SUnit Explained

Stéphane Ducasse

ducasse@iam.unibe.ch
http://www.iam.unibe.ch/~ducasse/

Notefor thereader: Thisarticleisafirst draft version of the paper | would liketo have. | would liketo have abetter motiva-
tion for testing, relations with XP and the latest version of SUnit 3.1. | wrote it because | could not afford to wait to have one
document describing SUnit and the resources. This version has been sent to Squeak news. Originally Sam Shuster mentioned
that he wanted to write an article on SUnit and | know that Joseph Pelrine as a paper under way. So if one of youisinterested |
would really like to have you as co-author.

SUnitisaminimal yet powerful framework that supportsthe creation of tests. SUnit wasde-
veloped originally by Kent Beck and get extended by Joseph Pelrine and othersover severd it-
erationsto takeinto account the notion of resourcesthat wewill illustrate hereafter. Theinterest
for SUnit is not limited to Smalltalk or Squeak. Indeed legions of developers understood the
power of unit testing and now versions of SUnit exist in nearly any language going from Java,
Python, Perl, Oracle and ot others [SUnit]. The current version of SUnit is 3.0 and anew ver-
sion 3.1 ison preparation.

Testing and building regression test suites is not new and everybody knows that regression
testsare agood way to catch errors. Extreme Programming by putting testing in the core of its
methodol ogy isbringing anew light on testing whichisanot so liked discipline. The Smalltalk
community hasalong tradition of test dueto theincremental devel opment supported by itspro-
gramming environment. However, once you write testsin aworkspace or as example methods
thereisno easy way to keep track of them and to automatically run them and teststhat you can-
not automatically runareof littleinterests. M oreover, having examplesoften doesnot tell tothe
reader what are the expect results, lot of thelogicisleft unspecified. That'swhy SUnit isinter-
esting becauseit allowsyou to structure, describe the context of tests and to run them automat-
ically. In less than two minutes you can write tests using SUnit instead of writing small code
snippetsand get all the advantage of stored and automatically executable tests.

Inthisarticle we start by discussing the interest of testing, then we present an exemple with
SUnit and we go deep into the SUnit implementation.

1. Testing and Tests

Most of the devel opersbelievethat testsarealost of time. Who hasnot heard: | would write
testsif | would have more time”. If you write code that should never be changed indeed you
should not writetests, but thisal so meansthat you applicationisnot really used or useful. Infact
testsareaninvestment for thefuture. In particul ar, having asuite of testsisextremely useful and
allow oneto gain alot of timewhen your application changes.

Tests play several roles: first they are an active and always synchronized documentation of
thefunctionality they cover. Second they represent the confidencethat devel operscan haveinto
apiece of functionality. They help you to find extremely fast the parts that break to due intro-
duced changes. It isobvious but simply true. Finally, writing testsin the same time or even be-

2. SUnit Explained

forewriting codeforceyou to think about the functionality you want to design. By writing tests
first you haveto clearly statethe context in which your functionality will run, theway it will in-
teract and more important the expected results. Moreover, when you are writing tests you are
your first client and your code will naturally improves.

The culture of tests has always been present in the Smalltalk community because a method
iscompiled and wewriteasmall expressiontotest it. This practice supportsthe extremely tight
incremental development cycle promoted by Smalltalk. However, doing so does not bring the
maximum benefit from testing. Because tests are not stored, reachable and run automatically.
Moreover it often happensthat the context of thetestsisleft unspecified so thereader hastoin-
terpret the obtained results and assess they are right or wrong.

Itisclear that we cannot tests all the aspects of an application. Covering acomplete applica-
tionissimply impossible and should not be goal of testing. It may also happen that even with a
good test suite some bugs can creep into the application and beleft hidden waiting for an oppor-
tunity to damage your system. Thisisnot aproblem assoon asif you trap abug you write atest
that coversit.

Writing good tests is a technique that can be easily learnt by practising. Let us look at the
propertiesthat tests should have to get amaximum benefit

» Repeatable. We should be able to repeat atest as much as we want.

» Without human intervention. Tests should be repeated without any human intervention. You should be able
to run them during the night.

» Telling astory. A test should cover one aspect of a piece of code. A test should act as a scenario that you
would like to read to understand a functionality.

» Having a change frequency lower than the one of the covered functionality. Indeed you do not want to
change all your tests every times you modify your application. One way to achieve this property isto write
tests based on the interfaces of the tested functionality.

Besidesthe property of thetest itself another important point whilewriting test suitesisthat
the number of tests should be somehow proportional to the number of tested functionality. For
example, changing one aspect of the system should not break all the tests you wrote but only a
limited number. Thisisimportant because having 100 tests broken should be amuch moreim-
portant message for you than having 10 testsfailing.

eXtreme Programming proposes to write tests even before writing code. This may seems
against our deep devel oper habits. Here are the observations we made while practising up front
testswriting. Up front testing hel p to know what you want to code, they help to know when you
aredone, they helpto conceptualizethefunctionality of aclassand to designtheinterface. Now
itistimeto writeafirst test and to convince you that thisisapity not using SUnit.

2. SUnit by Example

Before going into the detail of SUnit, we show an example step by step. We use the example
testing theclass Set that isincluded in the SUnit distribution, so that you can read the code di-
rectly inyour favorite Smalltalk.

Step 1. Firstyou should subclassthe Test Case classasfollow:
Test Case subcl ass: #Exanpl eSet Test

i nstanceVari abl eNarres: ' full enpty’
cl assVari abl eNarres: "

pool Di ctionaries: "'

category: 'Slnit-Tests'

The class Exanpl eSet Test groupsall testsrelated to the class test. It defines the context of
all theteststhat we will specify. Here the context is described by specifying two instance vari-
ablesf ul | andenpt y that represent afull and empty set.

Step 2. We define the method setUp as follow. The method setup acts as a context definer
method or initiliaze method. It isinvoked before the execution of any test method definedinthis
class. Hereweiinitialize the enpt y variable to refer to an empty set and thef ul | variable to
refer to aset containing two elements.

Exanpl eSet Test >>set Up

enpty := Set new

full :=Set with: 5 with: #abc
Thismethod defines the context of any testsdefined inthe classintesting jargonitiscalled the
fixture of thetest.

Step 3. We define sometests by defining some methods on the classExanpl eSet Test . Ba-
sically one method represents onetest. If your test methods start with the string test the frame-
work will collect them automatically for you into test suites ready to be executed.

Thefirsttest namedt est | ncl udes, teststheincludesmethod of aSet . We say that sending
the messagei ncl udes: 5 toaset containing 5 should returnt r ue.Here we see clearly that
thetest relieson thefact that the set Up method has been run before.

Exanpl eSet Test >>t est | ncl udes
sel f assert: (full includes: 5).
sel f assert: (full includes: #abc)

The second test named t est Occur r ences verifies that the occurrences of 5 in the full set
isequal to one even if we add another element 5 to the set.

Exanpl eSet Test >>t est Gccur rences
sel f assert: (enpty occurrencesC: 0) = 0.
sel f assert: (full occurrencesC: 5) = 1.
full add: 5.
self assert: (full occurrencestd: 5) =1

Finally wetest that if weremovethe element 5from aset the set doesnot containit any more.

Exanpl eSet Test >>t est Renove
full renove: 5.
sel f assert: (full includes: #abc).
self deny: (full includes: 5)

Step 4. Now we can execute thetests. Thisis possible using the user interface of SUnit. This
interface depends on the dialect you use. In Squeak and VisualWorks, you should execute
TestRunner open. You should obtainthefigure 1. You can al so run youtests by executing thefol -

4. SUnit Explained

lowing code: (Exanpl eSet Test sel ector: #testRenove) run. Thisexpression is
equivalent to the shorter oneExanpl eSet Test run: #t est Renove. Weusually awaysin-
clude such kind of expressioninthecomment of our teststo be ableto runthem whilebrowsing
them as shown below.

Exanpl eSet Test >>t est Renove
“sel f run: #testRenove”

full renove: 5.
sel f assert: (full includes: #abc).
sel f deny: (full includes: 5)

To debug a test use the following expressions. (Exanpl eSet Test sel ector:
#t est Renove) debug or Exanpl eSet Test debug: #t est Renpve.

ExtraParsinghndFormattingTests
REFRISH TestNewParagraphFix
ChildrenToSiblingsTest EUN ALL I

Figure 1 The user interface of SUnit. Here a test run and all the tests
passed.

Some Explanations. The method assert: which is defined on the class Test Case requires
aboolean as argument. This boolean represents the value of atested expression. When the ar-
gument istrue, the expression isconsidered to be correct, we say that thetest isvalid. When the
argument is false, then the test failed. In fact SUnit consider two kinds of errors:. the failures,
i.e., when atestisnot valid and the errors which are unexpected situations occurring whilethe
testisrunning. Anerror isby itsnature something that has not been tested but that happened like
an out of bounds error. Themethod deny: isthenegation of assert : . HenceaTest deny:
anExpr essi onisequal to aTest assert: anExpression not.

SUnit offers two methods shoul d: rai se: and shoul dnt : rai se: (aTest shoul d:
aBl ock rai se: anExcept i on) totest that exceptions have been rai sed during the execution
of an expression. Thefollowing test illustrates the use of this method.

Exanpl eSet Test >>t est | | | egal
sel f should: [enpty at: 5] raise: Error.
sel f should: [enpty at: 5 put: #abc] raise: Error

Notethat if you look in the example provided by SUnit you will found the following definition
for the same test. Here the exception is provided viathe Test Resul t class. Thisis because
SUnit isrunning on all the Smalltalk dialects and the SUnit devel opers have factored out the
variant part such asthe name of the exception. Soif you writeteststhat areintended to be cross
dialectslook at theclassTest Resul t .

Exanpl eSet Test >>t est | | | egal
sel f should: [enpty at: 5] raise: TestResult error.
self should: [enpty at: 5 put: #abc] raise: TestResult error

3. The SUnit Framework

Squeak 3.1includestheversion 3.0 of SUnit. Thisversionintroducesthe notion of resources
that are mandatory when one need to build teststhat require long set up phases. A test resource
specifiesaset up that isonly executed oncefor aset of tests contrary to the Test Case method
which is executed before every test execution.

TestResource
isAvailable
TestCase isUnavailable
setlp setlp
- tearDowh
TestSuite tearDown
tests assert:
run K —] deny:
7 o TesthResult
resources should:raise:
addTest: shouldnt raise: \"- passedCount
selector: failuresCount
rn ertorCount
Fesolrces runConnt
tests

Figure 2 The four classes representing the core of SUnit.

SUnitisconstituted by four main classes, namely Test Case, Test Sui t e, Test Resul t et
Test Resour ce asshowninthefigure 2.

TheclassTest Case representsatest or moregenerally afamily of teststhat shareacommon
context. The context isspecified by the declaration of instance variableson asubclassof Test -
Case and by the specialization of the method set Up which initializesthe context in which the
will be executed. The class Test Case defines also the method t ear Down that is responsible
for releasing if necessary the object allocated during the execution of the method set Up. The
method t ear Down isinvoked after the execution of every tests.

The class Test Sui t e represents a collection of tests. An instance of Test Sui t e is com-
posed by instance of Test Case subclasses(ainstance of Test Case ischaracterized by the se-
lector that should run) and Test Sui t e. The classes Test Sui t e and Test Case form a
composite patterninwhich Test Sui t e isthecompositeand Test Case theleaves.

6. SUnit Explained

The class Test Resul t represents the results of a Test Sui t e execution. This means the
number of test passed, failed and the number of errors.

The class Test Resour ce represents aresource that is used by atest or aset of tests. The
pointisthat aresourceisassociated with subclassof Test Case anditisrunautomatically once
beforeall thetestsare executed contrary tothe Test Case methodsset Up andt ear Down that
are executed before and after any test.

A resource is run before atest suite is run. A resource is defined by specializing the class
method resources as shown by thefollowing example. By default, aninstance of TestSuite con-
sider that all itsresourcesarethelist of resources of the TestCase that composeit.

We defineasubclassof Test Resour ce called My Test Resour ce and we associate it with
My Test Case by specializing theclassmethodr esour ces toreturnanarray of thetest classes
towhichit isassociated.

Test Resour ce subcl ass: #M/Test Resour ce
i nstanceVari abl eNarres: '’

Test Resour ce>>set Wp
“here the resource is set up”

M/Test Case cl ass>>resour ces
“associate a resource with a testcase”

A Array wth: MTest Resour ce

AswithaTestCase, we usethemethod set Up to definetheactionsthat will berun during the
set up of the resource.

4. Key Implementation Aspects

We show now some key aspects of the implementation by following the execution of atest.
Thisisnot mandatory to use SUnit but can help you to customizeit.

Running one Test. To execute one test, we evaluate the expression (Test Case sel ec-
tor: aSynbol) run.Themethod Test Case>>r un defined ontheclassTest Case creates
an instance of TestResult that will contains the result of the executed tests, then it invokes the
method Test Case>>r un:

Test Case>>r un

| result |

result := TestResult new.
self run: result.

Aresul t

Themethod Test Case>>r un: invokesthemethod Test Resul t >>r unCase: .

Test Case>>run: aResul t
aResult runCase: self

The method Test Resul t >>r unCase: is the method that will invoke the method Test -
Case>>r unCase that executes atest.

Without going into the details, Test Case>>r unCase pays attention to the possible excep-
tion that may be raised during the execution of the test, invokes the execution of atestCase by
calling the method r unCase and countsthe errors, faillures and passed tests.

Test Resul t >>runCase: aTest Case
| testCasePassed |
t est CasePassed : = true.
[[aTest Case runCase]
sunitOn: self class failure
do: [:signal |
self failures add: aTest Case.
t est CasePassed : = fal se.
signal sunitExitWth: false]]
sunitOn: self class error
do: [:signal |
self errors add: aTest Case.
t est CasePassed : = fal se.
signal sunitExitWth: false].
test CasePassed ifTrue: [self passed add: aTest Case]

Themethod Test Case>>r unCase realizesthecallstothemethodsset Up ett ear Down as
shown below:

Test Case>>r unCase
sel f set Up.
[sel f perfornmlest] sunitEnsure: [self tearDown]

Running a TestSuite. To execute more than a test, we invoke the method Test -
Sui t e>>run onaTest Sui t e. The class Test Case provides some functionalities to get a
test suitefromitsmethods. Theexpression MyTest Case bui | dSui t eFr onSel ect or s re-
turnsasuite suite containing all thetestsdefined inthe classMyTest Case.

The method Test Sui t e>>r un creates an instance of Test Resul t, verifies that al there-
source are available, then the method Test Sui t e>>r un: isinvoked which run all the tests
that compose thetest suite. All the resources are then reset.

Test Sui t e>>run
| result |
result := TestResult new
sel f areAl | Resour cesAvail abl e
i fFalse: ["TestResult signal ErrorWth: 'Resource could not be initialized].
[self run: result] sunitEnsure: [self resources do: [:each | each reset]].
Aresul t

Test Sui te>>run: aResul t
self tests do: [:each |
sel f sunit Changed: each.
each run: aResult]

Test Sui t e>>ar eAl | Resour cesAvai | abl e
“sel f resources

8. SUnit Explained

inject: true
into: [:total :each | each isAvailable & total]

TheclassTest Resour ce and its subclasses keep track of thetheir currently created instances
(one per class) that can be accessed and created using the classmethod cur r ent . Thisinstance
is cleared when the tests have finished to run and the resources are reset.

Thisisduring the resource availability check that the resourceis created if needed as shows
theclassmethod Test Resour ce cl ass>>i sAvai | abl e. DuringtheTestResourceinstance
creation, itisinitialized and themethod setUpisinvoked. (Noteit may happen that your version
of SUnit 3.0 does not correctly initialize the resource. A version with this bug circulated alot.
Verify that Test Resour ce cl ass>>newcallsthemethodi ni ti al i ze).

Test Resour ce cl ass>>i sAvai | abl e
“self current notN |
Test Resour ce cl ass>>current

current isNl ifTrue: [current := self new.
Acurrent

Test Resource>>i nitialize
self setlp

5. Conclusion

We presented why writing testsare animportant way of investing onthefuture. Werecalled that
tests should be repeatable, independent of any direct human interaction and cover a precise
functionality to maximizetheir potential. We presented in a step by step fashion how to define
a couple of tests for the class Set using SUnit. Then we gave an overview of the core of the
framework by presenting the classes TestCase, TestResult, TestSuite and TestResources. Final -
ly we dived into SUnit by following the execution of atestsand test suite. We hopethat we con-
vinceyou about theimportance of repeatabl e unit tests and about the ease of writing them using
SUnit.

6. Bibliography

[Beck] Kent Beck, Extreme Programming Explained: Embrace Change, Addison-Wesley,
1999.

[FBBOR] Martin Fowler, Kent Beck, John Brant, William Opdyke and Don Roberts, Refac-
toring: Improving the Design of Existing Code, Addison-Wesley, 1999.

[RBJ1] D. Roberts, J. Brant and R. Johnson, “Why every Smalltalker should use the Refac-
toring Browser, Smalltalk Report, SIGS Press, http://st-www.cs.uiuc.edu/users/droberts/
homePage.html#refactoring

[RBJ2]D. Roberts, J. Brant and R. Johnson, “A Refactoring Tool for Smalltalk”, TAPOS,
vol. 3, no. 4, 1997, pp. 253-263, http://st-www.cs.uiuc.edu/~droberts/tapos/ TAPOS.htm

[SUnit] http://www.xprogramming.com/software.htm

