do one after every change which
you don't want to have to repeat, and before doing anything that could
damage the system. This includes redefining any of the system
methods, especially if you're modifying the way the user-interface
works. It's very easy to throw yourself into a loop from which you can
never recover by damaging the code which deals with the opening of
windows, causing the system to try to open a notifier to tell you,
causing it to try to invoke the damaged code, causing it to try to open a
notifier... . Before you know it, your screen is covered with notifiers
which you can't get rid of!

168

Using the Development Tools

As well as using the 'save-image' facility, you should make use of the
file-out facility to keep copies of your finished code outside an image.
This makes sure that you can rebuild your image from scratch should
this prove necessary. In fact, it's quite a good idea to rebuild your
image regularly (perhaps as often as every day), just to make sure that
you're not relying on odd instances lying around which you no longer
know how to recreate, and to tidy-up any garbage generated during
development which the garbage collector fails to reach,

Another important thing when managing your .image is never to
delete your changes file. This file, one of which you'll have noticed
goes along with every image file, contains all the source-code you have
added or modified. Whenever you change a method, the new source
code is added to the end of the changes file. Any old version which
may have been in the file remains in the file. In effect, this means that
you've got a log of the history of the changes you've made. This log
includes do its which have a permanent effect on the image (for
example, defining global variables).

Should your image become damaged (and it's not hard to do), you
can use a tool called the change list (see diagram below) to repair it.
This is one of the most arcane tools in the system and is somewhat
awkward to use, but since it can almost literally save your life, it's well

The change list tool being used to
rebuild an image from a changes file.

169

worth learning how to use it. Just start up the latest undamaged version
of your image, and open a change list from the Changes menu in the
launcher. Use the file in/out —> read file/directory command from the
operate menu in the top left pane to read into the tool the changes file
of the broken image. You can then selectively replay pieces of that file
to reconstruct your image. If you're lucky, you'll be able to replay
everything you did right up to the moment your image got damaged.
Even if you can't, you should get a long way. When you've finished,
make sure you do a 'save-image' to a new file straight away (don't
overwrite your last working version though).

Throughout this chapter we've looked at various ways you can enhance
your use of the programming tools in the Smalltalk development
environment. In particular, we looked at how to make use of the
navigation commands in the system browser and its relatives. These
enable you to follow message sends both backwards and forwards,
which is a big help when you're trying to understand how one of the
system classes (or even one of your own) works.

We also looked at getting inspectors open (see below too) and then
at using 'chains' of inspectors to explore object instances. Remember
that you can execute code in inspectors too.

Workspaces are something that everyone uses differently, but we
did consider one or two common ways of using them, and mentioned
that any text view in the system can be used as a temporary workspace.

Following on from the discussion of how to write efficient code in
the previous chapter, we looked at how to measure the performance
both of your own code, and the computer on which you're running it.

Finally, we considered some simple ways of avoiding a
catastrophic loss of your work, by using the 'save-image' and file out
facilities. If the worst does happen, we looked at using the change list
tool to recover your work from the changes file.

If you try some of the things we discussed, you should find that
not only are you able to become a more efficient programmer, but that
your ability to explore and understand the class library has also
increased. These exploration and comprehension skills are vital to
realising the full power of the Smalltalk environment.

As it happens though, all of the tools and commands we've looked
at here are equally helpful during debugging, and that is the subject of
the next chapter.

170

Using the Development Tools

Appendix: Modifying the Window Menu

We mentioned in this chapter that it is sometimes difficult to get an
inspector open on the object you're trying to see. There are several
solutions to this problem, and here is one of them.

On the next page there is some Smalltalk code. Type this code into
a file (not a browser—just use the Smalltalk file editor, or any other
editor) exactly as it is listed, and then file it into an image.

Doing this will make the modifications necessary to add a new
sub-menu to the window menu of all windows. The three commands on
this sub-menu allow you to inspect the model of the window, the
window object itself, or the window's controller. From there, you
should be able to navigate to a particular model object, or a particular
view inside the window.

The code works by replacing the initialize method of the
StandardSystemControiler class with one which puts a new
menu, which includes the new sub-menu inspectMenu, into
ScheduledBlueBufctonMenu (a class variable). It then adds three
new methods to StandardSystemController to implement the
three inspect commands. The last thing the file-in does is to send
inibialize to StandardSystemController in order to create the
new menu.

Although the code seems to work with versions 1.0 and 2.0 of
VisualWorks (and versions 4.0 and 4.1 of ObjectWorks), like all such
things, no guarantee can be given that it will work correctly in your
system. Use it at your own risk.

171

Chapter 14

'StandardSystemController class methodsFor: 'class initialization'

initialize

| inspectMenu |

inspectMenu := PopUpMenu
labels:'model\window\controller' withCRs
values: #(#inspectModel ftinspectWindow #inspectController).

ScheduledBlueButtonMenu := PopUpMenu
labels: 'relabel as...\refresh\move\resize\fronfc

back\collapse\inspect\close' withCRs
lines: #(18)
values: ((OrderedCollection wifchAll:
#(#newLabel ftdisplay #move #resize ftfront ftback ftcollapse)}

add: inspectMenu; add: ftclose; yourself).! 1

!StandardSystemController methodsFor: 'menu messages' 1

inspectModel
model inspect.1

inspectWindow
view inspect.!

inspectConfcroller
self inspect.1 !

StandardSystemController initialize.

172

Debugging Smalltalk Code

Even if you follow the design approach and the coding guidelines
presented in the preceding'chapters, you're unlikely to write Smalltalk
which is completely free of bugs first time. Luckily, the interactive
nature of the Smalltalk development environment makes it very well
suited to the task of finding and correcting bugs.

In theory, the main tools—notifiers, inspectors and
debuggers—are relatively easy to use. However, there are also a
number of 'tips and tricks' which experienced programmers use. These
can greatly speed up the process of debugging, and make it altogether
less frustrating. This chapter discusses Smalltalk debugging, and then
presents a list of common bugs in Smalltalk code with advice on how to
detect them and avoid them.

Different Kinds of Bug

We might say that there are three fundamentally different kinds of bug
in Smalltalk. The first kind simply involves your code being
syntactically incorrect. The compiler (invoked whenever you do an
accept) will not let syntactically incorrect code be added to the system.
Hopefully, your knowledge of the 'science' of Smalltalk is now good
enough that you can fix these problems unaided, because we won't be
dealing with them here.

The second kind of bug occurs when Smalltalk runs your code,
and comes across a problem during execution. In other words, the
system finds something it cannot or will not execute. Typically, it will
then pop up a notifier window. The notifier tells you what the problem
is, and gives you the choice of attempting to continue (if possible),

173

Chapter 1-5

opening a debugger window, or aborting execution of your code. This
is one of the kinds of bug we shall be looking at.

The third kind of bug is the kind which occurs when your code is
correct, but there is something wrong with your design. Your program
executes fine, but it doesn't do what you wanted it to do. This can
happen because you haven't understood how some feature of an
existing class works, or it can happen because the design or
implementation of one of your classes is wrong. Again, we'll also be
looking at how to trace execution of your code and the system's code to
track down this kind of bug.

In reality of course, there is also a fourth kind of bug—that which
is presupplied in the class library as delivered. Although rare, these
bugs do exist, especially in new releases. The techniques presented in
this chapter will also help you track down and even (if you're clever)
fix these sorts of bug.

General Debugging Principles

When it comes to debugging, Smalltalk has a lot in common with other
programming languages. Because the same general principles apply,
but also because even experienced programmers forget them
sometimes, we'll remind ourselves of these 'rules' first.

The first general principle is to read the error message. Although
any computer can only tell you the immediate and superficial cause of a
problem, and not the underlying origin, it is still worth considering
what the error message has to say. It is all too tempting to think 'Oh, an
error!' and start searching around your code looking for the problem.
Remember, the system is trying to tell you something. At least listen to
what it's got to say.

After you've read the error message, slow down. Stop to think
about what the problem might be. Debugging is one of those things
where it's worth taking the time to f i x it first-time. If you're not careful,
you can find yourself going round and round trying different things out,
but not getting any closer to the problem. This is especially true in a
system which permits such easy modification and testing of source
code as Smalltalk.

The next general principle is not to assume anything. Just because
you're sure a variable had a particular value at a particular point, or that
control flowed through a particular part of your code, doesn't mean that
it necessarily did. Check to be sure. Again, the Smalltalk environment
makes this bit easy.

174

Debugging Smalltalk Code

One way of forcing yourself to do this kind of checking is to get some
help from someone else. The more cynical and difficult to convince this
person is the better, but it's well known that even a 'cardboard cut-out'
can help force you through the reasoning process that leads you to
finding your bug. Just the act of explaining your system to someone
else, or drawing diagrams of its behaviour, can be very helpful.

Next, remember that as well as using the debugging tools
provided, you can build your own debugging code. If it helps to log
things to files, or just to print things to the transcript window, take the
time to do it. You can even construct more complex 'monitors' and
'triggers' if you want to. Although this can be painful in some
languages, Smalltalk actually makes it quite easy.

Another thing which Smalltalk makes easy is the construction of
stubs. You can define a method which has the right name and
parameters as a method you will eventually write, but not include the
final implementation. You can either just return a 'canned' fixed-value,
or put in a halt (see shortly) and use the debugger to manually fill-in the
value you want the method to return.

Finally, you should be trying to build, test and debug small pieces
of your system anyway. However, if you hit problems, it's helpful to
break your code down into even smaller independent pieces and check
them out separately. If that doesn't work, try building a specific test
case. Again, it's worth investing the time and effort to do this, just to
know once and for all why something doesn't work.

Using Notifiers and Debuggers

Probably the first thing you'll know about a bug in your code is that
you get a notifier window popping up. Smalltalk notifiers are popped
up in response to exceptions, which arise in 'exceptional' circumstances
such as the system not knowing how to deal with a particular message
expression. The diagram on the next page shows a couple of notifiers.

In line with the general principles we've just looked at, the first
thing you should do is to stop and look at the notifier—don't just close
it. Smalltalk notifiers give quite a lot of useful information. Obviously,
you get the name of the exception ('Message not understood', 'Division
by zero', etc.). You also get a stack back-trace which shows you
exactly what was happening up to the time the exception occurred.

Each line in the back-trace shows a message being sent, starting at
the bottom and working up to the top where the error occurred. On
every line you'll see the name of the class of the object which received

175

Chapter 15

Notifiers from VisualWorks 2.0
(front) and an earlier version of
Smalltalk (behind). Both were
generated when the system
realised that nil doesn't
understand the message
wibble.

the message, then the name of its superclass which actually implements
the method (in parentheses), and then the method selector itself (after
the »). In other words, each line looks like this:

Receiver-Class (Imp lementorC lass) »mes sage Select or

The very top thing on the stack back-trace will be Smalltalk raising the
exception (yes, you actually get to see the code which generated the
error message!). This means that you're almost always interested in the
second line down. This is where the immediate cause of the error is.
The back-trace will tell you the name of the method in which the error
occurred, or unboundMethod if the error happened during a do it,
print it, or inspect.

Underneath the second line down are all the messages on the stack
leading up to the error. Remember that you are looking at a call-stack.
This means messages which were sent prior to the exception, but which
have already returned, won't be visible to you here (even though they
may be the ultimate cause of the bug).

The other thing to remember is that Smalltalk doesn't make any
distinction between 'its' code and 'your' code. They are one and the
same as far as the system is concerned. This means that the stack back-
trace could easily consist of a mixture of your code and code from the
class library. So, don't be concerned if you don't recognise all the code
that's being shown to you. The diagram on the next page shows a
couple of examples of this phenomenon.

176

Debugging Smalltalk Code

Two possible
combinations of
your code and
the system's
code in a stack
back-trace.

As you will see, you may be presented with a stack in which a fair bit
of system code leads up to your code starting to run, with the exception
happening in your code. This is especially true of exceptions resulting
from do its in a workspace.

The other situation is where your code invokes some method in the
class library, which then invokes a potentially large number of other
methods in the class library, before the exception eventually occurs in a
system method. This doesn't mean you've found a system bug! Instead,
it means you've done something in your code which led to a problem
which wasn't detected until the system eventually tried to do something
forbidden in its own code (like access an element which isn't present in
a Collection).

After you've looked at the error message and the stack, the next
thing to do is to decide whether you need to open a debugger.
Depending on the version of Smalltalk you have, you'll be given the
choice to do this either through a pop-up menu, or through push
buttons. If you think you know what the cause of the problem is, that's
fine. Just close the notifier and go and fix it. If you want to take a closer
look at the code that caused the error, examine variables and have the
chance to modify the code, then you should open a debugger.

If you decide to open a debugger, make it big. You're trying to get
a view on what's gone wrong, so there's no point squinting at your
code through a tiny little window (sometimes the default sizes at which
Smalltalk opens its windows are ridiculously small. We covered the
basic use of debuggers in The Science of Smalltalk, and it's also
covered in the manual. The important thing is to make sure you make
full use of the facilities you're given.

You can browse up and down the stack looking at the path the
system took through your code. If there's not enough stack for you, you

177

Chapter 15

can ask for more via the operate menu in the stack pane. Remember
that just like in the notifier you could be looking at a mixture of your
code and the system's code. If you see system code at the top of the
stack, it's worth scrolling down (back in time) to see where your code
begins. The interface between your code and the system's is the last
chance your code had not to generate an error. This is often where the
bug is. Remember though, that your code could have generated the
error much earlier (either in the call-stack or outside), with your code
happily passing on a bad object until an exception eventually gets
raised much later. If the method which actually has the bug in it has
already returned you won't be able to see it in the call-stack. In this
case you'll have to interrupt your code and follow it through manually
to find the bug. We'll look at how to do this very shortly.

You can use the two embedded inspectors at the bottom of the
debugger to look at the state of instance variables, as well as temporary
variables and parameters to methods. Remember that you can also
execute code in inspectors. If you want to test out how an object
responds to a message, make sure one of the inspectors is inspecting it,
type an expression, select it and evaluate it.

If you think you can see the source of the problem, you can use the
code pane of the debugger just like a browser. You can edit the code
and accept it. Be careful though, because if you've got another browser
open on the method, and you subsequently go back to using that, you'll
put the error straight back into your code! This occurs because
browsers do not automatically update themselves when the code they're
browsing is changed elsewhere.

Interrupting Your Code

You can interrupt Smalltalk by pressing <control>-c This stops
whatever is happening, raises a 'User Interrupt' exception and opens a
notifier. From there you can open a debugger as usual. It is even
possible to do this when the system is 'idle', interrupting Smalltalk's
normal processing loop. You might find it interesting to do this, open a
debugger, and explore something of how the system works.

There are occasional circumstances when the system will stop
responding to <control>-c . This is usually because the image is
damaged in some way. In this case, try pressing <shift>-<control>-c
This should open the emergency evaluator—a sort of 'last chance'
which uses only a minimal amount of the system. From here you get
the chance to enter and evaluate a single Smalltalk expression

178

Debugging Smalltalk Code

(terminated by <escape> not <return>). What you choose will depend
on your situation, but here are some useful choices:

Processor acti-veProcess terminate. (To try to recover.)
ObjectMemory quit. (To give up and kill Smalltalk.)

If you can't work out what you want to type, remember that (in some
environments at least) you can start up another Smalltalk image to
browse around and decide. There is only one thing you shouldn't do,
and that's try to save your damaged image. When you restart it it will
be in exactly the same damaged state, and you'll probably have
overwritten your earlier work as well!

Inserting Breakpoints

Sometimes you can't see the actual cause of a problem in a debugger
popped up as a result of an unexpected exception. This is because the
real cause is in some method which has been invoked and already
returned. In this case you may want to set a breakpoint in your code,
and then follow the subsequent execution path to catch the error.

In Smalltalk, you don't set breakpoints through the debugger.
Instead you insert a piece of code into your program which causes a
special kind of exception to happen when and where you want it. You
can then open a debugger in response to the resulting notifier.

The way you raise the exception is to send the message halt. This
message is implemented in object, so every single object in the
system understands it, and does the same thing—raise an exception.
The normal thing to do to set a breakpoint is to put the expression self
halt wherever you want execution of the code to stop. You can also
use the halt; message, which takes a string as a parameter, and
includes it in the error message. This can help you to know which of
the many halts you've inserted in your code has actually been reached!

When a halt happens, you might decide to proceed, but more likely
you'll decide to open a debugger. You can then look at the values of
variables, and send messages. You can also then use the step and send
buttons to either send the next message, or send the next message and
follow it down into its own implementation. If you get fed up single-
stepping, you can choose proceed from the operate menu.

You can, if you wish, insert a self halt into the system's code.
Be very careful though, because if you put a halt in a piece of code
which is needed to raise an exception, used to open a window, or used
to enable you to take the halt out again, you will get an endless stream

179

Chapter 15

of notifiers! In this case you're likely to have to use the emergency
evaluator we've just described.

Sometimes you don't want to halt until a certain condition is true.
In that case, you can obviously just test for the condition and halt if it's
true. You might also want to halt after you've been through your code a
certain number of times. To save yourself having to keep on using
proceed, just set up a global variable, keep incrementing it, and halt
when it reaches the right value. Finally, you might also only want to
halt the first time through the code (perhaps to avoid the streams of
notifiers syndrome described above). In this case, create a global
variable called something like DontHalt, initialise it to false, check
whether it's false before you even consider halting, and set it to true
just before you actually halt.

Another way to control whether a halt actually happens is to write
a method called something like conditionallyHalt (add it to class
Object). In that method, check some condition (like the shift key
being pressed) and only halt if the condition is true. Then, if you use
conditionallyHalt instead of halt, you can control whether your
code halts by whether you hold the shift key down. An expression
which determines whether the shift key is down:

ScheduledConfc rollers activeController
sensor shiftDown.

Tracing Execution

You can follow the path your code is taking by single stepping through
it using the debugger. However, this can be tedious if you just want to
know whether a particular method got called or what the value of a
variable is. In this case, Smalltalk provides the equivalent of the print
statements you might insert into a conventional program for debugging.
You can print any string to the transcript window by using an
expression like:

Transcript show: ^Here is a string'; cr.

This would print 'Here is a string' followed by a carriage return. The
global variable Transcript holds an instance of the class
TextCollector which is the model (in the MVC sense) for the
transcript window. Note that you can only send strings to the transcript.
You can print other objects by sending them the message printString
first. For example;

180

Debugging Smalltalk Code

Transcript show: 'anArray is ', anArray
printString; or.

If you simply want to know whether something has happened, you can
even get the system to beep when it does. Just insert the expression
below wherever you need it. It is however worth checking whether it
works on your particular platform before using it for real. Here's the
expression:

Screen default ringBell.

Other ways of tracing execution include logging events to a file or
building up an OrderedCol lection of 'trace records*, capturing the
values of important variables as your code executes. This has the
advantage that you can easily inspect the collection to see the sequence
of things your program did.

Finding Your Objects

Sometimes you will know that your code has created one or more
instances of a class, but you don't know where they've gone to. In this
case there are a couple of useful messages which you should know
about They are:

MyClass alllnstances.
MyObject allOwners.

The alllnstances message can be sent to any class. It will trawl
through the entire system and return a collection of all the instances of
the class. This can be very useful if you've created a single instance of
a class which you've lost (especially if it's a runaway Process and
you want to terminate it), or if you believe there are hundreds of
instances of a class which are not getting garbage-collected for some
reason.

The aliowners method, which can be sent to any object, again
trawls the entire system looking for references to the receiver. It will
answer a collection of other objects which have references (in instance
variables or dependencies) to the receiving object. Again, this can be
useful for tracking down why some objects aren't getting garbage-
collected.

Note that both of these methods are extremely resource intensive,
taking several seconds to complete in an average size image. Because
of this you should think very carefully before you design an application

181

Chapter 15

which uses them as a matter of course, although they remain very
useful during debugging.

Debugging Dependencies

We observed in an earlier chapter that dependency relationships
between objects are more difficult to debug than ordinary relationships.
This difficulty arises for two reasons—the way dependents are held,
and the way they are used.

First, the dependency mechanism as implemented in object (but
not as re-implemented in Model), doesn't use an instance variable to
hold dependent objects. Instead, it uses a class variable holding a
dictionary full of all the objects which have dependencies. This means
that the dependents of a subclass of Object are less easy to see in an
inspector than those of a subclass of Model. The way around this
'invisibility' of dependents is to remember that you can execute code in
inspectors. If you are looking at an object with an inspector and you
want to see its dependents but there is no dependents instance variable,
just type the expression self dependents in the right-hand side of
the inspector and inspect it. That will give you an inspector on a
collection of the object's dependents.

The second problem is that dependency causes messages (updates)
to get sent to other objects whenever a change message is sent to an
object which has dependents (if you're not sure about this, look back at
chapter 8). These update messages can cause arbitrarily large amounts
of other code {your code) to run, depending on what the 'update'
methods do. However, when you are single-stepping in the debugger,
you will miss these update messages and so miss your code being run,
if you just use step to execute a change message. The entire
dependency mechanism will fire, resulting in the execution of 'update'
methods, which in turn will invoke other code, none of which you will
see. To see these messages getting passed, you must use send when you
execute a change message whilst single-stepping in the debugger. You
must keep using send to work your way up through the system code
which runs until you eventually see your update method getting run.

Common Bugs in Smalltalk Programs

Lots of different kinds of bug find their way into Smalltalk programs.
However, there are a number of them which tend to appear again and

182

Debugging Smalltalk Code

again. Some of the bugs are easy to spot—some of them are more
insidious. The last section of this chapter contains descriptions of some
of the traps most Smalltalk programmers have fallen into (sometimes
more than once) at one time or another. Even if reading about these
bugs doesn't help you avoid them, it may help you recognise and fix
them more quickly on the day you get caught by them! You might like
to refer back to this section if you ever find yourself puzzling over a
particularly difficult bug.

The doesNotUnderstand: message

This has to be the most common error message you will ever see when
a notifier pops up. It has one of two causes: you sent the right message
to the wrong object; or you sent the wrong message to the right object.
You can tell which situation you're in by reading the message in the
notifier carefully. Note that the message name will be preceded by a #
because the system treats it as a symbol. Can you tell where you are in
your (or the system's) code? If you can, which do you recognise as
correct—the message which was sent, or the object which received it?

The most common situation in which the right message goes to the
wrong object is when you try to send a message to nil. In this case
you'll be told that UndefinedObject (the class of which nil is the
only instance) does not understand the message. This typically occurs
because something hasn't been defined, initialised, or assigned to. It
can also occur when a previous message (either in a cascade, or a
previous expression) returned nil, instead of the right thing. You'll
have to use the stack back-trace to track this down.

The wrong message going to the right object can be more
complicated. In theory, the compiler won't let you accept any messages
which aren't implemented by any class. This means that the message
being sent must be understood by instances of some class. What's
probably happened is that you've made a typo, converting the message
you meant to type to another legal message. A common way for this to
occur is if the bracketing of an expression is wrong. This can easily
happen in complex message expressions, and can be difficult to spot.
So, if you get a doesMotUnderstand: error which you don't
understand, check the way you've got your parentheses arranged.

Problems with copies

In Smalltalk, objects are 'passed by reference'. This means the system
does not make copies of objects which are passed as parameters or

183

assigned to variables. It passes or assigns the actual objects. Most of the
time, this is fine, but just occasionally, even experienced programmers
structure their code in such a way that they make an assumption that a
copy is being generated when it isn't.

If your objects seem to be mysteriously altering all by themselves,
it pays to consider whether what you think are two separate instances
of a class, might actually be the same instance. You can check this by
getting hold of the two objects (if necessary by grubbing around with
the debugger, using inspectors and assigning them to global variables),
and sending one of them an = = message with the second object as a
parameter. For example, to check if ttyRecord and MyOtherRecord
are the same instance use:

MIyRecord == HyOtherRecord.

If this expression evaluates to true, then these two objects are really
only one object. If it evaluates to false, then you've got two distinct
objects even if they are '='. (If you're not sure about the difference
between == and =, look back at Chapter 6—The Smalltalk Class
Library.) This same test can be used when you want to check whether
multiple references to the same object really are references to the same
object. Manipulating a copy of an object when you thought you were
working with the actual object is also a common source of bugs.

Another problem can occur when you use select:, reject: or
similar messages to build a new collection from an existing one.
Although the collection object is new, its contents will be (a subset of)
the same objects which are in the existing collection. This can give you
a surprise, and cause much frustration, when you modify the objects in
one collection, only to find that the objects in the other collection
'magically' change too. They're the same objects!

Using equality (a) instead of equivalence (==)

If you want to test to see if one object is the same object as another
object, you must use the equivalence test, '=='. Using equality, '=',will
give false positive results. Conversely, using '= =' when all you wanted
was ' =' will give false negatives.

Modifying a collection during iteration

Sometimes, it's very tempting to modify the contents of a collection
whilst iterating over it. For example, you might want to remove all the
elements of a collection whose size is greater than ninety-nine. In that

184

Debugging Smalltalk Code

case you could easily write an expression such as:

MyCollection do: E;i 1 (i size > 99) ifTrue:
EMyCollection remove: i]3.

This simply won't work. Because you're shrinking the size of the
collection whilst iterating over it, the iterator will keep missing out
elements. This can be very frustrating until you spot what's happening.

The correct thing to do in this case is to use the select:
enumeration method to build up a new collection containing just the
elements you want, and then replace the old collection with the new
one. If select: or one of its cousins is really not suitable, then you
should create a new collection yourself, and fill it whilst iterating over
the old one.

If your system has many references to the old collection which you
can't trace and change to a reference to the new collection, consider
using a ValueHolder (see chapter 10) to hold the collection. Lots of
objects can then keep references to the ValueHolder (which is long-
lived), even though its value (the collection object) keeps being
replaced.

Note that it is perfectly safe to alter the 'internals' of an object in a
collection whilst you are iterating over it. For example the following
code is quite safe and normal. It checks the size of every object in the
collection MyCollection and sets the size of those which are bigger
than ninety-nine, to ninety-nine:

MyCollection do: [:i | (i size > 99) ifTrue:
[i size: 99].

Omitting the return operator (A)

It's very easy to miss out the return operator (A) in a method which is
supposed to return something other than self. If you seem to be
sending the right message to the wrong object, check that you're
returning the correct thing earlier on in the call-stack.

This error is especially nasty in instance-creation methods, where
failing to return the newly created instance will result in the class
(which is self in a class method) being returned. This will almost
certainly cause a doesMotUnderstand: exception when you try to
send the first message to your 'new' object. Unfortunately these
exceptions make it look just like your new object doesn't understand a
message it's supposed to, except for the subtle inclusion of the word

185

The facilities you're provided with are perhaps basic but can be
combined in very powerful ways. With a bit of patience and creative
thought, you can create your own debugging code, which will tell you
virtually anything you need to know about the way your code is
behaving. In spite of this, the old guidelines on how to do debugging in
any language still apply to Smalltalk. These include reading the error
message, slowing down, not assuming anything, writing your own
debugging code and developing and debugging only small pieces of
your system at one time.

We've looked at a range of techniques that many experienced
Smalltalkers use. As you yourself become more experienced in
debugging Smalltalk code you'll develop your own techniques, and
also start to recognise the signs of certain common bugs early on.
We've described some of these in this chapter. Combining your own
experience with that related here should rapidly help you to write
Smalltalk code with fewer and fewer bugs.

188

Managing Smalltalk Projects

In the first chapter of this book we looked at how to get started in
Smalltalk. We talked about how Smalltalk is different from other
languages, and the culture shock which that can cause. We also saw a
typical Smalltalk 'discomfort curve' and mentioned various ways to
reduce its height and length:

In this final chapter we'll look again at some of the management
issues which a move to Smalltalk can raise. Like so many other things,
this subject is complex enough to require a whole book all to itself, so
we'll be able deal with it only briefly.

We'll look at the software lifecycle, mention something about
training and consider how you might organise a team. Then we'll look
at the technical issues of configuration management, and metrics and
measurement. Finally, we'll end with a reminder of the basic message
of The Art and Science of Smalltalk.

The Software Lifecycle

Depending on your situation you may be more or less aware of the
software lifecycle. However, one of the things that developers and
managers alike need to appreciate about Smalltalk is that its lifecycle is
different. As we said earlier, Smalltalk promotes and safely supports a
much more interactive and exploratory programming style than many
other languages. You will need to adapt to this new lifecycle if you're
to get the benefits which Smalltalk offers. The benefits of more rapid
development with fewer resources are probably the ones you wanted
when you decided to switch to Smalltalk in the first place. If you fail to
adapt your own way of working to suit the new environment, you will

189

probably also fail to get all (or any) of the benefits it can offer.
The main thing to do is to make use of your ability to create rapid

prototypes and to iteratively refine them. Remember that in other
languages you had to be conservative because of the time it took to
code something, or modify it if it was incorrect. This is not nearly such
a problem in Smalltalk.

Unless you're in a situation which explicitly demands it (in which
case you might want to think carefully about using Smalltalk in the first
place), don't over-analyse or over-design your system before you start
constructing. Remember the 'grain' of the class library you're trying to
make maximum reuse of. Explore it early on. Try out your ideas and
use what you discover to improve your design. Don't above all try to
adopt a 'waterfall' methodology.

However, don't go completely mad. Smalltalk is not an excuse for
a free-for-all. The interactive lifecycle can give rise to increases in code
bulk as modifications to the system are added. Try to allocate time in
your process to regularly go back and polish the code you've already
written, removing redundant methods and variables, and generalising it
wherever you can.

Having made the decision to start developing in Smalltalk, training is
perhaps one of the first things you will consider. Whilst the quality and
value for money of any training you may be offered is a matter only
you can judge, there are some general guidelines which might help you
make a good decision about the kind of training you undertake.

First, make sure you get specific Smalltalk training. There are also
general object-oriented design and programming courses available.
These are probably fine, but no real substitute for Smalltalk-specific
training. Don't fall into the common trap of sending developers on a
C++ course, or thinking that because they've been on such a course
before they will understand Smalltalk. They won't. Also, be aware that
it's not necessarily a trivial move from other interactive development
systems (such as Visual Basic) to Smalltalk. The increase in complexity
can be quite a shock!

Second, it can sometimes be worth giving intensive training to a
few members of the development team, and then letting them train the
others. People learn Smalltalk best by doing it, but having someone else
easily available with even a small amount more experience than
yourself can be immensely valuable.

190

Managing Smalltalk Projects

Finally, remember that the transition to objects and Smalltalk can entail
a great deal of fear about loss of skills. People who have become
recognised as experts in COBOL or MS-Windows programming will
suddenly find themselves reduced to the level of beginners. Or rather,
they v/'illfeel as if they have been reduced to the level of beginners.
However, with an open mind, and given the time to explore the new
paradigm, the same level of skill will rapidly be regained.

Organising the Team

The different lifecycle which Smalltalk encourages, and the different
architecture which its programs and systems tend to have, also have an
impact on how the development team should be organised. You should
be aware of these differences.

To take advantage of the iterative lifecycle of Smalltalk you are
likely to need to combine the jobs of analyst, designer and programmer.
As we have observed, it is difficult to do design for Smalltalk in the
abstract. You need to know what kinds of class exist to be reused
before you can start specifying objects and methods. It is also difficult
to communicate the design of a Smalltalk class in anything other than
Smalltalk, so why bother? What this boils down to is that everyone in
the team needs to be aware of the application being developed, and be
able to play the roles of analyst, designer and programmer as necessary.
Equally, everyone in the team needs to be more or less familiar with
Smalltalk, It really is no good having analysts or designers who don't
know anything about the target language.

Just as in conventional programming, there are both generators and
consumers of code. In Smalltalk the unit of transfer between
programmers tends to be the class. Individuals will own classes which
they design and build, and which they make available to other people
for reuse by encapsulation or inheritance. The interfaces between
classes must be as clearly defined as before. In Smalltalk though, we
tend not to talk about APIs (application program interfaces) between
modules, but rather about the protocol which different classes support.

It is usually the case that some classes are more reusable than
others. These classes, if they are not specific to an application, tend to
form a framework around which the rest of the application is built. You
might like to structure the development team to reflect this by thinking
about framework developers and application developers. If you do
things really well, you should come up with a framework which is
reusable across many applications.

191

Chapter 16

Reuse is another factor which influences team management. Everyone
has a great tendency to trust (or at least understand) their own code
more than anyone else's. This tendency naturally works against reuse
between individuals. There are at least two ways to mitigate this.

First, increase the knowledge about what is available for reuse.
You could try to set up a 'library' of reusable code. It has been
suggested that a specific team member should adopt the role of
librarian, managing and encouraging the use of these classes. Second,
consider explicitly rewarding reuse. How you measure reuse is another
matter (see later), but if you're still rating a programmer on the number
of lines of code he or she writes then you are doing little to encourage
extensive reuse. Remember it is important to encourage the actual reuse
of code rather than just the writing of potentially reusable code.

Configuration Management

One of the areas in which Smalltalk is weakest compared to other
languages and development environments is in its support for
configuration management. It is an excellent system for a lone
programmer developing one version of an application. However, when
it comes to multiple programmers trying to work together to develop
several versions of an application, Smalltalk as delivered is somewhat
lacking.

There are commercial packages which enhance the VisualWorks
environment to overcome these difficulties. One in particular
(ENVY/Manager from Object Technology International) is very popular
and regarded by many as essential in large (say more than five
programmers) projects. However, there are a number of steps you can
take to help yourself without investing in a code management package.

First, distinguish between Smalltalk's 'save-image' and 'file-out'
mechanisms as ways of saving and sharing code. An image should be
something which is private to a programmer. Your image will contain
all your bits and pieces, classes and instances, global variables and
everything else you need on your workbench during the development
process. It's a very powerful facility, and as we've mentioned before
you should save your image often, using it as the normal way of
making a snap-shot of your work every half an hour or so.

However, you shouldn't share your image with anyone else. If you
want to transfer code to another developer, use the file-out mechanism
to write code into a file, and then have the other person file that code
into their own image. This way of sharing code also influences the

192

Managing Smalltalk Projects

nature of the units of code which individual programmers can own.
You can file-out whole categories, whole classes, whole protocols, or
individual methods. Therefore these things are all appropriate units of
ownership for different members of a team. It is much more difficult
for a team member to own five methods in three different protocols in
someone else's class.

The two saving mechanisms (save-image and file-out) can be
combined with appropriate splitting of code ownership to produce a
basic configuration management process. This process can be
administered manually with a little bit of care and responsibility. Here
it is:

Start with a base Smalltalk image. This need not be the image as
delivered out of the box. It can incorporate whatever modifications you
feel are absolutely fundamental to your environment—at least set the
time zone correctly!

Divide the work so that each programmer preferably owns whole
categories of classes. Sometimes individual classes in a shared category
will need to be owned, and sometimes even individual protocols and
methods. All these are acceptable, but the clearer the divisions you can
make, the better the process will work.

Using a shared filesystem {LanManager, Novell, NFS, etc.), decide
on a directory structure where you will keep file-outs of these
categories, classes, protocols and methods. Set up permissions so that
owners may read and write to these directories, whilst others may only
read.

Now, whenever a programmer creates or modifies a unit of code
and wants to release it, he or she should file-out that unit to the shared
filespace. Every day (or more or less frequently as appropriate) each
programmer should start with the base image, and file-in all the
additions from the shared filespace. This builds the latest version of the
system on which the programmer can work during the day. Each
programmer should save their own image privately whenever they feel
they've made some progress, but only file out code to the shared area
when they're ready to release it.

This simple scheme allows everyone's development to stay in step,
and also prevents images becoming very long-lived. Developing using
one image for weeks or months is a very bad idea. Images tend to get
'tired' and fragile as they accumulate lots of global variables and other
junk as side-effects of the development process. Sharing these defects
amongst programmers is especially bad.

There are several ways in which this fully manual scheme can be
enhanced. Using the changes log it is possible to tell what parts of the

193

Chapter 16

system have been modified. Therefore, it is possible to build code
which knows which bits to file-out on demand.

It's also a very good idea to build a kind of boot-strap loader class.
This class (the equivalent of a C makefile) can know about all the other
files which must be filed-in to build the image. You can write it so that
simply filing it in and sending it a message such as load will have it
file-in all of the rest of the system.

Finally, since the file-outs are simple ASCII files, remember that
you could manage them with any other configuration management
software (such as RCS) in order to be able to maintain more than one
version of your system.

Metrics and Measurement

It is often observed that you can't manage what you can't measure.
Unfortunately it is by no means clear what you should measure when
programming in Smalltalk. To a large extent it depends on what you
want to manage or optimise, and it's probably only with experience that
you'll be able to decide what is important to you, how to measure it and
how to respond to what you measure. What this means is that if you
want to control your programming carefully, you need to build up your
own history of measurements, recording how they change over time
and in response to different conditions.

Here is a list of some of the things that it is possible to measure.
None of these measurements is directly supported by VisualWorks , but
many of them can be programmed with a little ingenuity.

• Lines of code
• Number of methods
• Number of classes
• Lines of code per method
• Lines of code per class
• Methods per class
• Lines of code reused
• Methods reused
• Classes reused
• Instance variables per class
• Instances per class
• Inheritance depth
• Cohesion between methods
• Coupling between classes

194

Managing Smalltalk Projects

Some of these metrics are clearly of more value than others. 'Lines of
code' is probably pretty irrelevant, especially as a comparison with
other programming languages. You just can't compare your efficiency
in Smalltalk against your efficiency in another language by comparing
how many lines of code per hour you can write. 'Number of methods'
and 'number of classes' are much better measures of how big your
system is, and how quickly you're writing it.

'Lines of code per method' is probably a good measure as it will
show up methods which are too long (more than about ten lines).
'Methods per class' is less interesting, but 'cohesion between methods'
(whether they act on the same set of instance variables) will show up
classes which are perhaps fulfilling two or more disjoint needs.

'Methods and classes reused' (either by inheritance or by
encapsulation—remember to measure both) is a good thing to be
measuring if you want to encourage reuse. Watch out for classes which
inherit from another class but don't use many of the features of that
class. This may indicate inappropriate inheritance.

'Inheritance depth' is a subtle one as it can be both too shallow
(indicating a possible failure to recognise the commonalities between
classes), or too deep (inappropriate inheritance leading to unnecessary
complexity). 'Coupling between classes' is a measure of how much
instances of particular groups of classes tend to interact. This can
indicate too great a dependence on the implementation of one class by
another class.

Summary and Final Conclusions

This chapter has looked very briefly at some of the people, project and
change management issues which a move from a conventional
language to Smalltalk development entails. The most important
message is that here, as in many other places, Smalltalk is different.

You cannot expect to simply continue your existing process and
realise the benefits of OOP, interactive development and Smalltalk.
You must be prepared for at least some retraining, changes in the
combinations of skills developers need and for a period of perhaps
intense discomfort. However, having made it this far through the book,
you should be well prepared to initiate these changes, and well able to
recognise the benefits as you start to see them.

This chapter also brings us to the end of our look at the art and
science of Smalltalk and so it's time to reflect on the important things
we've considered.

195

The most important lesson is that a little knowledge can go a long way.
The key thing Smalltalk developers need to know is how to explore the
system. Good Smalltalkers may not necessarily know something, but
they'll know how to find it out. We've looked in detail at how to use
some of the tools in the VisualWorks environment to facilitate and
support the exploration process.

This exploration skill needs to be combined with a basic
knowledge of the common classes in the system class library, and the
way in which they're structured and used. We've looked at some of the
common classes and discussed the coding styles and naming
conventions which govern their design. We've also considered how to
extend the system (because that's what programming in Smalltalk is) in
a way which matches this style.

Finally, we've also looked at how the differences between
Smalltalk and other more conventional languages change the software
development process. In particular we have observed that Smalltalk
development is a much more iterative and interactive process than you
may be used to. Above all, being sensitive to all these differences
should enable you to maximise the return on your investment in
Smalltalk. Good luck.

196

Glossary

This section attempts to provide definitions for many of the words used
repeatedly throughout this book. A lot of these words come from
object-oriented programming, which like many fields suffers from a
certain amount of fuzziness or debate as to what exactly some terms
mean. In these cases the definition given is the one normally accepted
in Smalltalk, or failing that the one used in this book. Words in italics
have their own (or related) definitions in the glossary.

Abstract Class A class which the designer intended never to have
instances. In Smalltalk this is by convention—there is no explicit
mechanism for enforcing it (although the class method new may be
overridden with self shouldMot Implement if desired). Also
sometimes called an abstract superclass. Compare with concrete class.

Accessing Method A method intended by the designer to permit
access to the otherwise private instance variables of an object.
Accessing (or sometimes just 'access') methods are usually divided
into get methods and set methods.

Adaptor In Smalltalk, an object which converts the messages sent by
one object into those understood by another.

Aggregation One of several kinds of relationship between objects, in
which one object is regarded as being composed of several others.

Aspect In Smalltalk, a particular part, facet or feature of an object.

197

The Art and Science of Smalltalk

Block In Smalltalk, a self contained piece of code which is itself an
object, and which can be created, passed around, and executed any
number of times. Blocks may take zero or more parameters and have
the general form [:pl :p2 | | temps | "Smalltalk code"3 .

Browser One of a set of tools in the Smalltalk development
environment used for examining, writing and changing Smalltalk
classes, whether they belong to the class library or to the user.

Cascading In a message expression, the sending of multiple
messages to the same receiver, separated by semicolons (;).

Category A group of classes in Smalltalk which perform related
functions, or are otherwise collected together for human convenience
when presented in a browser. Compare with Protocol.

Chaining In a message expression, the sending of a message to the
object which was the return value of the previous message.

'Changed' Message One of several messages which can me sent to
an object (usually by itself) informing it that it has changed, and that it
should tell its dependents via 'update' messages.

Class A special kind of object which in Smalltalk acts both as a
template for other objects {instances) and as a factory for creating them.
All objects are instances of a particular class.

Class Library The set of several hundred classes which both come as
a part of Smalltalk, and which themselves implement the language and
the development environment. Also called the system library.

Class Hierarchy The tree-like structure into which all classes fit by
virtue of their inheritance relationship with other classes. Sometimes
used as a synonym for class library.

Class Method A method designed to be invoked by sending a
message directly to the class which defines it, rather than to an instance
of that class. Instances do not understand class messages. Class
methods are only visible when the class button of a browser is pressed.

Class Variable A variable defined in a class to which the class, its
subclasses and all instances of the class and its subclasses have access.

198

Glossary

Collection The general name for a large number of classes within the
class library which implement the notion of a collection of other
objects. Also the name of the abstract class at the top of the hierarchy
of collection classes.

Concrete Class A class which, in contrast to an abstract class, is
intended by the designer to have instances. Most ordinary classes are
regarded as concrete classes.

Controller One of the three types of class which are part of the MVC
architecture. Controllers receive input from the user in the form of key-
presses and mouse-clicks, and interpret that input in terms of actions
performed on models.

Dependency An important kind of relationship between objects
whereby one object can receive information about changes to another
object. Dependency relationships are possible between any objects in
the system, although they are especially important between members of
the MVC architecture.

Dependency Mechanism The set of methods in the class object
and elsewhere, which implement the dependency relationship.

Dictionary A kind of collection in which one set of objects (the keys)
are used to index or refer to another set of objects (the values).

Encapsulation The notion that the internal structure of an object is
private. In Smalltalk the fact that an object's instance variables are only
visible to itself (unless accessing methods are provided), and the fact
that a method's interface is separate from its implementation are both
examples of encapsulation.

File-In A file containing Smalltalk source-code, created via a file-out
operation, and which may be loaded into another image via a file-in
operation.

Get Method A method provided by the writer of a class to enable
users of instances of the class to get the value of a particular instance
variable by sending a message to the instance. Usually has the same
name as the instance variable.

199

The Art and Science of Smalltalk

Hierarchy An arrangement of objects in a tree-like structure. In
Smalltalk, frequently used as a synonym for class hierarchy, although
other hierarchies exist (eg. amongst widgets in a window).

Implement In Smalltalk, a class is said to implement a method if the
method is actually defined (or redefined) in that class (rather than being
inherited). Compare with understand.

Implementation The actual definition of a method inside a class.
Compare with interface.

Inheritance A relationship between classes by which they are
organised into a hierarchy. Classes lower in the hierarchy are said to
inherit from classes higher in the hierarchy. When a class inherits from
another class it receives all that class's methods and variables and is
then able to incrementally define its own additional methods and
variables.

Inspector A tool within the development environment which allows a
Smalltalk programmer to examine and modify an instance object.
Compare with browser.

Instance A particular occurrence of an object defined by a class. In
Smalltalk, all objects are instances of some class.

Instance Method A method which although defined in a class, is
only understood by instances of that class.

Instance Variable A variable which although defined in a class,
only appears in instances of that class. Every instance of the class has
its own separate occurrence of the instance variables defined in the
class.

Instantiation The name of the process by which a class creates an
instance of itself.

Interface The name of and parameters to a method, together with its
return value. Compare with implementation.

Leaf The object at the bottom of a hierarchy.

200

Glossary

Message The mechanism by which one object invokes a method in
another. A message includes the name of the method to be run and any
necessary parameters.

Message Expression A combination of messages sent to various
receivers, the result of one message being used as the receiver of, or as
aparameter to, the next message. In Smalltalk, message expressions
always end with a full stop (period).

Method The basic unit of code inside an object. Each method has a
name, takes zero or more parameters, and returns one object. Methods
are invoked by sending a message, and implemented using one more
message expressions.

Model One of the three types of class which are part of the MVC
architecture. Models act as repositories for application data and
implement application functionality.

MVC Model-View-Controller. A basic architectural building block of
Smalltalk in which the functionality of an application with a graphical
user-interface is divided among three kinds of object—models, views
and controllers.

Notifier A window popped-up by Smalltalk in response to an error or
some other exceptional situation.

Object A software entity consisting of a tightly-bound combination of
code (methods') and data (variables). In Smalltalk (where "everything"
is an object), the term applies equally to instances and classes. Also in
Smalltalk, object is the name of the class at the root of the entire
class hierarchy.

Object-Oriented Built using objects, or incorporating some or all of
the following principles: encapsulation, polymorphism, inheritance,
instantiation.

Over-Loading A term used to describe multiple methods which
although they have the same name, have a different behaviour. In this
case the method name is said to be over-loaded. Thus the same message
sent to different objects may have a different effect depending on which
method is actually invoked. In Smalltalk this will depend on the class
of the object receiving the message.

201

The Art and Science of Smalltalk

Over-Riding The redefinition or replacement in one class of a
method which was inherited from its superclass.

Parameter An object sent as a part of a message to provide the
method being invoked with the additional information needed to run. In
Smalltalk, parameters are embedded within method names {selectors).

Protocol The set of methods a class understands. A set of methods
which implement similar functions, or cooperate to implement a single
function. A set of methods presented together for human convenience
in a browser. Compare with category.

Polymorphism The notion that different classes may provided
different implementations of the same method. Thus, the same message
sent to instances of different classes may have the same effect, but be
implemented in completely different ways.

Receiver The name given to any object which is being sent a
message. Compare with sender.

Return Value The object passed back from receiver to sender
following a completed method invocation.

Root The object at the top of a hierarchy.

Selector The name of a method.

Self 'Me'. In Smalltalk, the name given by any object to itself. A
special kind of pseudo-variable used in expressions when an object
needs to send a message to itself, which is the only way it has of
invoking one of its own methods from inside another method.

Sender The object originating a message being sent to another object.

Set Method An accessing method provided by the writer of a class to
enable users of instances of the class to set the value of one of its
instance variables. This is done by sending the appropriate message
with the value as a parameter.

Smalltalk-80 An object-oriented programming system, developed at
Xerox PARC, and consisting of a language, a development
environment, and an extensive library of system classes.

202

Glossary

Subclass Any class which, when taking part in an inheritance
relationship with another class, is the class which inherits functionality.
In Smalltalk, all classes except Object are subclasses of some other
class. A class can be both a subclass and a superclass if it is in the
middle of an inheritance hierarchy.

Super Similar to self, in that super means 'me'. However, unlike self,
when a message is sent to super by an object the search for the method
to be invoked begins not in the object's class, but in the object's
superclass. This allows classes to over-ride methods inherited from
their superclass, but also invoke the over-ridden method in the over-
riding method's implementation. Using self instead of super in this case
would cause an infinite loop because the over-riding and the over-
ridden methods have the same name.

Superclass Any class which when taking part in an inheritance
relationship with another class, is the class which the other class
inherits from. All classes except those at the 'leaves' of the inheritance
tree are superclasses even though they are probably also subclasses.
Note that superclasses are not necessarily abstract classes.

System Class Any class which is a part of the standard system
library of classes.

System Library A synonym for class library.

Tree In Smalltalk, another name for hierarchy.

Understand An object is said to understand a message if it either
implements or inherits a method which can be invoked in response to
the message. Because of inheritance an object may understand a large
number of messages which it does not itself implement.

'Update' Message One of a number of messages received by an
object when another object on which it is dependent is sent a 'changed'
message.

Variable A storage location for an object. In Smalltalk, variables can
be of type: class; class-instance; instance; temporary; global; or pool.

203

The Art and Science of Smalltalk

View One of the three types of class which are part of the MVC
architecture. Views are responsible for presenting model objects in
graphical or textual ways on the screen.

Virtual Image The notional memory space of the Smalltalk virtual
machine. A file holding this information.

Virtual Machine A program running on a real computer, which
simulates the standardised 'virtual' computer on which all Smalltalk
programs run.

VisualWorks The name of a commercial implementation of the
Smalltalk system from ParcPlace Systems, Inc.

Widget A general term for any button, text-entry field, view or other
device in a graphical user-interface.

Xerox PARC Xerox Palo Alto Research Center, in California.

204

Index

A
Abstract classes 14, 16, 68, 137

illustrated 137, 138
abstraction 106, 137
abstract superclass, see abstract class
accept

browsers 46,50,104, 154, 158, 173
inspectors 48
debuggers 49

accessing 55,59, 145
accessing methods, see methods,
accessing
adaptors 102,ch. 10,106, 133

illustrated 106,107
add: 69,71,72,74
addAll: 71
addDependent: 84
Advanced Programming ObjectKit

158,166
aggregations, see relationships
alllnsfcances 63,181
allOwners 181
analysts 191
ApplicationModel 101,134

illustrated 101
arguments, see parameters
ArithmeticValue 58,66
Array 69,70-1,72,73,76
ArrayedCollecfcion 136
arrays 27, 67,133
at: 70,73
at:put: 70,72,73
asArray 76

asBag 76
asOrderedCollection 76
associations, see relationships
asValue 107
AspectAdaptor 105,109-10

illustrated 106, 109
asset 76
asSortedCollection 76
aspects 86,89,109

B
Bag 69,71,78
BASIC 18,31
become: 153
benchmarking 155,167
blocks 36-7,104, 186-7
Blockclosure 36,63,187
Boolean 62,66, 106, 187
boolean values 101,187
brackets, see parentheses
breakpoints 179
browsers 40, 44-7, 64, 157-63

category 158
explanation in 162
full 158
hierarchy 158
method 158
method list 160

illustrated 161
shortcuts 163
system 45, 159

illustrated 44
updating 158,178

205

The Art and Science of Smalltalk

Browse 159
browse 61
bugs, common 117,182-7
ByteArray 68

c
C 17-20, 28, 31, 36, 65, 108, 120,194
C++ 65, 120, 190
caching 155,166
caret (A). see return value
cascading 35
case statements 150
categories 45, 57-65, 158
changes file 23,169
change list tool 40, 169-70

illustrated 169
•changed' methods 83, 85-6, 96, 97

illustrated 85, 88
ch anged 86
changed: 86,99,110
changed :with: 86, 100
chaining 34
characters 26
classes 9,11-16

abstract, see abstract class
button in browser 45
concrete, see concrete class
definition 30
designing 125

see also design
hierarchy, see class hierarchy
library, see class library
illustrated 12
methods, see class methods
references to 160
-side 45, 56
special-purpose 123
variables, see class variables
writing 44, 46, 50

see also browsers
Class 63,66
class-instance variables 29
class hierarchy 46, 158

see also class library
class library 18, 20, 24, 25, 123

grain in 121,190
in detail ch, 6
modifying 152
navigating 159-63

class methods 12, 13
illustrated 12

class variables 12, 13, 29
illustrated 12
references to 160

COBOL 17,31,191
coding 117,c/). 13

efficiently 154-5, 166
management of 168-70

collect: 74,77,78
collections 19, 27, 58, ch. 7, 103,132

converting 76
enumerating 68, 77—9
illustrated 68
making instances of 69
modifying 78,184-5

Collection 68, 136, 138, 144, 177
colours 58
comment 154
comments 26,153-154
comparing 55
complexity, hiding 122
components 96
composition 132,148
concrete classes 14,16,69,137

illustrated 137, 138
condifcionallyHalt 180
configuration management 189, 192-4
constants 26-27, 133

accessing 141, 148
consultancy, see training
containers 96
<control>-c 178
Controller 93,94
controllers 93
control structures 37, 62
convenience methods.

see methods, convenience
conventions, naming.

see naming conventions
copying 33,60,183-4
Cursor 65

D
data models 100

illustrated 101
debuggers 40, 48-9, 64, 174-8

accepting code in 178
illustrated 49

206

Index

debugging 116, 117,157,ch. 15
code 175
dependencies 182
kinds of bug 173-4
principles 174-5

default/Default 151
defaultControllerClass 148
DependencyAdaptor 108
dependencies

debugging 182
minimising 122

dependency mechanism
56, ch. 8,91,96,108

designing with 131
illustrated 82

dependents 83
design 116,c/i. 12

benefits 122
bugs 174
considerations 121,191
diagrams 126

see also diagrams
factoring out 123
iteration 120, 124, 127
layers 128
modelling 127
simplicity 123

designers 191
detect: 77,79
development cycle 116,189

illustrated 117
development environment

18,19,20, 24
in detail ch. 5, ch. 14

diagrams 126
Dictionary 69,71-2,78

using 150-1,155
illustrated 72

displaying 55,145
displayOn: 55
do: 74,77-8
doesKotUnderstand; 61,183,185
doit 43,44,48,50, 154

E
efficiency 154-5
emergency evaluator 178,180
encapsulation

design principle 122

encapsulation (continued)
form of reuse 132, 133,191
inMVC 95
instead of inheritance 70
of variables 28,155
00 concept 9,10

equivalence (==) 60, 73,184
equality (=) 59,71,73, 184
error messages 174
evaluation 32,43,44,50

see also do it; print it; inspect
exceptions 175
explain 162

false, False 27,62,74
Filename 65
filing-out 23

configuration management 192
from browsers 46, 168-9

files 21-24, 101, 152
changes 23,169
editing 40
file-in 23 •
image 22

find class... 159
find method... 160
finding objects

119, 125, 127,133,181-2
see also design

f i r s t 72
fonts 58
format 148
frameworks 82,101,191
full-stop (period) 32
functionality of objects, testing 149

G
getBlock 110
get methods, see methods, accessing
graphics 58
GUIs. see user-interfaces

H
halt 49,61,179
hashing 60
hierarchy 130

see also class hierarchy
conceptual 135

207

The Art and Science of Smalltalk

hierarchy (continued)
implementation 135
part-of 135
profiler output 168

hierarchy 158

IdentityDictionary 155
IdenfcitySet 73,155
ifFalses 62,149, 163
if-True: 62, 149, 163
image, see virtual image

see also f i l e s , image
images [graphics] 58
implementation

see also coding
of applications 116
of objects 14, 122, 126, 144, 147

implementors 162
implementors of... 151
includes: 75
inheritance

see also design
additive 15,135
as 00 concept 9, 81
depth 195
described 13,16
factoring out using 134
form of reuse 132,134-5,191
hierarchy, see inheritance hierarchy
illustrated 14,136, 137
incorrect use of 130, 135
multiple 97
realising 138
relationship, see relationships,

inheritance
sharing 137,138
single 132
specialisation 135
subtractive 135
using 117,119, 126,128,133-9
use of self and super 30-1

inheritance hierarchy 14
illustrated 14

initialize 54
inject:into; 77,79
inspect 43,44,48, 164
inspect 61
inspectors 40, 47-8, 64,173

inspectors (continued)
chains of 164
executing code in

84,164-5, 178,182
illustrated 47, 163, 164
in debuggers49,178
opening 164
using 163-65

instance 9,11,12
button in browser 45
illustrated 12
methods, see instance methods
-side 45
variable, see instance variable

instance-creation 56
instance methods 12,13

illustrated 12
instance variables 12,13,28-9

accessing 141,145-7
changes in value 83
illustrated 12
references to 160, 161

instantiation 9, 12,16,81
see also instance-creation
example of 51
illustrated 12

instvarrefs... 161
Integer 58
interface

see also user-interfaces
to objects 122, 126,144

interrupts 178-9
Interval 69,75,78
isEmpty 75
isKindOf: 61
isMemberOf: 61
iterative

programming 6,173, 189,190,191
debugging 175
design, see design, iteration

K
keys 71,76
keyboard 94

language independence 120
last 72
launcher 42-3

208

Index

launcher (continued)
illustrated 42

lazy evaluation 155
leaves 14
literals 26-27
logical operators 62

M
Magnitude 57,139
management 117, ch, 16
measurement 189, 194—5
menus

illustrated 41
operate 41,159-63
window 41,164, 171-2

messages 9,10, 16
binary 34
combining 33-35
error 174
illustrated 11
keyword 34
naming 31

see also naming conventions
parameters, see parameters, message
precedence, see precedence
return value, see return value
sending 31-32

see also evaluation
to access instance variables 145-7

see also methods, accessing
unary 34
parentheses in. see parentheses

messages 162
method(s) 10,16

accessing 55,87,109,143,145-7
browser 158
class, see class method
convenience 75,86, 87, 133
get. see methods, accessing
illustrated 10
instance, see instance methods
lookup 15,104
primitive, see primitives
put. see methods, accessing
return value, see return value
scratchpad 165
set. see methods, accessing
sharing among instances 13
structuring 148

method(s) (continued)
stubs 175
subsumption of 86

methodologies 116,121
Fusion 121
OBA/D 121
waterfall 120, 190

metrics, see measurement
Model 63,93
Model-View-Controller see MVC
modularity 95, 122
mouse 94

buttons 40-1
MVC 81, ch 9,123, 148

see also user-interfaces
example 98-9

illustrated 98
extension to 100-1

illustrated 101
illustrated 95,96
triads 94

N
naming conventions

25-26,117, 141, 160
categories 144
classes 144
methods 143-4
parameters 143
protocols 144, 54
variables 142-3

new 51,63
nil 27, 28, 63, 73,149
notifiers 40, 48-9,168, 173

in debugging 175-9
numbers 26, 57-8, 101, 103, 132
Number 58,75, 106

0
objects 10,11, 16

finding 117
illustrated 10
unique 151

Object 57,59-61,83,152,153,179
browsing 46
inheriting from 124,132

ObjectKit, Advanced Programming
158,166

ObjectMemory 179

209

The Art and Science of Smalltalk

object-oriented programming 9
see also design

oe20 22
operate 41
OrderedCollection

69,72-3, 144, 181
over-riding 15, 16, 138

use of self and super 30-1

P
parallel processing 10,128
parameters

to blocks 37
to messages 31

parentheses 34, 149, 183
PARC. see Xerox PARC
ParcPlace Systems 18
Pascal 17,20,31, 120
perform: 61,104-5, 153, 161
performance, code 166-8

see also coding, efficiently
period, see full-stop
pluggability

100, 102, ch. 10,105-7,133
PluggableAdaptor 105,110-12,
187

illustrated 106, 111
polymorphism 9,15-16, 104, 149,161

and typelessness 28
Point 58
pointers 28
porting Smalltalk 20
precedence 34
primitives 35-36
printing

in transcript window 42
source-code 39

printing 56,60
print it 43,44,48,50
printOn: 60
printString 180
privacy 122,147,192
private 56,145
procedures 31,119
proceed 179
Process 63,135, 181
Processor 179
processes 11,37, 128, 152
profiling 155,167-8

profiling (continued)
illustrated 167

programming style
7,28,54,67, 124,131. 141-142

properties 146
protocol(s) 45, 54-6, 66, 103, 191

browsing 158
putBlock 110

R
rapid prototyping 190

see also programming, iterative
RCS 194
receiver 10

illustrated 11
relationships 125, 129-31

aggregations 128, 130
associations 129-30, 135

illustrated 129
inheritance 129
one-way 130
two-way 129

Rectangle 58
reject; 77,79, 184
relabel as... 165
remove: 71,72
removeAll: 71
removeDependenb: 84
removeFirst 72
removeLast 72
repeat 64
requirements analysis 117
respondsTo: 149
return

character (A) 32
in blocks 185
value 32
omitting 185-6

reuse
by inheritance 106, 126
by aggregation 103, 104, 128,130
explained 131
increasing 54,117,123, 131-3, 120,

135,146
management 192, 195
of system classes 53,67,81
in user-interfaces 92, 95
typelessness 133

run-time binding 104

210

Index

S
save-image, see virtual image, saving
ScheduledControllers 180
scenarios, use of 125
Screen 181
select: 77,79,184
select button 40
selectors 109, 143

see also methods
self 30, 33,73,146, 149

as return value 185
see also yourself

semicolon (;) 35
send 49,179,182
sender 10

illustrated 11
senders 161
Sequenc e ableCol1 ection 136
Set 69,73-4,76, 78, 155
'set' methods, see methods, accessing
<shift>-<control>-c 178

see also <control>-c
shortcuts 163
shouldNotZmplement 61,63,135
show: 180
size 75
Smalltalk

class library, see class library
compiler 21, 64
culture shock 4,5,189
development environment, see

development environment
history 17
image, see virtual image
language 18, 20, 24,ch. 4
learning 5
learning curve 3,189

illustrated 4
literals, see literals
numbers, see numbers
programming 20, 24
source-code, see source-code
strings, see strings
structure 18
style, see programming, style
symbols, see symbols
typelessness 27, 68, 133
virtual image, see virtual image
virtual machine, see virtual machine

Smalltalk 30,165
source-code 19,23, 159

editing 39
formatting 148
management, see configuration

management
modifying 152
printing 39
reading 142
see also visual. sources

SortedCollection 69,74
spawn 158
spawn hierarchy 158
specialisation, see inheritance,
specialisation
StandardSystemController 171
st80 22
stack

back-trace 49,175-7
illustrated 177

state 128
unwinding 152

stack trace, see stack, back-trace
step 49, 179, 182
String 68,93, 107
strings 26.101,103,132
storeString 61
subclass 13, 63

as restriction 136
illustrated 14

subclaasResponsibility
57,61, 138,139

super 30,135
superclass 13, 63

illustrated 14
Symbol 68
symbols 26-7, 88,105
system browser, see browsers, system

T
team working 117, 189, 191-2

see also management
terminate 181
testing 116
testing 55
TextCollector 180
timesRepeat: 58
timing 155,16-7
tracing 174, 180-1

211

The Art and Science of Smalltalk

training 7,189,190-1
transcript 42-43
Transcript 42,50,180-1
true , True 27, 62, 74
type (variables) 11

u
understanding 10, 14
UndefinedObjecfc 27,63,183
'update' methods

84,86-7,97,99, 112
illustrated 85, 88

update; 86,99,110
update; with: 86
update:with:from: 86,110
updateeBlock 110,111
updating 56,145
user-interfaces

40,59,64,90,91,100, 107
see also Model-View-Controller
separation from model 92, 123

v
value 98,105, 107, 112

executing blocks 37, 110
value: 107,110,112
values 71
ValueHolder 105, 107-8, 185

illustrated 106,108
ValueModel 106

illustrated 106
variables 10,27-28

class, see class variable
declaring 27-30
discrete states 150
global 29-30
illustrated 10
inspecting 49
instance, see instance variables
pseudo- 30-1
special, see variables, pseudo-
temporary 28,147,165
typelessness 27-8
pool 30

View 93, 94, 148
views 93
virtual image 20,24

file 22
illustrated 21
managing 168-70
rebuilding 24,169
saving 22,168-9, 179, 192
viewing 39

virtual machine
described 20,24
illustrated 21

Visual Basic 190
VisualWorks 18
visual, im 22
visual.sources 23

w
whileFalse: 64
whileTrue ; 64
wildcards 160
window

button 41
menu 41

with: etc. 69
workspaces 40, 43-4

installation 44
saving 165
system 44
text views 166
using 165

working in teams.
see team working

x
Xerox PARC 17

Y
yourself 59

see also self

212

