
University of Berne
Institute of Computer Science

http://www.iam.unibe.ch/~ducasse/

SUnit Explained

Stéphane Ducasse
(revised by Rick Zaccone)

Directory

• Table of Contents
• Begin Article

Copyright c© 2003 ducasse@iam.unibe.ch
Last Revision Date: March 6, 2006

http://www.iam.unibe.ch/~ducasse/
mailto:ducasse@iam.unibe.ch

Section 1: Introduction 2

1. Introduction

SUnit is a minimal yet powerful framework that supports the creation of tests.
SUnit is the mother of unit test frameworks.SUnit was developed originally
by Kent Beck and extended by Joseph Pelrine and others over several iterations
to take into account the notion of resources that we will illustrate later. The
interest inSUnit is not limited to Smalltalk or Squeak. Indeed, legions of de-
velopers understood the power of unit testing and now versions ofSUnit ex-
ist in nearly any language including Java, Python, Perl, Oracle and many oth-
ers [4]. The current version ofSUnit is 3.1. The official web site ofSUnit is
<http://sunit.sourceforge.net/>.

Testing and building test suites is not new and everybody knows that tests are
a good way to catch errors. eXtreme Programming, by putting testing in the core
of its methodology, is shedding a new light on testing, an often disliked discipline.
The Smalltalk community has a long tradition of testing due to the incremental
development supported by its programming environment. However, once you write
tests in a workspace or as example methods there is no easy way to keep track of
them and to automatically run them and tests that you cannot automatically run are
of little interests. Moreover, having examples often does not inform the reader of
expected results, since much of the logic is left unspecified.SUnit is interesting
because it allows you to structure tests, describe the context of tests and to run them
automatically. In less than two minutes you can write tests usingSUnit instead of
writing small code snippets and get all the advantage of stored and automatically
executable tests.

In this article we start by discussing why we test, then we present an example
with SUnit and we go deep into theSUnit implementation.

2. Testing and Tests

Most developers believe that tests are a waste of time. Who has not heard: “I would
write tests if I would have more time.”? If you write code that never changes, you
should not write tests, but this also means that your application is not really used or
useful. In fact tests are an investment for the future. In particular, having a suite of
tests is extremely useful and it saves a lot of time when your application changes.

Tests play several roles: first they are an active and always synchronized doc-
umentation of the functionality they cover. Second they represent the confidence
that developers can have in a piece of functionality. They help you to quickly find
the parts that break due to introduced changes. Finally, writing tests at the same
time or even before writing code forces you to think about the functionality you
want to design. By writing tests first you have to clearly state the context in which
your functionality will run, the way it will interact and more important the ex-

<http://sunit.sourceforge.net/>

Section 2: Testing and Tests 3

pected results. Moreover, when you are writing tests you are your first client and
your code will naturally improves.

The culture of tests has always been present in the Smalltalk community be-
cause after writing a method, we would write a small expression to test it. This
practice supports the extremely tight incremental development cycle promoted by
Smalltalk. However, doing so does not bring the maximum benefit from testing be-
cause the tests are not saved and run automatically. Moreover it often happens that
the context of the tests is left unspecified so the reader has to interpret the results
and assess if they are right or wrong.

It is clear that we cannot test all the aspects of an application. Covering a
complete application is simply impossible and should not be goal of testing. It
may also happen that even with a good test suite some bugs can creep into the
application and they can be left hidden waiting for an opportunity to damage your
system. This is not a problem if you write a test that covers the bug as soon as you
uncover it.

Writing good tests is a technique that can be easily learned by practicing. Let
us look at the properties that tests should have to get a maximum benefit.

• Tests should be repeatable. You should be able to repeat a test as often as
you want.

• Tests should run without human intervention. You should even be able to
run them during the night.

• Tests should tell a story. A test should cover one aspect of a piece of code.
A test should act as a scenario that you would like to read to understand a
functionality.

• Tests should have a change frequency lower than the one of the covered
functionality. Indeed you do not want to change all your tests every time you
modify your application. One way to achieve this property is to write tests
based on the interfaces of the tested functionality.

The number of tests should be somewhat proportional to the number of tested
functionalities. For example, changing one aspect of the system should not break
all the tests you wrote but only a limited number. This is important because having
100 tests broken should be a much more important message for you than having 10
tests failing.

eXtreme Programming proposes writing tests before writing code. This may
seem against our deep developer habits. Here are the observations we made while
practicing up front tests writing. Up front testing helps you to know what you want

Section 3:SUnit by Example 4

to code, it helps you know when you are done, and it helps to conceptualize the
functionality of a class and to design the interface. Now it is time to write a first
test and to convince you that you should be usingSUnit.

3. SUnit by Example

Before going into the details ofSUnit, we will show a step by step example. We
use an example that tests the classSet. Try entering the code as we go along.

3.1. Step 1

First you should create aTestCase subclass calledExampleSetTest. Right click
on TestCase and select “Create Subclass. . . ”. Add two instance variable so your
new class looks as follows.

XProgramming.SUnit defineClass: #ExampleSetTest
superclass: #{XProgramming.SUnit.TestCase}
indexedType: #none
private: false
instanceVariableNames: ’full empty’
classInstanceVariableNames: ’’
imports: ’’
category: ’SUnit’

The classExampleSetTest groups all tests related to testing the classSet. It
defines the context in which all the tests that we specify will operate. Here the
context is described by specifying two instance variablesfull and empty that
represent a full and empty set.

3.2. Step 2

The methodsetUp acts as a context definer method or initialize method. It is
invoked before the execution of each test method defined in this class. Here we
initialize theempty variable to refer to an empty set and thefull variable to refer
to a set containing two elements. We define the methodsetUp as follows.

ExampleSetTest>>setUp
empty := Set new.
full := Set with: 5 with: #abc

This method defines the context for each of the tests defined in our subclass of
TestCase (ExampleSetTest in this example). In testing jargon it is called the
fixtureof the test.

Section 3:SUnit by Example 5

3.3. Step 3

Lets create some tests by defining some methods in the classExampleSetTest.
Basically one method represents one test. If your test methods start with the string
‘test’ the framework will collect them automatically for you into test suites ready
to be executed.

The first test namedtestIncludes, tests theincludes: method ofSet. We
say that sending the messageincludes: 5 to a set containing 5 should return
true. Here we see clearly that the test relies on the fact that thesetUp method has
been run before.

ExampleSetTest>>testIncludes
self assert: (full includes: 5).
self assert: (full includes: #abc)

The second test namedtestOccurrences verifies that the number of occur-
rences of 5 in the full set is equal to one even if we add another element 5 to the
set.

ExampleSetTest>>testOccurrences
self assert: (empty occurrencesOf: 0) = 0.
self assert: (full occurrencesOf: 5) = 1.
full add: 5.
self assert: (full occurrencesOf: 5) = 1

Finally we test that if we remove the element 5 from a set the set no longer
contains it.

ExampleSetTest>>testRemove
full remove: 5.
self assert: (full includes: #abc).
self deny: (full includes: 5)

3.4. Step 4

Now we can execute the tests. This is possible using the user interface ofSUnit.
This interface depends on the dialect you use. In Squeak and VisualWorks, you
should executeTestRunner open. After clicking on theRun button, you see a
window similar to Figure 1. You can also run you tests by executing the following
code: (ExampleSetTest selector: #testRemove) run. This expression is
equivalent to the shorter oneExampleSetTest run: #testRemove. We usually
include an expression in the comment of our tests that allows us to run them while
browsing them as shown below.

Section 3:SUnit by Example 6

Figure 1: The user interface ofSUnit in VisualWorks

ExampleSetTest>>testRemove
"self run: #testRemove"
full remove: 5.
self assert: (full includes: #abc).
self deny: (full includes: 5)

To debug a test you may use the following expressions:

(ExampleSetTest selector: #testRemove) debug

or

ExampleSetTest debug: #testRemove

3.5. Explanation

The methodassert: which is defined in the classTestCase requires a boolean
argument. This boolean represents the value of a tested expression. When the
argument is true, the expression is considered to be correct. We say that the test is
valid. When the argument is false, then the test failed. In fact,SUnit has two kinds
of errors. Afailure means that a test has failed. Anerror is something that has
not been tested such as an out of bounds error. The methoddeny: is the negation
of assert:. HenceaTest deny: anExpression is equal toaTest assert:
anExpression not.

SUnit offers two methodsshould:raise: andshouldnt:raise: for test-
ing exception handling. For example, you would use(aTest should: aBlock

Section 4: Basic How To 7

raise: anException) to test that exceptions have been raised during the execu-
tion of an expression. The following test illustrates the use of this method. Enter
and run this test.

ExampleSetTest>>testIllegal
self should: [empty at: 5] raise: Error.
self should: [empty at: 5 put: #abc] raise: Error

SUnit is capable of running on all Smalltalk dialects. To accomplish this, theSUnit
developers have factored out the dialect dependent aspects. The class method
TestResult>>error provides the name of the error handler in a dialect inde-
pendent fashion. Take a look at the code to see how this is done. If you had
wanted to write tests that would work in several dialects, you could have written
testIllegal as follows.

ExampleSetTest>>testIllegal
self should: [empty at: 5] raise: TestResult error.
self should: [empty at: 5 put: #abc]

raise: TestResult error

Give it a try.

4. Basic How To

This section will give you more details on how to useSUnit. If you are familiar
with another testing framework such as Java’sJUnit, much of this will be familiar
since it has its roots inSUnit. Normally you will useSUnit’s GUI to run tests, but
there are situations where you may not want to use it.

4.1. Normal Operation

Normally, you will run your tests by using the test runner.

TestRunner open

4.2. How to Run a Single Test

Suppose you want to run a single test. You can run it as follows.

ExampleSetTest run: #testRemove
1 run, 1 passed, 0 failed, 0 errors

Section 5: TheSUnit Framework 8

TestSuite
run
resources
addTest:

TestCase
setUp
tearDown
assert:
deny:
should:raise:
shouldnt:raise:
selector:
run
resources

TestResource
isAvailable
isUnavailable
setUp
tearDown

TestResult
passedCount
failuresCount
errorCount
runCount
tests

tests

Figure 2: The four classes representing the core ofSUnit

4.3. How to Run All Tests in aTestCase Subclass

Just ask the class itself to build the test suite for you. Only the tests starting with
the string ‘test’ will be added to the suite. Here is how you turn all thetest*
methods into aTestSuite.

ExampleSetTest suite run
5 run, 5 passed, 0 failed, 0 errors

4.4. Must I SubclassTestCase?

In JUnit we can build aTestSuite from an arbitrary class containingtest*meth-
ods. In Smalltalk you can do the same but you will have then to create a suite by
hand and your class will have to implement all the essentialTestCase methods so
we suggest you not do it. The framework is there, so use it.

5. TheSUnit Framework

SUnit 3.1 introduces the notion of resources that are necessary when building tests
that require long set up phases. A test resource specifies a set up that is only
executed once for a set of tests contrary to theTestCase method which is executed
before every test execution.

SUnit consists of four main classes. They areTestCase, TestSuite,
TestResult, andTestResource as shown in Figure 2.

Section 5: TheSUnit Framework 9

5.1. TestCase

The classTestCase represents a test or more generally a family of tests that share
a common context. The context is specified by the declaration of instance variables
on a subclass ofTestCase and by the specialization of the methodsetUp which
initializes the context in which the will be executed. The classTestCase also
defines the methodtearDown that is responsible for releasing any objects allocated
during the execution of the methodsetUp. The methodtearDown is invoked after
the execution of each test.

5.2. TestSuite

The classTestSuite contains a collection of test cases. An instance of
TestSuite is composed of instances ofTestCase subclasses (a instance of
TestCase is characterized by the selector that should run) andTestSuite. The
classesTestSuite andTestCase form a composite pattern in whichTestSuite
is the composite andTestCase the leaves.

5.3. TestResult

The classTestResult represents the results of aTestSuite execution. It con-
tains the number of test passed, the number of tests failed, and the number of errors.

5.4. TestResource

The classTestResource represents a resource that is used by a test or a set of
tests. The point is that a resource is associated with subclass ofTestCase and it is
run automatically once before all the tests are executed contrary to theTestCase
methodssetUp andtearDown that are executed before and after each test.

A resource is run before a test suite is run. A resource is defined by overrid-
ing the class methodresources as shown by the following example. By default,
an instance ofTestSuite assumes that its resources are the list of resources con-
structed from theTestCases that it contains.

We define a subclass ofTestResource calledMyTestResource and we as-
sociate it withMyTestCase by specializing the class methodresources to return
an array of the test classes to which it is associated.

TestResource subclass: #MyTestResource
instanceVariableNames: ’’

MyTestResource>>setUp
"Set up resources here."

Section 6: Features ofSUnit 3.1 10

MyTestResource>>tearDown
"Tear down resources here."

MyTestCase class>>resources
"associate a resource with a testcase"
^Array with: MyTestResource

As with aTestCase, we use the methodsetUp to define the actions that will be
run during the set up of the resource.

6. Features ofSUnit 3.1

In addition toTestResource, SUnit 3.1 adds assertion description strings, logging
support, and resumable test failures.

6.1. Assertion Description Strings

TheTestCase assertion protocol has been extended with a number of methods al-
lowing the assertion to have a description. These methods take aString as second
argument. If the test case fails, this string will be passed along to the exception
handler, allowing more variety in messages than “Assertion failed”. Of course, this
string can be constructed dynamically.

| e |
e := 42.
self assert: e = 23

description: ’expected 23, got ’, e printString

The added methods inTestCase are:

#assert:description:
#deny:description:
#should:description:
#shouldnt:description:

6.2. Logging Support

The description strings described above may also be logged to aStream such as
theTranscript, a file, stdout etc. You can choose whether to log by overriding
TestCase>>#isLogging in your test case class, and choose where to log to by
overridingTestCase>>#failureLog. Note that these logging facilities will be
available in release 3.2 ofSUnit.

Section 7: Key Implementation Aspects 11

6.3. Resumable Test Failure

A resumableTestFailure has been added. This is a really powerful feature that
uses the powerful exception mechanisms offered by Smalltalk. What can this be
used for? Take a look at this example:

aCollection do: [:each | self assert: each isFoo]

In this case, as soon as the first element of the collection isn’t Foo, the test stops. In
most cases, however, we would like to continue, and see both how many elements
and which elements aren’t Foo. It would also be nice to log this information. You
can do this in this way:

aCollection do:
[:each |
self

assert: each isFoo
description: each printString , ’ is not Foo’
resumable: true]

This will print out a message to your logging device for each element that fails. It
doesn’t accumulate failures, i.e., if the assertion fails 10 times in your test method,
you’ll still only see one failure.

7. Key Implementation Aspects

We show now some key aspects of the implementation by following the execution
of a test. This is not necessary to useSUnit but can help you to customize it.

7.1. Running One Test

To execute one test, we evaluate the expression

(TestCase selector: aSymbol) run.

The methodTestCase>>run creates an instance ofTestResult that will contain
the results of the executed tests, then it invokes the methodTestCase>>run:.

TestCase>>run
| result |
result := TestResult new.
self run: result.
^result

Section 7: Key Implementation Aspects 12

Note that in a future release, the class of theTestResult to be created will be
returned by a method so that newTestResult can be introduced. The method
TestCase>>run: invokes the methodTestResult>>runCase:.

TestCase>>run: aResult
aResult runCase: self

The methodTestResult>>runCase: is the method that will invoke the method
TestCase>>runCase that executes a test.

Without going into the details,TestCase>>runCase pays attention to any ex-
ception that may be raised during the execution of a test, invokes the execution
of aTestCase by calling the methodrunCase and counts the errors, failures and
passed tests.

TestResult>>runCase: aTestCase
| testCasePassed |
testCasePassed :=

[
[aTestCase runCase.
true] sunitOn: self class failure

do:
[:signal |
self failures add: aTestCase.
signal sunitExitWith: false]]

sunitOn: self class error
do:

[:signal |
self errors add: aTestCase.
signal sunitExitWith: false].

testCasePassed ifTrue: [self passed add: aTestCase]

The methodTestCase>>runCase uses the calls to the methodssetUp and
tearDown as shown below.

TestCase>>runCase
self setUp.
[self performTest] sunitEnsure: [self tearDown]

7.2. Running aTestSuite

To execute more than one test, we invoke the methodTestSuite>>run on a
TestSuite. The classTestCase provides some functionality to get a test suite
from its methods. The expression

Section 7: Key Implementation Aspects 13

MyTestCase buildSuiteFromSelectors

returns a suite containing all the tests defined in the classMyTestCase.
The methodTestSuite>>run creates an instance ofTestResult, verifies

that all the resource are available, then the methodTestSuite>>run: is invoked
which runs all the tests that compose the test suite. All the resources are then
released.

TestSuite>>run
| result |
result := TestResult new.
self areAllResourcesAvailable

ifFalse: [^TestResult signalErrorWith:
’Resource could not be initialized’].

[self run: result] sunitEnsure: [self resources do:
[:each | each reset]].

^result

TestSuite>>run: aResult
self tests do:

[:each |
self sunitChanged: each.
each run: aResult]

The classTestResource and its subclasses keep track of the their currently cre-
ated instances (one per class) that can be accessed and created using the class
methodcurrent. This instance is cleared when the tests have finished running
and the resources are reset.

It is during the resource availability check that the resource is created if needed
as shown in the class methodTestResource class>>isAvailable. During the
TestResource instance creation, it is initialized and the methodsetUp is invoked.
(Note it may happen that your version ofSUnit 3.0 does not correctly initialize the
resource. A version with this bug circulated a lot. Verify thatTestResource
class>>new calls the methodinitialize).

TestResource class>>isAvailable
^self current notNil

TestResource class>>current
current isNil ifTrue: [current := self new].
^current

TestResource>>initialize
self setUp

Section 8: Bits of Wisdom 14

8. Bits of Wisdom

Testing is difficult. Here is some advice on building tests.

Self-contained testsEach time you change your code you do not want to change
your tests, therefore try to write them in such a way that they are self-
contained. This is difficult but pays in the long term. Writing tests in terms
of stable interfaces supports self-contained tests.

Do not over test Try to build your tests so that they do not overlap. It is annoying
to have many tests covering all the same aspects and breaking all at the same
time.

Unit vs. Acceptance TestsUnit tests describe one functionality and as such make
it easier to identify bugs. However, for certain deeply recursive or complex
setup situations, it is easier to write tests that represent a scenario. So try as
much as possible to have unit tests and group them per class. For acceptance
tests group then in terms of the functionality tested.

9. ExtendingSUnit

In this section we will explain how to extendSUnit so that it uses asetUp and
tearDown that are shared by all of the tests in aTestCase subclass. We will
define a new sublass ofTestCase calledSharingSetUpTestCase, and a subclass
of SharingSetUpTestCase calledSharedOne. We will also need to define a new
subclass ofTestSuite calledSharedSetUpTestSuite, and we will make some
minor adjustments toTestCase.

Our tests will be inSharedOne. When we execute

Transcript clear.
SharedOne suite run

we will obtain the following trace.

SharedOne>>setUp
SharedOne class>>sharedSetUp
SharedOne>>testOne
SharedOne>>tearDown
SharedOne>>setUp
SharedOne>>testTwo
SharedOne>>tearDown
SharedOne class>>sharedTearDown
2 run, 2 passed, 0 failed, 0 errors

You can see that the shared code is executed just once for both tests.

Section 9: ExtendingSUnit 15

9.1. SharedSetUpTestCase

The extension of theSUnit framework is based on the introduction of two classes:
SharedSetUpTestCase andSharedSetUpTestSuite. The basic idea is to use a
flag that is flushed (cleared) after a certain number of tests have been run. The class
SharedSetUpTestCase defines one instance variable that indicates whether each
test is run individually or in the context of a sharedsetUp andtearDown. There
are also two class instance variables. One indicates the number of tests for which
the sharedsetUp should be in effect, and the other indicates whether the shared
setUp is in effect.

SharedSetUpTestCase
superclass: TestCase
instanceVariableNames: ’runIndividually ’
classInstanceVariableNames: ’numberOfTestsToTearDown

sharedSetUp ’

suiteClass is used byTestCase to determine the suite that is running.

SharedSetUpTestCase class>>suiteClass
^SharedSetUpTestSuite

SharedSetUpTestCase class>>sharedSetUp
"A subclass should only override this hook to define
a sharedSetUp"

SharedSetUpTestCase class>>sharedTearDown
"Here we specify the teardown of the shared setup"

SharedSetUpTestCase class>>flushSharedSetUp
sharedSetUp := nil

TheSharedSetUpTestCase class is initialized with the number of tests for which
the sharedsetUp should be in effect.

SharedSetUpTestCase class>>armTestsToTearDown: aNumber
self flushSharedSetUp.
numberOfTestsToTearDown := aNumber.

Every time a test is run, the methodanothertestHasBeenRun is invoked. Once
the specified number of tests is reached thesharedSetUp is flushed and the
sharedTearDown is executed.

Section 9: ExtendingSUnit 16

SharedSetUpTestCase class>>anotherTestHasBeenRun
"Everytimes a test is run this method is called,
once all the tests of the suite
are run the shared setup is reset"
numberOfTestsToTearDown := numberOfTestsToTearDown - 1.
numberOfTestsToTearDown isZero

ifTrue:
[self flushSharedSetUp.
self sharedTearDown]

When a test is run itssetUp is executed and it then it calls the class method
privateSharedSetUp. This method will only invoke thesharedSetUp if the
sharedSetUp test indicates that it hasn’t been done yet.

SharedSetUpTestCase class>>privateSharedSetUp
sharedSetUp isNil

ifTrue:
[sharedSetUp := 1.
self sharedSetUp]

SharedSetUpTestCase>>setUp
self class privateSharedSetUp

SharedSetUpTestCase>>tearDown
self class anotherTestHasBeenRun

When a test case is created we assume that it will be run once. We can change this
later by invoking the methodexecutedFromASuite.

SharedSetUpTestCase>>setTestSelector: aSymbol
"Must do it this way because there is no initialize"

runIndividually := true.
super setTestSelector: aSymbol

SharedSetUpTestCase>>executedFromASuite
runIndividually := false

The methods responsible for test execution are then specialized as follows.

runIndividually
^runIndividually

Section 9: ExtendingSUnit 17

SharedSetUpTestCase>>armTearDownCounter
self runIndividually

ifTrue: [self class armTestsToTearDown: 1]

SharedSetUpTestCase>>runCaseAsFailure
self armTearDownCounter.
super runCaseAsFailure

SharedSetUpTestCase>>runCase
self armTearDownCounter.
super runCase

9.2. SharedOne

SharedOne is a new class which inherits fromSharingSetUpTestCase as fol-
lows. We define two simple teststestOne andtestTwo.

SharedOne
superclass: SharingSetUpTestCase

SharedOne>>testOne
Transcript

show: ’SharedOne>>testOne’;
cr

SharedOne>>testTwo
Transcript

show: ’SharedOne>>testTwo’;
cr

Then we define the methodssetUp andtearDown that will be executed before and
after the execution of the tests exactly in the same way as with non sharing tests.
Note however, the fact that with the solution we will present we have to explicitly
invoke thesetUp method andtearDown of the superclass.

SharedOne>>setUp
Transcript

show: ’SharedOne>>setUp’;
cr.

super setUp

Section 9: ExtendingSUnit 18

SharedOne>>tearDown
Transcript

show: ’SharedOne>>tearDown’;
cr.

super tearDown

Finally, we define the methodssharedSetUp andsharedTearDown that will be
only executed once for the two tests. Note that this solution assumes that the tests
are not destructive to the shared fixture, but just query it.

SharedOne class>>sharedSetUp
Transcript

show: ’SharedOne class>>sharedSetUp’;
cr

"My set up here."

SharedOne class>>sharedTearDown
Transcript

show: ’SharedOne class>>sharedTearDown’;
cr

"My tear down here."

9.3. SharedSetUpTestSuite

TheSharedSetUpTestSuite defines just one instance variabletestCaseClass
and redefines the two methods necessary to run the test suiterun: and run.
checkAndArmSharedSetUp initializes the number of tests to run before the shared
tearDown is executed.

SharedSetUpTestSuite
superclass: TestSuite
instanceVariableNames: ’testCaseClass’

SharedSetUpTestSuite>>checkAndArmSharedSetUp
self tests isEmpty

ifFalse: [self tests first class
armTestsToTearDown: self tests size]

SharedSetUpTestSuite>>run: aResult
self checkAndArmSharedSetUp.
^super run: aResult

Section 9: ExtendingSUnit 19

SharedSetUpTestSuite>>run
self checkAndArmSharedSetUp.
^super run

Finally the methodaddTest: is specialized so that it marks all its tests with the
fact that they are executed in aTestSuite and checks whether all its tests are from
the same class to avoid inconsistency.

SharedSetUpTestSuite>>addTest: aTest
"Sharing a setup only works if the test case
composing the test suite are from
the same class so we test it"

aTest executedFromASuite.
testCaseClass isNil

ifTrue: [testCaseClass := aTest class.
super addTest: aTest]

ifFalse: [aTest class == testCaseClass
ifFalse: [self error:

’you cannot have test case of
different classes in
a SharingSetUpTestSuite’.]

ifTrue: [super addTest: aTest]]

9.4. Changes toTestCase

In order for the above changes to work, you must makeTestCase aware of your
new test suite.

TestCase class>>buildSuite
| suite |
^self isAbstract

ifTrue:
[suite := self suiteClass new.
suite name: self name asString.
self allSubclasses

do: [:each |
each isAbstract

ifFalse: [suite addTest:
each buildSuiteFromSelectors]].

suite]
ifFalse: [self buildSuiteFromSelectors]

Section 10: Exercise 20

TestCase class>>buildSuiteFromMethods: testMethods
^testMethods

inject: ((self suiteClass new)
name: self name asString;
yourself)

into:
[:suite :selector |
suite

addTest: (self selector: selector);
yourself]

If you have made all the changes correctly, you should be able to run your tests and
see the results shown in section 9.

10. Exercise

The previous section was designed to give you some insight into the workings of
SUnit. You can obtain the same effect by usingSUnit’s resources.

Create new classesMyTestResource andMyTestCase which are subclasses
of TestResource andTestCase respectively. Add the appropriate methods so
that the following messages are written to theTranscript when you run your
tests.

MyTestResource>>setUp has run.
MyTestCase>>setUp has run.
MyTestCase>>testOne has run.
MyTestCase>>tearDown has run.
MyTestCase>>setUp has run.
MyTestCase>>testTwo has run.
MyTestCase>>tearDown has run.
MyTestResource>>tearDown has run.

11. Conclusion

We presented why writing tests are an important way of investing on the future.
We recalled that tests should be repeatable, independent of any direct human inter-
action and cover a precise functionality to maximize their potential. We presented
in a step by step fashion how to define a couple of tests for the classSet using
SUnit. Then we gave an overview of the core of the framework by presenting the
classesTestCase, TestResult, TestSuite andTestResources. Finally we
dived intoSUnit by following the execution of a tests and test suite. We hope that

Section 11: Conclusion 21

we convince you about the importance of repeatable unit tests and about the ease
of writing them usingSUnit.

References

[1] K. Beck, Extreme Programming Explained: Embrace Change. Addison-
Wesley, 2000.

[2] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts,Refactoring: Im-
proving the Design of Existing Code. Addison-Wesley, 1999.

[3] D. Roberts, J. Brant, and R. Johnson, “A refactoring tool for smalltalk,”
Theory and Practice of Object Systems, vol. 3, no. 4, pp. 253–263, 1997.
[Online]. Available: http://st-www.cs.uiuc.edu/˜droberts/tapos.pdf

[4] (2003) The XProgramming.com website. [Online]. Available: http://www.
xprogramming.com/software.htm 2

http://st-www.cs.uiuc.edu/~droberts/tapos.pdf
http://www.xprogramming.com/software.htm
http://www.xprogramming.com/software.htm

	1 Introduction
	2 Testing and Tests
	3 SUnit by Example
	3.1 Step 1
	3.2 Step 2
	3.3 Step 3
	3.4 Step 4
	3.5 Explanation

	4 Basic How To
	4.1 Normal Operation
	4.2 How to Run a Single Test
	4.3 How to Run All Tests in a TestCase Subclass
	4.4 Must I Subclass TestCase?

	5 The SUnit Framework
	5.1 TestCase
	5.2 TestSuite
	5.3 TestResult
	5.4 TestResource

	6 Features of SUnit 3.1
	6.1 Assertion Description Strings
	6.2 Logging Support
	6.3 Resumable Test Failure

	7 Key Implementation Aspects
	7.1 Running One Test
	7.2 Running a TestSuite

	8 Bits of Wisdom
	9 Extending SUnit
	9.1 SharedSetUpTestCase
	9.2 SharedOne
	9.3 SharedSetUpTestSuite
	9.4 Changes to TestCase

	10 Exercise
	11 Conclusion

