

1.

SUnit Explained
Revisited
Stéphane Ducasse

ducasse@iam.unibe.ch
http://www.iam.unibe.ch/~ducasse/

SUnit is a minimal yet powerful framework that supports the creation of tests. SUnit is the
mother of unit test frameworks. SUnit was developed originally by Kent Beck and get extended
by Joseph Pelrine and others over several iterations to take into account the notion of resources
that we will illustrate later. The interest for SUnit is not limited to Smalltalk or Squeak. Indeed
legions of developers understood the power of unit testing and now versions of SUnit exist in
nearly any language going from Java, Python, Perl, Oracle and lot others [SUnit]. The current
version of SUnit is 3.1. The official web site of SUnit is http://sunit.sourceforge.net/.

Testing and building regression test suites is not new and everybody knows that regression
tests are a good way to catch errors. Extreme Programming by putting testing in the core of its
methodology is bringing a new light on testing which is a not so liked discipline. The Smalltalk
community has a long tradition of test due to the incremental development supported by its pro-
gramming environment. However, once you write tests in a workspace or as example methods
there is no easy way to keep track of them and to automatically run them and tests that you can-
not automatically run are of little interests. Moreover, having examples often does not tell to the
reader what are the expect results, lot of the logic is left unspecified. That’s why SUnit is inter-
esting because it allows you to structure, describe the context of tests and to run them automat-
ically. In less than two minutes you can write tests using SUnit instead of writing small code
snippets and get all the advantage of stored and automatically executable tests.

In this article we start by discussing the interest of testing, then we present an exemple with
SUnit and we go deep into the SUnit implementation.

1. Testing and Tests
Most of the developers believe that tests are a lost of time. Who has not heard: “I would write

tests if I would have more time”. If you write code that should never be changed indeed you
should not write tests, but this also means that you application is not really used or useful. In fact
tests are an investment for the future. In particular, having a suite of tests is extremely useful and
allow one to gain a lot of time when your application changes.

Tests play several roles: first they are an active and always synchronized documentation of
the functionality they cover. Second they represent the confidence that developers can have into
a piece of functionality. They help you to find extremely fast the parts that break to due intro-
duced changes. It is obvious but simply true. Finally, writing tests in the same time or even be-
fore writing code force you to think about the functionality you want to design. By writing tests
first you have to clearly state the context in which your functionality will run, the way it will in-
teract and more important the expected results. Moreover, when you are writing tests you are
your first client and your code will naturally improves.

2.

SUnit Explained Revisited

The culture of tests has always been present in the Smalltalk community because a method
is compiled and we write a small expression to test it. This practice supports the extremely tight
incremental development cycle promoted by Smalltalk. However, doing so does not bring the
maximum benefit from testing. Because tests are not stored, reachable and run automatically.
Moreover it often happens that the context of the tests is left unspecified so the reader has to in-
terpret the obtained results and assess they are right or wrong.

It is clear that we cannot tests all the aspects of an application. Covering a complete applica-
tion is simply impossible and should not be goal of testing. It may also happen that even with a
good test suite some bugs can creep into the application and be left hidden waiting for an oppor-
tunity to damage your system. This is not a problem as soon as if you trap a bug you write a test
that covers it.

Writing good tests is a technique that can be easily learnt by practising. Let us look at the
properties that tests should have to get a maximum benefit

• Repeatable. We should be able to repeat a test as much as we want.
• Without human intervention. Tests should be repeated without any human intervention. You should be able

to run them during the night.
• Telling a story. A test should cover one aspect of a piece of code. A test should act as a scenario that you

would like to read to understand a functionality.
• Having a change frequency lower than the one of the covered functionality. Indeed you do not want to

change all your tests every times you modify your application. One way to achieve this property is to write
tests based on the interfaces of the tested functionality.

Besides the property of the test itself another important point while writing test suites is that
the number of tests should be somehow proportional to the number of tested functionality. For
example, changing one aspect of the system should not break all the tests you wrote but only a
limited number. This is important because having 100 tests broken should be a much more im-
portant message for you than having 10 tests failing.

eXtreme Programming proposes to write tests even before writing code. This may seems
against our deep developer habits. Here are the observations we made while practising up front
tests writing. Up front testing help to know what you want to code, they help to know when you
are done, they help to conceptualize the functionality of a class and to design the interface. Now
it is time to write a first test and to convince you that this is a pity not using SUnit.

2. SUnit by Example
Before going into the detail of SUnit, we show an example step by step. We use the example

testing the class Set that is included in the SUnit distribution, so that you can read the code di-
rectly in your favorite Smalltalk.

Step 1. First you should subclass the TestCase class as follow:

TestCase subclass: #ExampleSetTest
instanceVariableNames: 'full empty'
classVariableNames: ''
poolDictionaries: ''
category: 'SUnit-Tests'

3.

The class ExampleSetTest groups all tests related to the class test. It defines the context of
all the tests that we will specify. Here the context is described by specifying two instance vari-
ables full and empty that represent a full and empty set.

Step 2. We define the method setUp as follow. The method setup acts as a context definer
method or initiliaze method. It is invoked before the execution of any test method defined in this
class. Here we initialize the empty variable to refer to an empty set and the full variable to
refer to a set containing two elements.

ExampleSetTest>>setUp
empty := Set new.
full := Set with: 5 with: #abc

This method defines the context of any tests defined in the class in testing jargon it is called the
fixture of the test.

Step 3. We define some tests by defining some methods on the class ExampleSetTest. Ba-
sically one method represents one test. If your test methods start with the string ‘test’ the frame-
work will collect them automatically for you into test suites ready to be executed.

The first test named testIncludes, tests the includes method of a Set. We say that sending
the message includes: 5 to a set containing 5 should return true.Here we see clearly that
the test relies on the fact that the setUp method has been run before.

ExampleSetTest>>testIncludes
self assert: (full includes: 5).
self assert: (full includes: #abc)

The second test named testOccurrences verifies that the occurrences of 5 in the full set
is equal to one even if we add another element 5 to the set.

ExampleSetTest>>testOccurrences
self assert: (empty occurrencesOf: 0) = 0.
self assert: (full occurrencesOf: 5) = 1.
full add: 5.
self assert: (full occurrencesOf: 5) = 1

Finally we test that if we remove the element 5 from a set the set does not contain it any more.

ExampleSetTest>>testRemove
full remove: 5.
self assert: (full includes: #abc).
self deny: (full includes: 5)

Step 4. Now we can execute the tests. This is possible using the user interface of SUnit. This
interface depends on the dialect you use. In Squeak and VisualWorks, you should execute
TestRunner open. You should obtain the Figure 1. You can also run you tests by executing the
following code: (ExampleSetTest selector: #testRemove) run. This expression is
equivalent to the shorter one ExampleSetTest run: #testRemove. We usually always in-
clude such kind of expression in the comment of our tests to be able to run them while browsing
them as shown below.

4.

SUnit Explained Revisited

ExampleSetTest>>testRemove
“self run: #testRemove”

full remove: 5.

self assert: (full includes: #abc).

self deny: (full includes: 5)

To debug a test use the following expressions: (ExampleSetTest selector:
#testRemove) debug or ExampleSetTest debug: #testRemove.

Some Explanations. The method assert: which is defined on the class TestCase requires
a boolean as argument. This boolean represents the value of a tested expression. When the ar-
gument is true, the expression is considered to be correct, we say that the test is valid. When the
argument is false, then the test failed. In fact SUnit consider two kinds of errors: the failures,
i.e., when a test is not valid and the errors which are unexpected situations occurring while the
test is running. An error is by its nature something that has not been tested but that happened like
an out of bounds error. The method deny: is the negation of assert:. Hence aTest deny:
anExpression is equal to aTest assert: anExpression not.

SUnit offers two methods should:raise: and shouldnt:raise: (aTest should:
aBlock raise: anException) to test that exceptions have been raised during the execution
of an expression. The following test illustrates the use of this method.

ExampleSetTest>>testIllegal

self should: [empty at: 5] raise: Error.

self should: [empty at: 5 put: #abc] raise: Error

Note that if you look in the example provided by SUnit you will found the following definition
for the same test. Here the exception is provided via the TestResult class. This is because
SUnit is running on all the Smalltalk dialects and the SUnit developers have factored out the

Figure 1 The user interface of SUnit in Squeak
Figure 2 . Here a test run and all the tests passed.

5.

variant part such as the name of the exception. So if you write tests that are intended to be cross
dialects look at the class TestResult.

ExampleSetTest>>testIllegal
self should: [empty at: 5] raise: TestResult error.
self should: [empty at: 5 put: #abc] raise: TestResult error

3. Basic How To
If you are familiar with other testing frameworks such as JUnit, remember that JUnit has been
widely inspired from SUnit so there are a lot of similarity. Normally SUnit has an associate UI
that allows one to run tests. But you may have some questions that we will answer now.

How do I run a single test? Ask the testcase to build a suite for you by using the method
run:

ExampleSetTest run: #testRemove
1 run, 1 passed, 0 failed, 0 errors

How do I run all the tests in a TestCase subclass? Just ask the class itself to build
the test suite for you. Only the tests starting with the string ‘test’ will be added to the suite.
Therefore we also reply to the question: How do I turn all the test* methods into a TestSuite?

ExampleSetTest suite run
9run, 9 passed, 0 failed, 0 errors

Must I subclass TestCase? In JUnit we can build a TestSuite from an arbitrary class con-
taining test* methods. In Smalltalk you can do the same but you will have then to create it by
hand and your class will have to implement all the essential TestCase methods so we suggest
you not do it. The framework is there so use it.

How do I get my test cases/suites into the TestRunner tool? Depending on your
dialect it may happen that the TestRunner tool does not updated when you created a new
TestCase. So simply close it and reopen it.

6.

SUnit Explained Revisited

4. The SUnit Framework

SUnit 3.1 introduces the notion of resources that are mandatory when one need to build tests
that require long set up phases. A test resource specifies a set up that is only executed once for
a set of tests contrary to the TestCase method which is executed before every test execution.

SUnit is constituted by four main classes, namely TestCase, TestSuite, TestResult et
TestResource as shown in the figure 2.

The class TestCase represents a test or more generally a family of tests that share a common
context. The context is specified by the declaration of instance variables on a subclass of Test-
Case and by the specialization of the method setUp which initializes the context in which the
will be executed. The class TestCase defines also the method tearDown that is responsible
for releasing if necessary the object allocated during the execution of the method setUp. The
method tearDown is invoked after the execution of every tests.

The class TestSuite represents a collection of tests. An instance of TestSuite is com-
posed by instance of TestCase subclasses (a instance of TestCase is characterized by the se-
lector that should run) and TestSuite. The classes TestSuite and TestCase form a
composite pattern in which TestSuite is the composite and TestCase the leaves.

The class TestResult represents the results of a TestSuite execution. This means the
number of test passed, failed and the number of errors.

The class TestResource represents a resource that is used by a test or a set of tests. The
point is that a resource is associated with subclass of TestCase and it is run automatically once
before all the tests are executed contrary to the TestCase methods setUp and tearDown that
are executed before and after any test.

A resource is run before a test suite is run. A resource is defined by specializing the class
method resources as shown by the following example. By default, an instance of TestSuite con-
sider that all its resources are the list of resources of the TestCase that compose it.

Figure 3 The four classes representing the core of SUnit.

7.

We define a subclass of TestResource called MyTestResource and we associate it with
MyTestCase by specializing the class method resources to return an array of the test classes
to which it is associated.

TestResource subclass: #MyTestResource
instanceVariableNames: ''

TestResource>>setUp
“here the resource is set up”

MyTestCase class>>resources
“associate a resource with a testcase“

^ Array with: MyTestResource

As with a TestCase, we use the method setUp to define the actions that will be run during the
set up of the resource.

5. The Cool Features of SUnit 3.1
In addition to TestResource SUnit 3.1 adds assertion description strings, logging support and
resumable test failures.

5.1 Assertion description strings

The TestCase assertion protocol has been extended with a number of methods allowing the
assertion to have a description.These methods take a String as second argument. If the test case
fails, this string will be passed along to the exception handler, allowing more variety in messag-
es than "Assertion failed" gives you. Of course, this string can be constructed dynamically.

| e |
e := 42.
self assert: e = 23 description: 'expected 23, got ' e printString

The added methods in TestCase are: #assert:description:, #deny:description:, #should:de-
scription:, and #shouldnt:description:.

5.2 Logging support

The description strings described above may also be logged to a Stream such as the Tran-
script, a file, stdout etc. You can choose whether to log by overriding TestCase>>#isLogging in
your test case class, and choose where to log to by overriding TestCase>>#failureLog. Note that
logging facilities will be really expanded in the release 3.2 of SUnit.

5.3 ResumableTestFailure

A resumable TestFailure has been added. This is a really powerful features that uses the pow-
erful exception mechanisms offered by Smalltalk. What can this be used for? Take a look at this
example:

8. SUnit Explained Revisited
aCollection do: [:each | self assert: each isFoo]

In this case, as soon as the first element of the collection isn't Foo, the test stops. In most cas-
es, however, we would like to continue, and see both how many elements and which elements
aren't Foo. It would also be nice to log this information. You can do this in this way:

aCollection do: [:each |
 self
 assert: each isFoo
 description: each printString, 'is not Foo'
 resumable: true]

This will print out a message to your logging device for each element that fails. It doesn't cu-
mulate failures, i.e., if the assertion fail 10 times in your test method, you'll still only see one
failure.

6. Key Implementation Aspects
We show now some key aspects of the implementation by following the execution of a test.

This is not mandatory to use SUnit but can help you to customize it.

Running one Test. To execute one test, we evaluate the expression (TestCase selec-
tor: aSymbol) run. The method TestCase>>run defined on the class TestCase creates
an instance of TestResult that will contains the result of the executed tests, then it invokes the
method TestCase>>run:

TestCase>>run
| result |
result := TestResult new.
self run: result.
^result

Note that in the future release, the class of the TestResult to be created will be returned by a
method so that new TestResult can be introduced. The method TestCase>>run: invokes the
method TestResult>>runCase: .

TestCase>>run: aResult
 aResult runCase: self

The method TestResult>>runCase: is the method that will invoke the method Test-
Case>>runCase that executes a test.

Without going into the details, TestCase>>runCase pays attention to the possible excep-
tion that may be raised during the execution of the test, invokes the execution of a testCase by
calling the method runCase and counts the errors, failures and passed tests.

9.
TestResult>>rrunCase: aTestCase

| testCasePassed |
testCasePassed :=
[
[
aTestCase runCase.
true]
sunitOn: self class failure
do: [:signal |
self failures add: aTestCase.
signal sunitExitWith: false]]
sunitOn: self class error
do: [:signal |
self errors add: aTestCase.
signal sunitExitWith: false].

testCasePassed
ifTrue: [self passed add: aTestCase]The method TestCase>>runCase realizes

the calls to the methods setUp et tearDown as shown below:
TestCase>>runCase
self setUp.
[self performTest] sunitEnsure: [self tearDown]

Running a TestSuite. To execute more than a test, we invoke the method Test-
Suite>>run on a TestSuite. The class TestCase provides some functionalities to get a
test suite from its methods. The expression MyTestCase buildSuiteFromSelectors re-
turns a suite suite containing all the tests defined in the class MyTestCase.

The method TestSuite>>run creates an instance of TestResult, verifies that all the re-
source are available, then the method TestSuite>>run: is invoked which run all the tests
that compose the test suite. All the resources are then reset.

run
| result |

 result := TestResult new.
self resources do: [:res |
res isAvailable ifFalse: [^res signalInitializationError]].

[self run: result] sunitEnsure: [self resources do: [:each | each reset]].
^result

TestSuite>>run: aResult
self tests do: [:each |

self sunitChanged: each.
each run: aResult]

The class TestResource and its subclasses keep track of the their currently created instances
(one per class) that can be accessed and created using the class method current. This instance
is cleared when the tests have finished to run and the resources are reset.

10. SUnit Explained Revisited
This is during the resource availability check that the resource is created if needed as shows
the class method TestResource class>>isAvailable. During the TestResource instance
creation, it is initialized and the method setUp is invoked. (Note it may happen that your version
of SUnit 3.0 does not correctly initialize the resource. A version with this bug circulated a lot.
Verify that TestResource class>>new calls the method initialize).

TestResource class>>isAvailable
^self current notNil and: [self current isAvailable]

TestResource class>>current
current isNil ifTrue: [current := self new].
^current

TestResource>>initialize
self setUp

7. Two Bits of Wisdom
Testing is difficult, here is a list of advices to build tests.

Test self described. Each time you change your code you do not want to change your tests,
therefore try to write them in a way that they are self-contained. This is difficult but pay in the
long term. Writing tests in terms of stable interfaces support self-contained tests.

Do not over test. Try to build your tests so that they do not overlap. It is annoying to have
several tenth of tests covering all the same aspects and break all at the same time.

Unit vs. Acceptance Tests. Unit tests describe one functionality and as such make easier
the identification of bugs. However for certain deeply recursive or complex setup situation it is
easier to write tests that represent a scenario. So try as much as possible to have Unit tests and
group them per class. For acceptance tests group then in terms of the functionality tested.

8. Extending SUnit
Here we briefly show how SUnit can be extended to provide setup that are shared by all the tests
of a TestCase class. Note that the extension is not as robust as the core SUnit.

We start first with a simple example of the expected behavior. We define a new class which
inherits from SharingSetUpTestCase as follow. We define two simple tests testOne and
testTwo.

SharedOne
superclass: SharingSetUpTestCase

SharedOne>>testOne
Transcript show: 'Test one runs'; cr.

SharedOne>>testTwo
Transcript show: 'Test Two runs'; cr.

11.
Then we define the method setUp and tearDown that will be executed before and after the exe-
cution of the tests exactly in the same way as with non sharing tests. Note however the fact that
with the solution we will present we have to explicitly invoke the setUp method and tearDown
of the superclass.

SharedOne>>setUp
"if you need to still have some setUp for a single tests, you have to invoke super

setUp"

super setUp.
Transcript show: 'SharedOne>>setUp'; cr

SharedOne>>tearDown

Transcript show: 'SharedOne>>tearDown'; cr.
super tearDown

Finally we define the methods sharedSetUp and sharedTearDown that will be only executed
once for the two tests. Note that this solution implies that the tests are not destructively the
shared fixture but just query it.

SharedOne class>>sharedSetUp

Transcript show: 'SharedSetUp runs' ; cr
"my set up here"

SharedOne class>>sharedTearDown

Transcript show: 'Shared TearDown runs' ;cr
"my set up here"

Here is the trace you obtain

SharedOne suite run
SharedSetUp runs
SharedOne>>setUp
Test one runs
SharedOne>> tearDown
SharedOne>>setUp
Test Two runs
SharedOne>> tearDown
Shared TearDown runs

2 run, 2 passed, 0 failed, 0 errors

The extension of the SUnit framework is based on the introduction of two classes: Shared-
SetupTestCase and SharedSetUpTestSuite. The basic idea is to use a flag that is flushed after a
certain number of tests has been run. The class SharedSetupTestCase defines then one instance
variable that indicate whether the test is run individually or in the context of a test suite and two
class instance variables to indicate the number of time that the setup should hold and flag

SharedSetupTestCase

12. SUnit Explained Revisited
superclass: testCase
instanceVariables: ‘runIndividually’
classinstanceVariables: ‘numberOfTestsToTearDown sharedSetUp '’

SharedSetupTestCase class>>suiteClass
^SharingSetUpTestSuite

SharedSetupTestCase class>>sharedSetUp
"subclass should only override this hook to define a sharedSetUp"

SharedSetupTestCase class>>sharedTearDown
"here we specify the teardown of the shared setup "

SharedSetupTestCase class>>flushSharedSetUp
sharedSetUp := nil

The SharedSetupTestCase class is armed with the number of times it should hold.

SharedSetupTestCase class>>armTestsToTearDown: aNumber

self flushSharedSetUp.
numberOfTestsToTearDown := aNumber.

Everytimes a test is run, the method anothertestHasBeenRun is invoked. Once the number of
tests is reached the sharedSetUp is flushed and the sharedTearDwon is executed.

SharedSetupTestCase class>>anotherTestHasBeenRun
"Everytimes a test is run this method is called, once all the tests of the suite

are run the shared setup is reset"

numberOfTestsToTearDown := numberOfTestsToTearDown - 1.
numberOfTestsToTearDown isZero
ifTrue:
[self flushSharedSetUp.
self sharedTearDown]

When a test is run its setUp is executed which somehow calls the privateSharedSetUp method
which is only executed when the sharedSetUp test is not set. This execution invokes the shared-
SetUp method.

SharedSetupTestCase class>>privateSharedSetUp

sharedSetUp isNil
ifTrue:
[sharedSetUp := 1.
self sharedSetUp]

SharedSetupTestCase>>setUp
self class privateSharedSetUp

SharedSetupTestCase>>tearDown
self class anotherTestHasBeenRun

13.
When a testCase is created we assume that it will be run once. This may be invalidated laterin-
voking the method executedFromASuite.

SharedSetupTestCase>>setTestSelector: aSymbol
"I'm forced to do that because there is no initialize"

runIndividually := true.
super setTestSelector: aSymbol

SharedSetupTestCase>>executedFromASuite
runIndividually := false

The two methods responsible for Test execution are then specialized as follow:

SharedSetupTestCase>>runCaseAsFailure
self armTearDownCounter.
super runCaseAsFailure.

SharedSetupTestCase>>runCase
self armTearDownCounter.
super runCase

SharedSetupTestCase>>armTearDownCounter
self isIndividuallyExecuted
ifTrue: [self class armTestsToTearDown: 1]

Now the SharedSetUpTestSuite define the instance variable testCaseClass and redefines the
two methods to run test suite run: and run as follow. They check whether they contain tests and
if this is the case they armed so that the shread setup is only executed a correct number of time.

SharedSetUpTestSuite>>run: aResult
self checkAndArmSharedSetUp.
^super run: aResult

SharedSetUpTestSuite>>run
self checkAndArmSharedSetUp.
^ super run

SharedSetUpTestSuite>>checkAndArmSharedSetUp
self tests isEmpty
ifFalse: [self tests first class armTestsToTearDown: self tests size]

Finally the method addTest: is specialize so that it marks all its tests with the fact that they are
executed in a TestSuite and check whether all its tests are from the same class to avoid inconsis-
tency.

SharedSetUpTestSuite>>addTest: aTest
"Sharing a setup only works if the test case composing the test suite are from

the same class so we test it"

aTest executedFromASuite.

14. SUnit Explained Revisited
testCaseClass isNil
ifTrue: [testCaseClass := aTest class.
 super addTest: aTest]

ifFalse: [aTest class == testCaseClass
ifFalse: [self error: 'you cannot have test case of different classes in

a SharingSetUpTestSuite'.]
ifTrue: [super addTest: aTest]]

SUnit is a powerful framework as we illustrated with the previous example. You can adapt it to
your need.

9. Conclusion
We presented why writing tests are an important way of investing on the future. We recalled that
tests should be repeatable, independent of any direct human interaction and cover a precise
functionality to maximize their potential. We presented in a step by step fashion how to define
a couple of tests for the class Set using SUnit. Then we gave an overview of the core of the
framework by presenting the classes TestCase, TestResult, TestSuite and TestResources. Final-
ly we dived into SUnit by following the execution of a tests and test suite. We hope that we con-
vince you about the importance of repeatable unit tests and about the ease of writing them using
SUnit.

10. Bibliography
[Beck] Kent Beck, Extreme Programming Explained: Embrace Change, Addison-Wesley,

1999.

[FBBOR] Martin Fowler, Kent Beck, John Brant, William Opdyke and Don Roberts, Refac-
toring: Improving the Design of Existing Code, Addison-Wesley, 1999.

[RBJ1] D. Roberts, J. Brant and R. Johnson, “Why every Smalltalker should use the Refac-
toring Browser, Smalltalk Report, SIGS Press, http://st-www.cs.uiuc.edu/users/droberts/
homePage.html#refactoring

[RBJ2]D. Roberts, J. Brant and R. Johnson, “A Refactoring Tool for Smalltalk”, TAPOS,
vol. 3, no. 4, 1997, pp. 253-263, http://st-www.cs.uiuc.edu/~droberts/tapos/TAPOS.htm

[SUnit] http://www.xprogramming.com/software.htm

	SUnit Explained Revisited
	1. Testing and Tests
	2. SUnit by Example
	3. Basic How To
	4. The SUnit Framework
	5. The Cool Features of SUnit 3.1
	5.1 Assertion description strings
	5.2 Logging support
	5.3 ResumableTestFailure

	6. Key Implementation Aspects
	7. Two Bits of Wisdom
	8. Extending SUnit
	9. Conclusion
	10. Bibliography

