SuUnit Explained
Revisited

Stéphane Ducasse

ducasse@iam.unibe.ch
http://www.iam.unibe.ch/~ducasse/

SUnit isaminimal yet powerful framework that supports the creation of tests. SUnit isthe
mother of unit test frameworks. SUnit was devel oped originally by Kent Beck and get extended
by Joseph Pelrine and others over several iterationsto takeinto account the notion of resources
that wewill illustrate later. Theinterest for SUnitisnot limited to Smalltalk or Squeak. Indeed
legions of devel opers understood the power of unit testing and now versions of SUnit exist in
nearly any language going from Java, Python, Perl, Oracle and |ot others[SUnit]. The current
version of SUnitis3.1. The official web site of SUnit is http://sunit.sourceforge.net/.

Testing and building regression test suites is not new and everybody knows that regression
testsare agood way to catch errors. Extreme Programming by putting testing in the core of its
methodol ogy isbringing anew light on testing whichisanot so liked discipline. The Smalltalk
community hasalong tradition of test dueto theincremental devel opment supported by itspro-
gramming environment. However, once you write testsin aworkspace or as example methods
thereisno easy way to keep track of them and to automatically run them and teststhat you can-
not automatically runareof littleinterests. M oreover, having examplesoften doesnot tell tothe
reader what are the expect results, lot of thelogicisleft unspecified. That'swhy SUnit isinter-
esting becauseit allowsyou to structure, describe the context of tests and to run them automat-
ically. In less than two minutes you can write tests using SUnit instead of writing small code
snippetsand get all the advantage of stored and automatically executable tests.

In thisarticle we start by discussing the interest of testing, then we present an exemple with
SUnit and we go deep into the SUnit implementation.

1. Testing and Tests

Most of the developersbelievethat testsare alost of time. Who hasnot heard: | would write
testsif | would have more time”. If you write code that should never be changed indeed you
should not writetests, but thisal so meansthat you applicationisnot really used or useful. Infact
testsarean investment for thefuture. In particular, having asuite of testsisextremely useful and
allow oneto gain alot of timewhen your application changes.

Tests play severa roles: first they are an active and always synchronized documentation of
thefunctionality they cover. Second they represent the confidence that devel operscan haveinto
apiece of functionality. They help you to find extremely fast the parts that break to due intro-
duced changes. It is obvious but simply true. Finally, writing testsin the sametime or even be-
forewriting codeforceyou to think about the functionality you want to design. By writing tests
first you haveto clearly state the context in which your functionality will run, theway it will in-
teract and more important the expected results. Moreover, when you are writing tests you are
your first client and your code will naturally improves.

2. SUnit Explained Revisited

The culture of tests has always been present in the Smalltalk community because a method
iscompiled and wewriteasmall expressiontotest it. This practice supportsthe extremely tight
incremental development cycle promoted by Smalltalk. However, doing so does not bring the
maximum benefit from testing. Because tests are not stored, reachable and run automatically.
Moreover it often happensthat the context of thetestsisleft unspecified so thereader hastoin-
terpret the obtained results and assess they are right or wrong.

Itisclear that we cannot tests all the aspects of an application. Covering acomplete applica-
tionissimply impossible and should not be goal of testing. It may also happen that even with a
good test suite some bugs can creep into the application and beleft hidden waiting for an oppor-
tunity to damage your system. Thisisnot aproblem assoon asif you trap abug you write atest
that coversit.

Writing good tests is a technique that can be easily learnt by practising. Let us look at the
propertiesthat tests should have to get amaximum benefit

* Repeatable. We should be able to repeat atest as much as we want.

» Without human intervention. Tests should be repeated without any human intervention. You should be able
to run them during the night.

» Telling astory. A test should cover one aspect of a piece of code. A test should act as a scenario that you
would like to read to understand a functionality.

» Having a change frequency lower than the one of the covered functionality. Indeed you do not want to
change all your tests every times you modify your application. One way to achieve this property isto write
tests based on the interfaces of the tested functionality.

Besidesthe property of thetest itself another important point while writing test suitesisthat
the number of tests should be somehow proportional to the number of tested functionality. For
example, changing one aspect of the system should not break all the tests you wrote but only a
[imited number. Thisisimportant because having 100 tests broken should be amuch moreim-
portant message for you than having 10 testsfailing.

eXtreme Programming proposes to write tests even before writing code. This may seems
against our deep devel oper habits. Here are the observations we made while practising up front
testswriting. Up front testing hel p to know what you want to code, they help to know when you
aredone, they helpto conceptualizethefunctionality of aclassandto designtheinterface. Now
itistimeto writeafirst test and to convince you that thisisapity not using SUnit.

2. SUnit by Example

Before going into the detail of SUnit, we show an example step by step. We use the example
testing theclass Set that isincluded in the SUnit distribution, so that you can read the code di-
rectly inyour favorite Smalltalk.

Step 1. First you should subclassthe Test Case classasfollow:

Test Case subcl ass: #Exanpl eSet Test
i nstanceVari abl eNarres: ' full enpty'
cl assVari abl eNarres: '’
pool D ctionaries: "'
category: 'SUnit-Tests'

The class Exanpl eSet Test groupsall testsrelated to the class test. It defines the context of
all theteststhat we will specify. Here the context is described by specifying two instance vari-
ablesf ul | andenpt y that represent afull and empty set.

Step 2. We define the method setUp as follow. The method setup acts as a context definer
method or initiliaze method. Itisinvoked beforethe execution of any test method definedinthis
class. Hereweinitialize the enpt y variable to refer to an empty set and thef ul | variable to
refer to a set containing two elements.

Exanpl eSet Test >>set Wp

enpty := Set new

full :=Set with: 5 wth: #abc
Thismethod defines the context of any testsdefined inthe classintesting jargonitiscalled the
fixture of thetest.

Step 3. We define sometests by defining some methods on the class Exanpl eSet Test . Ba-
sically onemethod representsonetest. If your test methods start with the string *‘ test’” the frame-
work will collect them automatically for you into test suites ready to be executed.

Thefirsttest namedt est | ncl udes, teststheincludesmethod of aSet . Wesay that sending
themessagei ncl udes: 5 toaset containing 5 should returnt r ue.Here we see clearly that
thetest relieson thefact that the set Up method has been run before.

Exanpl eSet Test >>t est | ncl udes
self assert: (full includes: 5).
self assert: (full includes: #abc)

The second test named t est OCccur r ences verifiesthat the occurrences of 5in the full set
isequal to one even if we add another element 5 to the set.

Exanpl eSet Test >>t est Gccur r ences
sel f assert: (enpty occurrencesCd: 0) = 0.
self assert: (full occurrencesCt: 5) = 1.
full add: 5.
sel f assert: (full occurrencesC: 5) =1

Finally wetest that if weremovethe element 5from aset the set does not containit any more.

Exanpl eSet Test >>t est Renove
full renove: 5.
sel f assert: (full includes: #abc).
self deny: (full includes: 5)

Step 4. Now we can execute the tests. Thisis possible using the user interface of SUnit. This
interface depends on the dialect you use. In Squeak and VisualWorks, you should execute
TestRunner open. You should obtain the Figure 1. You can also run you tests by executing the
following code: (Exanpl eSet Test sel ector: #test Renove) run. Thisexpressionis
equivalent to the shorter oneExanpl eSet Test run: #t est Renove. Weusually awaysin-
clude such kind of expression in the comment of our teststo be ableto run them while browsing
them as shown below.

4, SUnit Explained Revisited

Exanpl eSet Test >>t est Renove
“sel f run: #testRenmove”

full renove: 5.
sel f assert: (full includes: #abc).
sel f deny: (full includes: 5)

To debug a test use the following expressions. (Exanpl eSet Test sel ector:
#t est Renove) debug or Exanpl eSet Test debug: #t est Renpve.

ExtraParsingandFormattingTests
REFRISH TestNewParagraphFix
ChildtenToSitlingaTast RUN ALL I

Figure 1 The user interface of SUnit in Squeak
Figure 2 . Here atest run and all the tests passed.

Some Explanations. The method assert: which is defined on the class Test Case requires
aboolean as argument. This boolean represents the value of atested expression. When the ar-
gument istrue, the expression isconsidered to be correct, we say that thetest isvalid. When the
argument is false, then the test failed. In fact SUnit consider two kinds of errors: the failures,
i.e., when atest isnot valid and the errors which are unexpected situations occurring whilethe
testisrunning. Anerror isby itsnature something that has not been tested but that happened like
an out of bounds error. Themethod deny: isthenegation of assert : . HenceaTest deny:
anExpr essi onisequal to aTest assert: anExpressi on not.

SUnit offers two methods shoul d: rai se: and shoul dnt: rai se: (aTest shoul d:
aBl ock rai se: anExcept i on) totest that exceptions have been raised during the execution
of an expression. Thefollowing test illustrates the use of this method.

Exanpl eSet Test >>t est | | | egal
sel f should: [enpty at: 5] raise: Error.
self should: [enpty at: 5 put: #abc] raise: Error

Notethat if you look in the example provided by SUnit you will found the following definition
for the same test. Here the exception is provided viathe Test Resul t class. Thisis because
SUnit isrunning on all the Smalltalk dialects and the SUnit devel opers have factored out the

variant part such asthe name of the exception. Soif you writeteststhat areintended to be cross
dialectslook at theclassTest Resul t .
Exanpl eSet Test >>test 1| | ega

sel f should: [enpty at: 5] raise: TestResult error
sel f should: [enpty at: 5 put: #abc] raise: TestResult error

3. Basic How To

If you arefamiliar with other testing frameworks such as JUnit, remember that JUnit has been
widely inspired from SUnit so there arealot of similarity. Normally SUnit has an associate Ul
that allows oneto run tests. But you may have some questionsthat we will answer now.

How do | run a single test? Ask thetestcase to build a suite for you by using the method
run:

Exanpl eSet Test run: #t est Renove
1run, 1 passed, O failed, O errors

How do | run all the tests in a TestCase subclass? Just ask the classitself to build
the test suite for you. Only the tests starting with the string ‘test’” will be added to the suite.
Thereforewe also reply to the question: How do | turn all thetest* methodsinto a TestSuite?

Exanpl eSet Test suite run
9run, 9 passed, O failed, O errors

Must | subclass TestCase? InJUnit we can build aTestSuite from an arbitrary class con-
taining test* methods. In Smalltalk you can do the same but you will have then to create it by
hand and your class will have to implement all the essential TestCase methods so we suggest
you not do it. The framework isthere so useit.

How do | get my test cases/suites into the TestRunner tool? Depending on your
dialect it may happen that the TestRunner tool does not updated when you created a new
TestCase. So simply closeit and reopeniit.

6. SUnit Explained Revisited

4. The SUnit Framework

SUnit 3.1 introducesthe notion of resourcesthat are mandatory when one need to build tests
that require long set up phases. A test resource specifies a set up that is only executed once for
aset of testscontrary to the Test Case method which is executed before every test execution.

TectResource
isAvailable
TestCase islTnawailable
setUp setlUp
) tearDown
TestSuite tearDown
tests assert:
run Ko — deny:
7 o TestResult
resources shouldiraise:
addTest: shouldnt:raise: \ passedCount
selector: failuresCount
run ettrorCount
resources rInCauat
tests

Figure 3 The four classes representing the core of SUnit.

SUnitisconstituted by four main classes, namely Test Case, Test Sui t e, Test Resul t et
Test Resour ce asshowninthefigure 2.

TheclassTest Case representsatest or moregenerally afamily of teststhat shareacommon
context. Thecontext i sspecified by the declaration of instancevariableson asubclassof Test -
Case and by the specialization of the method set Up which initializesthe context in which the
will be executed. The class Test Case defines also the method t ear Down that is responsible
for releasing if necessary the object allocated during the execution of the method set Up. The
method t ear Down isinvoked after the execution of every tests.

The class Test Sui t e represents a collection of tests. An instance of Test Sui t e iscom-
posed by instance of Test Case subclasses (ainstanceof Test Case ischaracterized by the se-
lector that should run) and Test Sui t e. The classes Test Sui t e and Test Case form a
composite patterninwhich Test Sui t e isthecompositeand Test Case theleaves.

The class Test Resul t represents the results of a Test Sui t e execution. This means the
number of test passed, failed and the number of errors.

The class Test Resour ce represents aresource that is used by atest or a set of tests. The
pointisthat aresourceisassociated with subclassof Test Case anditisrunautomatically once
beforeall thetestsare executed contrary tothe Test Case methodsset Up andt ear Down that
are executed before and after any test.

A resource is run before a test suite is run. A resource is defined by specializing the class
method resources as shown by thefollowing example. By default, aninstance of TestSuite con-
sider that all itsresources arethelist of resources of the TestCase that composeit.

We defineasubclassof Test Resour ce called My Test Resour ce and we associate it with
My Test Case by specializingtheclassmethodr esour ces toreturnan array of thetest classes
towhichit isassociated.

Test Resour ce subcl ass: #M/Test Resour ce
i nstanceVari abl eNares: "'

Test Resour ce>>set Wp
“here the resource is set up”

M/Test Case cl ass>>resour ces
“associate a resource with a testcase”

A Array wth: MTest Resour ce

AswithaTestCase, we usethemethod set Up to definetheactionsthat will berun during the
set up of the resource.

5. The Cool Features of SUnit 3.1

In addition to TestResource SUnit 3.1 adds assertion description strings, logging support and
resumabletest failures.

5.1 Assertion description strings

The TestCase assertion protocol has been extended with a number of methods allowing the
assertion to have adescription. These methods take a String as second argument. If thetest case
fails, thisstring will be passed a ong to the exception handler, allowing more variety in messag-
esthan"Assertion failed" givesyou. Of course, this string can be constructed dynamically.
| e
e 1= 42
self assert: e = 23 description: 'expected 23, got ' e printString

The added methods in TestCase are: #assert:description:, #deny:description:, #should:de-
scription:, and #shouldnt:description:.

5.2 Logging support

The description strings described above may also be logged to a Stream such as the Tran-
script, afile, stdout etc. You can choose whether to log by overriding TestCase>>#isloggingin
your test case class, and choosewhereto log to by overriding TestCase>>#failurelL og. Notethat
logging facilitieswill bereally expanded in the release 3.2 of SUnit.

5.3 ResumableTestFailure

A resumable TestFailure hasbeen added. Thisisareally powerful featuresthat usesthe pow-
erful exception mechanismsoffered by Smalltalk. What can thisbe used for? Takealook at this
example:

8. SUnit Explained Revisited

aCol l ection do: [:each | self assert: each isFoo]

Inthiscase, as soon asthefirst element of the collectionisn't Foo, thetest stops. In most cas-
es, however, we would like to continue, and see both how many elements and which elements
aren't Foo. 1t would also be niceto log thisinformation. You can do thisin thisway:

aCol l ection do: [:each |
sel f
assert: each isFoo
description: each printString, 'is not Foo'
resunmabl e: true]

Thiswill print out amessageto your logging devicefor each element that fails. It doesn't cu-
mulate failures, i.e., if the assertion fail 10 timesin your test method, you'll still only see one
failure.

6. Key Implementation Aspects

We show now some key aspects of the implementation by following the execution of atest.
Thisisnot mandatory to use SUnit but can help you to customizeit.

Running one Test. To execute one test, we evaluate the expression (Test Case sel ec-
tor: aSynbol) run.Themethod Test Case>>r un defined ontheclassTest Case creates
an instance of TestResult that will contains the result of the executed tests, then it invokes the
method Test Case>>r un:

Test Case>>run

| result |

result := TestResult new.
self run: result.

“resul t

Note that in the future release, the class of the TestResult to be created will be returned by a
method so that new TestResult can be introduced. The method Test Case>>r un: invokesthe
method Test Resul t >>r unCase: .

Test Case>>run: aResul t
aResult runCase: self

The method Test Resul t >>r unCase: is the method that will invoke the method Test -
Case>>r unCase that executes atest.

Without going into the details, Test Case>>r unCase pays attention to the possible excep-
tion that may be raised during the execution of the test, invokes the execution of atestCase by
calling the method r unCase and countsthe errors, failures and passed tests.

Test Resul t >>rrunCase: aTest Case

| testCasePassed |
t est CasePassed : =
[

[

aTest Case runCase.
true]
sunitOn: self class failure
do: [:signal |
self failures add: aTest Case.
signal sunitExitWth: fal se]]
sunitCn: self class error
do: [:signal |
self errors add: aTest Case.
signal sunitExitWth: false].

t est CasePassed
ifTrue: [self passed add: aTest Case] The net hod Test Case>>runCase realizes
the calls to the nethods set Up et tear Down as shown bel ow
Test Case>>runCase
sel f set Up.
[self performlest] sunitEnsure: [self tearDown]

Running a TestSuite. To execute more than a test, we invoke the method Test -
Sui t e>>run onaTest Sui t e. The class Test Case provides some functionalities to get a
test suitefromitsmethods. Theexpression MyTest Case bui | dSui t eFr onSel ect or s re-
turnsasuite suite containing all thetestsdefined inthe classMy Test Case.

The method Test Sui t e>>r un creates an instance of Test Resul t, verifiesthat all the re-
source are available, then the method Test Sui t e>>r un: isinvoked which run all the tests
that compose thetest suite. All the resources are then reset.

run
| result |
result := TestResult new.
self resources do: [:res |
res isAvailable ifFalse: [~res signallnitializationError]].
[self run: result] sunitEnsure: [self resources do: [:each | each reset]].
Aresul t

Test Sui te>>run: aResul t
self tests do: [:each |
sel f sunitChanged: each.
each run: aResult]

TheclassTest Resour ce and itssubclasses keep track of thetheir currently created instances
(oneper class) that can be accessed and created using the classmethod cur r ent . Thisinstance
is cleared when the tests have finished to run and the resources are reset.

10. SUnit Explained Revisited

Thisisduring the resource availability check that the resourceis created if needed as shows
theclassmethod Test Resour ce cl ass>>i sAvai | abl e. DuringtheTestResourceinstance
creation, itisinitialized and the method setUp isinvoked. (Noteit may happen that your version
of SUnit 3.0 does not correctly initialize the resource. A version with thisbug circulated alot.
Verify that Test Resour ce cl ass>>newcalsthemethodi niti al i ze).

Test Resour ce cl ass>>i sAvai | abl e

Aself current notN |l and: [self current isAvail able]
Test Resour ce cl ass>>current

current isNl ifTrue: [current := self new.
Acurrent

Test Resource>>initiali ze
self setlp

7. Two Bits of Wisdom
Testing isdifficult, hereisalist of advicesto build tests.

Test self described. Eachtimeyou change your code you do not want to change your tests,
therefore try to write them in away that they are self-contained. Thisisdifficult but pay in the
long term. Writing testsin terms of stableinterfaces support self-contained tests.

Do not over test. Try to build your tests so that they do not overlap. It is annoying to have
several tenth of tests covering all the same aspectsand break al at the sametime.

Unit vs. Acceptance Tests. Unit tests describe one functionality and as such make easier
theidentification of bugs. However for certain deeply recursive or complex setup situationitis
easier to write tests that represent a scenario. So try as much as possible to have Unit tests and
group them per class. For acceptance tests group then in terms of the functionality tested.

8. Extending SUnit

Herewe briefly show how SUnit can be extended to provide setup that are shared by all thetests
of aTestCase class. Note that the extension is not as robust asthe core SUnit.

We start first with a simple example of the expected behavior. We define a new classwhich
inherits from SharingSetUpTestCase as follow. We define two simple tests testOne and
testTwo.

Shar edtne
super cl ass: Shari ngSet UpTest Case

Shar edCne>>t est One
Transcri pt show 'Test one runs'; cr.

Shar edCne>>t est Two
Transcript show ' Test Two runs'; cr.

11.

Then we define the method setUp and tearDown that will be executed before and after the exe-
cution of thetests exactly in the same way aswith non sharing tests. Note however the fact that
with the solution we will present we have to explicitly invoke the setUp method and tearDown
of the superclass.

Shar edne>>set Wp
"if you need to still have some setW for a single tests, you have to i nvoke super

set Up"

super set Up.
Transcri pt show ' Sharedne>>set W' ; cr

Shar edOne>>t ear Down

Transcript show ' SharedOne>>t ear Down' ; cr.
super tear Down

Finally we define the methods sharedSetUp and sharedTearDown that will be only executed
once for the two tests. Note that this solution implies that the tests are not destructively the
shared fixture but just query it.

Shar edne cl ass>>shar edSet Up

Transcript show 'SharedSetU runs' ; cr
"ny set up here"

Shar edOne cl ass>>shar edTear Down

Transcri pt show 'Shared Tear Down runs' ;cr
"ny set up here"

Hereisthetraceyou obtain

SharedOne suite run
Shar edSet W runs

Shar edtne>>set Up

Test one runs

Shar edOne>> t ear Down
Shar edtne>>set Up

Test Two runs

Shar edne>> t ear Down
Shared Tear Down runs

2 run, 2 passed, O failed, O errors

The extension of the SUnit framework is based on the introduction of two classes: Shared-
SetupTestCase and SharedSetUpTestSuite. The basic ideaisto use aflag that isflushed after a
certain number of tests has been run. The class SharedSetup TestCase definesthen oneinstance
variablethat indicate whether thetestisrunindividually or inthe context of atest suiteand two
classinstance variablesto indicate the number of time that the setup should hold and flag

Shar edSet upTest Case

12. SUnit Explained Revisited

supercl ass: testCase
i nstanceVari abl es: ‘runl ndi vi dual | y’
cl assi nstanceVari abl es: ‘ nunber (f Test sToTear Down sharedSet Up '’

Shar edSet upTest Case cl ass>>sui t ed ass
AShari ngSet UpTest Suite

Shar edSet upTest Case cl ass>>shar edSet Up

"subcl ass should only override this hook to define a sharedSet Up"
Shar edSet upTest Case cl ass>>shar edTear Down

"here we specify the teardown of the shared setup "

Shar edSet upTest Case cl ass>>f | ushShar edSet Up
sharedSet U : = nil

The SharedSetupTestCase classis armed with the number of timesit should hold.

Shar edSet upTest Case cl ass>>ar nTest sToTear Down: aNunber

sel f fl ushShar edSet Up.
nunber & Test sToTear Down : = aNunber.

Everytimes atest is run, the method anothertestHasBeenRun is invoked. Once the number of
testsisreached the sharedSetUp isflushed and the sharedTearDwon is executed.

Shar edSet upTest Case cl ass>>anot her Test HasBeenRun
"Everytimes atest isrunthis nethod is called, once all the tests of the suite
are run the shared setup is reset"

nunber O Test sToTear Down : = nunber O Test sToTear Down - 1.
nunber O Test sToTear Down i sZero
i f True:
[sel f flushSharedSet Up.
sel f shar edTear Down]

When atest isrunits setUp is executed which somehow calls the privateSharedSetUp method
whichisonly executed when the sharedSetUp test isnot set. Thisexecution invokesthe shared-
SetUp method.

Shar edSet upTest Case cl ass>>pri vat eShar edSet Up

sharedSet W isN |
i f True:
[sharedSet Up : = 1.
sel f sharedSet Up]

Shar edSet upTest Case>>set Wp
sel f class privateSharedSet Up

Shar edSet upTest Case>>t ear Down
sel f cl ass anot her Test HasBeenRun

13.

When atestCaseis created we assumethat it will be run once. Thismay beinvalidated laterin-
voking the method executedFromA Suite.

Shar edSet upTest Case>>set Test Sel ector: aSynbol
"I'mforced to do that because there is no initialize"

runl ndi vidual ly : = true.
super set Test Sel ector: aSynbol

Shar edSet upTest Case>>execut edFr omASui t e
runindividually : = fal se

The two methods responsiblefor Test execution are then specialized asfollow:

Shar edSet upTest Case>>r unCaseAsFai | ure
sel f ar mlear DownCount er .
super runCaseAsFail ure.

Shar edSet upTest Case>>r unCase
sel f ar mlear DownCount er .
super runCase

Shar edSet upTest Case>>ar nTear DownCount er
sel f islndividual | yExecut ed
i fTrue: [self class arnTestsToTear Down: 1]

Now the SharedSetUpTestSuite define the instance variable testCaseClass and redefines the
two methodsto run test suite run: and run asfollow. They check whether they contain testsand
if thisisthe casethey armed so that the shread setup isonly executed acorrect number of time.

Shar edSet UpTest Sui t e>>run: aResul t
sel f checkAndAr nshar edSet Up.
Asuper run: aResult

Shar edSet UpTest Sui t e>>r un
sel f checkAndAr nBhar edSet Up.
A super run

Shar edSet UpTest Sui t e>>checkAndAr nhar edSet Up
self tests isEnpty
ifFalse: [self tests first class arnTestsToTear Down: self tests size]

Finally the method addTest: is specialize so that it marks all itstests with the fact that they are
executed in aTestSuite and check whether all itstestsarefrom the same classto avoid inconsis-
tency.

Shar edSet UpTest Sui t e>>addTest: aTest

"Sharing a setup only works if the test case conposing the test suite are from
the sane class so we test it"

aTest execut edFr omASui t e.

14, SUnit Explained Revisited

test Cased ass isN |
i fTrue: [testCased ass := aTest class.
super addTest: aTest]
i fFal se: [aTest class == testCased ass
ifFalse: [self error: 'you cannot have test case of different classes in
a SharingSet UpTest Suite' .]
i fTrue: [super addTest: aTest]]

SUnitisapowerful framework asweillustrated with the previous example. You can adapt it to
your need.

9. Conclusion

We presented why writing testsare animportant way of investing onthefuture. Werecalled that
tests should be repeatable, independent of any direct human interaction and cover a precise
functionality to maximizetheir potential. We presented in a step by step fashion how to define
a couple of tests for the class Set using SUnit. Then we gave an overview of the core of the
framework by presenting the classes TestCase, TestResult, TestSuite and TestResources. Final-
ly wedivedinto SUnit by following the execution of atestsand test suite. We hopethat we con-
vinceyou about theimportance of repeatable unit testsand about the ease of writing themusing
SUnit.

10. Bibliography
[Beck] Kent Beck, Extreme Programming Explained: Embrace Change, Addison-Wesley,
1999.

[FBBOR] Martin Fowler, Kent Beck, John Brant, William Opdyke and Don Roberts, Refac-
toring: Improving the Design of Existing Code, Addison-Wesley, 1999.

[RBJ1] D. Roberts, J. Brant and R. Johnson, “Why every Smalltalker should use the Refac-
toring Browser, Smalltalk Report, SIGS Press, http://st-www.cs.uiuc.edu/users/droberts/
homePage.html#refactoring

[RBJ2]D. Roberts, J. Brant and R. Johnson, “A Refactoring Tool for Smalltalk”, TAPOS,
vol. 3, no. 4, 1997, pp. 253-263, http://st-www.cs.uiuc.edu/~droberts/tapos/ TAPOS.htm

[SUnit] http://www.xprogramming.com/software.htm

	SUnit Explained Revisited
	1. Testing and Tests
	2. SUnit by Example
	3. Basic How To
	4. The SUnit Framework
	5. The Cool Features of SUnit 3.1
	5.1 Assertion description strings
	5.2 Logging support
	5.3 ResumableTestFailure

	6. Key Implementation Aspects
	7. Two Bits of Wisdom
	8. Extending SUnit
	9. Conclusion
	10. Bibliography

